Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/kvm/interrupt.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* handling kvm guest interrupts
4
*
5
* Copyright IBM Corp. 2008, 2020
6
*
7
* Author(s): Carsten Otte <[email protected]>
8
*/
9
10
#define KMSG_COMPONENT "kvm-s390"
11
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12
13
#include <linux/cpufeature.h>
14
#include <linux/interrupt.h>
15
#include <linux/kvm_host.h>
16
#include <linux/hrtimer.h>
17
#include <linux/export.h>
18
#include <linux/mmu_context.h>
19
#include <linux/nospec.h>
20
#include <linux/signal.h>
21
#include <linux/slab.h>
22
#include <linux/bitmap.h>
23
#include <linux/vmalloc.h>
24
#include <asm/access-regs.h>
25
#include <asm/asm-offsets.h>
26
#include <asm/dis.h>
27
#include <linux/uaccess.h>
28
#include <asm/sclp.h>
29
#include <asm/isc.h>
30
#include <asm/gmap.h>
31
#include <asm/nmi.h>
32
#include <asm/airq.h>
33
#include <asm/tpi.h>
34
#include "kvm-s390.h"
35
#include "gaccess.h"
36
#include "trace-s390.h"
37
#include "pci.h"
38
39
#define PFAULT_INIT 0x0600
40
#define PFAULT_DONE 0x0680
41
#define VIRTIO_PARAM 0x0d00
42
43
static struct kvm_s390_gib *gib;
44
45
/* handle external calls via sigp interpretation facility */
46
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
47
{
48
int c, scn;
49
50
if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
51
return 0;
52
53
BUG_ON(!kvm_s390_use_sca_entries());
54
read_lock(&vcpu->kvm->arch.sca_lock);
55
if (vcpu->kvm->arch.use_esca) {
56
struct esca_block *sca = vcpu->kvm->arch.sca;
57
union esca_sigp_ctrl sigp_ctrl =
58
sca->cpu[vcpu->vcpu_id].sigp_ctrl;
59
60
c = sigp_ctrl.c;
61
scn = sigp_ctrl.scn;
62
} else {
63
struct bsca_block *sca = vcpu->kvm->arch.sca;
64
union bsca_sigp_ctrl sigp_ctrl =
65
sca->cpu[vcpu->vcpu_id].sigp_ctrl;
66
67
c = sigp_ctrl.c;
68
scn = sigp_ctrl.scn;
69
}
70
read_unlock(&vcpu->kvm->arch.sca_lock);
71
72
if (src_id)
73
*src_id = scn;
74
75
return c;
76
}
77
78
static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
79
{
80
int expect, rc;
81
82
BUG_ON(!kvm_s390_use_sca_entries());
83
read_lock(&vcpu->kvm->arch.sca_lock);
84
if (vcpu->kvm->arch.use_esca) {
85
struct esca_block *sca = vcpu->kvm->arch.sca;
86
union esca_sigp_ctrl *sigp_ctrl =
87
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
88
union esca_sigp_ctrl new_val = {0}, old_val;
89
90
old_val = READ_ONCE(*sigp_ctrl);
91
new_val.scn = src_id;
92
new_val.c = 1;
93
old_val.c = 0;
94
95
expect = old_val.value;
96
rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
97
} else {
98
struct bsca_block *sca = vcpu->kvm->arch.sca;
99
union bsca_sigp_ctrl *sigp_ctrl =
100
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
101
union bsca_sigp_ctrl new_val = {0}, old_val;
102
103
old_val = READ_ONCE(*sigp_ctrl);
104
new_val.scn = src_id;
105
new_val.c = 1;
106
old_val.c = 0;
107
108
expect = old_val.value;
109
rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
110
}
111
read_unlock(&vcpu->kvm->arch.sca_lock);
112
113
if (rc != expect) {
114
/* another external call is pending */
115
return -EBUSY;
116
}
117
kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
118
return 0;
119
}
120
121
static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
122
{
123
if (!kvm_s390_use_sca_entries())
124
return;
125
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
126
read_lock(&vcpu->kvm->arch.sca_lock);
127
if (vcpu->kvm->arch.use_esca) {
128
struct esca_block *sca = vcpu->kvm->arch.sca;
129
union esca_sigp_ctrl *sigp_ctrl =
130
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
131
132
WRITE_ONCE(sigp_ctrl->value, 0);
133
} else {
134
struct bsca_block *sca = vcpu->kvm->arch.sca;
135
union bsca_sigp_ctrl *sigp_ctrl =
136
&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
137
138
WRITE_ONCE(sigp_ctrl->value, 0);
139
}
140
read_unlock(&vcpu->kvm->arch.sca_lock);
141
}
142
143
int psw_extint_disabled(struct kvm_vcpu *vcpu)
144
{
145
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
146
}
147
148
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
149
{
150
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
151
}
152
153
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
154
{
155
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
156
}
157
158
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
159
{
160
return psw_extint_disabled(vcpu) &&
161
psw_ioint_disabled(vcpu) &&
162
psw_mchk_disabled(vcpu);
163
}
164
165
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
166
{
167
if (psw_extint_disabled(vcpu) ||
168
!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
169
return 0;
170
if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
171
/* No timer interrupts when single stepping */
172
return 0;
173
return 1;
174
}
175
176
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
177
{
178
const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
179
const u64 ckc = vcpu->arch.sie_block->ckc;
180
181
if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
182
if ((s64)ckc >= (s64)now)
183
return 0;
184
} else if (ckc >= now) {
185
return 0;
186
}
187
return ckc_interrupts_enabled(vcpu);
188
}
189
190
static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
191
{
192
return !psw_extint_disabled(vcpu) &&
193
(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
194
}
195
196
static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
197
{
198
if (!cpu_timer_interrupts_enabled(vcpu))
199
return 0;
200
return kvm_s390_get_cpu_timer(vcpu) >> 63;
201
}
202
203
static uint64_t isc_to_isc_bits(int isc)
204
{
205
return (0x80 >> isc) << 24;
206
}
207
208
static inline u32 isc_to_int_word(u8 isc)
209
{
210
return ((u32)isc << 27) | 0x80000000;
211
}
212
213
static inline u8 int_word_to_isc(u32 int_word)
214
{
215
return (int_word & 0x38000000) >> 27;
216
}
217
218
/*
219
* To use atomic bitmap functions, we have to provide a bitmap address
220
* that is u64 aligned. However, the ipm might be u32 aligned.
221
* Therefore, we logically start the bitmap at the very beginning of the
222
* struct and fixup the bit number.
223
*/
224
#define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
225
226
/**
227
* gisa_set_iam - change the GISA interruption alert mask
228
*
229
* @gisa: gisa to operate on
230
* @iam: new IAM value to use
231
*
232
* Change the IAM atomically with the next alert address and the IPM
233
* of the GISA if the GISA is not part of the GIB alert list. All three
234
* fields are located in the first long word of the GISA.
235
*
236
* Returns: 0 on success
237
* -EBUSY in case the gisa is part of the alert list
238
*/
239
static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
240
{
241
u64 word, _word;
242
243
word = READ_ONCE(gisa->u64.word[0]);
244
do {
245
if ((u64)gisa != word >> 32)
246
return -EBUSY;
247
_word = (word & ~0xffUL) | iam;
248
} while (!try_cmpxchg(&gisa->u64.word[0], &word, _word));
249
250
return 0;
251
}
252
253
/**
254
* gisa_clear_ipm - clear the GISA interruption pending mask
255
*
256
* @gisa: gisa to operate on
257
*
258
* Clear the IPM atomically with the next alert address and the IAM
259
* of the GISA unconditionally. All three fields are located in the
260
* first long word of the GISA.
261
*/
262
static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
263
{
264
u64 word, _word;
265
266
word = READ_ONCE(gisa->u64.word[0]);
267
do {
268
_word = word & ~(0xffUL << 24);
269
} while (!try_cmpxchg(&gisa->u64.word[0], &word, _word));
270
}
271
272
/**
273
* gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
274
*
275
* @gi: gisa interrupt struct to work on
276
*
277
* Atomically restores the interruption alert mask if none of the
278
* relevant ISCs are pending and return the IPM.
279
*
280
* Returns: the relevant pending ISCs
281
*/
282
static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
283
{
284
u8 pending_mask, alert_mask;
285
u64 word, _word;
286
287
word = READ_ONCE(gi->origin->u64.word[0]);
288
do {
289
alert_mask = READ_ONCE(gi->alert.mask);
290
pending_mask = (u8)(word >> 24) & alert_mask;
291
if (pending_mask)
292
return pending_mask;
293
_word = (word & ~0xffUL) | alert_mask;
294
} while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word));
295
296
return 0;
297
}
298
299
static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
300
{
301
set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
302
}
303
304
static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
305
{
306
return READ_ONCE(gisa->ipm);
307
}
308
309
static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
310
{
311
return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
312
}
313
314
static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
315
{
316
unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
317
vcpu->arch.local_int.pending_irqs;
318
319
pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
320
return pending;
321
}
322
323
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
324
{
325
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
326
unsigned long pending_mask;
327
328
pending_mask = pending_irqs_no_gisa(vcpu);
329
if (gi->origin)
330
pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
331
return pending_mask;
332
}
333
334
static inline int isc_to_irq_type(unsigned long isc)
335
{
336
return IRQ_PEND_IO_ISC_0 - isc;
337
}
338
339
static inline int irq_type_to_isc(unsigned long irq_type)
340
{
341
return IRQ_PEND_IO_ISC_0 - irq_type;
342
}
343
344
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
345
unsigned long active_mask)
346
{
347
int i;
348
349
for (i = 0; i <= MAX_ISC; i++)
350
if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
351
active_mask &= ~(1UL << (isc_to_irq_type(i)));
352
353
return active_mask;
354
}
355
356
static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
357
{
358
unsigned long active_mask;
359
360
active_mask = pending_irqs(vcpu);
361
if (!active_mask)
362
return 0;
363
364
if (psw_extint_disabled(vcpu))
365
active_mask &= ~IRQ_PEND_EXT_MASK;
366
if (psw_ioint_disabled(vcpu))
367
active_mask &= ~IRQ_PEND_IO_MASK;
368
else
369
active_mask = disable_iscs(vcpu, active_mask);
370
if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
371
__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
372
if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
373
__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
374
if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
375
__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
376
if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
377
__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
378
if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
379
__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
380
__clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
381
}
382
if (psw_mchk_disabled(vcpu))
383
active_mask &= ~IRQ_PEND_MCHK_MASK;
384
/* PV guest cpus can have a single interruption injected at a time. */
385
if (kvm_s390_pv_cpu_get_handle(vcpu) &&
386
vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
387
active_mask &= ~(IRQ_PEND_EXT_II_MASK |
388
IRQ_PEND_IO_MASK |
389
IRQ_PEND_MCHK_MASK);
390
/*
391
* Check both floating and local interrupt's cr14 because
392
* bit IRQ_PEND_MCHK_REP could be set in both cases.
393
*/
394
if (!(vcpu->arch.sie_block->gcr[14] &
395
(vcpu->kvm->arch.float_int.mchk.cr14 |
396
vcpu->arch.local_int.irq.mchk.cr14)))
397
__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
398
399
/*
400
* STOP irqs will never be actively delivered. They are triggered via
401
* intercept requests and cleared when the stop intercept is performed.
402
*/
403
__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
404
405
return active_mask;
406
}
407
408
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
409
{
410
kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
411
set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
412
}
413
414
static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
415
{
416
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
417
clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
418
}
419
420
static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
421
{
422
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
423
CPUSTAT_STOP_INT);
424
vcpu->arch.sie_block->lctl = 0x0000;
425
vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
426
427
if (guestdbg_enabled(vcpu)) {
428
vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
429
LCTL_CR10 | LCTL_CR11);
430
vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
431
}
432
}
433
434
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
435
{
436
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
437
return;
438
if (psw_ioint_disabled(vcpu))
439
kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
440
else
441
vcpu->arch.sie_block->lctl |= LCTL_CR6;
442
}
443
444
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
445
{
446
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
447
return;
448
if (psw_extint_disabled(vcpu))
449
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
450
else
451
vcpu->arch.sie_block->lctl |= LCTL_CR0;
452
}
453
454
static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
455
{
456
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
457
return;
458
if (psw_mchk_disabled(vcpu))
459
vcpu->arch.sie_block->ictl |= ICTL_LPSW;
460
else
461
vcpu->arch.sie_block->lctl |= LCTL_CR14;
462
}
463
464
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
465
{
466
if (kvm_s390_is_stop_irq_pending(vcpu))
467
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
468
}
469
470
/* Set interception request for non-deliverable interrupts */
471
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
472
{
473
set_intercept_indicators_io(vcpu);
474
set_intercept_indicators_ext(vcpu);
475
set_intercept_indicators_mchk(vcpu);
476
set_intercept_indicators_stop(vcpu);
477
}
478
479
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
480
{
481
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
482
int rc = 0;
483
484
vcpu->stat.deliver_cputm++;
485
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
486
0, 0);
487
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
488
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
489
vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
490
} else {
491
rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
492
(u16 *)__LC_EXT_INT_CODE);
493
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
494
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
495
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
496
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
497
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
498
}
499
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
500
return rc ? -EFAULT : 0;
501
}
502
503
static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
504
{
505
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
506
int rc = 0;
507
508
vcpu->stat.deliver_ckc++;
509
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
510
0, 0);
511
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
512
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
513
vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
514
} else {
515
rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
516
(u16 __user *)__LC_EXT_INT_CODE);
517
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
518
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
519
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
520
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
521
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
522
}
523
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
524
return rc ? -EFAULT : 0;
525
}
526
527
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
528
{
529
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
530
struct kvm_s390_ext_info ext;
531
int rc;
532
533
spin_lock(&li->lock);
534
ext = li->irq.ext;
535
clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
536
li->irq.ext.ext_params2 = 0;
537
spin_unlock(&li->lock);
538
539
VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
540
ext.ext_params2);
541
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
542
KVM_S390_INT_PFAULT_INIT,
543
0, ext.ext_params2);
544
545
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
546
rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
547
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
548
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
549
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
550
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
551
rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
552
return rc ? -EFAULT : 0;
553
}
554
555
static int __write_machine_check(struct kvm_vcpu *vcpu,
556
struct kvm_s390_mchk_info *mchk)
557
{
558
unsigned long ext_sa_addr;
559
unsigned long lc;
560
freg_t fprs[NUM_FPRS];
561
union mci mci;
562
int rc;
563
564
/*
565
* All other possible payload for a machine check (e.g. the register
566
* contents in the save area) will be handled by the ultravisor, as
567
* the hypervisor does not not have the needed information for
568
* protected guests.
569
*/
570
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
571
vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
572
vcpu->arch.sie_block->mcic = mchk->mcic;
573
vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
574
vcpu->arch.sie_block->edc = mchk->ext_damage_code;
575
return 0;
576
}
577
578
mci.val = mchk->mcic;
579
/* take care of lazy register loading */
580
kvm_s390_fpu_store(vcpu->run);
581
save_access_regs(vcpu->run->s.regs.acrs);
582
if (cpu_has_gs() && vcpu->arch.gs_enabled)
583
save_gs_cb(current->thread.gs_cb);
584
585
/* Extended save area */
586
rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
587
sizeof(unsigned long));
588
/* Only bits 0 through 63-LC are used for address formation */
589
lc = ext_sa_addr & MCESA_LC_MASK;
590
if (test_kvm_facility(vcpu->kvm, 133)) {
591
switch (lc) {
592
case 0:
593
case 10:
594
ext_sa_addr &= ~0x3ffUL;
595
break;
596
case 11:
597
ext_sa_addr &= ~0x7ffUL;
598
break;
599
case 12:
600
ext_sa_addr &= ~0xfffUL;
601
break;
602
default:
603
ext_sa_addr = 0;
604
break;
605
}
606
} else {
607
ext_sa_addr &= ~0x3ffUL;
608
}
609
610
if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
611
if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
612
512))
613
mci.vr = 0;
614
} else {
615
mci.vr = 0;
616
}
617
if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
618
&& (lc == 11 || lc == 12)) {
619
if (write_guest_abs(vcpu, ext_sa_addr + 1024,
620
&vcpu->run->s.regs.gscb, 32))
621
mci.gs = 0;
622
} else {
623
mci.gs = 0;
624
}
625
626
/* General interruption information */
627
rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
628
rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
629
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
630
rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
631
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
632
rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
633
634
/* Register-save areas */
635
if (cpu_has_vx()) {
636
convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
637
rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
638
} else {
639
rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
640
vcpu->run->s.regs.fprs, 128);
641
}
642
rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
643
vcpu->run->s.regs.gprs, 128);
644
rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc,
645
(u32 __user *) __LC_FP_CREG_SAVE_AREA);
646
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
647
(u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
648
rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
649
(u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
650
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
651
(u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
652
rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
653
&vcpu->run->s.regs.acrs, 64);
654
rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
655
&vcpu->arch.sie_block->gcr, 128);
656
657
/* Extended interruption information */
658
rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
659
(u32 __user *) __LC_EXT_DAMAGE_CODE);
660
rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
661
(u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
662
rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
663
sizeof(mchk->fixed_logout));
664
return rc ? -EFAULT : 0;
665
}
666
667
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
668
{
669
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
670
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
671
struct kvm_s390_mchk_info mchk = {};
672
int deliver = 0;
673
int rc = 0;
674
675
spin_lock(&fi->lock);
676
spin_lock(&li->lock);
677
if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
678
test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
679
/*
680
* If there was an exigent machine check pending, then any
681
* repressible machine checks that might have been pending
682
* are indicated along with it, so always clear bits for
683
* repressible and exigent interrupts
684
*/
685
mchk = li->irq.mchk;
686
clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
687
clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
688
memset(&li->irq.mchk, 0, sizeof(mchk));
689
deliver = 1;
690
}
691
/*
692
* We indicate floating repressible conditions along with
693
* other pending conditions. Channel Report Pending and Channel
694
* Subsystem damage are the only two and are indicated by
695
* bits in mcic and masked in cr14.
696
*/
697
if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
698
mchk.mcic |= fi->mchk.mcic;
699
mchk.cr14 |= fi->mchk.cr14;
700
memset(&fi->mchk, 0, sizeof(mchk));
701
deliver = 1;
702
}
703
spin_unlock(&li->lock);
704
spin_unlock(&fi->lock);
705
706
if (deliver) {
707
VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
708
mchk.mcic);
709
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
710
KVM_S390_MCHK,
711
mchk.cr14, mchk.mcic);
712
vcpu->stat.deliver_machine_check++;
713
rc = __write_machine_check(vcpu, &mchk);
714
}
715
return rc;
716
}
717
718
static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
719
{
720
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
721
int rc = 0;
722
723
VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
724
vcpu->stat.deliver_restart_signal++;
725
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
726
727
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
728
vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
729
} else {
730
rc = write_guest_lc(vcpu,
731
offsetof(struct lowcore, restart_old_psw),
732
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
733
rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
734
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
735
}
736
clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
737
return rc ? -EFAULT : 0;
738
}
739
740
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
741
{
742
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
743
struct kvm_s390_prefix_info prefix;
744
745
spin_lock(&li->lock);
746
prefix = li->irq.prefix;
747
li->irq.prefix.address = 0;
748
clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
749
spin_unlock(&li->lock);
750
751
vcpu->stat.deliver_prefix_signal++;
752
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
753
KVM_S390_SIGP_SET_PREFIX,
754
prefix.address, 0);
755
756
kvm_s390_set_prefix(vcpu, prefix.address);
757
return 0;
758
}
759
760
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
761
{
762
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
763
int rc;
764
int cpu_addr;
765
766
spin_lock(&li->lock);
767
cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
768
clear_bit(cpu_addr, li->sigp_emerg_pending);
769
if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
770
clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
771
spin_unlock(&li->lock);
772
773
VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
774
vcpu->stat.deliver_emergency_signal++;
775
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
776
cpu_addr, 0);
777
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
778
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
779
vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
780
vcpu->arch.sie_block->extcpuaddr = cpu_addr;
781
return 0;
782
}
783
784
rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
785
(u16 *)__LC_EXT_INT_CODE);
786
rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
787
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
788
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
789
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
790
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
791
return rc ? -EFAULT : 0;
792
}
793
794
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
795
{
796
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
797
struct kvm_s390_extcall_info extcall;
798
int rc;
799
800
spin_lock(&li->lock);
801
extcall = li->irq.extcall;
802
li->irq.extcall.code = 0;
803
clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
804
spin_unlock(&li->lock);
805
806
VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
807
vcpu->stat.deliver_external_call++;
808
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
809
KVM_S390_INT_EXTERNAL_CALL,
810
extcall.code, 0);
811
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
812
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
813
vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
814
vcpu->arch.sie_block->extcpuaddr = extcall.code;
815
return 0;
816
}
817
818
rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
819
(u16 *)__LC_EXT_INT_CODE);
820
rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
821
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
822
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
823
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
824
sizeof(psw_t));
825
return rc ? -EFAULT : 0;
826
}
827
828
static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
829
{
830
switch (code) {
831
case PGM_SPECIFICATION:
832
vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
833
break;
834
case PGM_OPERAND:
835
vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
836
break;
837
default:
838
return -EINVAL;
839
}
840
return 0;
841
}
842
843
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
844
{
845
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
846
struct kvm_s390_pgm_info pgm_info;
847
int rc = 0, nullifying = false;
848
u16 ilen;
849
850
spin_lock(&li->lock);
851
pgm_info = li->irq.pgm;
852
clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
853
memset(&li->irq.pgm, 0, sizeof(pgm_info));
854
spin_unlock(&li->lock);
855
856
ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
857
VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
858
pgm_info.code, ilen);
859
vcpu->stat.deliver_program++;
860
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
861
pgm_info.code, 0);
862
863
/* PER is handled by the ultravisor */
864
if (kvm_s390_pv_cpu_is_protected(vcpu))
865
return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
866
867
switch (pgm_info.code & ~PGM_PER) {
868
case PGM_AFX_TRANSLATION:
869
case PGM_ASX_TRANSLATION:
870
case PGM_EX_TRANSLATION:
871
case PGM_LFX_TRANSLATION:
872
case PGM_LSTE_SEQUENCE:
873
case PGM_LSX_TRANSLATION:
874
case PGM_LX_TRANSLATION:
875
case PGM_PRIMARY_AUTHORITY:
876
case PGM_SECONDARY_AUTHORITY:
877
nullifying = true;
878
fallthrough;
879
case PGM_SPACE_SWITCH:
880
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
881
(u64 *)__LC_TRANS_EXC_CODE);
882
break;
883
case PGM_ALEN_TRANSLATION:
884
case PGM_ALE_SEQUENCE:
885
case PGM_ASTE_INSTANCE:
886
case PGM_ASTE_SEQUENCE:
887
case PGM_ASTE_VALIDITY:
888
case PGM_EXTENDED_AUTHORITY:
889
rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
890
(u8 *)__LC_EXC_ACCESS_ID);
891
nullifying = true;
892
break;
893
case PGM_ASCE_TYPE:
894
case PGM_PAGE_TRANSLATION:
895
case PGM_REGION_FIRST_TRANS:
896
case PGM_REGION_SECOND_TRANS:
897
case PGM_REGION_THIRD_TRANS:
898
case PGM_SEGMENT_TRANSLATION:
899
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
900
(u64 *)__LC_TRANS_EXC_CODE);
901
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
902
(u8 *)__LC_EXC_ACCESS_ID);
903
rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
904
(u8 *)__LC_OP_ACCESS_ID);
905
nullifying = true;
906
break;
907
case PGM_MONITOR:
908
rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
909
(u16 *)__LC_MON_CLASS_NR);
910
rc |= put_guest_lc(vcpu, pgm_info.mon_code,
911
(u64 *)__LC_MON_CODE);
912
break;
913
case PGM_VECTOR_PROCESSING:
914
case PGM_DATA:
915
rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
916
(u32 *)__LC_DATA_EXC_CODE);
917
break;
918
case PGM_PROTECTION:
919
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
920
(u64 *)__LC_TRANS_EXC_CODE);
921
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
922
(u8 *)__LC_EXC_ACCESS_ID);
923
break;
924
case PGM_STACK_FULL:
925
case PGM_STACK_EMPTY:
926
case PGM_STACK_SPECIFICATION:
927
case PGM_STACK_TYPE:
928
case PGM_STACK_OPERATION:
929
case PGM_TRACE_TABEL:
930
case PGM_CRYPTO_OPERATION:
931
nullifying = true;
932
break;
933
}
934
935
if (pgm_info.code & PGM_PER) {
936
rc |= put_guest_lc(vcpu, pgm_info.per_code,
937
(u8 *) __LC_PER_CODE);
938
rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
939
(u8 *)__LC_PER_ATMID);
940
rc |= put_guest_lc(vcpu, pgm_info.per_address,
941
(u64 *) __LC_PER_ADDRESS);
942
rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
943
(u8 *) __LC_PER_ACCESS_ID);
944
}
945
946
if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
947
kvm_s390_rewind_psw(vcpu, ilen);
948
949
/* bit 1+2 of the target are the ilc, so we can directly use ilen */
950
rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
951
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
952
(u64 *) __LC_PGM_LAST_BREAK);
953
rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_CODE);
954
rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
955
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
956
rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
957
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
958
return rc ? -EFAULT : 0;
959
}
960
961
#define SCCB_MASK 0xFFFFFFF8
962
#define SCCB_EVENT_PENDING 0x3
963
964
static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
965
{
966
int rc;
967
968
if (kvm_s390_pv_cpu_get_handle(vcpu)) {
969
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
970
vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
971
vcpu->arch.sie_block->eiparams = parm;
972
return 0;
973
}
974
975
rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
976
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
977
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
978
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
979
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
980
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
981
rc |= put_guest_lc(vcpu, parm,
982
(u32 *)__LC_EXT_PARAMS);
983
984
return rc ? -EFAULT : 0;
985
}
986
987
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
988
{
989
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
990
struct kvm_s390_ext_info ext;
991
992
spin_lock(&fi->lock);
993
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
994
!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
995
spin_unlock(&fi->lock);
996
return 0;
997
}
998
ext = fi->srv_signal;
999
memset(&fi->srv_signal, 0, sizeof(ext));
1000
clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1001
clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1002
if (kvm_s390_pv_cpu_is_protected(vcpu))
1003
set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1004
spin_unlock(&fi->lock);
1005
1006
VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1007
ext.ext_params);
1008
vcpu->stat.deliver_service_signal++;
1009
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1010
ext.ext_params, 0);
1011
1012
return write_sclp(vcpu, ext.ext_params);
1013
}
1014
1015
static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1016
{
1017
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1018
struct kvm_s390_ext_info ext;
1019
1020
spin_lock(&fi->lock);
1021
if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1022
spin_unlock(&fi->lock);
1023
return 0;
1024
}
1025
ext = fi->srv_signal;
1026
/* only clear the event bits */
1027
fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1028
clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1029
spin_unlock(&fi->lock);
1030
1031
VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1032
vcpu->stat.deliver_service_signal++;
1033
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1034
ext.ext_params, 0);
1035
1036
return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING);
1037
}
1038
1039
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1040
{
1041
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1042
struct kvm_s390_interrupt_info *inti;
1043
int rc = 0;
1044
1045
spin_lock(&fi->lock);
1046
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1047
struct kvm_s390_interrupt_info,
1048
list);
1049
if (inti) {
1050
list_del(&inti->list);
1051
fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1052
}
1053
if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1054
clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1055
spin_unlock(&fi->lock);
1056
1057
if (inti) {
1058
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1059
KVM_S390_INT_PFAULT_DONE, 0,
1060
inti->ext.ext_params2);
1061
VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1062
inti->ext.ext_params2);
1063
1064
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1065
(u16 *)__LC_EXT_INT_CODE);
1066
rc |= put_guest_lc(vcpu, PFAULT_DONE,
1067
(u16 *)__LC_EXT_CPU_ADDR);
1068
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1069
&vcpu->arch.sie_block->gpsw,
1070
sizeof(psw_t));
1071
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1072
&vcpu->arch.sie_block->gpsw,
1073
sizeof(psw_t));
1074
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1075
(u64 *)__LC_EXT_PARAMS2);
1076
kfree(inti);
1077
}
1078
return rc ? -EFAULT : 0;
1079
}
1080
1081
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1082
{
1083
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1084
struct kvm_s390_interrupt_info *inti;
1085
int rc = 0;
1086
1087
spin_lock(&fi->lock);
1088
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1089
struct kvm_s390_interrupt_info,
1090
list);
1091
if (inti) {
1092
VCPU_EVENT(vcpu, 4,
1093
"deliver: virtio parm: 0x%x,parm64: 0x%llx",
1094
inti->ext.ext_params, inti->ext.ext_params2);
1095
vcpu->stat.deliver_virtio++;
1096
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1097
inti->type,
1098
inti->ext.ext_params,
1099
inti->ext.ext_params2);
1100
list_del(&inti->list);
1101
fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1102
}
1103
if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1104
clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1105
spin_unlock(&fi->lock);
1106
1107
if (inti) {
1108
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1109
(u16 *)__LC_EXT_INT_CODE);
1110
rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1111
(u16 *)__LC_EXT_CPU_ADDR);
1112
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1113
&vcpu->arch.sie_block->gpsw,
1114
sizeof(psw_t));
1115
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1116
&vcpu->arch.sie_block->gpsw,
1117
sizeof(psw_t));
1118
rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1119
(u32 *)__LC_EXT_PARAMS);
1120
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1121
(u64 *)__LC_EXT_PARAMS2);
1122
kfree(inti);
1123
}
1124
return rc ? -EFAULT : 0;
1125
}
1126
1127
static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1128
{
1129
int rc;
1130
1131
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1132
vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1133
vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1134
vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1135
vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1136
vcpu->arch.sie_block->io_int_word = io->io_int_word;
1137
return 0;
1138
}
1139
1140
rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1141
rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1142
rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1143
rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1144
rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1145
&vcpu->arch.sie_block->gpsw,
1146
sizeof(psw_t));
1147
rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1148
&vcpu->arch.sie_block->gpsw,
1149
sizeof(psw_t));
1150
return rc ? -EFAULT : 0;
1151
}
1152
1153
static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1154
unsigned long irq_type)
1155
{
1156
struct list_head *isc_list;
1157
struct kvm_s390_float_interrupt *fi;
1158
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1159
struct kvm_s390_interrupt_info *inti = NULL;
1160
struct kvm_s390_io_info io;
1161
u32 isc;
1162
int rc = 0;
1163
1164
fi = &vcpu->kvm->arch.float_int;
1165
1166
spin_lock(&fi->lock);
1167
isc = irq_type_to_isc(irq_type);
1168
isc_list = &fi->lists[isc];
1169
inti = list_first_entry_or_null(isc_list,
1170
struct kvm_s390_interrupt_info,
1171
list);
1172
if (inti) {
1173
if (inti->type & KVM_S390_INT_IO_AI_MASK)
1174
VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1175
else
1176
VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1177
inti->io.subchannel_id >> 8,
1178
inti->io.subchannel_id >> 1 & 0x3,
1179
inti->io.subchannel_nr);
1180
1181
vcpu->stat.deliver_io++;
1182
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1183
inti->type,
1184
((__u32)inti->io.subchannel_id << 16) |
1185
inti->io.subchannel_nr,
1186
((__u64)inti->io.io_int_parm << 32) |
1187
inti->io.io_int_word);
1188
list_del(&inti->list);
1189
fi->counters[FIRQ_CNTR_IO] -= 1;
1190
}
1191
if (list_empty(isc_list))
1192
clear_bit(irq_type, &fi->pending_irqs);
1193
spin_unlock(&fi->lock);
1194
1195
if (inti) {
1196
rc = __do_deliver_io(vcpu, &(inti->io));
1197
kfree(inti);
1198
goto out;
1199
}
1200
1201
if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1202
/*
1203
* in case an adapter interrupt was not delivered
1204
* in SIE context KVM will handle the delivery
1205
*/
1206
VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1207
memset(&io, 0, sizeof(io));
1208
io.io_int_word = isc_to_int_word(isc);
1209
vcpu->stat.deliver_io++;
1210
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1211
KVM_S390_INT_IO(1, 0, 0, 0),
1212
((__u32)io.subchannel_id << 16) |
1213
io.subchannel_nr,
1214
((__u64)io.io_int_parm << 32) |
1215
io.io_int_word);
1216
rc = __do_deliver_io(vcpu, &io);
1217
}
1218
out:
1219
return rc;
1220
}
1221
1222
/* Check whether an external call is pending (deliverable or not) */
1223
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1224
{
1225
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1226
1227
if (!sclp.has_sigpif)
1228
return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1229
1230
return sca_ext_call_pending(vcpu, NULL);
1231
}
1232
1233
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1234
{
1235
if (deliverable_irqs(vcpu))
1236
return 1;
1237
1238
if (kvm_cpu_has_pending_timer(vcpu))
1239
return 1;
1240
1241
/* external call pending and deliverable */
1242
if (kvm_s390_ext_call_pending(vcpu) &&
1243
!psw_extint_disabled(vcpu) &&
1244
(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1245
return 1;
1246
1247
if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1248
return 1;
1249
return 0;
1250
}
1251
1252
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1253
{
1254
return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1255
}
1256
1257
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1258
{
1259
const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1260
const u64 ckc = vcpu->arch.sie_block->ckc;
1261
u64 cputm, sltime = 0;
1262
1263
if (ckc_interrupts_enabled(vcpu)) {
1264
if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1265
if ((s64)now < (s64)ckc)
1266
sltime = tod_to_ns((s64)ckc - (s64)now);
1267
} else if (now < ckc) {
1268
sltime = tod_to_ns(ckc - now);
1269
}
1270
/* already expired */
1271
if (!sltime)
1272
return 0;
1273
if (cpu_timer_interrupts_enabled(vcpu)) {
1274
cputm = kvm_s390_get_cpu_timer(vcpu);
1275
/* already expired? */
1276
if (cputm >> 63)
1277
return 0;
1278
return min_t(u64, sltime, tod_to_ns(cputm));
1279
}
1280
} else if (cpu_timer_interrupts_enabled(vcpu)) {
1281
sltime = kvm_s390_get_cpu_timer(vcpu);
1282
/* already expired? */
1283
if (sltime >> 63)
1284
return 0;
1285
}
1286
return sltime;
1287
}
1288
1289
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1290
{
1291
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1292
u64 sltime;
1293
1294
vcpu->stat.exit_wait_state++;
1295
1296
/* fast path */
1297
if (kvm_arch_vcpu_runnable(vcpu))
1298
return 0;
1299
1300
if (psw_interrupts_disabled(vcpu)) {
1301
VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1302
return -EOPNOTSUPP; /* disabled wait */
1303
}
1304
1305
if (gi->origin &&
1306
(gisa_get_ipm_or_restore_iam(gi) &
1307
vcpu->arch.sie_block->gcr[6] >> 24))
1308
return 0;
1309
1310
if (!ckc_interrupts_enabled(vcpu) &&
1311
!cpu_timer_interrupts_enabled(vcpu)) {
1312
VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1313
__set_cpu_idle(vcpu);
1314
goto no_timer;
1315
}
1316
1317
sltime = __calculate_sltime(vcpu);
1318
if (!sltime)
1319
return 0;
1320
1321
__set_cpu_idle(vcpu);
1322
hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1323
VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1324
no_timer:
1325
kvm_vcpu_srcu_read_unlock(vcpu);
1326
kvm_vcpu_halt(vcpu);
1327
vcpu->valid_wakeup = false;
1328
__unset_cpu_idle(vcpu);
1329
kvm_vcpu_srcu_read_lock(vcpu);
1330
1331
hrtimer_cancel(&vcpu->arch.ckc_timer);
1332
return 0;
1333
}
1334
1335
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1336
{
1337
vcpu->valid_wakeup = true;
1338
kvm_vcpu_wake_up(vcpu);
1339
1340
/*
1341
* The VCPU might not be sleeping but rather executing VSIE. Let's
1342
* kick it, so it leaves the SIE to process the request.
1343
*/
1344
kvm_s390_vsie_kick(vcpu);
1345
}
1346
1347
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1348
{
1349
struct kvm_vcpu *vcpu;
1350
u64 sltime;
1351
1352
vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1353
sltime = __calculate_sltime(vcpu);
1354
1355
/*
1356
* If the monotonic clock runs faster than the tod clock we might be
1357
* woken up too early and have to go back to sleep to avoid deadlocks.
1358
*/
1359
if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1360
return HRTIMER_RESTART;
1361
kvm_s390_vcpu_wakeup(vcpu);
1362
return HRTIMER_NORESTART;
1363
}
1364
1365
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1366
{
1367
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1368
1369
spin_lock(&li->lock);
1370
li->pending_irqs = 0;
1371
bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1372
memset(&li->irq, 0, sizeof(li->irq));
1373
spin_unlock(&li->lock);
1374
1375
sca_clear_ext_call(vcpu);
1376
}
1377
1378
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1379
{
1380
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1381
int rc = 0;
1382
bool delivered = false;
1383
unsigned long irq_type;
1384
unsigned long irqs;
1385
1386
__reset_intercept_indicators(vcpu);
1387
1388
/* pending ckc conditions might have been invalidated */
1389
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1390
if (ckc_irq_pending(vcpu))
1391
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1392
1393
/* pending cpu timer conditions might have been invalidated */
1394
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1395
if (cpu_timer_irq_pending(vcpu))
1396
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1397
1398
while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1399
/* bits are in the reverse order of interrupt priority */
1400
irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1401
switch (irq_type) {
1402
case IRQ_PEND_IO_ISC_0:
1403
case IRQ_PEND_IO_ISC_1:
1404
case IRQ_PEND_IO_ISC_2:
1405
case IRQ_PEND_IO_ISC_3:
1406
case IRQ_PEND_IO_ISC_4:
1407
case IRQ_PEND_IO_ISC_5:
1408
case IRQ_PEND_IO_ISC_6:
1409
case IRQ_PEND_IO_ISC_7:
1410
rc = __deliver_io(vcpu, irq_type);
1411
break;
1412
case IRQ_PEND_MCHK_EX:
1413
case IRQ_PEND_MCHK_REP:
1414
rc = __deliver_machine_check(vcpu);
1415
break;
1416
case IRQ_PEND_PROG:
1417
rc = __deliver_prog(vcpu);
1418
break;
1419
case IRQ_PEND_EXT_EMERGENCY:
1420
rc = __deliver_emergency_signal(vcpu);
1421
break;
1422
case IRQ_PEND_EXT_EXTERNAL:
1423
rc = __deliver_external_call(vcpu);
1424
break;
1425
case IRQ_PEND_EXT_CLOCK_COMP:
1426
rc = __deliver_ckc(vcpu);
1427
break;
1428
case IRQ_PEND_EXT_CPU_TIMER:
1429
rc = __deliver_cpu_timer(vcpu);
1430
break;
1431
case IRQ_PEND_RESTART:
1432
rc = __deliver_restart(vcpu);
1433
break;
1434
case IRQ_PEND_SET_PREFIX:
1435
rc = __deliver_set_prefix(vcpu);
1436
break;
1437
case IRQ_PEND_PFAULT_INIT:
1438
rc = __deliver_pfault_init(vcpu);
1439
break;
1440
case IRQ_PEND_EXT_SERVICE:
1441
rc = __deliver_service(vcpu);
1442
break;
1443
case IRQ_PEND_EXT_SERVICE_EV:
1444
rc = __deliver_service_ev(vcpu);
1445
break;
1446
case IRQ_PEND_PFAULT_DONE:
1447
rc = __deliver_pfault_done(vcpu);
1448
break;
1449
case IRQ_PEND_VIRTIO:
1450
rc = __deliver_virtio(vcpu);
1451
break;
1452
default:
1453
WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1454
clear_bit(irq_type, &li->pending_irqs);
1455
}
1456
delivered |= !rc;
1457
}
1458
1459
/*
1460
* We delivered at least one interrupt and modified the PC. Force a
1461
* singlestep event now.
1462
*/
1463
if (delivered && guestdbg_sstep_enabled(vcpu)) {
1464
struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
1465
1466
debug_exit->addr = vcpu->arch.sie_block->gpsw.addr;
1467
debug_exit->type = KVM_SINGLESTEP;
1468
vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
1469
}
1470
1471
set_intercept_indicators(vcpu);
1472
1473
return rc;
1474
}
1475
1476
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1477
{
1478
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1479
1480
vcpu->stat.inject_program++;
1481
VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1482
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1483
irq->u.pgm.code, 0);
1484
1485
if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1486
/* auto detection if no valid ILC was given */
1487
irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1488
irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1489
irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1490
}
1491
1492
if (irq->u.pgm.code == PGM_PER) {
1493
li->irq.pgm.code |= PGM_PER;
1494
li->irq.pgm.flags = irq->u.pgm.flags;
1495
/* only modify PER related information */
1496
li->irq.pgm.per_address = irq->u.pgm.per_address;
1497
li->irq.pgm.per_code = irq->u.pgm.per_code;
1498
li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1499
li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1500
} else if (!(irq->u.pgm.code & PGM_PER)) {
1501
li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1502
irq->u.pgm.code;
1503
li->irq.pgm.flags = irq->u.pgm.flags;
1504
/* only modify non-PER information */
1505
li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1506
li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1507
li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1508
li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1509
li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1510
li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1511
} else {
1512
li->irq.pgm = irq->u.pgm;
1513
}
1514
set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1515
return 0;
1516
}
1517
1518
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1519
{
1520
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1521
1522
vcpu->stat.inject_pfault_init++;
1523
VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1524
irq->u.ext.ext_params2);
1525
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1526
irq->u.ext.ext_params,
1527
irq->u.ext.ext_params2);
1528
1529
li->irq.ext = irq->u.ext;
1530
set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1531
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1532
return 0;
1533
}
1534
1535
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1536
{
1537
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1538
struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1539
uint16_t src_id = irq->u.extcall.code;
1540
1541
vcpu->stat.inject_external_call++;
1542
VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1543
src_id);
1544
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1545
src_id, 0);
1546
1547
/* sending vcpu invalid */
1548
if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1549
return -EINVAL;
1550
1551
if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1552
return sca_inject_ext_call(vcpu, src_id);
1553
1554
if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1555
return -EBUSY;
1556
*extcall = irq->u.extcall;
1557
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1558
return 0;
1559
}
1560
1561
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1562
{
1563
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1564
struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1565
1566
vcpu->stat.inject_set_prefix++;
1567
VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1568
irq->u.prefix.address);
1569
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1570
irq->u.prefix.address, 0);
1571
1572
if (!is_vcpu_stopped(vcpu))
1573
return -EBUSY;
1574
1575
*prefix = irq->u.prefix;
1576
set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1577
return 0;
1578
}
1579
1580
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1581
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1582
{
1583
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1584
struct kvm_s390_stop_info *stop = &li->irq.stop;
1585
int rc = 0;
1586
1587
vcpu->stat.inject_stop_signal++;
1588
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1589
1590
if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1591
return -EINVAL;
1592
1593
if (is_vcpu_stopped(vcpu)) {
1594
if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1595
rc = kvm_s390_store_status_unloaded(vcpu,
1596
KVM_S390_STORE_STATUS_NOADDR);
1597
return rc;
1598
}
1599
1600
if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1601
return -EBUSY;
1602
stop->flags = irq->u.stop.flags;
1603
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1604
return 0;
1605
}
1606
1607
static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1608
{
1609
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1610
1611
vcpu->stat.inject_restart++;
1612
VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1613
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1614
1615
set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1616
return 0;
1617
}
1618
1619
static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1620
struct kvm_s390_irq *irq)
1621
{
1622
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1623
1624
vcpu->stat.inject_emergency_signal++;
1625
VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1626
irq->u.emerg.code);
1627
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1628
irq->u.emerg.code, 0);
1629
1630
/* sending vcpu invalid */
1631
if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1632
return -EINVAL;
1633
1634
set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1635
set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1636
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1637
return 0;
1638
}
1639
1640
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1641
{
1642
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1643
struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1644
1645
vcpu->stat.inject_mchk++;
1646
VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1647
irq->u.mchk.mcic);
1648
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1649
irq->u.mchk.mcic);
1650
1651
/*
1652
* Because repressible machine checks can be indicated along with
1653
* exigent machine checks (PoP, Chapter 11, Interruption action)
1654
* we need to combine cr14, mcic and external damage code.
1655
* Failing storage address and the logout area should not be or'ed
1656
* together, we just indicate the last occurrence of the corresponding
1657
* machine check
1658
*/
1659
mchk->cr14 |= irq->u.mchk.cr14;
1660
mchk->mcic |= irq->u.mchk.mcic;
1661
mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1662
mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1663
memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1664
sizeof(mchk->fixed_logout));
1665
if (mchk->mcic & MCHK_EX_MASK)
1666
set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1667
else if (mchk->mcic & MCHK_REP_MASK)
1668
set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1669
return 0;
1670
}
1671
1672
static int __inject_ckc(struct kvm_vcpu *vcpu)
1673
{
1674
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1675
1676
vcpu->stat.inject_ckc++;
1677
VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1678
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1679
0, 0);
1680
1681
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1682
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1683
return 0;
1684
}
1685
1686
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1687
{
1688
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1689
1690
vcpu->stat.inject_cputm++;
1691
VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1692
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1693
0, 0);
1694
1695
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1696
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1697
return 0;
1698
}
1699
1700
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1701
int isc, u32 schid)
1702
{
1703
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1704
struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1705
struct kvm_s390_interrupt_info *iter;
1706
u16 id = (schid & 0xffff0000U) >> 16;
1707
u16 nr = schid & 0x0000ffffU;
1708
1709
spin_lock(&fi->lock);
1710
list_for_each_entry(iter, isc_list, list) {
1711
if (schid && (id != iter->io.subchannel_id ||
1712
nr != iter->io.subchannel_nr))
1713
continue;
1714
/* found an appropriate entry */
1715
list_del_init(&iter->list);
1716
fi->counters[FIRQ_CNTR_IO] -= 1;
1717
if (list_empty(isc_list))
1718
clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1719
spin_unlock(&fi->lock);
1720
return iter;
1721
}
1722
spin_unlock(&fi->lock);
1723
return NULL;
1724
}
1725
1726
static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1727
u64 isc_mask, u32 schid)
1728
{
1729
struct kvm_s390_interrupt_info *inti = NULL;
1730
int isc;
1731
1732
for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1733
if (isc_mask & isc_to_isc_bits(isc))
1734
inti = get_io_int(kvm, isc, schid);
1735
}
1736
return inti;
1737
}
1738
1739
static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1740
{
1741
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1742
unsigned long active_mask;
1743
int isc;
1744
1745
if (schid)
1746
goto out;
1747
if (!gi->origin)
1748
goto out;
1749
1750
active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1751
while (active_mask) {
1752
isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1753
if (gisa_tac_ipm_gisc(gi->origin, isc))
1754
return isc;
1755
clear_bit_inv(isc, &active_mask);
1756
}
1757
out:
1758
return -EINVAL;
1759
}
1760
1761
/*
1762
* Dequeue and return an I/O interrupt matching any of the interruption
1763
* subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1764
* Take into account the interrupts pending in the interrupt list and in GISA.
1765
*
1766
* Note that for a guest that does not enable I/O interrupts
1767
* but relies on TPI, a flood of classic interrupts may starve
1768
* out adapter interrupts on the same isc. Linux does not do
1769
* that, and it is possible to work around the issue by configuring
1770
* different iscs for classic and adapter interrupts in the guest,
1771
* but we may want to revisit this in the future.
1772
*/
1773
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1774
u64 isc_mask, u32 schid)
1775
{
1776
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1777
struct kvm_s390_interrupt_info *inti, *tmp_inti;
1778
int isc;
1779
1780
inti = get_top_io_int(kvm, isc_mask, schid);
1781
1782
isc = get_top_gisa_isc(kvm, isc_mask, schid);
1783
if (isc < 0)
1784
/* no AI in GISA */
1785
goto out;
1786
1787
if (!inti)
1788
/* AI in GISA but no classical IO int */
1789
goto gisa_out;
1790
1791
/* both types of interrupts present */
1792
if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1793
/* classical IO int with higher priority */
1794
gisa_set_ipm_gisc(gi->origin, isc);
1795
goto out;
1796
}
1797
gisa_out:
1798
tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1799
if (tmp_inti) {
1800
tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1801
tmp_inti->io.io_int_word = isc_to_int_word(isc);
1802
if (inti)
1803
kvm_s390_reinject_io_int(kvm, inti);
1804
inti = tmp_inti;
1805
} else
1806
gisa_set_ipm_gisc(gi->origin, isc);
1807
out:
1808
return inti;
1809
}
1810
1811
static int __inject_service(struct kvm *kvm,
1812
struct kvm_s390_interrupt_info *inti)
1813
{
1814
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1815
1816
kvm->stat.inject_service_signal++;
1817
spin_lock(&fi->lock);
1818
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1819
1820
/* We always allow events, track them separately from the sccb ints */
1821
if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1822
set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1823
1824
/*
1825
* Early versions of the QEMU s390 bios will inject several
1826
* service interrupts after another without handling a
1827
* condition code indicating busy.
1828
* We will silently ignore those superfluous sccb values.
1829
* A future version of QEMU will take care of serialization
1830
* of servc requests
1831
*/
1832
if (fi->srv_signal.ext_params & SCCB_MASK)
1833
goto out;
1834
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1835
set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1836
out:
1837
spin_unlock(&fi->lock);
1838
kfree(inti);
1839
return 0;
1840
}
1841
1842
static int __inject_virtio(struct kvm *kvm,
1843
struct kvm_s390_interrupt_info *inti)
1844
{
1845
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1846
1847
kvm->stat.inject_virtio++;
1848
spin_lock(&fi->lock);
1849
if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1850
spin_unlock(&fi->lock);
1851
return -EBUSY;
1852
}
1853
fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1854
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1855
set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1856
spin_unlock(&fi->lock);
1857
return 0;
1858
}
1859
1860
static int __inject_pfault_done(struct kvm *kvm,
1861
struct kvm_s390_interrupt_info *inti)
1862
{
1863
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1864
1865
kvm->stat.inject_pfault_done++;
1866
spin_lock(&fi->lock);
1867
if (fi->counters[FIRQ_CNTR_PFAULT] >=
1868
(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1869
spin_unlock(&fi->lock);
1870
return -EBUSY;
1871
}
1872
fi->counters[FIRQ_CNTR_PFAULT] += 1;
1873
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1874
set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1875
spin_unlock(&fi->lock);
1876
return 0;
1877
}
1878
1879
#define CR_PENDING_SUBCLASS 28
1880
static int __inject_float_mchk(struct kvm *kvm,
1881
struct kvm_s390_interrupt_info *inti)
1882
{
1883
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1884
1885
kvm->stat.inject_float_mchk++;
1886
spin_lock(&fi->lock);
1887
fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1888
fi->mchk.mcic |= inti->mchk.mcic;
1889
set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1890
spin_unlock(&fi->lock);
1891
kfree(inti);
1892
return 0;
1893
}
1894
1895
static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1896
{
1897
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1898
struct kvm_s390_float_interrupt *fi;
1899
struct list_head *list;
1900
int isc;
1901
1902
kvm->stat.inject_io++;
1903
isc = int_word_to_isc(inti->io.io_int_word);
1904
1905
/*
1906
* We do not use the lock checking variant as this is just a
1907
* performance optimization and we do not hold the lock here.
1908
* This is ok as the code will pick interrupts from both "lists"
1909
* for delivery.
1910
*/
1911
if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1912
VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1913
gisa_set_ipm_gisc(gi->origin, isc);
1914
kfree(inti);
1915
return 0;
1916
}
1917
1918
fi = &kvm->arch.float_int;
1919
spin_lock(&fi->lock);
1920
if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1921
spin_unlock(&fi->lock);
1922
return -EBUSY;
1923
}
1924
fi->counters[FIRQ_CNTR_IO] += 1;
1925
1926
if (inti->type & KVM_S390_INT_IO_AI_MASK)
1927
VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1928
else
1929
VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1930
inti->io.subchannel_id >> 8,
1931
inti->io.subchannel_id >> 1 & 0x3,
1932
inti->io.subchannel_nr);
1933
list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1934
list_add_tail(&inti->list, list);
1935
set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1936
spin_unlock(&fi->lock);
1937
return 0;
1938
}
1939
1940
/*
1941
* Find a destination VCPU for a floating irq and kick it.
1942
*/
1943
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1944
{
1945
struct kvm_vcpu *dst_vcpu;
1946
int sigcpu, online_vcpus, nr_tries = 0;
1947
1948
online_vcpus = atomic_read(&kvm->online_vcpus);
1949
if (!online_vcpus)
1950
return;
1951
1952
/* find idle VCPUs first, then round robin */
1953
sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1954
if (sigcpu == online_vcpus) {
1955
do {
1956
sigcpu = kvm->arch.float_int.next_rr_cpu++;
1957
kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1958
/* avoid endless loops if all vcpus are stopped */
1959
if (nr_tries++ >= online_vcpus)
1960
return;
1961
} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1962
}
1963
dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1964
1965
/* make the VCPU drop out of the SIE, or wake it up if sleeping */
1966
switch (type) {
1967
case KVM_S390_MCHK:
1968
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1969
break;
1970
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1971
if (!(type & KVM_S390_INT_IO_AI_MASK &&
1972
kvm->arch.gisa_int.origin) ||
1973
kvm_s390_pv_cpu_get_handle(dst_vcpu))
1974
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1975
break;
1976
default:
1977
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1978
break;
1979
}
1980
kvm_s390_vcpu_wakeup(dst_vcpu);
1981
}
1982
1983
static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1984
{
1985
u64 type = READ_ONCE(inti->type);
1986
int rc;
1987
1988
switch (type) {
1989
case KVM_S390_MCHK:
1990
rc = __inject_float_mchk(kvm, inti);
1991
break;
1992
case KVM_S390_INT_VIRTIO:
1993
rc = __inject_virtio(kvm, inti);
1994
break;
1995
case KVM_S390_INT_SERVICE:
1996
rc = __inject_service(kvm, inti);
1997
break;
1998
case KVM_S390_INT_PFAULT_DONE:
1999
rc = __inject_pfault_done(kvm, inti);
2000
break;
2001
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2002
rc = __inject_io(kvm, inti);
2003
break;
2004
default:
2005
rc = -EINVAL;
2006
}
2007
if (rc)
2008
return rc;
2009
2010
__floating_irq_kick(kvm, type);
2011
return 0;
2012
}
2013
2014
int kvm_s390_inject_vm(struct kvm *kvm,
2015
struct kvm_s390_interrupt *s390int)
2016
{
2017
struct kvm_s390_interrupt_info *inti;
2018
int rc;
2019
2020
inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2021
if (!inti)
2022
return -ENOMEM;
2023
2024
inti->type = s390int->type;
2025
switch (inti->type) {
2026
case KVM_S390_INT_VIRTIO:
2027
VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2028
s390int->parm, s390int->parm64);
2029
inti->ext.ext_params = s390int->parm;
2030
inti->ext.ext_params2 = s390int->parm64;
2031
break;
2032
case KVM_S390_INT_SERVICE:
2033
VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2034
inti->ext.ext_params = s390int->parm;
2035
break;
2036
case KVM_S390_INT_PFAULT_DONE:
2037
inti->ext.ext_params2 = s390int->parm64;
2038
break;
2039
case KVM_S390_MCHK:
2040
VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2041
s390int->parm64);
2042
inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2043
inti->mchk.mcic = s390int->parm64;
2044
break;
2045
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2046
inti->io.subchannel_id = s390int->parm >> 16;
2047
inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2048
inti->io.io_int_parm = s390int->parm64 >> 32;
2049
inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2050
break;
2051
default:
2052
kfree(inti);
2053
return -EINVAL;
2054
}
2055
trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2056
2);
2057
2058
rc = __inject_vm(kvm, inti);
2059
if (rc)
2060
kfree(inti);
2061
return rc;
2062
}
2063
2064
int kvm_s390_reinject_io_int(struct kvm *kvm,
2065
struct kvm_s390_interrupt_info *inti)
2066
{
2067
return __inject_vm(kvm, inti);
2068
}
2069
2070
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2071
struct kvm_s390_irq *irq)
2072
{
2073
irq->type = s390int->type;
2074
switch (irq->type) {
2075
case KVM_S390_PROGRAM_INT:
2076
if (s390int->parm & 0xffff0000)
2077
return -EINVAL;
2078
irq->u.pgm.code = s390int->parm;
2079
break;
2080
case KVM_S390_SIGP_SET_PREFIX:
2081
irq->u.prefix.address = s390int->parm;
2082
break;
2083
case KVM_S390_SIGP_STOP:
2084
irq->u.stop.flags = s390int->parm;
2085
break;
2086
case KVM_S390_INT_EXTERNAL_CALL:
2087
if (s390int->parm & 0xffff0000)
2088
return -EINVAL;
2089
irq->u.extcall.code = s390int->parm;
2090
break;
2091
case KVM_S390_INT_EMERGENCY:
2092
if (s390int->parm & 0xffff0000)
2093
return -EINVAL;
2094
irq->u.emerg.code = s390int->parm;
2095
break;
2096
case KVM_S390_MCHK:
2097
irq->u.mchk.mcic = s390int->parm64;
2098
break;
2099
case KVM_S390_INT_PFAULT_INIT:
2100
irq->u.ext.ext_params = s390int->parm;
2101
irq->u.ext.ext_params2 = s390int->parm64;
2102
break;
2103
case KVM_S390_RESTART:
2104
case KVM_S390_INT_CLOCK_COMP:
2105
case KVM_S390_INT_CPU_TIMER:
2106
break;
2107
default:
2108
return -EINVAL;
2109
}
2110
return 0;
2111
}
2112
2113
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2114
{
2115
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2116
2117
return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2118
}
2119
2120
int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2121
{
2122
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2123
2124
return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2125
}
2126
2127
void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2128
{
2129
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2130
2131
spin_lock(&li->lock);
2132
li->irq.stop.flags = 0;
2133
clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2134
spin_unlock(&li->lock);
2135
}
2136
2137
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2138
{
2139
int rc;
2140
2141
switch (irq->type) {
2142
case KVM_S390_PROGRAM_INT:
2143
rc = __inject_prog(vcpu, irq);
2144
break;
2145
case KVM_S390_SIGP_SET_PREFIX:
2146
rc = __inject_set_prefix(vcpu, irq);
2147
break;
2148
case KVM_S390_SIGP_STOP:
2149
rc = __inject_sigp_stop(vcpu, irq);
2150
break;
2151
case KVM_S390_RESTART:
2152
rc = __inject_sigp_restart(vcpu);
2153
break;
2154
case KVM_S390_INT_CLOCK_COMP:
2155
rc = __inject_ckc(vcpu);
2156
break;
2157
case KVM_S390_INT_CPU_TIMER:
2158
rc = __inject_cpu_timer(vcpu);
2159
break;
2160
case KVM_S390_INT_EXTERNAL_CALL:
2161
rc = __inject_extcall(vcpu, irq);
2162
break;
2163
case KVM_S390_INT_EMERGENCY:
2164
rc = __inject_sigp_emergency(vcpu, irq);
2165
break;
2166
case KVM_S390_MCHK:
2167
rc = __inject_mchk(vcpu, irq);
2168
break;
2169
case KVM_S390_INT_PFAULT_INIT:
2170
rc = __inject_pfault_init(vcpu, irq);
2171
break;
2172
case KVM_S390_INT_VIRTIO:
2173
case KVM_S390_INT_SERVICE:
2174
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2175
default:
2176
rc = -EINVAL;
2177
}
2178
2179
return rc;
2180
}
2181
2182
int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2183
{
2184
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2185
int rc;
2186
2187
spin_lock(&li->lock);
2188
rc = do_inject_vcpu(vcpu, irq);
2189
spin_unlock(&li->lock);
2190
if (!rc)
2191
kvm_s390_vcpu_wakeup(vcpu);
2192
return rc;
2193
}
2194
2195
static inline void clear_irq_list(struct list_head *_list)
2196
{
2197
struct kvm_s390_interrupt_info *inti, *n;
2198
2199
list_for_each_entry_safe(inti, n, _list, list) {
2200
list_del(&inti->list);
2201
kfree(inti);
2202
}
2203
}
2204
2205
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2206
struct kvm_s390_irq *irq)
2207
{
2208
irq->type = inti->type;
2209
switch (inti->type) {
2210
case KVM_S390_INT_PFAULT_INIT:
2211
case KVM_S390_INT_PFAULT_DONE:
2212
case KVM_S390_INT_VIRTIO:
2213
irq->u.ext = inti->ext;
2214
break;
2215
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2216
irq->u.io = inti->io;
2217
break;
2218
}
2219
}
2220
2221
void kvm_s390_clear_float_irqs(struct kvm *kvm)
2222
{
2223
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2224
int i;
2225
2226
mutex_lock(&kvm->lock);
2227
if (!kvm_s390_pv_is_protected(kvm))
2228
fi->masked_irqs = 0;
2229
mutex_unlock(&kvm->lock);
2230
spin_lock(&fi->lock);
2231
fi->pending_irqs = 0;
2232
memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2233
memset(&fi->mchk, 0, sizeof(fi->mchk));
2234
for (i = 0; i < FIRQ_LIST_COUNT; i++)
2235
clear_irq_list(&fi->lists[i]);
2236
for (i = 0; i < FIRQ_MAX_COUNT; i++)
2237
fi->counters[i] = 0;
2238
spin_unlock(&fi->lock);
2239
kvm_s390_gisa_clear(kvm);
2240
};
2241
2242
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2243
{
2244
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2245
struct kvm_s390_interrupt_info *inti;
2246
struct kvm_s390_float_interrupt *fi;
2247
struct kvm_s390_irq *buf;
2248
struct kvm_s390_irq *irq;
2249
int max_irqs;
2250
int ret = 0;
2251
int n = 0;
2252
int i;
2253
2254
if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2255
return -EINVAL;
2256
2257
/*
2258
* We are already using -ENOMEM to signal
2259
* userspace it may retry with a bigger buffer,
2260
* so we need to use something else for this case
2261
*/
2262
buf = vzalloc(len);
2263
if (!buf)
2264
return -ENOBUFS;
2265
2266
max_irqs = len / sizeof(struct kvm_s390_irq);
2267
2268
if (gi->origin && gisa_get_ipm(gi->origin)) {
2269
for (i = 0; i <= MAX_ISC; i++) {
2270
if (n == max_irqs) {
2271
/* signal userspace to try again */
2272
ret = -ENOMEM;
2273
goto out_nolock;
2274
}
2275
if (gisa_tac_ipm_gisc(gi->origin, i)) {
2276
irq = (struct kvm_s390_irq *) &buf[n];
2277
irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2278
irq->u.io.io_int_word = isc_to_int_word(i);
2279
n++;
2280
}
2281
}
2282
}
2283
fi = &kvm->arch.float_int;
2284
spin_lock(&fi->lock);
2285
for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2286
list_for_each_entry(inti, &fi->lists[i], list) {
2287
if (n == max_irqs) {
2288
/* signal userspace to try again */
2289
ret = -ENOMEM;
2290
goto out;
2291
}
2292
inti_to_irq(inti, &buf[n]);
2293
n++;
2294
}
2295
}
2296
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2297
test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2298
if (n == max_irqs) {
2299
/* signal userspace to try again */
2300
ret = -ENOMEM;
2301
goto out;
2302
}
2303
irq = (struct kvm_s390_irq *) &buf[n];
2304
irq->type = KVM_S390_INT_SERVICE;
2305
irq->u.ext = fi->srv_signal;
2306
n++;
2307
}
2308
if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2309
if (n == max_irqs) {
2310
/* signal userspace to try again */
2311
ret = -ENOMEM;
2312
goto out;
2313
}
2314
irq = (struct kvm_s390_irq *) &buf[n];
2315
irq->type = KVM_S390_MCHK;
2316
irq->u.mchk = fi->mchk;
2317
n++;
2318
}
2319
2320
out:
2321
spin_unlock(&fi->lock);
2322
out_nolock:
2323
if (!ret && n > 0) {
2324
if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2325
ret = -EFAULT;
2326
}
2327
vfree(buf);
2328
2329
return ret < 0 ? ret : n;
2330
}
2331
2332
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2333
{
2334
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2335
struct kvm_s390_ais_all ais;
2336
2337
if (attr->attr < sizeof(ais))
2338
return -EINVAL;
2339
2340
if (!test_kvm_facility(kvm, 72))
2341
return -EOPNOTSUPP;
2342
2343
mutex_lock(&fi->ais_lock);
2344
ais.simm = fi->simm;
2345
ais.nimm = fi->nimm;
2346
mutex_unlock(&fi->ais_lock);
2347
2348
if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2349
return -EFAULT;
2350
2351
return 0;
2352
}
2353
2354
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2355
{
2356
int r;
2357
2358
switch (attr->group) {
2359
case KVM_DEV_FLIC_GET_ALL_IRQS:
2360
r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2361
attr->attr);
2362
break;
2363
case KVM_DEV_FLIC_AISM_ALL:
2364
r = flic_ais_mode_get_all(dev->kvm, attr);
2365
break;
2366
default:
2367
r = -EINVAL;
2368
}
2369
2370
return r;
2371
}
2372
2373
static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2374
u64 addr)
2375
{
2376
struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2377
void *target = NULL;
2378
void __user *source;
2379
u64 size;
2380
2381
if (get_user(inti->type, (u64 __user *)addr))
2382
return -EFAULT;
2383
2384
switch (inti->type) {
2385
case KVM_S390_INT_PFAULT_INIT:
2386
case KVM_S390_INT_PFAULT_DONE:
2387
case KVM_S390_INT_VIRTIO:
2388
case KVM_S390_INT_SERVICE:
2389
target = (void *) &inti->ext;
2390
source = &uptr->u.ext;
2391
size = sizeof(inti->ext);
2392
break;
2393
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2394
target = (void *) &inti->io;
2395
source = &uptr->u.io;
2396
size = sizeof(inti->io);
2397
break;
2398
case KVM_S390_MCHK:
2399
target = (void *) &inti->mchk;
2400
source = &uptr->u.mchk;
2401
size = sizeof(inti->mchk);
2402
break;
2403
default:
2404
return -EINVAL;
2405
}
2406
2407
if (copy_from_user(target, source, size))
2408
return -EFAULT;
2409
2410
return 0;
2411
}
2412
2413
static int enqueue_floating_irq(struct kvm_device *dev,
2414
struct kvm_device_attr *attr)
2415
{
2416
struct kvm_s390_interrupt_info *inti = NULL;
2417
int r = 0;
2418
int len = attr->attr;
2419
2420
if (len % sizeof(struct kvm_s390_irq) != 0)
2421
return -EINVAL;
2422
else if (len > KVM_S390_FLIC_MAX_BUFFER)
2423
return -EINVAL;
2424
2425
while (len >= sizeof(struct kvm_s390_irq)) {
2426
inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2427
if (!inti)
2428
return -ENOMEM;
2429
2430
r = copy_irq_from_user(inti, attr->addr);
2431
if (r) {
2432
kfree(inti);
2433
return r;
2434
}
2435
r = __inject_vm(dev->kvm, inti);
2436
if (r) {
2437
kfree(inti);
2438
return r;
2439
}
2440
len -= sizeof(struct kvm_s390_irq);
2441
attr->addr += sizeof(struct kvm_s390_irq);
2442
}
2443
2444
return r;
2445
}
2446
2447
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2448
{
2449
if (id >= MAX_S390_IO_ADAPTERS)
2450
return NULL;
2451
id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2452
return kvm->arch.adapters[id];
2453
}
2454
2455
static int register_io_adapter(struct kvm_device *dev,
2456
struct kvm_device_attr *attr)
2457
{
2458
struct s390_io_adapter *adapter;
2459
struct kvm_s390_io_adapter adapter_info;
2460
2461
if (copy_from_user(&adapter_info,
2462
(void __user *)attr->addr, sizeof(adapter_info)))
2463
return -EFAULT;
2464
2465
if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2466
return -EINVAL;
2467
2468
adapter_info.id = array_index_nospec(adapter_info.id,
2469
MAX_S390_IO_ADAPTERS);
2470
2471
if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2472
return -EINVAL;
2473
2474
adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2475
if (!adapter)
2476
return -ENOMEM;
2477
2478
adapter->id = adapter_info.id;
2479
adapter->isc = adapter_info.isc;
2480
adapter->maskable = adapter_info.maskable;
2481
adapter->masked = false;
2482
adapter->swap = adapter_info.swap;
2483
adapter->suppressible = (adapter_info.flags) &
2484
KVM_S390_ADAPTER_SUPPRESSIBLE;
2485
dev->kvm->arch.adapters[adapter->id] = adapter;
2486
2487
return 0;
2488
}
2489
2490
int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2491
{
2492
int ret;
2493
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2494
2495
if (!adapter || !adapter->maskable)
2496
return -EINVAL;
2497
ret = adapter->masked;
2498
adapter->masked = masked;
2499
return ret;
2500
}
2501
2502
void kvm_s390_destroy_adapters(struct kvm *kvm)
2503
{
2504
int i;
2505
2506
for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2507
kfree(kvm->arch.adapters[i]);
2508
}
2509
2510
static int modify_io_adapter(struct kvm_device *dev,
2511
struct kvm_device_attr *attr)
2512
{
2513
struct kvm_s390_io_adapter_req req;
2514
struct s390_io_adapter *adapter;
2515
int ret;
2516
2517
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2518
return -EFAULT;
2519
2520
adapter = get_io_adapter(dev->kvm, req.id);
2521
if (!adapter)
2522
return -EINVAL;
2523
switch (req.type) {
2524
case KVM_S390_IO_ADAPTER_MASK:
2525
ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2526
if (ret > 0)
2527
ret = 0;
2528
break;
2529
/*
2530
* The following operations are no longer needed and therefore no-ops.
2531
* The gpa to hva translation is done when an IRQ route is set up. The
2532
* set_irq code uses get_user_pages_remote() to do the actual write.
2533
*/
2534
case KVM_S390_IO_ADAPTER_MAP:
2535
case KVM_S390_IO_ADAPTER_UNMAP:
2536
ret = 0;
2537
break;
2538
default:
2539
ret = -EINVAL;
2540
}
2541
2542
return ret;
2543
}
2544
2545
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2546
2547
{
2548
const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2549
u32 schid;
2550
2551
if (attr->flags)
2552
return -EINVAL;
2553
if (attr->attr != sizeof(schid))
2554
return -EINVAL;
2555
if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2556
return -EFAULT;
2557
if (!schid)
2558
return -EINVAL;
2559
kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2560
/*
2561
* If userspace is conforming to the architecture, we can have at most
2562
* one pending I/O interrupt per subchannel, so this is effectively a
2563
* clear all.
2564
*/
2565
return 0;
2566
}
2567
2568
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2569
{
2570
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2571
struct kvm_s390_ais_req req;
2572
int ret = 0;
2573
2574
if (!test_kvm_facility(kvm, 72))
2575
return -EOPNOTSUPP;
2576
2577
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2578
return -EFAULT;
2579
2580
if (req.isc > MAX_ISC)
2581
return -EINVAL;
2582
2583
trace_kvm_s390_modify_ais_mode(req.isc,
2584
(fi->simm & AIS_MODE_MASK(req.isc)) ?
2585
(fi->nimm & AIS_MODE_MASK(req.isc)) ?
2586
2 : KVM_S390_AIS_MODE_SINGLE :
2587
KVM_S390_AIS_MODE_ALL, req.mode);
2588
2589
mutex_lock(&fi->ais_lock);
2590
switch (req.mode) {
2591
case KVM_S390_AIS_MODE_ALL:
2592
fi->simm &= ~AIS_MODE_MASK(req.isc);
2593
fi->nimm &= ~AIS_MODE_MASK(req.isc);
2594
break;
2595
case KVM_S390_AIS_MODE_SINGLE:
2596
fi->simm |= AIS_MODE_MASK(req.isc);
2597
fi->nimm &= ~AIS_MODE_MASK(req.isc);
2598
break;
2599
default:
2600
ret = -EINVAL;
2601
}
2602
mutex_unlock(&fi->ais_lock);
2603
2604
return ret;
2605
}
2606
2607
static int kvm_s390_inject_airq(struct kvm *kvm,
2608
struct s390_io_adapter *adapter)
2609
{
2610
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2611
struct kvm_s390_interrupt s390int = {
2612
.type = KVM_S390_INT_IO(1, 0, 0, 0),
2613
.parm = 0,
2614
.parm64 = isc_to_int_word(adapter->isc),
2615
};
2616
int ret = 0;
2617
2618
if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2619
return kvm_s390_inject_vm(kvm, &s390int);
2620
2621
mutex_lock(&fi->ais_lock);
2622
if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2623
trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2624
goto out;
2625
}
2626
2627
ret = kvm_s390_inject_vm(kvm, &s390int);
2628
if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2629
fi->nimm |= AIS_MODE_MASK(adapter->isc);
2630
trace_kvm_s390_modify_ais_mode(adapter->isc,
2631
KVM_S390_AIS_MODE_SINGLE, 2);
2632
}
2633
out:
2634
mutex_unlock(&fi->ais_lock);
2635
return ret;
2636
}
2637
2638
static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2639
{
2640
unsigned int id = attr->attr;
2641
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2642
2643
if (!adapter)
2644
return -EINVAL;
2645
2646
return kvm_s390_inject_airq(kvm, adapter);
2647
}
2648
2649
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2650
{
2651
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2652
struct kvm_s390_ais_all ais;
2653
2654
if (!test_kvm_facility(kvm, 72))
2655
return -EOPNOTSUPP;
2656
2657
if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2658
return -EFAULT;
2659
2660
mutex_lock(&fi->ais_lock);
2661
fi->simm = ais.simm;
2662
fi->nimm = ais.nimm;
2663
mutex_unlock(&fi->ais_lock);
2664
2665
return 0;
2666
}
2667
2668
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2669
{
2670
int r = 0;
2671
unsigned long i;
2672
struct kvm_vcpu *vcpu;
2673
2674
switch (attr->group) {
2675
case KVM_DEV_FLIC_ENQUEUE:
2676
r = enqueue_floating_irq(dev, attr);
2677
break;
2678
case KVM_DEV_FLIC_CLEAR_IRQS:
2679
kvm_s390_clear_float_irqs(dev->kvm);
2680
break;
2681
case KVM_DEV_FLIC_APF_ENABLE:
2682
if (kvm_is_ucontrol(dev->kvm))
2683
return -EINVAL;
2684
dev->kvm->arch.gmap->pfault_enabled = 1;
2685
break;
2686
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2687
if (kvm_is_ucontrol(dev->kvm))
2688
return -EINVAL;
2689
dev->kvm->arch.gmap->pfault_enabled = 0;
2690
/*
2691
* Make sure no async faults are in transition when
2692
* clearing the queues. So we don't need to worry
2693
* about late coming workers.
2694
*/
2695
synchronize_srcu(&dev->kvm->srcu);
2696
kvm_for_each_vcpu(i, vcpu, dev->kvm)
2697
kvm_clear_async_pf_completion_queue(vcpu);
2698
break;
2699
case KVM_DEV_FLIC_ADAPTER_REGISTER:
2700
r = register_io_adapter(dev, attr);
2701
break;
2702
case KVM_DEV_FLIC_ADAPTER_MODIFY:
2703
r = modify_io_adapter(dev, attr);
2704
break;
2705
case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2706
r = clear_io_irq(dev->kvm, attr);
2707
break;
2708
case KVM_DEV_FLIC_AISM:
2709
r = modify_ais_mode(dev->kvm, attr);
2710
break;
2711
case KVM_DEV_FLIC_AIRQ_INJECT:
2712
r = flic_inject_airq(dev->kvm, attr);
2713
break;
2714
case KVM_DEV_FLIC_AISM_ALL:
2715
r = flic_ais_mode_set_all(dev->kvm, attr);
2716
break;
2717
default:
2718
r = -EINVAL;
2719
}
2720
2721
return r;
2722
}
2723
2724
static int flic_has_attr(struct kvm_device *dev,
2725
struct kvm_device_attr *attr)
2726
{
2727
switch (attr->group) {
2728
case KVM_DEV_FLIC_GET_ALL_IRQS:
2729
case KVM_DEV_FLIC_ENQUEUE:
2730
case KVM_DEV_FLIC_CLEAR_IRQS:
2731
case KVM_DEV_FLIC_APF_ENABLE:
2732
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2733
case KVM_DEV_FLIC_ADAPTER_REGISTER:
2734
case KVM_DEV_FLIC_ADAPTER_MODIFY:
2735
case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2736
case KVM_DEV_FLIC_AISM:
2737
case KVM_DEV_FLIC_AIRQ_INJECT:
2738
case KVM_DEV_FLIC_AISM_ALL:
2739
return 0;
2740
}
2741
return -ENXIO;
2742
}
2743
2744
static int flic_create(struct kvm_device *dev, u32 type)
2745
{
2746
if (!dev)
2747
return -EINVAL;
2748
if (dev->kvm->arch.flic)
2749
return -EINVAL;
2750
dev->kvm->arch.flic = dev;
2751
return 0;
2752
}
2753
2754
static void flic_destroy(struct kvm_device *dev)
2755
{
2756
dev->kvm->arch.flic = NULL;
2757
kfree(dev);
2758
}
2759
2760
/* s390 floating irq controller (flic) */
2761
struct kvm_device_ops kvm_flic_ops = {
2762
.name = "kvm-flic",
2763
.get_attr = flic_get_attr,
2764
.set_attr = flic_set_attr,
2765
.has_attr = flic_has_attr,
2766
.create = flic_create,
2767
.destroy = flic_destroy,
2768
};
2769
2770
static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2771
{
2772
unsigned long bit;
2773
2774
bit = bit_nr + (addr % PAGE_SIZE) * 8;
2775
2776
return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2777
}
2778
2779
static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2780
{
2781
struct page *page = NULL;
2782
2783
mmap_read_lock(kvm->mm);
2784
get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
2785
&page, NULL);
2786
mmap_read_unlock(kvm->mm);
2787
return page;
2788
}
2789
2790
static int adapter_indicators_set(struct kvm *kvm,
2791
struct s390_io_adapter *adapter,
2792
struct kvm_s390_adapter_int *adapter_int)
2793
{
2794
unsigned long bit;
2795
int summary_set, idx;
2796
struct page *ind_page, *summary_page;
2797
void *map;
2798
2799
ind_page = get_map_page(kvm, adapter_int->ind_addr);
2800
if (!ind_page)
2801
return -1;
2802
summary_page = get_map_page(kvm, adapter_int->summary_addr);
2803
if (!summary_page) {
2804
put_page(ind_page);
2805
return -1;
2806
}
2807
2808
idx = srcu_read_lock(&kvm->srcu);
2809
map = page_address(ind_page);
2810
bit = get_ind_bit(adapter_int->ind_addr,
2811
adapter_int->ind_offset, adapter->swap);
2812
set_bit(bit, map);
2813
mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2814
set_page_dirty_lock(ind_page);
2815
map = page_address(summary_page);
2816
bit = get_ind_bit(adapter_int->summary_addr,
2817
adapter_int->summary_offset, adapter->swap);
2818
summary_set = test_and_set_bit(bit, map);
2819
mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2820
set_page_dirty_lock(summary_page);
2821
srcu_read_unlock(&kvm->srcu, idx);
2822
2823
put_page(ind_page);
2824
put_page(summary_page);
2825
return summary_set ? 0 : 1;
2826
}
2827
2828
/*
2829
* < 0 - not injected due to error
2830
* = 0 - coalesced, summary indicator already active
2831
* > 0 - injected interrupt
2832
*/
2833
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2834
struct kvm *kvm, int irq_source_id, int level,
2835
bool line_status)
2836
{
2837
int ret;
2838
struct s390_io_adapter *adapter;
2839
2840
/* We're only interested in the 0->1 transition. */
2841
if (!level)
2842
return 0;
2843
adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2844
if (!adapter)
2845
return -1;
2846
ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2847
if ((ret > 0) && !adapter->masked) {
2848
ret = kvm_s390_inject_airq(kvm, adapter);
2849
if (ret == 0)
2850
ret = 1;
2851
}
2852
return ret;
2853
}
2854
2855
/*
2856
* Inject the machine check to the guest.
2857
*/
2858
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2859
struct mcck_volatile_info *mcck_info)
2860
{
2861
struct kvm_s390_interrupt_info inti;
2862
struct kvm_s390_irq irq;
2863
struct kvm_s390_mchk_info *mchk;
2864
union mci mci;
2865
__u64 cr14 = 0; /* upper bits are not used */
2866
int rc;
2867
2868
mci.val = mcck_info->mcic;
2869
if (mci.sr)
2870
cr14 |= CR14_RECOVERY_SUBMASK;
2871
if (mci.dg)
2872
cr14 |= CR14_DEGRADATION_SUBMASK;
2873
if (mci.w)
2874
cr14 |= CR14_WARNING_SUBMASK;
2875
2876
mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2877
mchk->cr14 = cr14;
2878
mchk->mcic = mcck_info->mcic;
2879
mchk->ext_damage_code = mcck_info->ext_damage_code;
2880
mchk->failing_storage_address = mcck_info->failing_storage_address;
2881
if (mci.ck) {
2882
/* Inject the floating machine check */
2883
inti.type = KVM_S390_MCHK;
2884
rc = __inject_vm(vcpu->kvm, &inti);
2885
} else {
2886
/* Inject the machine check to specified vcpu */
2887
irq.type = KVM_S390_MCHK;
2888
rc = kvm_s390_inject_vcpu(vcpu, &irq);
2889
}
2890
WARN_ON_ONCE(rc);
2891
}
2892
2893
int kvm_set_routing_entry(struct kvm *kvm,
2894
struct kvm_kernel_irq_routing_entry *e,
2895
const struct kvm_irq_routing_entry *ue)
2896
{
2897
u64 uaddr_s, uaddr_i;
2898
int idx;
2899
2900
switch (ue->type) {
2901
/* we store the userspace addresses instead of the guest addresses */
2902
case KVM_IRQ_ROUTING_S390_ADAPTER:
2903
if (kvm_is_ucontrol(kvm))
2904
return -EINVAL;
2905
e->set = set_adapter_int;
2906
2907
idx = srcu_read_lock(&kvm->srcu);
2908
uaddr_s = gpa_to_hva(kvm, ue->u.adapter.summary_addr);
2909
uaddr_i = gpa_to_hva(kvm, ue->u.adapter.ind_addr);
2910
srcu_read_unlock(&kvm->srcu, idx);
2911
2912
if (kvm_is_error_hva(uaddr_s) || kvm_is_error_hva(uaddr_i))
2913
return -EFAULT;
2914
e->adapter.summary_addr = uaddr_s;
2915
e->adapter.ind_addr = uaddr_i;
2916
e->adapter.summary_offset = ue->u.adapter.summary_offset;
2917
e->adapter.ind_offset = ue->u.adapter.ind_offset;
2918
e->adapter.adapter_id = ue->u.adapter.adapter_id;
2919
return 0;
2920
default:
2921
return -EINVAL;
2922
}
2923
}
2924
2925
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2926
int irq_source_id, int level, bool line_status)
2927
{
2928
return -EINVAL;
2929
}
2930
2931
int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2932
{
2933
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2934
struct kvm_s390_irq *buf;
2935
int r = 0;
2936
int n;
2937
2938
buf = vmalloc(len);
2939
if (!buf)
2940
return -ENOMEM;
2941
2942
if (copy_from_user((void *) buf, irqstate, len)) {
2943
r = -EFAULT;
2944
goto out_free;
2945
}
2946
2947
/*
2948
* Don't allow setting the interrupt state
2949
* when there are already interrupts pending
2950
*/
2951
spin_lock(&li->lock);
2952
if (li->pending_irqs) {
2953
r = -EBUSY;
2954
goto out_unlock;
2955
}
2956
2957
for (n = 0; n < len / sizeof(*buf); n++) {
2958
r = do_inject_vcpu(vcpu, &buf[n]);
2959
if (r)
2960
break;
2961
}
2962
2963
out_unlock:
2964
spin_unlock(&li->lock);
2965
out_free:
2966
vfree(buf);
2967
2968
return r;
2969
}
2970
2971
static void store_local_irq(struct kvm_s390_local_interrupt *li,
2972
struct kvm_s390_irq *irq,
2973
unsigned long irq_type)
2974
{
2975
switch (irq_type) {
2976
case IRQ_PEND_MCHK_EX:
2977
case IRQ_PEND_MCHK_REP:
2978
irq->type = KVM_S390_MCHK;
2979
irq->u.mchk = li->irq.mchk;
2980
break;
2981
case IRQ_PEND_PROG:
2982
irq->type = KVM_S390_PROGRAM_INT;
2983
irq->u.pgm = li->irq.pgm;
2984
break;
2985
case IRQ_PEND_PFAULT_INIT:
2986
irq->type = KVM_S390_INT_PFAULT_INIT;
2987
irq->u.ext = li->irq.ext;
2988
break;
2989
case IRQ_PEND_EXT_EXTERNAL:
2990
irq->type = KVM_S390_INT_EXTERNAL_CALL;
2991
irq->u.extcall = li->irq.extcall;
2992
break;
2993
case IRQ_PEND_EXT_CLOCK_COMP:
2994
irq->type = KVM_S390_INT_CLOCK_COMP;
2995
break;
2996
case IRQ_PEND_EXT_CPU_TIMER:
2997
irq->type = KVM_S390_INT_CPU_TIMER;
2998
break;
2999
case IRQ_PEND_SIGP_STOP:
3000
irq->type = KVM_S390_SIGP_STOP;
3001
irq->u.stop = li->irq.stop;
3002
break;
3003
case IRQ_PEND_RESTART:
3004
irq->type = KVM_S390_RESTART;
3005
break;
3006
case IRQ_PEND_SET_PREFIX:
3007
irq->type = KVM_S390_SIGP_SET_PREFIX;
3008
irq->u.prefix = li->irq.prefix;
3009
break;
3010
}
3011
}
3012
3013
int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3014
{
3015
int scn;
3016
DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3017
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3018
unsigned long pending_irqs;
3019
struct kvm_s390_irq irq;
3020
unsigned long irq_type;
3021
int cpuaddr;
3022
int n = 0;
3023
3024
spin_lock(&li->lock);
3025
pending_irqs = li->pending_irqs;
3026
memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3027
sizeof(sigp_emerg_pending));
3028
spin_unlock(&li->lock);
3029
3030
for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3031
memset(&irq, 0, sizeof(irq));
3032
if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3033
continue;
3034
if (n + sizeof(irq) > len)
3035
return -ENOBUFS;
3036
store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3037
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3038
return -EFAULT;
3039
n += sizeof(irq);
3040
}
3041
3042
if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3043
for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3044
memset(&irq, 0, sizeof(irq));
3045
if (n + sizeof(irq) > len)
3046
return -ENOBUFS;
3047
irq.type = KVM_S390_INT_EMERGENCY;
3048
irq.u.emerg.code = cpuaddr;
3049
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3050
return -EFAULT;
3051
n += sizeof(irq);
3052
}
3053
}
3054
3055
if (sca_ext_call_pending(vcpu, &scn)) {
3056
if (n + sizeof(irq) > len)
3057
return -ENOBUFS;
3058
memset(&irq, 0, sizeof(irq));
3059
irq.type = KVM_S390_INT_EXTERNAL_CALL;
3060
irq.u.extcall.code = scn;
3061
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3062
return -EFAULT;
3063
n += sizeof(irq);
3064
}
3065
3066
return n;
3067
}
3068
3069
static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3070
{
3071
int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3072
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3073
struct kvm_vcpu *vcpu;
3074
u8 vcpu_isc_mask;
3075
3076
for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3077
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3078
if (psw_ioint_disabled(vcpu))
3079
continue;
3080
vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3081
if (deliverable_mask & vcpu_isc_mask) {
3082
/* lately kicked but not yet running */
3083
if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3084
return;
3085
kvm_s390_vcpu_wakeup(vcpu);
3086
return;
3087
}
3088
}
3089
}
3090
3091
static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3092
{
3093
struct kvm_s390_gisa_interrupt *gi =
3094
container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3095
struct kvm *kvm =
3096
container_of(gi->origin, struct sie_page2, gisa)->kvm;
3097
u8 pending_mask;
3098
3099
pending_mask = gisa_get_ipm_or_restore_iam(gi);
3100
if (pending_mask) {
3101
__airqs_kick_single_vcpu(kvm, pending_mask);
3102
hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3103
return HRTIMER_RESTART;
3104
}
3105
3106
return HRTIMER_NORESTART;
3107
}
3108
3109
#define NULL_GISA_ADDR 0x00000000UL
3110
#define NONE_GISA_ADDR 0x00000001UL
3111
#define GISA_ADDR_MASK 0xfffff000UL
3112
3113
static void process_gib_alert_list(void)
3114
{
3115
struct kvm_s390_gisa_interrupt *gi;
3116
u32 final, gisa_phys, origin = 0UL;
3117
struct kvm_s390_gisa *gisa;
3118
struct kvm *kvm;
3119
3120
do {
3121
/*
3122
* If the NONE_GISA_ADDR is still stored in the alert list
3123
* origin, we will leave the outer loop. No further GISA has
3124
* been added to the alert list by millicode while processing
3125
* the current alert list.
3126
*/
3127
final = (origin & NONE_GISA_ADDR);
3128
/*
3129
* Cut off the alert list and store the NONE_GISA_ADDR in the
3130
* alert list origin to avoid further GAL interruptions.
3131
* A new alert list can be build up by millicode in parallel
3132
* for guests not in the yet cut-off alert list. When in the
3133
* final loop, store the NULL_GISA_ADDR instead. This will re-
3134
* enable GAL interruptions on the host again.
3135
*/
3136
origin = xchg(&gib->alert_list_origin,
3137
(!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3138
/*
3139
* Loop through the just cut-off alert list and start the
3140
* gisa timers to kick idle vcpus to consume the pending
3141
* interruptions asap.
3142
*/
3143
while (origin & GISA_ADDR_MASK) {
3144
gisa_phys = origin;
3145
gisa = phys_to_virt(gisa_phys);
3146
origin = gisa->next_alert;
3147
gisa->next_alert = gisa_phys;
3148
kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3149
gi = &kvm->arch.gisa_int;
3150
if (hrtimer_active(&gi->timer))
3151
hrtimer_cancel(&gi->timer);
3152
hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3153
}
3154
} while (!final);
3155
3156
}
3157
3158
void kvm_s390_gisa_clear(struct kvm *kvm)
3159
{
3160
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3161
3162
if (!gi->origin)
3163
return;
3164
gisa_clear_ipm(gi->origin);
3165
VM_EVENT(kvm, 3, "gisa 0x%p cleared", gi->origin);
3166
}
3167
3168
void kvm_s390_gisa_init(struct kvm *kvm)
3169
{
3170
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3171
3172
if (!css_general_characteristics.aiv)
3173
return;
3174
gi->origin = &kvm->arch.sie_page2->gisa;
3175
gi->alert.mask = 0;
3176
spin_lock_init(&gi->alert.ref_lock);
3177
gi->expires = 50 * 1000; /* 50 usec */
3178
hrtimer_setup(&gi->timer, gisa_vcpu_kicker, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3179
memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3180
gi->origin->next_alert = (u32)virt_to_phys(gi->origin);
3181
VM_EVENT(kvm, 3, "gisa 0x%p initialized", gi->origin);
3182
}
3183
3184
void kvm_s390_gisa_enable(struct kvm *kvm)
3185
{
3186
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3187
struct kvm_vcpu *vcpu;
3188
unsigned long i;
3189
u32 gisa_desc;
3190
3191
if (gi->origin)
3192
return;
3193
kvm_s390_gisa_init(kvm);
3194
gisa_desc = kvm_s390_get_gisa_desc(kvm);
3195
if (!gisa_desc)
3196
return;
3197
kvm_for_each_vcpu(i, vcpu, kvm) {
3198
mutex_lock(&vcpu->mutex);
3199
vcpu->arch.sie_block->gd = gisa_desc;
3200
vcpu->arch.sie_block->eca |= ECA_AIV;
3201
VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3202
vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3203
mutex_unlock(&vcpu->mutex);
3204
}
3205
}
3206
3207
void kvm_s390_gisa_destroy(struct kvm *kvm)
3208
{
3209
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3210
struct kvm_s390_gisa *gisa = gi->origin;
3211
3212
if (!gi->origin)
3213
return;
3214
WARN(gi->alert.mask != 0x00,
3215
"unexpected non zero alert.mask 0x%02x",
3216
gi->alert.mask);
3217
gi->alert.mask = 0x00;
3218
if (gisa_set_iam(gi->origin, gi->alert.mask))
3219
process_gib_alert_list();
3220
hrtimer_cancel(&gi->timer);
3221
gi->origin = NULL;
3222
VM_EVENT(kvm, 3, "gisa 0x%p destroyed", gisa);
3223
}
3224
3225
void kvm_s390_gisa_disable(struct kvm *kvm)
3226
{
3227
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3228
struct kvm_vcpu *vcpu;
3229
unsigned long i;
3230
3231
if (!gi->origin)
3232
return;
3233
kvm_for_each_vcpu(i, vcpu, kvm) {
3234
mutex_lock(&vcpu->mutex);
3235
vcpu->arch.sie_block->eca &= ~ECA_AIV;
3236
vcpu->arch.sie_block->gd = 0U;
3237
mutex_unlock(&vcpu->mutex);
3238
VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3239
}
3240
kvm_s390_gisa_destroy(kvm);
3241
}
3242
3243
/**
3244
* kvm_s390_gisc_register - register a guest ISC
3245
*
3246
* @kvm: the kernel vm to work with
3247
* @gisc: the guest interruption sub class to register
3248
*
3249
* The function extends the vm specific alert mask to use.
3250
* The effective IAM mask in the GISA is updated as well
3251
* in case the GISA is not part of the GIB alert list.
3252
* It will be updated latest when the IAM gets restored
3253
* by gisa_get_ipm_or_restore_iam().
3254
*
3255
* Returns: the nonspecific ISC (NISC) the gib alert mechanism
3256
* has registered with the channel subsystem.
3257
* -ENODEV in case the vm uses no GISA
3258
* -ERANGE in case the guest ISC is invalid
3259
*/
3260
int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3261
{
3262
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3263
3264
if (!gi->origin)
3265
return -ENODEV;
3266
if (gisc > MAX_ISC)
3267
return -ERANGE;
3268
3269
spin_lock(&gi->alert.ref_lock);
3270
gi->alert.ref_count[gisc]++;
3271
if (gi->alert.ref_count[gisc] == 1) {
3272
gi->alert.mask |= 0x80 >> gisc;
3273
gisa_set_iam(gi->origin, gi->alert.mask);
3274
}
3275
spin_unlock(&gi->alert.ref_lock);
3276
3277
return gib->nisc;
3278
}
3279
EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3280
3281
/**
3282
* kvm_s390_gisc_unregister - unregister a guest ISC
3283
*
3284
* @kvm: the kernel vm to work with
3285
* @gisc: the guest interruption sub class to register
3286
*
3287
* The function reduces the vm specific alert mask to use.
3288
* The effective IAM mask in the GISA is updated as well
3289
* in case the GISA is not part of the GIB alert list.
3290
* It will be updated latest when the IAM gets restored
3291
* by gisa_get_ipm_or_restore_iam().
3292
*
3293
* Returns: the nonspecific ISC (NISC) the gib alert mechanism
3294
* has registered with the channel subsystem.
3295
* -ENODEV in case the vm uses no GISA
3296
* -ERANGE in case the guest ISC is invalid
3297
* -EINVAL in case the guest ISC is not registered
3298
*/
3299
int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3300
{
3301
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3302
int rc = 0;
3303
3304
if (!gi->origin)
3305
return -ENODEV;
3306
if (gisc > MAX_ISC)
3307
return -ERANGE;
3308
3309
spin_lock(&gi->alert.ref_lock);
3310
if (gi->alert.ref_count[gisc] == 0) {
3311
rc = -EINVAL;
3312
goto out;
3313
}
3314
gi->alert.ref_count[gisc]--;
3315
if (gi->alert.ref_count[gisc] == 0) {
3316
gi->alert.mask &= ~(0x80 >> gisc);
3317
gisa_set_iam(gi->origin, gi->alert.mask);
3318
}
3319
out:
3320
spin_unlock(&gi->alert.ref_lock);
3321
3322
return rc;
3323
}
3324
EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3325
3326
static void aen_host_forward(unsigned long si)
3327
{
3328
struct kvm_s390_gisa_interrupt *gi;
3329
struct zpci_gaite *gaite;
3330
struct kvm *kvm;
3331
3332
gaite = (struct zpci_gaite *)aift->gait +
3333
(si * sizeof(struct zpci_gaite));
3334
if (gaite->count == 0)
3335
return;
3336
if (gaite->aisb != 0)
3337
set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb));
3338
3339
kvm = kvm_s390_pci_si_to_kvm(aift, si);
3340
if (!kvm)
3341
return;
3342
gi = &kvm->arch.gisa_int;
3343
3344
if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) ||
3345
!(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) {
3346
gisa_set_ipm_gisc(gi->origin, gaite->gisc);
3347
if (hrtimer_active(&gi->timer))
3348
hrtimer_cancel(&gi->timer);
3349
hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3350
kvm->stat.aen_forward++;
3351
}
3352
}
3353
3354
static void aen_process_gait(u8 isc)
3355
{
3356
bool found = false, first = true;
3357
union zpci_sic_iib iib = {{0}};
3358
unsigned long si, flags;
3359
3360
spin_lock_irqsave(&aift->gait_lock, flags);
3361
3362
if (!aift->gait) {
3363
spin_unlock_irqrestore(&aift->gait_lock, flags);
3364
return;
3365
}
3366
3367
for (si = 0;;) {
3368
/* Scan adapter summary indicator bit vector */
3369
si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv));
3370
if (si == -1UL) {
3371
if (first || found) {
3372
/* Re-enable interrupts. */
3373
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc,
3374
&iib);
3375
first = found = false;
3376
} else {
3377
/* Interrupts on and all bits processed */
3378
break;
3379
}
3380
found = false;
3381
si = 0;
3382
/* Scan again after re-enabling interrupts */
3383
continue;
3384
}
3385
found = true;
3386
aen_host_forward(si);
3387
}
3388
3389
spin_unlock_irqrestore(&aift->gait_lock, flags);
3390
}
3391
3392
static void gib_alert_irq_handler(struct airq_struct *airq,
3393
struct tpi_info *tpi_info)
3394
{
3395
struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info;
3396
3397
inc_irq_stat(IRQIO_GAL);
3398
3399
if ((info->forward || info->error) &&
3400
IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3401
aen_process_gait(info->isc);
3402
if (info->aism != 0)
3403
process_gib_alert_list();
3404
} else {
3405
process_gib_alert_list();
3406
}
3407
}
3408
3409
static struct airq_struct gib_alert_irq = {
3410
.handler = gib_alert_irq_handler,
3411
};
3412
3413
void kvm_s390_gib_destroy(void)
3414
{
3415
if (!gib)
3416
return;
3417
if (kvm_s390_pci_interp_allowed() && aift) {
3418
mutex_lock(&aift->aift_lock);
3419
kvm_s390_pci_aen_exit();
3420
mutex_unlock(&aift->aift_lock);
3421
}
3422
chsc_sgib(0);
3423
unregister_adapter_interrupt(&gib_alert_irq);
3424
free_page((unsigned long)gib);
3425
gib = NULL;
3426
}
3427
3428
int __init kvm_s390_gib_init(u8 nisc)
3429
{
3430
u32 gib_origin;
3431
int rc = 0;
3432
3433
if (!css_general_characteristics.aiv) {
3434
KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3435
goto out;
3436
}
3437
3438
gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3439
if (!gib) {
3440
rc = -ENOMEM;
3441
goto out;
3442
}
3443
3444
gib_alert_irq.isc = nisc;
3445
if (register_adapter_interrupt(&gib_alert_irq)) {
3446
pr_err("Registering the GIB alert interruption handler failed\n");
3447
rc = -EIO;
3448
goto out_free_gib;
3449
}
3450
/* adapter interrupts used for AP (applicable here) don't use the LSI */
3451
*gib_alert_irq.lsi_ptr = 0xff;
3452
3453
gib->nisc = nisc;
3454
gib_origin = virt_to_phys(gib);
3455
if (chsc_sgib(gib_origin)) {
3456
pr_err("Associating the GIB with the AIV facility failed\n");
3457
free_page((unsigned long)gib);
3458
gib = NULL;
3459
rc = -EIO;
3460
goto out_unreg_gal;
3461
}
3462
3463
if (kvm_s390_pci_interp_allowed()) {
3464
if (kvm_s390_pci_aen_init(nisc)) {
3465
pr_err("Initializing AEN for PCI failed\n");
3466
rc = -EIO;
3467
goto out_unreg_gal;
3468
}
3469
}
3470
3471
KVM_EVENT(3, "gib 0x%p (nisc=%d) initialized", gib, gib->nisc);
3472
goto out;
3473
3474
out_unreg_gal:
3475
unregister_adapter_interrupt(&gib_alert_irq);
3476
out_free_gib:
3477
free_page((unsigned long)gib);
3478
gib = NULL;
3479
out:
3480
return rc;
3481
}
3482
3483