Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/riscv/kvm/mmu.c
51341 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
4
*
5
* Authors:
6
* Anup Patel <[email protected]>
7
*/
8
9
#include <linux/errno.h>
10
#include <linux/hugetlb.h>
11
#include <linux/module.h>
12
#include <linux/uaccess.h>
13
#include <linux/vmalloc.h>
14
#include <linux/kvm_host.h>
15
#include <linux/sched/signal.h>
16
#include <asm/kvm_mmu.h>
17
#include <asm/kvm_nacl.h>
18
19
static void mmu_wp_memory_region(struct kvm *kvm, int slot)
20
{
21
struct kvm_memslots *slots = kvm_memslots(kvm);
22
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
23
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
24
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
25
struct kvm_gstage gstage;
26
27
gstage.kvm = kvm;
28
gstage.flags = 0;
29
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
30
gstage.pgd = kvm->arch.pgd;
31
32
spin_lock(&kvm->mmu_lock);
33
kvm_riscv_gstage_wp_range(&gstage, start, end);
34
spin_unlock(&kvm->mmu_lock);
35
kvm_flush_remote_tlbs_memslot(kvm, memslot);
36
}
37
38
int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
39
unsigned long size, bool writable, bool in_atomic)
40
{
41
int ret = 0;
42
pgprot_t prot;
43
unsigned long pfn;
44
phys_addr_t addr, end;
45
struct kvm_mmu_memory_cache pcache = {
46
.gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
47
.gfp_zero = __GFP_ZERO,
48
};
49
struct kvm_gstage_mapping map;
50
struct kvm_gstage gstage;
51
52
gstage.kvm = kvm;
53
gstage.flags = 0;
54
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
55
gstage.pgd = kvm->arch.pgd;
56
57
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
58
pfn = __phys_to_pfn(hpa);
59
prot = pgprot_noncached(PAGE_WRITE);
60
61
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
62
map.addr = addr;
63
map.pte = pfn_pte(pfn, prot);
64
map.pte = pte_mkdirty(map.pte);
65
map.level = 0;
66
67
if (!writable)
68
map.pte = pte_wrprotect(map.pte);
69
70
ret = kvm_mmu_topup_memory_cache(&pcache, kvm_riscv_gstage_pgd_levels);
71
if (ret)
72
goto out;
73
74
spin_lock(&kvm->mmu_lock);
75
ret = kvm_riscv_gstage_set_pte(&gstage, &pcache, &map);
76
spin_unlock(&kvm->mmu_lock);
77
if (ret)
78
goto out;
79
80
pfn++;
81
}
82
83
out:
84
kvm_mmu_free_memory_cache(&pcache);
85
return ret;
86
}
87
88
void kvm_riscv_mmu_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
89
{
90
struct kvm_gstage gstage;
91
92
gstage.kvm = kvm;
93
gstage.flags = 0;
94
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
95
gstage.pgd = kvm->arch.pgd;
96
97
spin_lock(&kvm->mmu_lock);
98
kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
99
spin_unlock(&kvm->mmu_lock);
100
}
101
102
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
103
struct kvm_memory_slot *slot,
104
gfn_t gfn_offset,
105
unsigned long mask)
106
{
107
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
108
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
109
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
110
struct kvm_gstage gstage;
111
112
gstage.kvm = kvm;
113
gstage.flags = 0;
114
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
115
gstage.pgd = kvm->arch.pgd;
116
117
kvm_riscv_gstage_wp_range(&gstage, start, end);
118
}
119
120
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
121
{
122
}
123
124
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
125
{
126
}
127
128
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
129
{
130
}
131
132
void kvm_arch_flush_shadow_all(struct kvm *kvm)
133
{
134
kvm_riscv_mmu_free_pgd(kvm);
135
}
136
137
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
138
struct kvm_memory_slot *slot)
139
{
140
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
141
phys_addr_t size = slot->npages << PAGE_SHIFT;
142
struct kvm_gstage gstage;
143
144
gstage.kvm = kvm;
145
gstage.flags = 0;
146
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
147
gstage.pgd = kvm->arch.pgd;
148
149
spin_lock(&kvm->mmu_lock);
150
kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
151
spin_unlock(&kvm->mmu_lock);
152
}
153
154
void kvm_arch_commit_memory_region(struct kvm *kvm,
155
struct kvm_memory_slot *old,
156
const struct kvm_memory_slot *new,
157
enum kvm_mr_change change)
158
{
159
/*
160
* At this point memslot has been committed and there is an
161
* allocated dirty_bitmap[], dirty pages will be tracked while
162
* the memory slot is write protected.
163
*/
164
if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
165
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
166
return;
167
mmu_wp_memory_region(kvm, new->id);
168
}
169
}
170
171
int kvm_arch_prepare_memory_region(struct kvm *kvm,
172
const struct kvm_memory_slot *old,
173
struct kvm_memory_slot *new,
174
enum kvm_mr_change change)
175
{
176
hva_t hva, reg_end, size;
177
bool writable;
178
int ret = 0;
179
180
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
181
change != KVM_MR_FLAGS_ONLY)
182
return 0;
183
184
/*
185
* Prevent userspace from creating a memory region outside of the GPA
186
* space addressable by the KVM guest GPA space.
187
*/
188
if ((new->base_gfn + new->npages) >=
189
(kvm_riscv_gstage_gpa_size >> PAGE_SHIFT))
190
return -EFAULT;
191
192
hva = new->userspace_addr;
193
size = new->npages << PAGE_SHIFT;
194
reg_end = hva + size;
195
writable = !(new->flags & KVM_MEM_READONLY);
196
197
mmap_read_lock(current->mm);
198
199
/*
200
* A memory region could potentially cover multiple VMAs, and
201
* any holes between them, so iterate over all of them.
202
*
203
* +--------------------------------------------+
204
* +---------------+----------------+ +----------------+
205
* | : VMA 1 | VMA 2 | | VMA 3 : |
206
* +---------------+----------------+ +----------------+
207
* | memory region |
208
* +--------------------------------------------+
209
*/
210
do {
211
struct vm_area_struct *vma;
212
hva_t vm_end;
213
214
vma = find_vma_intersection(current->mm, hva, reg_end);
215
if (!vma)
216
break;
217
218
/*
219
* Mapping a read-only VMA is only allowed if the
220
* memory region is configured as read-only.
221
*/
222
if (writable && !(vma->vm_flags & VM_WRITE)) {
223
ret = -EPERM;
224
break;
225
}
226
227
/* Take the intersection of this VMA with the memory region */
228
vm_end = min(reg_end, vma->vm_end);
229
230
if (vma->vm_flags & VM_PFNMAP) {
231
/* IO region dirty page logging not allowed */
232
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
233
ret = -EINVAL;
234
goto out;
235
}
236
}
237
hva = vm_end;
238
} while (hva < reg_end);
239
240
out:
241
mmap_read_unlock(current->mm);
242
return ret;
243
}
244
245
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
246
{
247
struct kvm_gstage gstage;
248
249
if (!kvm->arch.pgd)
250
return false;
251
252
gstage.kvm = kvm;
253
gstage.flags = 0;
254
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
255
gstage.pgd = kvm->arch.pgd;
256
kvm_riscv_gstage_unmap_range(&gstage, range->start << PAGE_SHIFT,
257
(range->end - range->start) << PAGE_SHIFT,
258
range->may_block);
259
return false;
260
}
261
262
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
263
{
264
pte_t *ptep;
265
u32 ptep_level = 0;
266
u64 size = (range->end - range->start) << PAGE_SHIFT;
267
struct kvm_gstage gstage;
268
269
if (!kvm->arch.pgd)
270
return false;
271
272
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
273
274
gstage.kvm = kvm;
275
gstage.flags = 0;
276
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
277
gstage.pgd = kvm->arch.pgd;
278
if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
279
&ptep, &ptep_level))
280
return false;
281
282
return ptep_test_and_clear_young(NULL, 0, ptep);
283
}
284
285
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
286
{
287
pte_t *ptep;
288
u32 ptep_level = 0;
289
u64 size = (range->end - range->start) << PAGE_SHIFT;
290
struct kvm_gstage gstage;
291
292
if (!kvm->arch.pgd)
293
return false;
294
295
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
296
297
gstage.kvm = kvm;
298
gstage.flags = 0;
299
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
300
gstage.pgd = kvm->arch.pgd;
301
if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
302
&ptep, &ptep_level))
303
return false;
304
305
return pte_young(ptep_get(ptep));
306
}
307
308
int kvm_riscv_mmu_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
309
gpa_t gpa, unsigned long hva, bool is_write,
310
struct kvm_gstage_mapping *out_map)
311
{
312
int ret;
313
kvm_pfn_t hfn;
314
bool writable;
315
short vma_pageshift;
316
gfn_t gfn = gpa >> PAGE_SHIFT;
317
struct vm_area_struct *vma;
318
struct kvm *kvm = vcpu->kvm;
319
struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
320
bool logging = (memslot->dirty_bitmap &&
321
!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
322
unsigned long vma_pagesize, mmu_seq;
323
struct kvm_gstage gstage;
324
struct page *page;
325
326
gstage.kvm = kvm;
327
gstage.flags = 0;
328
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
329
gstage.pgd = kvm->arch.pgd;
330
331
/* Setup initial state of output mapping */
332
memset(out_map, 0, sizeof(*out_map));
333
334
/* We need minimum second+third level pages */
335
ret = kvm_mmu_topup_memory_cache(pcache, kvm_riscv_gstage_pgd_levels);
336
if (ret) {
337
kvm_err("Failed to topup G-stage cache\n");
338
return ret;
339
}
340
341
mmap_read_lock(current->mm);
342
343
vma = vma_lookup(current->mm, hva);
344
if (unlikely(!vma)) {
345
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
346
mmap_read_unlock(current->mm);
347
return -EFAULT;
348
}
349
350
if (is_vm_hugetlb_page(vma))
351
vma_pageshift = huge_page_shift(hstate_vma(vma));
352
else
353
vma_pageshift = PAGE_SHIFT;
354
vma_pagesize = 1ULL << vma_pageshift;
355
if (logging || (vma->vm_flags & VM_PFNMAP))
356
vma_pagesize = PAGE_SIZE;
357
358
if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
359
gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
360
361
/*
362
* Read mmu_invalidate_seq so that KVM can detect if the results of
363
* vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring
364
* kvm->mmu_lock.
365
*
366
* Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
367
* with the smp_wmb() in kvm_mmu_invalidate_end().
368
*/
369
mmu_seq = kvm->mmu_invalidate_seq;
370
mmap_read_unlock(current->mm);
371
372
if (vma_pagesize != PUD_SIZE &&
373
vma_pagesize != PMD_SIZE &&
374
vma_pagesize != PAGE_SIZE) {
375
kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
376
return -EFAULT;
377
}
378
379
hfn = __kvm_faultin_pfn(memslot, gfn, is_write ? FOLL_WRITE : 0,
380
&writable, &page);
381
if (hfn == KVM_PFN_ERR_HWPOISON) {
382
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
383
vma_pageshift, current);
384
return 0;
385
}
386
if (is_error_noslot_pfn(hfn))
387
return -EFAULT;
388
389
/*
390
* If logging is active then we allow writable pages only
391
* for write faults.
392
*/
393
if (logging && !is_write)
394
writable = false;
395
396
spin_lock(&kvm->mmu_lock);
397
398
if (mmu_invalidate_retry(kvm, mmu_seq))
399
goto out_unlock;
400
401
if (writable) {
402
mark_page_dirty_in_slot(kvm, memslot, gfn);
403
ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
404
vma_pagesize, false, true, out_map);
405
} else {
406
ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
407
vma_pagesize, true, true, out_map);
408
}
409
410
if (ret)
411
kvm_err("Failed to map in G-stage\n");
412
413
out_unlock:
414
kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable);
415
spin_unlock(&kvm->mmu_lock);
416
return ret;
417
}
418
419
int kvm_riscv_mmu_alloc_pgd(struct kvm *kvm)
420
{
421
struct page *pgd_page;
422
423
if (kvm->arch.pgd != NULL) {
424
kvm_err("kvm_arch already initialized?\n");
425
return -EINVAL;
426
}
427
428
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
429
get_order(kvm_riscv_gstage_pgd_size));
430
if (!pgd_page)
431
return -ENOMEM;
432
kvm->arch.pgd = page_to_virt(pgd_page);
433
kvm->arch.pgd_phys = page_to_phys(pgd_page);
434
435
return 0;
436
}
437
438
void kvm_riscv_mmu_free_pgd(struct kvm *kvm)
439
{
440
struct kvm_gstage gstage;
441
void *pgd = NULL;
442
443
spin_lock(&kvm->mmu_lock);
444
if (kvm->arch.pgd) {
445
gstage.kvm = kvm;
446
gstage.flags = 0;
447
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
448
gstage.pgd = kvm->arch.pgd;
449
kvm_riscv_gstage_unmap_range(&gstage, 0UL, kvm_riscv_gstage_gpa_size, false);
450
pgd = READ_ONCE(kvm->arch.pgd);
451
kvm->arch.pgd = NULL;
452
kvm->arch.pgd_phys = 0;
453
}
454
spin_unlock(&kvm->mmu_lock);
455
456
if (pgd)
457
free_pages((unsigned long)pgd, get_order(kvm_riscv_gstage_pgd_size));
458
}
459
460
void kvm_riscv_mmu_update_hgatp(struct kvm_vcpu *vcpu)
461
{
462
unsigned long hgatp = kvm_riscv_gstage_mode << HGATP_MODE_SHIFT;
463
struct kvm_arch *k = &vcpu->kvm->arch;
464
465
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
466
hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
467
468
ncsr_write(CSR_HGATP, hgatp);
469
470
if (!kvm_riscv_gstage_vmid_bits())
471
kvm_riscv_local_hfence_gvma_all();
472
}
473
474