Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/riscv/mm/fault.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (C) 2009 Sunplus Core Technology Co., Ltd.
4
* Lennox Wu <[email protected]>
5
* Chen Liqin <[email protected]>
6
* Copyright (C) 2012 Regents of the University of California
7
*/
8
9
10
#include <linux/mm.h>
11
#include <linux/kernel.h>
12
#include <linux/interrupt.h>
13
#include <linux/perf_event.h>
14
#include <linux/signal.h>
15
#include <linux/uaccess.h>
16
#include <linux/kprobes.h>
17
#include <linux/kfence.h>
18
#include <linux/entry-common.h>
19
20
#include <asm/ptrace.h>
21
#include <asm/tlbflush.h>
22
23
#define CREATE_TRACE_POINTS
24
#include <trace/events/exceptions.h>
25
26
#include "../kernel/head.h"
27
28
static void show_pte(unsigned long addr)
29
{
30
pgd_t *pgdp, pgd;
31
p4d_t *p4dp, p4d;
32
pud_t *pudp, pud;
33
pmd_t *pmdp, pmd;
34
pte_t *ptep, pte;
35
struct mm_struct *mm = current->mm;
36
37
if (!mm)
38
mm = &init_mm;
39
40
pr_alert("Current %s pgtable: %luK pagesize, %d-bit VAs, pgdp=0x%016llx\n",
41
current->comm, PAGE_SIZE / SZ_1K, VA_BITS,
42
mm == &init_mm ? (u64)__pa_symbol(mm->pgd) : virt_to_phys(mm->pgd));
43
44
pgdp = pgd_offset(mm, addr);
45
pgd = pgdp_get(pgdp);
46
pr_alert("[%016lx] pgd=%016lx", addr, pgd_val(pgd));
47
if (pgd_none(pgd) || pgd_bad(pgd) || pgd_leaf(pgd))
48
goto out;
49
50
p4dp = p4d_offset(pgdp, addr);
51
p4d = p4dp_get(p4dp);
52
pr_cont(", p4d=%016lx", p4d_val(p4d));
53
if (p4d_none(p4d) || p4d_bad(p4d) || p4d_leaf(p4d))
54
goto out;
55
56
pudp = pud_offset(p4dp, addr);
57
pud = pudp_get(pudp);
58
pr_cont(", pud=%016lx", pud_val(pud));
59
if (pud_none(pud) || pud_bad(pud) || pud_leaf(pud))
60
goto out;
61
62
pmdp = pmd_offset(pudp, addr);
63
pmd = pmdp_get(pmdp);
64
pr_cont(", pmd=%016lx", pmd_val(pmd));
65
if (pmd_none(pmd) || pmd_bad(pmd) || pmd_leaf(pmd))
66
goto out;
67
68
ptep = pte_offset_map(pmdp, addr);
69
if (!ptep)
70
goto out;
71
72
pte = ptep_get(ptep);
73
pr_cont(", pte=%016lx", pte_val(pte));
74
pte_unmap(ptep);
75
out:
76
pr_cont("\n");
77
}
78
79
static void die_kernel_fault(const char *msg, unsigned long addr,
80
struct pt_regs *regs)
81
{
82
bust_spinlocks(1);
83
84
pr_alert("Unable to handle kernel %s at virtual address " REG_FMT "\n", msg,
85
addr);
86
87
bust_spinlocks(0);
88
show_pte(addr);
89
die(regs, "Oops");
90
make_task_dead(SIGKILL);
91
}
92
93
static inline void no_context(struct pt_regs *regs, unsigned long addr)
94
{
95
const char *msg;
96
97
/* Are we prepared to handle this kernel fault? */
98
if (fixup_exception(regs))
99
return;
100
101
/*
102
* Oops. The kernel tried to access some bad page. We'll have to
103
* terminate things with extreme prejudice.
104
*/
105
if (addr < PAGE_SIZE)
106
msg = "NULL pointer dereference";
107
else {
108
if (kfence_handle_page_fault(addr, regs->cause == EXC_STORE_PAGE_FAULT, regs))
109
return;
110
111
msg = "paging request";
112
}
113
114
die_kernel_fault(msg, addr, regs);
115
}
116
117
static inline void mm_fault_error(struct pt_regs *regs, unsigned long addr, vm_fault_t fault)
118
{
119
if (!user_mode(regs)) {
120
no_context(regs, addr);
121
return;
122
}
123
124
if (fault & VM_FAULT_OOM) {
125
/*
126
* We ran out of memory, call the OOM killer, and return the userspace
127
* (which will retry the fault, or kill us if we got oom-killed).
128
*/
129
pagefault_out_of_memory();
130
return;
131
} else if (fault & (VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
132
/* Kernel mode? Handle exceptions or die */
133
do_trap(regs, SIGBUS, BUS_ADRERR, addr);
134
return;
135
} else if (fault & VM_FAULT_SIGSEGV) {
136
do_trap(regs, SIGSEGV, SEGV_MAPERR, addr);
137
return;
138
}
139
140
BUG();
141
}
142
143
static inline void
144
bad_area_nosemaphore(struct pt_regs *regs, int code, unsigned long addr)
145
{
146
/*
147
* Something tried to access memory that isn't in our memory map.
148
* Fix it, but check if it's kernel or user first.
149
*/
150
/* User mode accesses just cause a SIGSEGV */
151
if (user_mode(regs)) {
152
do_trap(regs, SIGSEGV, code, addr);
153
return;
154
}
155
156
no_context(regs, addr);
157
}
158
159
static inline void
160
bad_area(struct pt_regs *regs, struct mm_struct *mm, int code,
161
unsigned long addr)
162
{
163
mmap_read_unlock(mm);
164
165
bad_area_nosemaphore(regs, code, addr);
166
}
167
168
static inline void vmalloc_fault(struct pt_regs *regs, int code, unsigned long addr)
169
{
170
pgd_t *pgd, *pgd_k;
171
pud_t *pud_k;
172
p4d_t *p4d_k;
173
pmd_t *pmd_k;
174
pte_t *pte_k;
175
int index;
176
unsigned long pfn;
177
178
/* User mode accesses just cause a SIGSEGV */
179
if (user_mode(regs))
180
return do_trap(regs, SIGSEGV, code, addr);
181
182
/*
183
* Synchronize this task's top level page-table
184
* with the 'reference' page table.
185
*
186
* Do _not_ use "tsk->active_mm->pgd" here.
187
* We might be inside an interrupt in the middle
188
* of a task switch.
189
*/
190
index = pgd_index(addr);
191
pfn = csr_read(CSR_SATP) & SATP_PPN;
192
pgd = (pgd_t *)pfn_to_virt(pfn) + index;
193
pgd_k = init_mm.pgd + index;
194
195
if (!pgd_present(pgdp_get(pgd_k))) {
196
no_context(regs, addr);
197
return;
198
}
199
set_pgd(pgd, pgdp_get(pgd_k));
200
201
p4d_k = p4d_offset(pgd_k, addr);
202
if (!p4d_present(p4dp_get(p4d_k))) {
203
no_context(regs, addr);
204
return;
205
}
206
207
pud_k = pud_offset(p4d_k, addr);
208
if (!pud_present(pudp_get(pud_k))) {
209
no_context(regs, addr);
210
return;
211
}
212
if (pud_leaf(pudp_get(pud_k)))
213
goto flush_tlb;
214
215
/*
216
* Since the vmalloc area is global, it is unnecessary
217
* to copy individual PTEs
218
*/
219
pmd_k = pmd_offset(pud_k, addr);
220
if (!pmd_present(pmdp_get(pmd_k))) {
221
no_context(regs, addr);
222
return;
223
}
224
if (pmd_leaf(pmdp_get(pmd_k)))
225
goto flush_tlb;
226
227
/*
228
* Make sure the actual PTE exists as well to
229
* catch kernel vmalloc-area accesses to non-mapped
230
* addresses. If we don't do this, this will just
231
* silently loop forever.
232
*/
233
pte_k = pte_offset_kernel(pmd_k, addr);
234
if (!pte_present(ptep_get(pte_k))) {
235
no_context(regs, addr);
236
return;
237
}
238
239
/*
240
* The kernel assumes that TLBs don't cache invalid
241
* entries, but in RISC-V, SFENCE.VMA specifies an
242
* ordering constraint, not a cache flush; it is
243
* necessary even after writing invalid entries.
244
*/
245
flush_tlb:
246
local_flush_tlb_page(addr);
247
}
248
249
static inline bool access_error(unsigned long cause, struct vm_area_struct *vma)
250
{
251
switch (cause) {
252
case EXC_INST_PAGE_FAULT:
253
if (!(vma->vm_flags & VM_EXEC)) {
254
return true;
255
}
256
break;
257
case EXC_LOAD_PAGE_FAULT:
258
/* Write implies read */
259
if (!(vma->vm_flags & (VM_READ | VM_WRITE))) {
260
return true;
261
}
262
break;
263
case EXC_STORE_PAGE_FAULT:
264
if (!(vma->vm_flags & VM_WRITE)) {
265
return true;
266
}
267
break;
268
default:
269
panic("%s: unhandled cause %lu", __func__, cause);
270
}
271
return false;
272
}
273
274
/*
275
* This routine handles page faults. It determines the address and the
276
* problem, and then passes it off to one of the appropriate routines.
277
*/
278
void handle_page_fault(struct pt_regs *regs)
279
{
280
struct task_struct *tsk;
281
struct vm_area_struct *vma;
282
struct mm_struct *mm;
283
unsigned long addr, cause;
284
unsigned int flags = FAULT_FLAG_DEFAULT;
285
int code = SEGV_MAPERR;
286
vm_fault_t fault;
287
288
cause = regs->cause;
289
addr = regs->badaddr;
290
291
tsk = current;
292
mm = tsk->mm;
293
294
if (kprobe_page_fault(regs, cause))
295
return;
296
297
if (user_mode(regs))
298
trace_page_fault_user(addr, regs, cause);
299
else
300
trace_page_fault_kernel(addr, regs, cause);
301
302
/*
303
* Fault-in kernel-space virtual memory on-demand.
304
* The 'reference' page table is init_mm.pgd.
305
*
306
* NOTE! We MUST NOT take any locks for this case. We may
307
* be in an interrupt or a critical region, and should
308
* only copy the information from the master page table,
309
* nothing more.
310
*/
311
if ((!IS_ENABLED(CONFIG_MMU) || !IS_ENABLED(CONFIG_64BIT)) &&
312
unlikely(addr >= VMALLOC_START && addr < VMALLOC_END)) {
313
vmalloc_fault(regs, code, addr);
314
return;
315
}
316
317
/* Enable interrupts if they were enabled in the parent context. */
318
if (!regs_irqs_disabled(regs))
319
local_irq_enable();
320
321
/*
322
* If we're in an interrupt, have no user context, or are running
323
* in an atomic region, then we must not take the fault.
324
*/
325
if (unlikely(faulthandler_disabled() || !mm)) {
326
tsk->thread.bad_cause = cause;
327
no_context(regs, addr);
328
return;
329
}
330
331
if (user_mode(regs))
332
flags |= FAULT_FLAG_USER;
333
334
if (!user_mode(regs) && addr < TASK_SIZE && unlikely(!(regs->status & SR_SUM))) {
335
if (fixup_exception(regs))
336
return;
337
338
die_kernel_fault("access to user memory without uaccess routines", addr, regs);
339
}
340
341
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
342
343
if (cause == EXC_STORE_PAGE_FAULT)
344
flags |= FAULT_FLAG_WRITE;
345
else if (cause == EXC_INST_PAGE_FAULT)
346
flags |= FAULT_FLAG_INSTRUCTION;
347
if (!(flags & FAULT_FLAG_USER))
348
goto lock_mmap;
349
350
vma = lock_vma_under_rcu(mm, addr);
351
if (!vma)
352
goto lock_mmap;
353
354
if (unlikely(access_error(cause, vma))) {
355
vma_end_read(vma);
356
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
357
tsk->thread.bad_cause = cause;
358
bad_area_nosemaphore(regs, SEGV_ACCERR, addr);
359
return;
360
}
361
362
fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs);
363
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
364
vma_end_read(vma);
365
366
if (!(fault & VM_FAULT_RETRY)) {
367
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
368
goto done;
369
}
370
count_vm_vma_lock_event(VMA_LOCK_RETRY);
371
if (fault & VM_FAULT_MAJOR)
372
flags |= FAULT_FLAG_TRIED;
373
374
if (fault_signal_pending(fault, regs)) {
375
if (!user_mode(regs))
376
no_context(regs, addr);
377
return;
378
}
379
lock_mmap:
380
381
retry:
382
vma = lock_mm_and_find_vma(mm, addr, regs);
383
if (unlikely(!vma)) {
384
tsk->thread.bad_cause = cause;
385
bad_area_nosemaphore(regs, code, addr);
386
return;
387
}
388
389
/*
390
* Ok, we have a good vm_area for this memory access, so
391
* we can handle it.
392
*/
393
code = SEGV_ACCERR;
394
395
if (unlikely(access_error(cause, vma))) {
396
tsk->thread.bad_cause = cause;
397
bad_area(regs, mm, code, addr);
398
return;
399
}
400
401
/*
402
* If for any reason at all we could not handle the fault,
403
* make sure we exit gracefully rather than endlessly redo
404
* the fault.
405
*/
406
fault = handle_mm_fault(vma, addr, flags, regs);
407
408
/*
409
* If we need to retry but a fatal signal is pending, handle the
410
* signal first. We do not need to release the mmap_lock because it
411
* would already be released in __lock_page_or_retry in mm/filemap.c.
412
*/
413
if (fault_signal_pending(fault, regs)) {
414
if (!user_mode(regs))
415
no_context(regs, addr);
416
return;
417
}
418
419
/* The fault is fully completed (including releasing mmap lock) */
420
if (fault & VM_FAULT_COMPLETED)
421
return;
422
423
if (unlikely(fault & VM_FAULT_RETRY)) {
424
flags |= FAULT_FLAG_TRIED;
425
426
/*
427
* No need to mmap_read_unlock(mm) as we would
428
* have already released it in __lock_page_or_retry
429
* in mm/filemap.c.
430
*/
431
goto retry;
432
}
433
434
mmap_read_unlock(mm);
435
436
done:
437
if (unlikely(fault & VM_FAULT_ERROR)) {
438
tsk->thread.bad_cause = cause;
439
mm_fault_error(regs, addr, fault);
440
return;
441
}
442
return;
443
}
444
445