Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/riscv/mm/context.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2012 Regents of the University of California
4
* Copyright (C) 2017 SiFive
5
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
6
*/
7
8
#include <linux/bitops.h>
9
#include <linux/cpumask.h>
10
#include <linux/mm.h>
11
#include <linux/percpu.h>
12
#include <linux/slab.h>
13
#include <linux/spinlock.h>
14
#include <linux/static_key.h>
15
#include <asm/tlbflush.h>
16
#include <asm/cacheflush.h>
17
#include <asm/mmu_context.h>
18
#include <asm/switch_to.h>
19
20
#ifdef CONFIG_MMU
21
22
DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
23
24
static unsigned long num_asids;
25
26
static atomic_long_t current_version;
27
28
static DEFINE_RAW_SPINLOCK(context_lock);
29
static cpumask_t context_tlb_flush_pending;
30
static unsigned long *context_asid_map;
31
32
static DEFINE_PER_CPU(atomic_long_t, active_context);
33
static DEFINE_PER_CPU(unsigned long, reserved_context);
34
35
static bool check_update_reserved_context(unsigned long cntx,
36
unsigned long newcntx)
37
{
38
int cpu;
39
bool hit = false;
40
41
/*
42
* Iterate over the set of reserved CONTEXT looking for a match.
43
* If we find one, then we can update our mm to use new CONTEXT
44
* (i.e. the same CONTEXT in the current_version) but we can't
45
* exit the loop early, since we need to ensure that all copies
46
* of the old CONTEXT are updated to reflect the mm. Failure to do
47
* so could result in us missing the reserved CONTEXT in a future
48
* version.
49
*/
50
for_each_possible_cpu(cpu) {
51
if (per_cpu(reserved_context, cpu) == cntx) {
52
hit = true;
53
per_cpu(reserved_context, cpu) = newcntx;
54
}
55
}
56
57
return hit;
58
}
59
60
static void __flush_context(void)
61
{
62
int i;
63
unsigned long cntx;
64
65
/* Must be called with context_lock held */
66
lockdep_assert_held(&context_lock);
67
68
/* Update the list of reserved ASIDs and the ASID bitmap. */
69
bitmap_zero(context_asid_map, num_asids);
70
71
/* Mark already active ASIDs as used */
72
for_each_possible_cpu(i) {
73
cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
74
/*
75
* If this CPU has already been through a rollover, but
76
* hasn't run another task in the meantime, we must preserve
77
* its reserved CONTEXT, as this is the only trace we have of
78
* the process it is still running.
79
*/
80
if (cntx == 0)
81
cntx = per_cpu(reserved_context, i);
82
83
__set_bit(cntx2asid(cntx), context_asid_map);
84
per_cpu(reserved_context, i) = cntx;
85
}
86
87
/* Mark ASID #0 as used because it is used at boot-time */
88
__set_bit(0, context_asid_map);
89
90
/* Queue a TLB invalidation for each CPU on next context-switch */
91
cpumask_setall(&context_tlb_flush_pending);
92
}
93
94
static unsigned long __new_context(struct mm_struct *mm)
95
{
96
static u32 cur_idx = 1;
97
unsigned long cntx = atomic_long_read(&mm->context.id);
98
unsigned long asid, ver = atomic_long_read(&current_version);
99
100
/* Must be called with context_lock held */
101
lockdep_assert_held(&context_lock);
102
103
if (cntx != 0) {
104
unsigned long newcntx = ver | cntx2asid(cntx);
105
106
/*
107
* If our current CONTEXT was active during a rollover, we
108
* can continue to use it and this was just a false alarm.
109
*/
110
if (check_update_reserved_context(cntx, newcntx))
111
return newcntx;
112
113
/*
114
* We had a valid CONTEXT in a previous life, so try to
115
* re-use it if possible.
116
*/
117
if (!__test_and_set_bit(cntx2asid(cntx), context_asid_map))
118
return newcntx;
119
}
120
121
/*
122
* Allocate a free ASID. If we can't find one then increment
123
* current_version and flush all ASIDs.
124
*/
125
asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
126
if (asid != num_asids)
127
goto set_asid;
128
129
/* We're out of ASIDs, so increment current_version */
130
ver = atomic_long_add_return_relaxed(BIT(SATP_ASID_BITS), &current_version);
131
132
/* Flush everything */
133
__flush_context();
134
135
/* We have more ASIDs than CPUs, so this will always succeed */
136
asid = find_next_zero_bit(context_asid_map, num_asids, 1);
137
138
set_asid:
139
__set_bit(asid, context_asid_map);
140
cur_idx = asid;
141
return asid | ver;
142
}
143
144
static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
145
{
146
unsigned long flags;
147
bool need_flush_tlb = false;
148
unsigned long cntx, old_active_cntx;
149
150
cntx = atomic_long_read(&mm->context.id);
151
152
/*
153
* If our active_context is non-zero and the context matches the
154
* current_version, then we update the active_context entry with a
155
* relaxed cmpxchg.
156
*
157
* Following is how we handle racing with a concurrent rollover:
158
*
159
* - We get a zero back from the cmpxchg and end up waiting on the
160
* lock. Taking the lock synchronises with the rollover and so
161
* we are forced to see the updated version.
162
*
163
* - We get a valid context back from the cmpxchg then we continue
164
* using old ASID because __flush_context() would have marked ASID
165
* of active_context as used and next context switch we will
166
* allocate new context.
167
*/
168
old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
169
if (old_active_cntx &&
170
(cntx2version(cntx) == atomic_long_read(&current_version)) &&
171
atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
172
old_active_cntx, cntx))
173
goto switch_mm_fast;
174
175
raw_spin_lock_irqsave(&context_lock, flags);
176
177
/* Check that our ASID belongs to the current_version. */
178
cntx = atomic_long_read(&mm->context.id);
179
if (cntx2version(cntx) != atomic_long_read(&current_version)) {
180
cntx = __new_context(mm);
181
atomic_long_set(&mm->context.id, cntx);
182
}
183
184
if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
185
need_flush_tlb = true;
186
187
atomic_long_set(&per_cpu(active_context, cpu), cntx);
188
189
raw_spin_unlock_irqrestore(&context_lock, flags);
190
191
switch_mm_fast:
192
csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
193
(cntx2asid(cntx) << SATP_ASID_SHIFT) |
194
satp_mode);
195
196
if (need_flush_tlb)
197
local_flush_tlb_all();
198
}
199
200
static void set_mm_noasid(struct mm_struct *mm)
201
{
202
/* Switch the page table and blindly nuke entire local TLB */
203
csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
204
local_flush_tlb_all_asid(0);
205
}
206
207
static inline void set_mm(struct mm_struct *prev,
208
struct mm_struct *next, unsigned int cpu)
209
{
210
/*
211
* The mm_cpumask indicates which harts' TLBs contain the virtual
212
* address mapping of the mm. Compared to noasid, using asid
213
* can't guarantee that stale TLB entries are invalidated because
214
* the asid mechanism wouldn't flush TLB for every switch_mm for
215
* performance. So when using asid, keep all CPUs footmarks in
216
* cpumask() until mm reset.
217
*/
218
cpumask_set_cpu(cpu, mm_cpumask(next));
219
if (static_branch_unlikely(&use_asid_allocator)) {
220
set_mm_asid(next, cpu);
221
} else {
222
cpumask_clear_cpu(cpu, mm_cpumask(prev));
223
set_mm_noasid(next);
224
}
225
}
226
227
static int __init asids_init(void)
228
{
229
unsigned long asid_bits, old;
230
231
/* Figure-out number of ASID bits in HW */
232
old = csr_read(CSR_SATP);
233
asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
234
csr_write(CSR_SATP, asid_bits);
235
asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT) & SATP_ASID_MASK;
236
asid_bits = fls_long(asid_bits);
237
csr_write(CSR_SATP, old);
238
239
/*
240
* In the process of determining number of ASID bits (above)
241
* we polluted the TLB of current HART so let's do TLB flushed
242
* to remove unwanted TLB enteries.
243
*/
244
local_flush_tlb_all();
245
246
/* Pre-compute ASID details */
247
if (asid_bits) {
248
num_asids = 1 << asid_bits;
249
}
250
251
/*
252
* Use ASID allocator only if number of HW ASIDs are
253
* at-least twice more than CPUs
254
*/
255
if (num_asids > (2 * num_possible_cpus())) {
256
atomic_long_set(&current_version, BIT(SATP_ASID_BITS));
257
258
context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
259
if (!context_asid_map)
260
panic("Failed to allocate bitmap for %lu ASIDs\n",
261
num_asids);
262
263
__set_bit(0, context_asid_map);
264
265
static_branch_enable(&use_asid_allocator);
266
267
pr_info("ASID allocator using %lu bits (%lu entries)\n",
268
asid_bits, num_asids);
269
} else {
270
pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
271
}
272
273
return 0;
274
}
275
early_initcall(asids_init);
276
#else
277
static inline void set_mm(struct mm_struct *prev,
278
struct mm_struct *next, unsigned int cpu)
279
{
280
/* Nothing to do here when there is no MMU */
281
}
282
#endif
283
284
/*
285
* When necessary, performs a deferred icache flush for the given MM context,
286
* on the local CPU. RISC-V has no direct mechanism for instruction cache
287
* shoot downs, so instead we send an IPI that informs the remote harts they
288
* need to flush their local instruction caches. To avoid pathologically slow
289
* behavior in a common case (a bunch of single-hart processes on a many-hart
290
* machine, ie 'make -j') we avoid the IPIs for harts that are not currently
291
* executing a MM context and instead schedule a deferred local instruction
292
* cache flush to be performed before execution resumes on each hart. This
293
* actually performs that local instruction cache flush, which implicitly only
294
* refers to the current hart.
295
*
296
* The "cpu" argument must be the current local CPU number.
297
*/
298
static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu,
299
struct task_struct *task)
300
{
301
#ifdef CONFIG_SMP
302
if (cpumask_test_and_clear_cpu(cpu, &mm->context.icache_stale_mask)) {
303
/*
304
* Ensure the remote hart's writes are visible to this hart.
305
* This pairs with a barrier in flush_icache_mm.
306
*/
307
smp_mb();
308
309
/*
310
* If cache will be flushed in switch_to, no need to flush here.
311
*/
312
if (!(task && switch_to_should_flush_icache(task)))
313
local_flush_icache_all();
314
}
315
#endif
316
}
317
318
void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319
struct task_struct *task)
320
{
321
unsigned int cpu;
322
323
if (unlikely(prev == next))
324
return;
325
326
membarrier_arch_switch_mm(prev, next, task);
327
328
/*
329
* Mark the current MM context as inactive, and the next as
330
* active. This is at least used by the icache flushing
331
* routines in order to determine who should be flushed.
332
*/
333
cpu = smp_processor_id();
334
335
set_mm(prev, next, cpu);
336
337
flush_icache_deferred(next, cpu, task);
338
}
339
340