Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/crypto/aes_s390.c
26451 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
* Cryptographic API.
4
*
5
* s390 implementation of the AES Cipher Algorithm.
6
*
7
* s390 Version:
8
* Copyright IBM Corp. 2005, 2017
9
* Author(s): Jan Glauber ([email protected])
10
* Sebastian Siewior ([email protected]> SW-Fallback
11
* Patrick Steuer <[email protected]>
12
* Harald Freudenberger <[email protected]>
13
*
14
* Derived from "crypto/aes_generic.c"
15
*/
16
17
#define KMSG_COMPONENT "aes_s390"
18
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20
#include <crypto/aes.h>
21
#include <crypto/algapi.h>
22
#include <crypto/ghash.h>
23
#include <crypto/internal/aead.h>
24
#include <crypto/internal/cipher.h>
25
#include <crypto/internal/skcipher.h>
26
#include <crypto/scatterwalk.h>
27
#include <linux/err.h>
28
#include <linux/module.h>
29
#include <linux/cpufeature.h>
30
#include <linux/init.h>
31
#include <linux/mutex.h>
32
#include <linux/fips.h>
33
#include <linux/string.h>
34
#include <crypto/xts.h>
35
#include <asm/cpacf.h>
36
37
static u8 *ctrblk;
38
static DEFINE_MUTEX(ctrblk_lock);
39
40
static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
41
kma_functions;
42
43
struct s390_aes_ctx {
44
u8 key[AES_MAX_KEY_SIZE];
45
int key_len;
46
unsigned long fc;
47
union {
48
struct crypto_skcipher *skcipher;
49
struct crypto_cipher *cip;
50
} fallback;
51
};
52
53
struct s390_xts_ctx {
54
union {
55
u8 keys[64];
56
struct {
57
u8 key[32];
58
u8 pcc_key[32];
59
};
60
};
61
int key_len;
62
unsigned long fc;
63
struct crypto_skcipher *fallback;
64
};
65
66
struct gcm_sg_walk {
67
struct scatter_walk walk;
68
unsigned int walk_bytes;
69
unsigned int walk_bytes_remain;
70
u8 buf[AES_BLOCK_SIZE];
71
unsigned int buf_bytes;
72
u8 *ptr;
73
unsigned int nbytes;
74
};
75
76
static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
77
unsigned int key_len)
78
{
79
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
80
81
sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
82
sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
83
CRYPTO_TFM_REQ_MASK);
84
85
return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
86
}
87
88
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
89
unsigned int key_len)
90
{
91
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
92
unsigned long fc;
93
94
/* Pick the correct function code based on the key length */
95
fc = (key_len == 16) ? CPACF_KM_AES_128 :
96
(key_len == 24) ? CPACF_KM_AES_192 :
97
(key_len == 32) ? CPACF_KM_AES_256 : 0;
98
99
/* Check if the function code is available */
100
sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
101
if (!sctx->fc)
102
return setkey_fallback_cip(tfm, in_key, key_len);
103
104
sctx->key_len = key_len;
105
memcpy(sctx->key, in_key, key_len);
106
return 0;
107
}
108
109
static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
110
{
111
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
112
113
if (unlikely(!sctx->fc)) {
114
crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
115
return;
116
}
117
cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
118
}
119
120
static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
121
{
122
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
123
124
if (unlikely(!sctx->fc)) {
125
crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
126
return;
127
}
128
cpacf_km(sctx->fc | CPACF_DECRYPT,
129
&sctx->key, out, in, AES_BLOCK_SIZE);
130
}
131
132
static int fallback_init_cip(struct crypto_tfm *tfm)
133
{
134
const char *name = tfm->__crt_alg->cra_name;
135
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
136
137
sctx->fallback.cip = crypto_alloc_cipher(name, 0,
138
CRYPTO_ALG_NEED_FALLBACK);
139
140
if (IS_ERR(sctx->fallback.cip)) {
141
pr_err("Allocating AES fallback algorithm %s failed\n",
142
name);
143
return PTR_ERR(sctx->fallback.cip);
144
}
145
146
return 0;
147
}
148
149
static void fallback_exit_cip(struct crypto_tfm *tfm)
150
{
151
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
152
153
crypto_free_cipher(sctx->fallback.cip);
154
sctx->fallback.cip = NULL;
155
}
156
157
static struct crypto_alg aes_alg = {
158
.cra_name = "aes",
159
.cra_driver_name = "aes-s390",
160
.cra_priority = 300,
161
.cra_flags = CRYPTO_ALG_TYPE_CIPHER |
162
CRYPTO_ALG_NEED_FALLBACK,
163
.cra_blocksize = AES_BLOCK_SIZE,
164
.cra_ctxsize = sizeof(struct s390_aes_ctx),
165
.cra_module = THIS_MODULE,
166
.cra_init = fallback_init_cip,
167
.cra_exit = fallback_exit_cip,
168
.cra_u = {
169
.cipher = {
170
.cia_min_keysize = AES_MIN_KEY_SIZE,
171
.cia_max_keysize = AES_MAX_KEY_SIZE,
172
.cia_setkey = aes_set_key,
173
.cia_encrypt = crypto_aes_encrypt,
174
.cia_decrypt = crypto_aes_decrypt,
175
}
176
}
177
};
178
179
static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
180
unsigned int len)
181
{
182
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
183
184
crypto_skcipher_clear_flags(sctx->fallback.skcipher,
185
CRYPTO_TFM_REQ_MASK);
186
crypto_skcipher_set_flags(sctx->fallback.skcipher,
187
crypto_skcipher_get_flags(tfm) &
188
CRYPTO_TFM_REQ_MASK);
189
return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
190
}
191
192
static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
193
struct skcipher_request *req,
194
unsigned long modifier)
195
{
196
struct skcipher_request *subreq = skcipher_request_ctx(req);
197
198
*subreq = *req;
199
skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
200
return (modifier & CPACF_DECRYPT) ?
201
crypto_skcipher_decrypt(subreq) :
202
crypto_skcipher_encrypt(subreq);
203
}
204
205
static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
206
unsigned int key_len)
207
{
208
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
209
unsigned long fc;
210
211
/* Pick the correct function code based on the key length */
212
fc = (key_len == 16) ? CPACF_KM_AES_128 :
213
(key_len == 24) ? CPACF_KM_AES_192 :
214
(key_len == 32) ? CPACF_KM_AES_256 : 0;
215
216
/* Check if the function code is available */
217
sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
218
if (!sctx->fc)
219
return setkey_fallback_skcipher(tfm, in_key, key_len);
220
221
sctx->key_len = key_len;
222
memcpy(sctx->key, in_key, key_len);
223
return 0;
224
}
225
226
static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
227
{
228
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
229
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
230
struct skcipher_walk walk;
231
unsigned int nbytes, n;
232
int ret;
233
234
if (unlikely(!sctx->fc))
235
return fallback_skcipher_crypt(sctx, req, modifier);
236
237
ret = skcipher_walk_virt(&walk, req, false);
238
while ((nbytes = walk.nbytes) != 0) {
239
/* only use complete blocks */
240
n = nbytes & ~(AES_BLOCK_SIZE - 1);
241
cpacf_km(sctx->fc | modifier, sctx->key,
242
walk.dst.virt.addr, walk.src.virt.addr, n);
243
ret = skcipher_walk_done(&walk, nbytes - n);
244
}
245
return ret;
246
}
247
248
static int ecb_aes_encrypt(struct skcipher_request *req)
249
{
250
return ecb_aes_crypt(req, 0);
251
}
252
253
static int ecb_aes_decrypt(struct skcipher_request *req)
254
{
255
return ecb_aes_crypt(req, CPACF_DECRYPT);
256
}
257
258
static int fallback_init_skcipher(struct crypto_skcipher *tfm)
259
{
260
const char *name = crypto_tfm_alg_name(&tfm->base);
261
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
262
263
sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
264
CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
265
266
if (IS_ERR(sctx->fallback.skcipher)) {
267
pr_err("Allocating AES fallback algorithm %s failed\n",
268
name);
269
return PTR_ERR(sctx->fallback.skcipher);
270
}
271
272
crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
273
crypto_skcipher_reqsize(sctx->fallback.skcipher));
274
return 0;
275
}
276
277
static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
278
{
279
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
280
281
crypto_free_skcipher(sctx->fallback.skcipher);
282
}
283
284
static struct skcipher_alg ecb_aes_alg = {
285
.base.cra_name = "ecb(aes)",
286
.base.cra_driver_name = "ecb-aes-s390",
287
.base.cra_priority = 401, /* combo: aes + ecb + 1 */
288
.base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
289
.base.cra_blocksize = AES_BLOCK_SIZE,
290
.base.cra_ctxsize = sizeof(struct s390_aes_ctx),
291
.base.cra_module = THIS_MODULE,
292
.init = fallback_init_skcipher,
293
.exit = fallback_exit_skcipher,
294
.min_keysize = AES_MIN_KEY_SIZE,
295
.max_keysize = AES_MAX_KEY_SIZE,
296
.setkey = ecb_aes_set_key,
297
.encrypt = ecb_aes_encrypt,
298
.decrypt = ecb_aes_decrypt,
299
};
300
301
static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
302
unsigned int key_len)
303
{
304
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
305
unsigned long fc;
306
307
/* Pick the correct function code based on the key length */
308
fc = (key_len == 16) ? CPACF_KMC_AES_128 :
309
(key_len == 24) ? CPACF_KMC_AES_192 :
310
(key_len == 32) ? CPACF_KMC_AES_256 : 0;
311
312
/* Check if the function code is available */
313
sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
314
if (!sctx->fc)
315
return setkey_fallback_skcipher(tfm, in_key, key_len);
316
317
sctx->key_len = key_len;
318
memcpy(sctx->key, in_key, key_len);
319
return 0;
320
}
321
322
static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
323
{
324
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
325
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
326
struct skcipher_walk walk;
327
unsigned int nbytes, n;
328
int ret;
329
struct {
330
u8 iv[AES_BLOCK_SIZE];
331
u8 key[AES_MAX_KEY_SIZE];
332
} param;
333
334
if (unlikely(!sctx->fc))
335
return fallback_skcipher_crypt(sctx, req, modifier);
336
337
ret = skcipher_walk_virt(&walk, req, false);
338
if (ret)
339
return ret;
340
memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
341
memcpy(param.key, sctx->key, sctx->key_len);
342
while ((nbytes = walk.nbytes) != 0) {
343
/* only use complete blocks */
344
n = nbytes & ~(AES_BLOCK_SIZE - 1);
345
cpacf_kmc(sctx->fc | modifier, &param,
346
walk.dst.virt.addr, walk.src.virt.addr, n);
347
memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
348
ret = skcipher_walk_done(&walk, nbytes - n);
349
}
350
memzero_explicit(&param, sizeof(param));
351
return ret;
352
}
353
354
static int cbc_aes_encrypt(struct skcipher_request *req)
355
{
356
return cbc_aes_crypt(req, 0);
357
}
358
359
static int cbc_aes_decrypt(struct skcipher_request *req)
360
{
361
return cbc_aes_crypt(req, CPACF_DECRYPT);
362
}
363
364
static struct skcipher_alg cbc_aes_alg = {
365
.base.cra_name = "cbc(aes)",
366
.base.cra_driver_name = "cbc-aes-s390",
367
.base.cra_priority = 402, /* ecb-aes-s390 + 1 */
368
.base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
369
.base.cra_blocksize = AES_BLOCK_SIZE,
370
.base.cra_ctxsize = sizeof(struct s390_aes_ctx),
371
.base.cra_module = THIS_MODULE,
372
.init = fallback_init_skcipher,
373
.exit = fallback_exit_skcipher,
374
.min_keysize = AES_MIN_KEY_SIZE,
375
.max_keysize = AES_MAX_KEY_SIZE,
376
.ivsize = AES_BLOCK_SIZE,
377
.setkey = cbc_aes_set_key,
378
.encrypt = cbc_aes_encrypt,
379
.decrypt = cbc_aes_decrypt,
380
};
381
382
static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
383
unsigned int len)
384
{
385
struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
386
387
crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
388
crypto_skcipher_set_flags(xts_ctx->fallback,
389
crypto_skcipher_get_flags(tfm) &
390
CRYPTO_TFM_REQ_MASK);
391
return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
392
}
393
394
static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
395
unsigned int key_len)
396
{
397
struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
398
unsigned long fc;
399
int err;
400
401
err = xts_fallback_setkey(tfm, in_key, key_len);
402
if (err)
403
return err;
404
405
/* Pick the correct function code based on the key length */
406
fc = (key_len == 32) ? CPACF_KM_XTS_128 :
407
(key_len == 64) ? CPACF_KM_XTS_256 : 0;
408
409
/* Check if the function code is available */
410
xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
411
if (!xts_ctx->fc)
412
return 0;
413
414
/* Split the XTS key into the two subkeys */
415
key_len = key_len / 2;
416
xts_ctx->key_len = key_len;
417
memcpy(xts_ctx->key, in_key, key_len);
418
memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
419
return 0;
420
}
421
422
static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
423
{
424
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
425
struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
426
struct skcipher_walk walk;
427
unsigned int offset, nbytes, n;
428
int ret;
429
struct {
430
u8 key[32];
431
u8 tweak[16];
432
u8 block[16];
433
u8 bit[16];
434
u8 xts[16];
435
} pcc_param;
436
struct {
437
u8 key[32];
438
u8 init[16];
439
} xts_param;
440
441
if (req->cryptlen < AES_BLOCK_SIZE)
442
return -EINVAL;
443
444
if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
445
struct skcipher_request *subreq = skcipher_request_ctx(req);
446
447
*subreq = *req;
448
skcipher_request_set_tfm(subreq, xts_ctx->fallback);
449
return (modifier & CPACF_DECRYPT) ?
450
crypto_skcipher_decrypt(subreq) :
451
crypto_skcipher_encrypt(subreq);
452
}
453
454
ret = skcipher_walk_virt(&walk, req, false);
455
if (ret)
456
return ret;
457
offset = xts_ctx->key_len & 0x10;
458
memset(pcc_param.block, 0, sizeof(pcc_param.block));
459
memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
460
memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
461
memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
462
memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
463
cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
464
465
memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
466
memcpy(xts_param.init, pcc_param.xts, 16);
467
468
while ((nbytes = walk.nbytes) != 0) {
469
/* only use complete blocks */
470
n = nbytes & ~(AES_BLOCK_SIZE - 1);
471
cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
472
walk.dst.virt.addr, walk.src.virt.addr, n);
473
ret = skcipher_walk_done(&walk, nbytes - n);
474
}
475
memzero_explicit(&pcc_param, sizeof(pcc_param));
476
memzero_explicit(&xts_param, sizeof(xts_param));
477
return ret;
478
}
479
480
static int xts_aes_encrypt(struct skcipher_request *req)
481
{
482
return xts_aes_crypt(req, 0);
483
}
484
485
static int xts_aes_decrypt(struct skcipher_request *req)
486
{
487
return xts_aes_crypt(req, CPACF_DECRYPT);
488
}
489
490
static int xts_fallback_init(struct crypto_skcipher *tfm)
491
{
492
const char *name = crypto_tfm_alg_name(&tfm->base);
493
struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
494
495
xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
496
CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
497
498
if (IS_ERR(xts_ctx->fallback)) {
499
pr_err("Allocating XTS fallback algorithm %s failed\n",
500
name);
501
return PTR_ERR(xts_ctx->fallback);
502
}
503
crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
504
crypto_skcipher_reqsize(xts_ctx->fallback));
505
return 0;
506
}
507
508
static void xts_fallback_exit(struct crypto_skcipher *tfm)
509
{
510
struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
511
512
crypto_free_skcipher(xts_ctx->fallback);
513
}
514
515
static struct skcipher_alg xts_aes_alg = {
516
.base.cra_name = "xts(aes)",
517
.base.cra_driver_name = "xts-aes-s390",
518
.base.cra_priority = 402, /* ecb-aes-s390 + 1 */
519
.base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
520
.base.cra_blocksize = AES_BLOCK_SIZE,
521
.base.cra_ctxsize = sizeof(struct s390_xts_ctx),
522
.base.cra_module = THIS_MODULE,
523
.init = xts_fallback_init,
524
.exit = xts_fallback_exit,
525
.min_keysize = 2 * AES_MIN_KEY_SIZE,
526
.max_keysize = 2 * AES_MAX_KEY_SIZE,
527
.ivsize = AES_BLOCK_SIZE,
528
.setkey = xts_aes_set_key,
529
.encrypt = xts_aes_encrypt,
530
.decrypt = xts_aes_decrypt,
531
};
532
533
static int fullxts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
534
unsigned int key_len)
535
{
536
struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
537
unsigned long fc;
538
int err;
539
540
err = xts_fallback_setkey(tfm, in_key, key_len);
541
if (err)
542
return err;
543
544
/* Pick the correct function code based on the key length */
545
fc = (key_len == 32) ? CPACF_KM_XTS_128_FULL :
546
(key_len == 64) ? CPACF_KM_XTS_256_FULL : 0;
547
548
/* Check if the function code is available */
549
xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
550
if (!xts_ctx->fc)
551
return 0;
552
553
/* Store double-key */
554
memcpy(xts_ctx->keys, in_key, key_len);
555
xts_ctx->key_len = key_len;
556
return 0;
557
}
558
559
static int fullxts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
560
{
561
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
562
struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
563
unsigned int offset, nbytes, n;
564
struct skcipher_walk walk;
565
int ret;
566
struct {
567
__u8 key[64];
568
__u8 tweak[16];
569
__u8 nap[16];
570
} fxts_param = {
571
.nap = {0},
572
};
573
574
if (req->cryptlen < AES_BLOCK_SIZE)
575
return -EINVAL;
576
577
if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
578
struct skcipher_request *subreq = skcipher_request_ctx(req);
579
580
*subreq = *req;
581
skcipher_request_set_tfm(subreq, xts_ctx->fallback);
582
return (modifier & CPACF_DECRYPT) ?
583
crypto_skcipher_decrypt(subreq) :
584
crypto_skcipher_encrypt(subreq);
585
}
586
587
ret = skcipher_walk_virt(&walk, req, false);
588
if (ret)
589
return ret;
590
591
offset = xts_ctx->key_len & 0x20;
592
memcpy(fxts_param.key + offset, xts_ctx->keys, xts_ctx->key_len);
593
memcpy(fxts_param.tweak, req->iv, AES_BLOCK_SIZE);
594
fxts_param.nap[0] = 0x01; /* initial alpha power (1, little-endian) */
595
596
while ((nbytes = walk.nbytes) != 0) {
597
/* only use complete blocks */
598
n = nbytes & ~(AES_BLOCK_SIZE - 1);
599
cpacf_km(xts_ctx->fc | modifier, fxts_param.key + offset,
600
walk.dst.virt.addr, walk.src.virt.addr, n);
601
ret = skcipher_walk_done(&walk, nbytes - n);
602
}
603
memzero_explicit(&fxts_param, sizeof(fxts_param));
604
return ret;
605
}
606
607
static int fullxts_aes_encrypt(struct skcipher_request *req)
608
{
609
return fullxts_aes_crypt(req, 0);
610
}
611
612
static int fullxts_aes_decrypt(struct skcipher_request *req)
613
{
614
return fullxts_aes_crypt(req, CPACF_DECRYPT);
615
}
616
617
static struct skcipher_alg fullxts_aes_alg = {
618
.base.cra_name = "xts(aes)",
619
.base.cra_driver_name = "full-xts-aes-s390",
620
.base.cra_priority = 403, /* aes-xts-s390 + 1 */
621
.base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
622
.base.cra_blocksize = AES_BLOCK_SIZE,
623
.base.cra_ctxsize = sizeof(struct s390_xts_ctx),
624
.base.cra_module = THIS_MODULE,
625
.init = xts_fallback_init,
626
.exit = xts_fallback_exit,
627
.min_keysize = 2 * AES_MIN_KEY_SIZE,
628
.max_keysize = 2 * AES_MAX_KEY_SIZE,
629
.ivsize = AES_BLOCK_SIZE,
630
.setkey = fullxts_aes_set_key,
631
.encrypt = fullxts_aes_encrypt,
632
.decrypt = fullxts_aes_decrypt,
633
};
634
635
static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
636
unsigned int key_len)
637
{
638
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
639
unsigned long fc;
640
641
/* Pick the correct function code based on the key length */
642
fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
643
(key_len == 24) ? CPACF_KMCTR_AES_192 :
644
(key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
645
646
/* Check if the function code is available */
647
sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
648
if (!sctx->fc)
649
return setkey_fallback_skcipher(tfm, in_key, key_len);
650
651
sctx->key_len = key_len;
652
memcpy(sctx->key, in_key, key_len);
653
return 0;
654
}
655
656
static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
657
{
658
unsigned int i, n;
659
660
/* only use complete blocks, max. PAGE_SIZE */
661
memcpy(ctrptr, iv, AES_BLOCK_SIZE);
662
n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
663
for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
664
memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
665
crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
666
ctrptr += AES_BLOCK_SIZE;
667
}
668
return n;
669
}
670
671
static int ctr_aes_crypt(struct skcipher_request *req)
672
{
673
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
674
struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
675
u8 buf[AES_BLOCK_SIZE], *ctrptr;
676
struct skcipher_walk walk;
677
unsigned int n, nbytes;
678
int ret, locked;
679
680
if (unlikely(!sctx->fc))
681
return fallback_skcipher_crypt(sctx, req, 0);
682
683
locked = mutex_trylock(&ctrblk_lock);
684
685
ret = skcipher_walk_virt(&walk, req, false);
686
while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
687
n = AES_BLOCK_SIZE;
688
689
if (nbytes >= 2*AES_BLOCK_SIZE && locked)
690
n = __ctrblk_init(ctrblk, walk.iv, nbytes);
691
ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
692
cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
693
walk.src.virt.addr, n, ctrptr);
694
if (ctrptr == ctrblk)
695
memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
696
AES_BLOCK_SIZE);
697
crypto_inc(walk.iv, AES_BLOCK_SIZE);
698
ret = skcipher_walk_done(&walk, nbytes - n);
699
}
700
if (locked)
701
mutex_unlock(&ctrblk_lock);
702
/*
703
* final block may be < AES_BLOCK_SIZE, copy only nbytes
704
*/
705
if (nbytes) {
706
memset(buf, 0, AES_BLOCK_SIZE);
707
memcpy(buf, walk.src.virt.addr, nbytes);
708
cpacf_kmctr(sctx->fc, sctx->key, buf, buf,
709
AES_BLOCK_SIZE, walk.iv);
710
memcpy(walk.dst.virt.addr, buf, nbytes);
711
crypto_inc(walk.iv, AES_BLOCK_SIZE);
712
ret = skcipher_walk_done(&walk, 0);
713
}
714
715
return ret;
716
}
717
718
static struct skcipher_alg ctr_aes_alg = {
719
.base.cra_name = "ctr(aes)",
720
.base.cra_driver_name = "ctr-aes-s390",
721
.base.cra_priority = 402, /* ecb-aes-s390 + 1 */
722
.base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
723
.base.cra_blocksize = 1,
724
.base.cra_ctxsize = sizeof(struct s390_aes_ctx),
725
.base.cra_module = THIS_MODULE,
726
.init = fallback_init_skcipher,
727
.exit = fallback_exit_skcipher,
728
.min_keysize = AES_MIN_KEY_SIZE,
729
.max_keysize = AES_MAX_KEY_SIZE,
730
.ivsize = AES_BLOCK_SIZE,
731
.setkey = ctr_aes_set_key,
732
.encrypt = ctr_aes_crypt,
733
.decrypt = ctr_aes_crypt,
734
.chunksize = AES_BLOCK_SIZE,
735
};
736
737
static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
738
unsigned int keylen)
739
{
740
struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
741
742
switch (keylen) {
743
case AES_KEYSIZE_128:
744
ctx->fc = CPACF_KMA_GCM_AES_128;
745
break;
746
case AES_KEYSIZE_192:
747
ctx->fc = CPACF_KMA_GCM_AES_192;
748
break;
749
case AES_KEYSIZE_256:
750
ctx->fc = CPACF_KMA_GCM_AES_256;
751
break;
752
default:
753
return -EINVAL;
754
}
755
756
memcpy(ctx->key, key, keylen);
757
ctx->key_len = keylen;
758
return 0;
759
}
760
761
static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
762
{
763
switch (authsize) {
764
case 4:
765
case 8:
766
case 12:
767
case 13:
768
case 14:
769
case 15:
770
case 16:
771
break;
772
default:
773
return -EINVAL;
774
}
775
776
return 0;
777
}
778
779
static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
780
unsigned int len)
781
{
782
memset(gw, 0, sizeof(*gw));
783
gw->walk_bytes_remain = len;
784
scatterwalk_start(&gw->walk, sg);
785
}
786
787
static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
788
{
789
if (gw->walk_bytes_remain == 0)
790
return 0;
791
gw->walk_bytes = scatterwalk_next(&gw->walk, gw->walk_bytes_remain);
792
return gw->walk_bytes;
793
}
794
795
static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
796
unsigned int nbytes, bool out)
797
{
798
gw->walk_bytes_remain -= nbytes;
799
if (out)
800
scatterwalk_done_dst(&gw->walk, nbytes);
801
else
802
scatterwalk_done_src(&gw->walk, nbytes);
803
}
804
805
static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
806
{
807
int n;
808
809
if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
810
gw->ptr = gw->buf;
811
gw->nbytes = gw->buf_bytes;
812
goto out;
813
}
814
815
if (gw->walk_bytes_remain == 0) {
816
gw->ptr = NULL;
817
gw->nbytes = 0;
818
goto out;
819
}
820
821
if (!_gcm_sg_clamp_and_map(gw)) {
822
gw->ptr = NULL;
823
gw->nbytes = 0;
824
goto out;
825
}
826
827
if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
828
gw->ptr = gw->walk.addr;
829
gw->nbytes = gw->walk_bytes;
830
goto out;
831
}
832
833
while (1) {
834
n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
835
memcpy(gw->buf + gw->buf_bytes, gw->walk.addr, n);
836
gw->buf_bytes += n;
837
_gcm_sg_unmap_and_advance(gw, n, false);
838
if (gw->buf_bytes >= minbytesneeded) {
839
gw->ptr = gw->buf;
840
gw->nbytes = gw->buf_bytes;
841
goto out;
842
}
843
if (!_gcm_sg_clamp_and_map(gw)) {
844
gw->ptr = NULL;
845
gw->nbytes = 0;
846
goto out;
847
}
848
}
849
850
out:
851
return gw->nbytes;
852
}
853
854
static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
855
{
856
if (gw->walk_bytes_remain == 0) {
857
gw->ptr = NULL;
858
gw->nbytes = 0;
859
goto out;
860
}
861
862
if (!_gcm_sg_clamp_and_map(gw)) {
863
gw->ptr = NULL;
864
gw->nbytes = 0;
865
goto out;
866
}
867
868
if (gw->walk_bytes >= minbytesneeded) {
869
gw->ptr = gw->walk.addr;
870
gw->nbytes = gw->walk_bytes;
871
goto out;
872
}
873
874
scatterwalk_unmap(&gw->walk);
875
876
gw->ptr = gw->buf;
877
gw->nbytes = sizeof(gw->buf);
878
879
out:
880
return gw->nbytes;
881
}
882
883
static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
884
{
885
if (gw->ptr == NULL)
886
return 0;
887
888
if (gw->ptr == gw->buf) {
889
int n = gw->buf_bytes - bytesdone;
890
if (n > 0) {
891
memmove(gw->buf, gw->buf + bytesdone, n);
892
gw->buf_bytes = n;
893
} else
894
gw->buf_bytes = 0;
895
} else
896
_gcm_sg_unmap_and_advance(gw, bytesdone, false);
897
898
return bytesdone;
899
}
900
901
static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
902
{
903
int i, n;
904
905
if (gw->ptr == NULL)
906
return 0;
907
908
if (gw->ptr == gw->buf) {
909
for (i = 0; i < bytesdone; i += n) {
910
if (!_gcm_sg_clamp_and_map(gw))
911
return i;
912
n = min(gw->walk_bytes, bytesdone - i);
913
memcpy(gw->walk.addr, gw->buf + i, n);
914
_gcm_sg_unmap_and_advance(gw, n, true);
915
}
916
} else
917
_gcm_sg_unmap_and_advance(gw, bytesdone, true);
918
919
return bytesdone;
920
}
921
922
static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
923
{
924
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
925
struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
926
unsigned int ivsize = crypto_aead_ivsize(tfm);
927
unsigned int taglen = crypto_aead_authsize(tfm);
928
unsigned int aadlen = req->assoclen;
929
unsigned int pclen = req->cryptlen;
930
int ret = 0;
931
932
unsigned int n, len, in_bytes, out_bytes,
933
min_bytes, bytes, aad_bytes, pc_bytes;
934
struct gcm_sg_walk gw_in, gw_out;
935
u8 tag[GHASH_DIGEST_SIZE];
936
937
struct {
938
u32 _[3]; /* reserved */
939
u32 cv; /* Counter Value */
940
u8 t[GHASH_DIGEST_SIZE];/* Tag */
941
u8 h[AES_BLOCK_SIZE]; /* Hash-subkey */
942
u64 taadl; /* Total AAD Length */
943
u64 tpcl; /* Total Plain-/Cipher-text Length */
944
u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
945
u8 k[AES_MAX_KEY_SIZE]; /* Key */
946
} param;
947
948
/*
949
* encrypt
950
* req->src: aad||plaintext
951
* req->dst: aad||ciphertext||tag
952
* decrypt
953
* req->src: aad||ciphertext||tag
954
* req->dst: aad||plaintext, return 0 or -EBADMSG
955
* aad, plaintext and ciphertext may be empty.
956
*/
957
if (flags & CPACF_DECRYPT)
958
pclen -= taglen;
959
len = aadlen + pclen;
960
961
memset(&param, 0, sizeof(param));
962
param.cv = 1;
963
param.taadl = aadlen * 8;
964
param.tpcl = pclen * 8;
965
memcpy(param.j0, req->iv, ivsize);
966
*(u32 *)(param.j0 + ivsize) = 1;
967
memcpy(param.k, ctx->key, ctx->key_len);
968
969
gcm_walk_start(&gw_in, req->src, len);
970
gcm_walk_start(&gw_out, req->dst, len);
971
972
do {
973
min_bytes = min_t(unsigned int,
974
aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
975
in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
976
out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
977
bytes = min(in_bytes, out_bytes);
978
979
if (aadlen + pclen <= bytes) {
980
aad_bytes = aadlen;
981
pc_bytes = pclen;
982
flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
983
} else {
984
if (aadlen <= bytes) {
985
aad_bytes = aadlen;
986
pc_bytes = (bytes - aadlen) &
987
~(AES_BLOCK_SIZE - 1);
988
flags |= CPACF_KMA_LAAD;
989
} else {
990
aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
991
pc_bytes = 0;
992
}
993
}
994
995
if (aad_bytes > 0)
996
memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
997
998
cpacf_kma(ctx->fc | flags, &param,
999
gw_out.ptr + aad_bytes,
1000
gw_in.ptr + aad_bytes, pc_bytes,
1001
gw_in.ptr, aad_bytes);
1002
1003
n = aad_bytes + pc_bytes;
1004
if (gcm_in_walk_done(&gw_in, n) != n)
1005
return -ENOMEM;
1006
if (gcm_out_walk_done(&gw_out, n) != n)
1007
return -ENOMEM;
1008
aadlen -= aad_bytes;
1009
pclen -= pc_bytes;
1010
} while (aadlen + pclen > 0);
1011
1012
if (flags & CPACF_DECRYPT) {
1013
scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
1014
if (crypto_memneq(tag, param.t, taglen))
1015
ret = -EBADMSG;
1016
} else
1017
scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
1018
1019
memzero_explicit(&param, sizeof(param));
1020
return ret;
1021
}
1022
1023
static int gcm_aes_encrypt(struct aead_request *req)
1024
{
1025
return gcm_aes_crypt(req, CPACF_ENCRYPT);
1026
}
1027
1028
static int gcm_aes_decrypt(struct aead_request *req)
1029
{
1030
return gcm_aes_crypt(req, CPACF_DECRYPT);
1031
}
1032
1033
static struct aead_alg gcm_aes_aead = {
1034
.setkey = gcm_aes_setkey,
1035
.setauthsize = gcm_aes_setauthsize,
1036
.encrypt = gcm_aes_encrypt,
1037
.decrypt = gcm_aes_decrypt,
1038
1039
.ivsize = GHASH_BLOCK_SIZE - sizeof(u32),
1040
.maxauthsize = GHASH_DIGEST_SIZE,
1041
.chunksize = AES_BLOCK_SIZE,
1042
1043
.base = {
1044
.cra_blocksize = 1,
1045
.cra_ctxsize = sizeof(struct s390_aes_ctx),
1046
.cra_priority = 900,
1047
.cra_name = "gcm(aes)",
1048
.cra_driver_name = "gcm-aes-s390",
1049
.cra_module = THIS_MODULE,
1050
},
1051
};
1052
1053
static struct crypto_alg *aes_s390_alg;
1054
static struct skcipher_alg *aes_s390_skcipher_algs[5];
1055
static int aes_s390_skciphers_num;
1056
static struct aead_alg *aes_s390_aead_alg;
1057
1058
static int aes_s390_register_skcipher(struct skcipher_alg *alg)
1059
{
1060
int ret;
1061
1062
ret = crypto_register_skcipher(alg);
1063
if (!ret)
1064
aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
1065
return ret;
1066
}
1067
1068
static void aes_s390_fini(void)
1069
{
1070
if (aes_s390_alg)
1071
crypto_unregister_alg(aes_s390_alg);
1072
while (aes_s390_skciphers_num--)
1073
crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
1074
if (ctrblk)
1075
free_page((unsigned long) ctrblk);
1076
1077
if (aes_s390_aead_alg)
1078
crypto_unregister_aead(aes_s390_aead_alg);
1079
}
1080
1081
static int __init aes_s390_init(void)
1082
{
1083
int ret;
1084
1085
/* Query available functions for KM, KMC, KMCTR and KMA */
1086
cpacf_query(CPACF_KM, &km_functions);
1087
cpacf_query(CPACF_KMC, &kmc_functions);
1088
cpacf_query(CPACF_KMCTR, &kmctr_functions);
1089
cpacf_query(CPACF_KMA, &kma_functions);
1090
1091
if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
1092
cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1093
cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1094
ret = crypto_register_alg(&aes_alg);
1095
if (ret)
1096
goto out_err;
1097
aes_s390_alg = &aes_alg;
1098
ret = aes_s390_register_skcipher(&ecb_aes_alg);
1099
if (ret)
1100
goto out_err;
1101
}
1102
1103
if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1104
cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1105
cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1106
ret = aes_s390_register_skcipher(&cbc_aes_alg);
1107
if (ret)
1108
goto out_err;
1109
}
1110
1111
if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128_FULL) ||
1112
cpacf_test_func(&km_functions, CPACF_KM_XTS_256_FULL)) {
1113
ret = aes_s390_register_skcipher(&fullxts_aes_alg);
1114
if (ret)
1115
goto out_err;
1116
}
1117
1118
if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1119
cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1120
ret = aes_s390_register_skcipher(&xts_aes_alg);
1121
if (ret)
1122
goto out_err;
1123
}
1124
1125
if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1126
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1127
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1128
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1129
if (!ctrblk) {
1130
ret = -ENOMEM;
1131
goto out_err;
1132
}
1133
ret = aes_s390_register_skcipher(&ctr_aes_alg);
1134
if (ret)
1135
goto out_err;
1136
}
1137
1138
if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1139
cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1140
cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1141
ret = crypto_register_aead(&gcm_aes_aead);
1142
if (ret)
1143
goto out_err;
1144
aes_s390_aead_alg = &gcm_aes_aead;
1145
}
1146
1147
return 0;
1148
out_err:
1149
aes_s390_fini();
1150
return ret;
1151
}
1152
1153
module_cpu_feature_match(S390_CPU_FEATURE_MSA, aes_s390_init);
1154
module_exit(aes_s390_fini);
1155
1156
MODULE_ALIAS_CRYPTO("aes-all");
1157
1158
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1159
MODULE_LICENSE("GPL");
1160
MODULE_IMPORT_NS("CRYPTO_INTERNAL");
1161
1162