Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/kvm/gaccess.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* guest access functions
4
*
5
* Copyright IBM Corp. 2014
6
*
7
*/
8
9
#include <linux/vmalloc.h>
10
#include <linux/mm_types.h>
11
#include <linux/err.h>
12
#include <linux/pgtable.h>
13
#include <linux/bitfield.h>
14
#include <asm/access-regs.h>
15
#include <asm/fault.h>
16
#include <asm/gmap.h>
17
#include <asm/dat-bits.h>
18
#include "kvm-s390.h"
19
#include "gaccess.h"
20
21
#define GMAP_SHADOW_FAKE_TABLE 1ULL
22
23
/*
24
* vaddress union in order to easily decode a virtual address into its
25
* region first index, region second index etc. parts.
26
*/
27
union vaddress {
28
unsigned long addr;
29
struct {
30
unsigned long rfx : 11;
31
unsigned long rsx : 11;
32
unsigned long rtx : 11;
33
unsigned long sx : 11;
34
unsigned long px : 8;
35
unsigned long bx : 12;
36
};
37
struct {
38
unsigned long rfx01 : 2;
39
unsigned long : 9;
40
unsigned long rsx01 : 2;
41
unsigned long : 9;
42
unsigned long rtx01 : 2;
43
unsigned long : 9;
44
unsigned long sx01 : 2;
45
unsigned long : 29;
46
};
47
};
48
49
/*
50
* raddress union which will contain the result (real or absolute address)
51
* after a page table walk. The rfaa, sfaa and pfra members are used to
52
* simply assign them the value of a region, segment or page table entry.
53
*/
54
union raddress {
55
unsigned long addr;
56
unsigned long rfaa : 33; /* Region-Frame Absolute Address */
57
unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
58
unsigned long pfra : 52; /* Page-Frame Real Address */
59
};
60
61
union alet {
62
u32 val;
63
struct {
64
u32 reserved : 7;
65
u32 p : 1;
66
u32 alesn : 8;
67
u32 alen : 16;
68
};
69
};
70
71
union ald {
72
u32 val;
73
struct {
74
u32 : 1;
75
u32 alo : 24;
76
u32 all : 7;
77
};
78
};
79
80
struct ale {
81
unsigned long i : 1; /* ALEN-Invalid Bit */
82
unsigned long : 5;
83
unsigned long fo : 1; /* Fetch-Only Bit */
84
unsigned long p : 1; /* Private Bit */
85
unsigned long alesn : 8; /* Access-List-Entry Sequence Number */
86
unsigned long aleax : 16; /* Access-List-Entry Authorization Index */
87
unsigned long : 32;
88
unsigned long : 1;
89
unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */
90
unsigned long : 6;
91
unsigned long astesn : 32; /* ASTE Sequence Number */
92
};
93
94
struct aste {
95
unsigned long i : 1; /* ASX-Invalid Bit */
96
unsigned long ato : 29; /* Authority-Table Origin */
97
unsigned long : 1;
98
unsigned long b : 1; /* Base-Space Bit */
99
unsigned long ax : 16; /* Authorization Index */
100
unsigned long atl : 12; /* Authority-Table Length */
101
unsigned long : 2;
102
unsigned long ca : 1; /* Controlled-ASN Bit */
103
unsigned long ra : 1; /* Reusable-ASN Bit */
104
unsigned long asce : 64; /* Address-Space-Control Element */
105
unsigned long ald : 32;
106
unsigned long astesn : 32;
107
/* .. more fields there */
108
};
109
110
int ipte_lock_held(struct kvm *kvm)
111
{
112
if (sclp.has_siif) {
113
int rc;
114
115
read_lock(&kvm->arch.sca_lock);
116
rc = kvm_s390_get_ipte_control(kvm)->kh != 0;
117
read_unlock(&kvm->arch.sca_lock);
118
return rc;
119
}
120
return kvm->arch.ipte_lock_count != 0;
121
}
122
123
static void ipte_lock_simple(struct kvm *kvm)
124
{
125
union ipte_control old, new, *ic;
126
127
mutex_lock(&kvm->arch.ipte_mutex);
128
kvm->arch.ipte_lock_count++;
129
if (kvm->arch.ipte_lock_count > 1)
130
goto out;
131
retry:
132
read_lock(&kvm->arch.sca_lock);
133
ic = kvm_s390_get_ipte_control(kvm);
134
old = READ_ONCE(*ic);
135
do {
136
if (old.k) {
137
read_unlock(&kvm->arch.sca_lock);
138
cond_resched();
139
goto retry;
140
}
141
new = old;
142
new.k = 1;
143
} while (!try_cmpxchg(&ic->val, &old.val, new.val));
144
read_unlock(&kvm->arch.sca_lock);
145
out:
146
mutex_unlock(&kvm->arch.ipte_mutex);
147
}
148
149
static void ipte_unlock_simple(struct kvm *kvm)
150
{
151
union ipte_control old, new, *ic;
152
153
mutex_lock(&kvm->arch.ipte_mutex);
154
kvm->arch.ipte_lock_count--;
155
if (kvm->arch.ipte_lock_count)
156
goto out;
157
read_lock(&kvm->arch.sca_lock);
158
ic = kvm_s390_get_ipte_control(kvm);
159
old = READ_ONCE(*ic);
160
do {
161
new = old;
162
new.k = 0;
163
} while (!try_cmpxchg(&ic->val, &old.val, new.val));
164
read_unlock(&kvm->arch.sca_lock);
165
wake_up(&kvm->arch.ipte_wq);
166
out:
167
mutex_unlock(&kvm->arch.ipte_mutex);
168
}
169
170
static void ipte_lock_siif(struct kvm *kvm)
171
{
172
union ipte_control old, new, *ic;
173
174
retry:
175
read_lock(&kvm->arch.sca_lock);
176
ic = kvm_s390_get_ipte_control(kvm);
177
old = READ_ONCE(*ic);
178
do {
179
if (old.kg) {
180
read_unlock(&kvm->arch.sca_lock);
181
cond_resched();
182
goto retry;
183
}
184
new = old;
185
new.k = 1;
186
new.kh++;
187
} while (!try_cmpxchg(&ic->val, &old.val, new.val));
188
read_unlock(&kvm->arch.sca_lock);
189
}
190
191
static void ipte_unlock_siif(struct kvm *kvm)
192
{
193
union ipte_control old, new, *ic;
194
195
read_lock(&kvm->arch.sca_lock);
196
ic = kvm_s390_get_ipte_control(kvm);
197
old = READ_ONCE(*ic);
198
do {
199
new = old;
200
new.kh--;
201
if (!new.kh)
202
new.k = 0;
203
} while (!try_cmpxchg(&ic->val, &old.val, new.val));
204
read_unlock(&kvm->arch.sca_lock);
205
if (!new.kh)
206
wake_up(&kvm->arch.ipte_wq);
207
}
208
209
void ipte_lock(struct kvm *kvm)
210
{
211
if (sclp.has_siif)
212
ipte_lock_siif(kvm);
213
else
214
ipte_lock_simple(kvm);
215
}
216
217
void ipte_unlock(struct kvm *kvm)
218
{
219
if (sclp.has_siif)
220
ipte_unlock_siif(kvm);
221
else
222
ipte_unlock_simple(kvm);
223
}
224
225
static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
226
enum gacc_mode mode)
227
{
228
union alet alet;
229
struct ale ale;
230
struct aste aste;
231
unsigned long ald_addr, authority_table_addr;
232
union ald ald;
233
int eax, rc;
234
u8 authority_table;
235
236
if (ar >= NUM_ACRS)
237
return -EINVAL;
238
239
if (vcpu->arch.acrs_loaded)
240
save_access_regs(vcpu->run->s.regs.acrs);
241
alet.val = vcpu->run->s.regs.acrs[ar];
242
243
if (ar == 0 || alet.val == 0) {
244
asce->val = vcpu->arch.sie_block->gcr[1];
245
return 0;
246
} else if (alet.val == 1) {
247
asce->val = vcpu->arch.sie_block->gcr[7];
248
return 0;
249
}
250
251
if (alet.reserved)
252
return PGM_ALET_SPECIFICATION;
253
254
if (alet.p)
255
ald_addr = vcpu->arch.sie_block->gcr[5];
256
else
257
ald_addr = vcpu->arch.sie_block->gcr[2];
258
ald_addr &= 0x7fffffc0;
259
260
rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
261
if (rc)
262
return rc;
263
264
if (alet.alen / 8 > ald.all)
265
return PGM_ALEN_TRANSLATION;
266
267
if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
268
return PGM_ADDRESSING;
269
270
rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
271
sizeof(struct ale));
272
if (rc)
273
return rc;
274
275
if (ale.i == 1)
276
return PGM_ALEN_TRANSLATION;
277
if (ale.alesn != alet.alesn)
278
return PGM_ALE_SEQUENCE;
279
280
rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
281
if (rc)
282
return rc;
283
284
if (aste.i)
285
return PGM_ASTE_VALIDITY;
286
if (aste.astesn != ale.astesn)
287
return PGM_ASTE_SEQUENCE;
288
289
if (ale.p == 1) {
290
eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
291
if (ale.aleax != eax) {
292
if (eax / 16 > aste.atl)
293
return PGM_EXTENDED_AUTHORITY;
294
295
authority_table_addr = aste.ato * 4 + eax / 4;
296
297
rc = read_guest_real(vcpu, authority_table_addr,
298
&authority_table,
299
sizeof(u8));
300
if (rc)
301
return rc;
302
303
if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
304
return PGM_EXTENDED_AUTHORITY;
305
}
306
}
307
308
if (ale.fo == 1 && mode == GACC_STORE)
309
return PGM_PROTECTION;
310
311
asce->val = aste.asce;
312
return 0;
313
}
314
315
enum prot_type {
316
PROT_TYPE_LA = 0,
317
PROT_TYPE_KEYC = 1,
318
PROT_TYPE_ALC = 2,
319
PROT_TYPE_DAT = 3,
320
PROT_TYPE_IEP = 4,
321
/* Dummy value for passing an initialized value when code != PGM_PROTECTION */
322
PROT_TYPE_DUMMY,
323
};
324
325
static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
326
enum gacc_mode mode, enum prot_type prot, bool terminate)
327
{
328
struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
329
union teid *teid;
330
331
memset(pgm, 0, sizeof(*pgm));
332
pgm->code = code;
333
teid = (union teid *)&pgm->trans_exc_code;
334
335
switch (code) {
336
case PGM_PROTECTION:
337
switch (prot) {
338
case PROT_TYPE_DUMMY:
339
/* We should never get here, acts like termination */
340
WARN_ON_ONCE(1);
341
break;
342
case PROT_TYPE_IEP:
343
teid->b61 = 1;
344
fallthrough;
345
case PROT_TYPE_LA:
346
teid->b56 = 1;
347
break;
348
case PROT_TYPE_KEYC:
349
teid->b60 = 1;
350
break;
351
case PROT_TYPE_ALC:
352
teid->b60 = 1;
353
fallthrough;
354
case PROT_TYPE_DAT:
355
teid->b61 = 1;
356
break;
357
}
358
if (terminate) {
359
teid->b56 = 0;
360
teid->b60 = 0;
361
teid->b61 = 0;
362
}
363
fallthrough;
364
case PGM_ASCE_TYPE:
365
case PGM_PAGE_TRANSLATION:
366
case PGM_REGION_FIRST_TRANS:
367
case PGM_REGION_SECOND_TRANS:
368
case PGM_REGION_THIRD_TRANS:
369
case PGM_SEGMENT_TRANSLATION:
370
/*
371
* op_access_id only applies to MOVE_PAGE -> set bit 61
372
* exc_access_id has to be set to 0 for some instructions. Both
373
* cases have to be handled by the caller.
374
*/
375
teid->addr = gva >> PAGE_SHIFT;
376
teid->fsi = mode == GACC_STORE ? TEID_FSI_STORE : TEID_FSI_FETCH;
377
teid->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
378
fallthrough;
379
case PGM_ALEN_TRANSLATION:
380
case PGM_ALE_SEQUENCE:
381
case PGM_ASTE_VALIDITY:
382
case PGM_ASTE_SEQUENCE:
383
case PGM_EXTENDED_AUTHORITY:
384
/*
385
* We can always store exc_access_id, as it is
386
* undefined for non-ar cases. It is undefined for
387
* most DAT protection exceptions.
388
*/
389
pgm->exc_access_id = ar;
390
break;
391
}
392
return code;
393
}
394
395
static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
396
enum gacc_mode mode, enum prot_type prot)
397
{
398
return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
399
}
400
401
static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
402
unsigned long ga, u8 ar, enum gacc_mode mode)
403
{
404
int rc;
405
struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
406
407
if (!psw.dat) {
408
asce->val = 0;
409
asce->r = 1;
410
return 0;
411
}
412
413
if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
414
psw.as = PSW_BITS_AS_PRIMARY;
415
416
switch (psw.as) {
417
case PSW_BITS_AS_PRIMARY:
418
asce->val = vcpu->arch.sie_block->gcr[1];
419
return 0;
420
case PSW_BITS_AS_SECONDARY:
421
asce->val = vcpu->arch.sie_block->gcr[7];
422
return 0;
423
case PSW_BITS_AS_HOME:
424
asce->val = vcpu->arch.sie_block->gcr[13];
425
return 0;
426
case PSW_BITS_AS_ACCREG:
427
rc = ar_translation(vcpu, asce, ar, mode);
428
if (rc > 0)
429
return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
430
return rc;
431
}
432
return 0;
433
}
434
435
static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
436
{
437
return kvm_read_guest(kvm, gpa, val, sizeof(*val));
438
}
439
440
/**
441
* guest_translate - translate a guest virtual into a guest absolute address
442
* @vcpu: virtual cpu
443
* @gva: guest virtual address
444
* @gpa: points to where guest physical (absolute) address should be stored
445
* @asce: effective asce
446
* @mode: indicates the access mode to be used
447
* @prot: returns the type for protection exceptions
448
*
449
* Translate a guest virtual address into a guest absolute address by means
450
* of dynamic address translation as specified by the architecture.
451
* If the resulting absolute address is not available in the configuration
452
* an addressing exception is indicated and @gpa will not be changed.
453
*
454
* Returns: - zero on success; @gpa contains the resulting absolute address
455
* - a negative value if guest access failed due to e.g. broken
456
* guest mapping
457
* - a positive value if an access exception happened. In this case
458
* the returned value is the program interruption code as defined
459
* by the architecture
460
*/
461
static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
462
unsigned long *gpa, const union asce asce,
463
enum gacc_mode mode, enum prot_type *prot)
464
{
465
union vaddress vaddr = {.addr = gva};
466
union raddress raddr = {.addr = gva};
467
union page_table_entry pte;
468
int dat_protection = 0;
469
int iep_protection = 0;
470
union ctlreg0 ctlreg0;
471
unsigned long ptr;
472
int edat1, edat2, iep;
473
474
ctlreg0.val = vcpu->arch.sie_block->gcr[0];
475
edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
476
edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
477
iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
478
if (asce.r)
479
goto real_address;
480
ptr = asce.rsto * PAGE_SIZE;
481
switch (asce.dt) {
482
case ASCE_TYPE_REGION1:
483
if (vaddr.rfx01 > asce.tl)
484
return PGM_REGION_FIRST_TRANS;
485
ptr += vaddr.rfx * 8;
486
break;
487
case ASCE_TYPE_REGION2:
488
if (vaddr.rfx)
489
return PGM_ASCE_TYPE;
490
if (vaddr.rsx01 > asce.tl)
491
return PGM_REGION_SECOND_TRANS;
492
ptr += vaddr.rsx * 8;
493
break;
494
case ASCE_TYPE_REGION3:
495
if (vaddr.rfx || vaddr.rsx)
496
return PGM_ASCE_TYPE;
497
if (vaddr.rtx01 > asce.tl)
498
return PGM_REGION_THIRD_TRANS;
499
ptr += vaddr.rtx * 8;
500
break;
501
case ASCE_TYPE_SEGMENT:
502
if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
503
return PGM_ASCE_TYPE;
504
if (vaddr.sx01 > asce.tl)
505
return PGM_SEGMENT_TRANSLATION;
506
ptr += vaddr.sx * 8;
507
break;
508
}
509
switch (asce.dt) {
510
case ASCE_TYPE_REGION1: {
511
union region1_table_entry rfte;
512
513
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
514
return PGM_ADDRESSING;
515
if (deref_table(vcpu->kvm, ptr, &rfte.val))
516
return -EFAULT;
517
if (rfte.i)
518
return PGM_REGION_FIRST_TRANS;
519
if (rfte.tt != TABLE_TYPE_REGION1)
520
return PGM_TRANSLATION_SPEC;
521
if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
522
return PGM_REGION_SECOND_TRANS;
523
if (edat1)
524
dat_protection |= rfte.p;
525
ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
526
}
527
fallthrough;
528
case ASCE_TYPE_REGION2: {
529
union region2_table_entry rste;
530
531
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
532
return PGM_ADDRESSING;
533
if (deref_table(vcpu->kvm, ptr, &rste.val))
534
return -EFAULT;
535
if (rste.i)
536
return PGM_REGION_SECOND_TRANS;
537
if (rste.tt != TABLE_TYPE_REGION2)
538
return PGM_TRANSLATION_SPEC;
539
if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
540
return PGM_REGION_THIRD_TRANS;
541
if (edat1)
542
dat_protection |= rste.p;
543
ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
544
}
545
fallthrough;
546
case ASCE_TYPE_REGION3: {
547
union region3_table_entry rtte;
548
549
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
550
return PGM_ADDRESSING;
551
if (deref_table(vcpu->kvm, ptr, &rtte.val))
552
return -EFAULT;
553
if (rtte.i)
554
return PGM_REGION_THIRD_TRANS;
555
if (rtte.tt != TABLE_TYPE_REGION3)
556
return PGM_TRANSLATION_SPEC;
557
if (rtte.cr && asce.p && edat2)
558
return PGM_TRANSLATION_SPEC;
559
if (rtte.fc && edat2) {
560
dat_protection |= rtte.fc1.p;
561
iep_protection = rtte.fc1.iep;
562
raddr.rfaa = rtte.fc1.rfaa;
563
goto absolute_address;
564
}
565
if (vaddr.sx01 < rtte.fc0.tf)
566
return PGM_SEGMENT_TRANSLATION;
567
if (vaddr.sx01 > rtte.fc0.tl)
568
return PGM_SEGMENT_TRANSLATION;
569
if (edat1)
570
dat_protection |= rtte.fc0.p;
571
ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
572
}
573
fallthrough;
574
case ASCE_TYPE_SEGMENT: {
575
union segment_table_entry ste;
576
577
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
578
return PGM_ADDRESSING;
579
if (deref_table(vcpu->kvm, ptr, &ste.val))
580
return -EFAULT;
581
if (ste.i)
582
return PGM_SEGMENT_TRANSLATION;
583
if (ste.tt != TABLE_TYPE_SEGMENT)
584
return PGM_TRANSLATION_SPEC;
585
if (ste.cs && asce.p)
586
return PGM_TRANSLATION_SPEC;
587
if (ste.fc && edat1) {
588
dat_protection |= ste.fc1.p;
589
iep_protection = ste.fc1.iep;
590
raddr.sfaa = ste.fc1.sfaa;
591
goto absolute_address;
592
}
593
dat_protection |= ste.fc0.p;
594
ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
595
}
596
}
597
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
598
return PGM_ADDRESSING;
599
if (deref_table(vcpu->kvm, ptr, &pte.val))
600
return -EFAULT;
601
if (pte.i)
602
return PGM_PAGE_TRANSLATION;
603
if (pte.z)
604
return PGM_TRANSLATION_SPEC;
605
dat_protection |= pte.p;
606
iep_protection = pte.iep;
607
raddr.pfra = pte.pfra;
608
real_address:
609
raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
610
absolute_address:
611
if (mode == GACC_STORE && dat_protection) {
612
*prot = PROT_TYPE_DAT;
613
return PGM_PROTECTION;
614
}
615
if (mode == GACC_IFETCH && iep_protection && iep) {
616
*prot = PROT_TYPE_IEP;
617
return PGM_PROTECTION;
618
}
619
if (!kvm_is_gpa_in_memslot(vcpu->kvm, raddr.addr))
620
return PGM_ADDRESSING;
621
*gpa = raddr.addr;
622
return 0;
623
}
624
625
static inline int is_low_address(unsigned long ga)
626
{
627
/* Check for address ranges 0..511 and 4096..4607 */
628
return (ga & ~0x11fful) == 0;
629
}
630
631
static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
632
const union asce asce)
633
{
634
union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
635
psw_t *psw = &vcpu->arch.sie_block->gpsw;
636
637
if (!ctlreg0.lap)
638
return 0;
639
if (psw_bits(*psw).dat && asce.p)
640
return 0;
641
return 1;
642
}
643
644
static int vm_check_access_key(struct kvm *kvm, u8 access_key,
645
enum gacc_mode mode, gpa_t gpa)
646
{
647
u8 storage_key, access_control;
648
bool fetch_protected;
649
unsigned long hva;
650
int r;
651
652
if (access_key == 0)
653
return 0;
654
655
hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
656
if (kvm_is_error_hva(hva))
657
return PGM_ADDRESSING;
658
659
mmap_read_lock(current->mm);
660
r = get_guest_storage_key(current->mm, hva, &storage_key);
661
mmap_read_unlock(current->mm);
662
if (r)
663
return r;
664
access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
665
if (access_control == access_key)
666
return 0;
667
fetch_protected = storage_key & _PAGE_FP_BIT;
668
if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
669
return 0;
670
return PGM_PROTECTION;
671
}
672
673
static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
674
union asce asce)
675
{
676
psw_t *psw = &vcpu->arch.sie_block->gpsw;
677
unsigned long override;
678
679
if (mode == GACC_FETCH || mode == GACC_IFETCH) {
680
/* check if fetch protection override enabled */
681
override = vcpu->arch.sie_block->gcr[0];
682
override &= CR0_FETCH_PROTECTION_OVERRIDE;
683
/* not applicable if subject to DAT && private space */
684
override = override && !(psw_bits(*psw).dat && asce.p);
685
return override;
686
}
687
return false;
688
}
689
690
static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
691
{
692
return ga < 2048 && ga + len <= 2048;
693
}
694
695
static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
696
{
697
/* check if storage protection override enabled */
698
return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
699
}
700
701
static bool storage_prot_override_applies(u8 access_control)
702
{
703
/* matches special storage protection override key (9) -> allow */
704
return access_control == PAGE_SPO_ACC;
705
}
706
707
static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
708
enum gacc_mode mode, union asce asce, gpa_t gpa,
709
unsigned long ga, unsigned int len)
710
{
711
u8 storage_key, access_control;
712
unsigned long hva;
713
int r;
714
715
/* access key 0 matches any storage key -> allow */
716
if (access_key == 0)
717
return 0;
718
/*
719
* caller needs to ensure that gfn is accessible, so we can
720
* assume that this cannot fail
721
*/
722
hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
723
mmap_read_lock(current->mm);
724
r = get_guest_storage_key(current->mm, hva, &storage_key);
725
mmap_read_unlock(current->mm);
726
if (r)
727
return r;
728
access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
729
/* access key matches storage key -> allow */
730
if (access_control == access_key)
731
return 0;
732
if (mode == GACC_FETCH || mode == GACC_IFETCH) {
733
/* it is a fetch and fetch protection is off -> allow */
734
if (!(storage_key & _PAGE_FP_BIT))
735
return 0;
736
if (fetch_prot_override_applicable(vcpu, mode, asce) &&
737
fetch_prot_override_applies(ga, len))
738
return 0;
739
}
740
if (storage_prot_override_applicable(vcpu) &&
741
storage_prot_override_applies(access_control))
742
return 0;
743
return PGM_PROTECTION;
744
}
745
746
/**
747
* guest_range_to_gpas() - Calculate guest physical addresses of page fragments
748
* covering a logical range
749
* @vcpu: virtual cpu
750
* @ga: guest address, start of range
751
* @ar: access register
752
* @gpas: output argument, may be NULL
753
* @len: length of range in bytes
754
* @asce: address-space-control element to use for translation
755
* @mode: access mode
756
* @access_key: access key to mach the range's storage keys against
757
*
758
* Translate a logical range to a series of guest absolute addresses,
759
* such that the concatenation of page fragments starting at each gpa make up
760
* the whole range.
761
* The translation is performed as if done by the cpu for the given @asce, @ar,
762
* @mode and state of the @vcpu.
763
* If the translation causes an exception, its program interruption code is
764
* returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
765
* such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
766
* a correct exception into the guest.
767
* The resulting gpas are stored into @gpas, unless it is NULL.
768
*
769
* Note: All fragments except the first one start at the beginning of a page.
770
* When deriving the boundaries of a fragment from a gpa, all but the last
771
* fragment end at the end of the page.
772
*
773
* Return:
774
* * 0 - success
775
* * <0 - translation could not be performed, for example if guest
776
* memory could not be accessed
777
* * >0 - an access exception occurred. In this case the returned value
778
* is the program interruption code and the contents of pgm may
779
* be used to inject an exception into the guest.
780
*/
781
static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
782
unsigned long *gpas, unsigned long len,
783
const union asce asce, enum gacc_mode mode,
784
u8 access_key)
785
{
786
psw_t *psw = &vcpu->arch.sie_block->gpsw;
787
unsigned int offset = offset_in_page(ga);
788
unsigned int fragment_len;
789
int lap_enabled, rc = 0;
790
enum prot_type prot;
791
unsigned long gpa;
792
793
lap_enabled = low_address_protection_enabled(vcpu, asce);
794
while (min(PAGE_SIZE - offset, len) > 0) {
795
fragment_len = min(PAGE_SIZE - offset, len);
796
ga = kvm_s390_logical_to_effective(vcpu, ga);
797
if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
798
return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
799
PROT_TYPE_LA);
800
if (psw_bits(*psw).dat) {
801
rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
802
if (rc < 0)
803
return rc;
804
} else {
805
gpa = kvm_s390_real_to_abs(vcpu, ga);
806
if (!kvm_is_gpa_in_memslot(vcpu->kvm, gpa)) {
807
rc = PGM_ADDRESSING;
808
prot = PROT_TYPE_DUMMY;
809
}
810
}
811
if (rc)
812
return trans_exc(vcpu, rc, ga, ar, mode, prot);
813
rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
814
fragment_len);
815
if (rc)
816
return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
817
if (gpas)
818
*gpas++ = gpa;
819
offset = 0;
820
ga += fragment_len;
821
len -= fragment_len;
822
}
823
return 0;
824
}
825
826
static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
827
void *data, unsigned int len)
828
{
829
const unsigned int offset = offset_in_page(gpa);
830
const gfn_t gfn = gpa_to_gfn(gpa);
831
int rc;
832
833
if (!gfn_to_memslot(kvm, gfn))
834
return PGM_ADDRESSING;
835
if (mode == GACC_STORE)
836
rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
837
else
838
rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
839
return rc;
840
}
841
842
static int
843
access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
844
void *data, unsigned int len, u8 access_key)
845
{
846
struct kvm_memory_slot *slot;
847
bool writable;
848
gfn_t gfn;
849
hva_t hva;
850
int rc;
851
852
gfn = gpa >> PAGE_SHIFT;
853
slot = gfn_to_memslot(kvm, gfn);
854
hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
855
856
if (kvm_is_error_hva(hva))
857
return PGM_ADDRESSING;
858
/*
859
* Check if it's a ro memslot, even tho that can't occur (they're unsupported).
860
* Don't try to actually handle that case.
861
*/
862
if (!writable && mode == GACC_STORE)
863
return -EOPNOTSUPP;
864
hva += offset_in_page(gpa);
865
if (mode == GACC_STORE)
866
rc = copy_to_user_key((void __user *)hva, data, len, access_key);
867
else
868
rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
869
if (rc)
870
return PGM_PROTECTION;
871
if (mode == GACC_STORE)
872
mark_page_dirty_in_slot(kvm, slot, gfn);
873
return 0;
874
}
875
876
int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
877
unsigned long len, enum gacc_mode mode, u8 access_key)
878
{
879
int offset = offset_in_page(gpa);
880
int fragment_len;
881
int rc;
882
883
while (min(PAGE_SIZE - offset, len) > 0) {
884
fragment_len = min(PAGE_SIZE - offset, len);
885
rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
886
if (rc)
887
return rc;
888
offset = 0;
889
len -= fragment_len;
890
data += fragment_len;
891
gpa += fragment_len;
892
}
893
return 0;
894
}
895
896
int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
897
void *data, unsigned long len, enum gacc_mode mode,
898
u8 access_key)
899
{
900
psw_t *psw = &vcpu->arch.sie_block->gpsw;
901
unsigned long nr_pages, idx;
902
unsigned long gpa_array[2];
903
unsigned int fragment_len;
904
unsigned long *gpas;
905
enum prot_type prot;
906
int need_ipte_lock;
907
union asce asce;
908
bool try_storage_prot_override;
909
bool try_fetch_prot_override;
910
int rc;
911
912
if (!len)
913
return 0;
914
ga = kvm_s390_logical_to_effective(vcpu, ga);
915
rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
916
if (rc)
917
return rc;
918
nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
919
gpas = gpa_array;
920
if (nr_pages > ARRAY_SIZE(gpa_array))
921
gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
922
if (!gpas)
923
return -ENOMEM;
924
try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
925
try_storage_prot_override = storage_prot_override_applicable(vcpu);
926
need_ipte_lock = psw_bits(*psw).dat && !asce.r;
927
if (need_ipte_lock)
928
ipte_lock(vcpu->kvm);
929
/*
930
* Since we do the access further down ultimately via a move instruction
931
* that does key checking and returns an error in case of a protection
932
* violation, we don't need to do the check during address translation.
933
* Skip it by passing access key 0, which matches any storage key,
934
* obviating the need for any further checks. As a result the check is
935
* handled entirely in hardware on access, we only need to take care to
936
* forego key protection checking if fetch protection override applies or
937
* retry with the special key 9 in case of storage protection override.
938
*/
939
rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
940
if (rc)
941
goto out_unlock;
942
for (idx = 0; idx < nr_pages; idx++) {
943
fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
944
if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
945
rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
946
data, fragment_len);
947
} else {
948
rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
949
data, fragment_len, access_key);
950
}
951
if (rc == PGM_PROTECTION && try_storage_prot_override)
952
rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
953
data, fragment_len, PAGE_SPO_ACC);
954
if (rc)
955
break;
956
len -= fragment_len;
957
data += fragment_len;
958
ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
959
}
960
if (rc > 0) {
961
bool terminate = (mode == GACC_STORE) && (idx > 0);
962
963
if (rc == PGM_PROTECTION)
964
prot = PROT_TYPE_KEYC;
965
else
966
prot = PROT_TYPE_DUMMY;
967
rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
968
}
969
out_unlock:
970
if (need_ipte_lock)
971
ipte_unlock(vcpu->kvm);
972
if (nr_pages > ARRAY_SIZE(gpa_array))
973
vfree(gpas);
974
return rc;
975
}
976
977
int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
978
void *data, unsigned long len, enum gacc_mode mode)
979
{
980
unsigned int fragment_len;
981
unsigned long gpa;
982
int rc = 0;
983
984
while (len && !rc) {
985
gpa = kvm_s390_real_to_abs(vcpu, gra);
986
fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
987
rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
988
len -= fragment_len;
989
gra += fragment_len;
990
data += fragment_len;
991
}
992
if (rc > 0)
993
vcpu->arch.pgm.code = rc;
994
return rc;
995
}
996
997
/**
998
* cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address.
999
* @kvm: Virtual machine instance.
1000
* @gpa: Absolute guest address of the location to be changed.
1001
* @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a
1002
* non power of two will result in failure.
1003
* @old_addr: Pointer to old value. If the location at @gpa contains this value,
1004
* the exchange will succeed. After calling cmpxchg_guest_abs_with_key()
1005
* *@old_addr contains the value at @gpa before the attempt to
1006
* exchange the value.
1007
* @new: The value to place at @gpa.
1008
* @access_key: The access key to use for the guest access.
1009
* @success: output value indicating if an exchange occurred.
1010
*
1011
* Atomically exchange the value at @gpa by @new, if it contains *@old.
1012
* Honors storage keys.
1013
*
1014
* Return: * 0: successful exchange
1015
* * >0: a program interruption code indicating the reason cmpxchg could
1016
* not be attempted
1017
* * -EINVAL: address misaligned or len not power of two
1018
* * -EAGAIN: transient failure (len 1 or 2)
1019
* * -EOPNOTSUPP: read-only memslot (should never occur)
1020
*/
1021
int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len,
1022
__uint128_t *old_addr, __uint128_t new,
1023
u8 access_key, bool *success)
1024
{
1025
gfn_t gfn = gpa_to_gfn(gpa);
1026
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1027
bool writable;
1028
hva_t hva;
1029
int ret;
1030
1031
if (!IS_ALIGNED(gpa, len))
1032
return -EINVAL;
1033
1034
hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1035
if (kvm_is_error_hva(hva))
1036
return PGM_ADDRESSING;
1037
/*
1038
* Check if it's a read-only memslot, even though that cannot occur
1039
* since those are unsupported.
1040
* Don't try to actually handle that case.
1041
*/
1042
if (!writable)
1043
return -EOPNOTSUPP;
1044
1045
hva += offset_in_page(gpa);
1046
/*
1047
* The cmpxchg_user_key macro depends on the type of "old", so we need
1048
* a case for each valid length and get some code duplication as long
1049
* as we don't introduce a new macro.
1050
*/
1051
switch (len) {
1052
case 1: {
1053
u8 old;
1054
1055
ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key);
1056
*success = !ret && old == *old_addr;
1057
*old_addr = old;
1058
break;
1059
}
1060
case 2: {
1061
u16 old;
1062
1063
ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key);
1064
*success = !ret && old == *old_addr;
1065
*old_addr = old;
1066
break;
1067
}
1068
case 4: {
1069
u32 old;
1070
1071
ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key);
1072
*success = !ret && old == *old_addr;
1073
*old_addr = old;
1074
break;
1075
}
1076
case 8: {
1077
u64 old;
1078
1079
ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key);
1080
*success = !ret && old == *old_addr;
1081
*old_addr = old;
1082
break;
1083
}
1084
case 16: {
1085
__uint128_t old;
1086
1087
ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key);
1088
*success = !ret && old == *old_addr;
1089
*old_addr = old;
1090
break;
1091
}
1092
default:
1093
return -EINVAL;
1094
}
1095
if (*success)
1096
mark_page_dirty_in_slot(kvm, slot, gfn);
1097
/*
1098
* Assume that the fault is caused by protection, either key protection
1099
* or user page write protection.
1100
*/
1101
if (ret == -EFAULT)
1102
ret = PGM_PROTECTION;
1103
return ret;
1104
}
1105
1106
/**
1107
* guest_translate_address_with_key - translate guest logical into guest absolute address
1108
* @vcpu: virtual cpu
1109
* @gva: Guest virtual address
1110
* @ar: Access register
1111
* @gpa: Guest physical address
1112
* @mode: Translation access mode
1113
* @access_key: access key to mach the storage key with
1114
*
1115
* Parameter semantics are the same as the ones from guest_translate.
1116
* The memory contents at the guest address are not changed.
1117
*
1118
* Note: The IPTE lock is not taken during this function, so the caller
1119
* has to take care of this.
1120
*/
1121
int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1122
unsigned long *gpa, enum gacc_mode mode,
1123
u8 access_key)
1124
{
1125
union asce asce;
1126
int rc;
1127
1128
gva = kvm_s390_logical_to_effective(vcpu, gva);
1129
rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1130
if (rc)
1131
return rc;
1132
return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
1133
access_key);
1134
}
1135
1136
/**
1137
* check_gva_range - test a range of guest virtual addresses for accessibility
1138
* @vcpu: virtual cpu
1139
* @gva: Guest virtual address
1140
* @ar: Access register
1141
* @length: Length of test range
1142
* @mode: Translation access mode
1143
* @access_key: access key to mach the storage keys with
1144
*/
1145
int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1146
unsigned long length, enum gacc_mode mode, u8 access_key)
1147
{
1148
union asce asce;
1149
int rc = 0;
1150
1151
rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1152
if (rc)
1153
return rc;
1154
ipte_lock(vcpu->kvm);
1155
rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
1156
access_key);
1157
ipte_unlock(vcpu->kvm);
1158
1159
return rc;
1160
}
1161
1162
/**
1163
* check_gpa_range - test a range of guest physical addresses for accessibility
1164
* @kvm: virtual machine instance
1165
* @gpa: guest physical address
1166
* @length: length of test range
1167
* @mode: access mode to test, relevant for storage keys
1168
* @access_key: access key to mach the storage keys with
1169
*/
1170
int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
1171
enum gacc_mode mode, u8 access_key)
1172
{
1173
unsigned int fragment_len;
1174
int rc = 0;
1175
1176
while (length && !rc) {
1177
fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
1178
rc = vm_check_access_key(kvm, access_key, mode, gpa);
1179
length -= fragment_len;
1180
gpa += fragment_len;
1181
}
1182
return rc;
1183
}
1184
1185
/**
1186
* kvm_s390_check_low_addr_prot_real - check for low-address protection
1187
* @vcpu: virtual cpu
1188
* @gra: Guest real address
1189
*
1190
* Checks whether an address is subject to low-address protection and set
1191
* up vcpu->arch.pgm accordingly if necessary.
1192
*
1193
* Return: 0 if no protection exception, or PGM_PROTECTION if protected.
1194
*/
1195
int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
1196
{
1197
union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
1198
1199
if (!ctlreg0.lap || !is_low_address(gra))
1200
return 0;
1201
return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
1202
}
1203
1204
/**
1205
* kvm_s390_shadow_tables - walk the guest page table and create shadow tables
1206
* @sg: pointer to the shadow guest address space structure
1207
* @saddr: faulting address in the shadow gmap
1208
* @pgt: pointer to the beginning of the page table for the given address if
1209
* successful (return value 0), or to the first invalid DAT entry in
1210
* case of exceptions (return value > 0)
1211
* @dat_protection: referenced memory is write protected
1212
* @fake: pgt references contiguous guest memory block, not a pgtable
1213
*/
1214
static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
1215
unsigned long *pgt, int *dat_protection,
1216
int *fake)
1217
{
1218
struct kvm *kvm;
1219
struct gmap *parent;
1220
union asce asce;
1221
union vaddress vaddr;
1222
unsigned long ptr;
1223
int rc;
1224
1225
*fake = 0;
1226
*dat_protection = 0;
1227
kvm = sg->private;
1228
parent = sg->parent;
1229
vaddr.addr = saddr;
1230
asce.val = sg->orig_asce;
1231
ptr = asce.rsto * PAGE_SIZE;
1232
if (asce.r) {
1233
*fake = 1;
1234
ptr = 0;
1235
asce.dt = ASCE_TYPE_REGION1;
1236
}
1237
switch (asce.dt) {
1238
case ASCE_TYPE_REGION1:
1239
if (vaddr.rfx01 > asce.tl && !*fake)
1240
return PGM_REGION_FIRST_TRANS;
1241
break;
1242
case ASCE_TYPE_REGION2:
1243
if (vaddr.rfx)
1244
return PGM_ASCE_TYPE;
1245
if (vaddr.rsx01 > asce.tl)
1246
return PGM_REGION_SECOND_TRANS;
1247
break;
1248
case ASCE_TYPE_REGION3:
1249
if (vaddr.rfx || vaddr.rsx)
1250
return PGM_ASCE_TYPE;
1251
if (vaddr.rtx01 > asce.tl)
1252
return PGM_REGION_THIRD_TRANS;
1253
break;
1254
case ASCE_TYPE_SEGMENT:
1255
if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1256
return PGM_ASCE_TYPE;
1257
if (vaddr.sx01 > asce.tl)
1258
return PGM_SEGMENT_TRANSLATION;
1259
break;
1260
}
1261
1262
switch (asce.dt) {
1263
case ASCE_TYPE_REGION1: {
1264
union region1_table_entry rfte;
1265
1266
if (*fake) {
1267
ptr += vaddr.rfx * _REGION1_SIZE;
1268
rfte.val = ptr;
1269
goto shadow_r2t;
1270
}
1271
*pgt = ptr + vaddr.rfx * 8;
1272
rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1273
if (rc)
1274
return rc;
1275
if (rfte.i)
1276
return PGM_REGION_FIRST_TRANS;
1277
if (rfte.tt != TABLE_TYPE_REGION1)
1278
return PGM_TRANSLATION_SPEC;
1279
if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1280
return PGM_REGION_SECOND_TRANS;
1281
if (sg->edat_level >= 1)
1282
*dat_protection |= rfte.p;
1283
ptr = rfte.rto * PAGE_SIZE;
1284
shadow_r2t:
1285
rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1286
if (rc)
1287
return rc;
1288
kvm->stat.gmap_shadow_r1_entry++;
1289
}
1290
fallthrough;
1291
case ASCE_TYPE_REGION2: {
1292
union region2_table_entry rste;
1293
1294
if (*fake) {
1295
ptr += vaddr.rsx * _REGION2_SIZE;
1296
rste.val = ptr;
1297
goto shadow_r3t;
1298
}
1299
*pgt = ptr + vaddr.rsx * 8;
1300
rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1301
if (rc)
1302
return rc;
1303
if (rste.i)
1304
return PGM_REGION_SECOND_TRANS;
1305
if (rste.tt != TABLE_TYPE_REGION2)
1306
return PGM_TRANSLATION_SPEC;
1307
if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1308
return PGM_REGION_THIRD_TRANS;
1309
if (sg->edat_level >= 1)
1310
*dat_protection |= rste.p;
1311
ptr = rste.rto * PAGE_SIZE;
1312
shadow_r3t:
1313
rste.p |= *dat_protection;
1314
rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1315
if (rc)
1316
return rc;
1317
kvm->stat.gmap_shadow_r2_entry++;
1318
}
1319
fallthrough;
1320
case ASCE_TYPE_REGION3: {
1321
union region3_table_entry rtte;
1322
1323
if (*fake) {
1324
ptr += vaddr.rtx * _REGION3_SIZE;
1325
rtte.val = ptr;
1326
goto shadow_sgt;
1327
}
1328
*pgt = ptr + vaddr.rtx * 8;
1329
rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1330
if (rc)
1331
return rc;
1332
if (rtte.i)
1333
return PGM_REGION_THIRD_TRANS;
1334
if (rtte.tt != TABLE_TYPE_REGION3)
1335
return PGM_TRANSLATION_SPEC;
1336
if (rtte.cr && asce.p && sg->edat_level >= 2)
1337
return PGM_TRANSLATION_SPEC;
1338
if (rtte.fc && sg->edat_level >= 2) {
1339
*dat_protection |= rtte.fc0.p;
1340
*fake = 1;
1341
ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1342
rtte.val = ptr;
1343
goto shadow_sgt;
1344
}
1345
if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1346
return PGM_SEGMENT_TRANSLATION;
1347
if (sg->edat_level >= 1)
1348
*dat_protection |= rtte.fc0.p;
1349
ptr = rtte.fc0.sto * PAGE_SIZE;
1350
shadow_sgt:
1351
rtte.fc0.p |= *dat_protection;
1352
rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1353
if (rc)
1354
return rc;
1355
kvm->stat.gmap_shadow_r3_entry++;
1356
}
1357
fallthrough;
1358
case ASCE_TYPE_SEGMENT: {
1359
union segment_table_entry ste;
1360
1361
if (*fake) {
1362
ptr += vaddr.sx * _SEGMENT_SIZE;
1363
ste.val = ptr;
1364
goto shadow_pgt;
1365
}
1366
*pgt = ptr + vaddr.sx * 8;
1367
rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1368
if (rc)
1369
return rc;
1370
if (ste.i)
1371
return PGM_SEGMENT_TRANSLATION;
1372
if (ste.tt != TABLE_TYPE_SEGMENT)
1373
return PGM_TRANSLATION_SPEC;
1374
if (ste.cs && asce.p)
1375
return PGM_TRANSLATION_SPEC;
1376
*dat_protection |= ste.fc0.p;
1377
if (ste.fc && sg->edat_level >= 1) {
1378
*fake = 1;
1379
ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1380
ste.val = ptr;
1381
goto shadow_pgt;
1382
}
1383
ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1384
shadow_pgt:
1385
ste.fc0.p |= *dat_protection;
1386
rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1387
if (rc)
1388
return rc;
1389
kvm->stat.gmap_shadow_sg_entry++;
1390
}
1391
}
1392
/* Return the parent address of the page table */
1393
*pgt = ptr;
1394
return 0;
1395
}
1396
1397
/**
1398
* shadow_pgt_lookup() - find a shadow page table
1399
* @sg: pointer to the shadow guest address space structure
1400
* @saddr: the address in the shadow aguest address space
1401
* @pgt: parent gmap address of the page table to get shadowed
1402
* @dat_protection: if the pgtable is marked as protected by dat
1403
* @fake: pgt references contiguous guest memory block, not a pgtable
1404
*
1405
* Returns 0 if the shadow page table was found and -EAGAIN if the page
1406
* table was not found.
1407
*
1408
* Called with sg->mm->mmap_lock in read.
1409
*/
1410
static int shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, unsigned long *pgt,
1411
int *dat_protection, int *fake)
1412
{
1413
unsigned long pt_index;
1414
unsigned long *table;
1415
struct page *page;
1416
int rc;
1417
1418
spin_lock(&sg->guest_table_lock);
1419
table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1420
if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1421
/* Shadow page tables are full pages (pte+pgste) */
1422
page = pfn_to_page(*table >> PAGE_SHIFT);
1423
pt_index = gmap_pgste_get_pgt_addr(page_to_virt(page));
1424
*pgt = pt_index & ~GMAP_SHADOW_FAKE_TABLE;
1425
*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
1426
*fake = !!(pt_index & GMAP_SHADOW_FAKE_TABLE);
1427
rc = 0;
1428
} else {
1429
rc = -EAGAIN;
1430
}
1431
spin_unlock(&sg->guest_table_lock);
1432
return rc;
1433
}
1434
1435
/**
1436
* kvm_s390_shadow_fault - handle fault on a shadow page table
1437
* @vcpu: virtual cpu
1438
* @sg: pointer to the shadow guest address space structure
1439
* @saddr: faulting address in the shadow gmap
1440
* @datptr: will contain the address of the faulting DAT table entry, or of
1441
* the valid leaf, plus some flags
1442
*
1443
* Returns: - 0 if the shadow fault was successfully resolved
1444
* - > 0 (pgm exception code) on exceptions while faulting
1445
* - -EAGAIN if the caller can retry immediately
1446
* - -EFAULT when accessing invalid guest addresses
1447
* - -ENOMEM if out of memory
1448
*/
1449
int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1450
unsigned long saddr, unsigned long *datptr)
1451
{
1452
union vaddress vaddr;
1453
union page_table_entry pte;
1454
unsigned long pgt = 0;
1455
int dat_protection, fake;
1456
int rc;
1457
1458
if (KVM_BUG_ON(!gmap_is_shadow(sg), vcpu->kvm))
1459
return -EFAULT;
1460
1461
mmap_read_lock(sg->mm);
1462
/*
1463
* We don't want any guest-2 tables to change - so the parent
1464
* tables/pointers we read stay valid - unshadowing is however
1465
* always possible - only guest_table_lock protects us.
1466
*/
1467
ipte_lock(vcpu->kvm);
1468
1469
rc = shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1470
if (rc)
1471
rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1472
&fake);
1473
1474
vaddr.addr = saddr;
1475
if (fake) {
1476
pte.val = pgt + vaddr.px * PAGE_SIZE;
1477
goto shadow_page;
1478
}
1479
1480
switch (rc) {
1481
case PGM_SEGMENT_TRANSLATION:
1482
case PGM_REGION_THIRD_TRANS:
1483
case PGM_REGION_SECOND_TRANS:
1484
case PGM_REGION_FIRST_TRANS:
1485
pgt |= PEI_NOT_PTE;
1486
break;
1487
case 0:
1488
pgt += vaddr.px * 8;
1489
rc = gmap_read_table(sg->parent, pgt, &pte.val);
1490
}
1491
if (datptr)
1492
*datptr = pgt | dat_protection * PEI_DAT_PROT;
1493
if (!rc && pte.i)
1494
rc = PGM_PAGE_TRANSLATION;
1495
if (!rc && pte.z)
1496
rc = PGM_TRANSLATION_SPEC;
1497
shadow_page:
1498
pte.p |= dat_protection;
1499
if (!rc)
1500
rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1501
vcpu->kvm->stat.gmap_shadow_pg_entry++;
1502
ipte_unlock(vcpu->kvm);
1503
mmap_read_unlock(sg->mm);
1504
return rc;
1505
}
1506
1507