Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/kvm/interrupt.c
50155 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* handling kvm guest interrupts
4
*
5
* Copyright IBM Corp. 2008, 2020
6
*
7
* Author(s): Carsten Otte <[email protected]>
8
*/
9
10
#define pr_fmt(fmt) "kvm-s390: " fmt
11
12
#include <linux/cpufeature.h>
13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/export.h>
17
#include <linux/mmu_context.h>
18
#include <linux/nospec.h>
19
#include <linux/signal.h>
20
#include <linux/slab.h>
21
#include <linux/bitmap.h>
22
#include <linux/vmalloc.h>
23
#include <asm/access-regs.h>
24
#include <asm/asm-offsets.h>
25
#include <asm/dis.h>
26
#include <linux/uaccess.h>
27
#include <asm/sclp.h>
28
#include <asm/isc.h>
29
#include <asm/gmap.h>
30
#include <asm/nmi.h>
31
#include <asm/airq.h>
32
#include <asm/tpi.h>
33
#include "kvm-s390.h"
34
#include "gaccess.h"
35
#include "trace-s390.h"
36
#include "pci.h"
37
38
#define PFAULT_INIT 0x0600
39
#define PFAULT_DONE 0x0680
40
#define VIRTIO_PARAM 0x0d00
41
42
static struct kvm_s390_gib *gib;
43
44
/* handle external calls via sigp interpretation facility */
45
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
46
{
47
struct esca_block *sca = vcpu->kvm->arch.sca;
48
union esca_sigp_ctrl sigp_ctrl = sca->cpu[vcpu->vcpu_id].sigp_ctrl;
49
50
if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
51
return 0;
52
53
BUG_ON(!kvm_s390_use_sca_entries());
54
55
if (src_id)
56
*src_id = sigp_ctrl.scn;
57
58
return sigp_ctrl.c;
59
}
60
61
static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
62
{
63
struct esca_block *sca = vcpu->kvm->arch.sca;
64
union esca_sigp_ctrl *sigp_ctrl = &sca->cpu[vcpu->vcpu_id].sigp_ctrl;
65
union esca_sigp_ctrl old_val, new_val = {.scn = src_id, .c = 1};
66
int expect, rc;
67
68
BUG_ON(!kvm_s390_use_sca_entries());
69
70
old_val = READ_ONCE(*sigp_ctrl);
71
old_val.c = 0;
72
73
expect = old_val.value;
74
rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
75
76
if (rc != expect) {
77
/* another external call is pending */
78
return -EBUSY;
79
}
80
kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
81
return 0;
82
}
83
84
static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
85
{
86
struct esca_block *sca = vcpu->kvm->arch.sca;
87
union esca_sigp_ctrl *sigp_ctrl = &sca->cpu[vcpu->vcpu_id].sigp_ctrl;
88
89
if (!kvm_s390_use_sca_entries())
90
return;
91
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
92
93
WRITE_ONCE(sigp_ctrl->value, 0);
94
}
95
96
int psw_extint_disabled(struct kvm_vcpu *vcpu)
97
{
98
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
99
}
100
101
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
102
{
103
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
104
}
105
106
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
107
{
108
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
109
}
110
111
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
112
{
113
return psw_extint_disabled(vcpu) &&
114
psw_ioint_disabled(vcpu) &&
115
psw_mchk_disabled(vcpu);
116
}
117
118
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
119
{
120
if (psw_extint_disabled(vcpu) ||
121
!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
122
return 0;
123
if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
124
/* No timer interrupts when single stepping */
125
return 0;
126
return 1;
127
}
128
129
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
130
{
131
const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
132
const u64 ckc = vcpu->arch.sie_block->ckc;
133
134
if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
135
if ((s64)ckc >= (s64)now)
136
return 0;
137
} else if (ckc >= now) {
138
return 0;
139
}
140
return ckc_interrupts_enabled(vcpu);
141
}
142
143
static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
144
{
145
return !psw_extint_disabled(vcpu) &&
146
(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
147
}
148
149
static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
150
{
151
if (!cpu_timer_interrupts_enabled(vcpu))
152
return 0;
153
return kvm_s390_get_cpu_timer(vcpu) >> 63;
154
}
155
156
static uint64_t isc_to_isc_bits(int isc)
157
{
158
return (0x80 >> isc) << 24;
159
}
160
161
static inline u32 isc_to_int_word(u8 isc)
162
{
163
return ((u32)isc << 27) | 0x80000000;
164
}
165
166
static inline u8 int_word_to_isc(u32 int_word)
167
{
168
return (int_word & 0x38000000) >> 27;
169
}
170
171
/*
172
* To use atomic bitmap functions, we have to provide a bitmap address
173
* that is u64 aligned. However, the ipm might be u32 aligned.
174
* Therefore, we logically start the bitmap at the very beginning of the
175
* struct and fixup the bit number.
176
*/
177
#define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
178
179
/**
180
* gisa_set_iam - change the GISA interruption alert mask
181
*
182
* @gisa: gisa to operate on
183
* @iam: new IAM value to use
184
*
185
* Change the IAM atomically with the next alert address and the IPM
186
* of the GISA if the GISA is not part of the GIB alert list. All three
187
* fields are located in the first long word of the GISA.
188
*
189
* Returns: 0 on success
190
* -EBUSY in case the gisa is part of the alert list
191
*/
192
static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
193
{
194
u64 word, _word;
195
196
word = READ_ONCE(gisa->u64.word[0]);
197
do {
198
if ((u64)gisa != word >> 32)
199
return -EBUSY;
200
_word = (word & ~0xffUL) | iam;
201
} while (!try_cmpxchg(&gisa->u64.word[0], &word, _word));
202
203
return 0;
204
}
205
206
/**
207
* gisa_clear_ipm - clear the GISA interruption pending mask
208
*
209
* @gisa: gisa to operate on
210
*
211
* Clear the IPM atomically with the next alert address and the IAM
212
* of the GISA unconditionally. All three fields are located in the
213
* first long word of the GISA.
214
*/
215
static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
216
{
217
u64 word, _word;
218
219
word = READ_ONCE(gisa->u64.word[0]);
220
do {
221
_word = word & ~(0xffUL << 24);
222
} while (!try_cmpxchg(&gisa->u64.word[0], &word, _word));
223
}
224
225
/**
226
* gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
227
*
228
* @gi: gisa interrupt struct to work on
229
*
230
* Atomically restores the interruption alert mask if none of the
231
* relevant ISCs are pending and return the IPM.
232
*
233
* Returns: the relevant pending ISCs
234
*/
235
static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
236
{
237
u8 pending_mask, alert_mask;
238
u64 word, _word;
239
240
word = READ_ONCE(gi->origin->u64.word[0]);
241
do {
242
alert_mask = READ_ONCE(gi->alert.mask);
243
pending_mask = (u8)(word >> 24) & alert_mask;
244
if (pending_mask)
245
return pending_mask;
246
_word = (word & ~0xffUL) | alert_mask;
247
} while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word));
248
249
return 0;
250
}
251
252
static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
253
{
254
set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
255
}
256
257
static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
258
{
259
return READ_ONCE(gisa->ipm);
260
}
261
262
static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
263
{
264
return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
265
}
266
267
static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
268
{
269
unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
270
vcpu->arch.local_int.pending_irqs;
271
272
pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
273
return pending;
274
}
275
276
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
277
{
278
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
279
unsigned long pending_mask;
280
281
pending_mask = pending_irqs_no_gisa(vcpu);
282
if (gi->origin)
283
pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
284
return pending_mask;
285
}
286
287
static inline int isc_to_irq_type(unsigned long isc)
288
{
289
return IRQ_PEND_IO_ISC_0 - isc;
290
}
291
292
static inline int irq_type_to_isc(unsigned long irq_type)
293
{
294
return IRQ_PEND_IO_ISC_0 - irq_type;
295
}
296
297
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
298
unsigned long active_mask)
299
{
300
int i;
301
302
for (i = 0; i <= MAX_ISC; i++)
303
if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
304
active_mask &= ~(1UL << (isc_to_irq_type(i)));
305
306
return active_mask;
307
}
308
309
static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
310
{
311
unsigned long active_mask;
312
313
active_mask = pending_irqs(vcpu);
314
if (!active_mask)
315
return 0;
316
317
if (psw_extint_disabled(vcpu))
318
active_mask &= ~IRQ_PEND_EXT_MASK;
319
if (psw_ioint_disabled(vcpu))
320
active_mask &= ~IRQ_PEND_IO_MASK;
321
else
322
active_mask = disable_iscs(vcpu, active_mask);
323
if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
324
__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
325
if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
326
__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
327
if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
328
__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
329
if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
330
__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
331
if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
332
__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
333
__clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
334
}
335
if (psw_mchk_disabled(vcpu))
336
active_mask &= ~IRQ_PEND_MCHK_MASK;
337
/* PV guest cpus can have a single interruption injected at a time. */
338
if (kvm_s390_pv_cpu_get_handle(vcpu) &&
339
vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
340
active_mask &= ~(IRQ_PEND_EXT_II_MASK |
341
IRQ_PEND_IO_MASK |
342
IRQ_PEND_MCHK_MASK);
343
/*
344
* Check both floating and local interrupt's cr14 because
345
* bit IRQ_PEND_MCHK_REP could be set in both cases.
346
*/
347
if (!(vcpu->arch.sie_block->gcr[14] &
348
(vcpu->kvm->arch.float_int.mchk.cr14 |
349
vcpu->arch.local_int.irq.mchk.cr14)))
350
__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
351
352
/*
353
* STOP irqs will never be actively delivered. They are triggered via
354
* intercept requests and cleared when the stop intercept is performed.
355
*/
356
__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
357
358
return active_mask;
359
}
360
361
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
362
{
363
kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
364
set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
365
}
366
367
static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
368
{
369
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
370
clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
371
}
372
373
static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
374
{
375
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
376
CPUSTAT_STOP_INT);
377
vcpu->arch.sie_block->lctl = 0x0000;
378
vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
379
380
if (guestdbg_enabled(vcpu)) {
381
vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
382
LCTL_CR10 | LCTL_CR11);
383
vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
384
}
385
}
386
387
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
388
{
389
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
390
return;
391
if (psw_ioint_disabled(vcpu))
392
kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
393
else
394
vcpu->arch.sie_block->lctl |= LCTL_CR6;
395
}
396
397
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
398
{
399
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
400
return;
401
if (psw_extint_disabled(vcpu))
402
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
403
else
404
vcpu->arch.sie_block->lctl |= LCTL_CR0;
405
}
406
407
static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
408
{
409
if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
410
return;
411
if (psw_mchk_disabled(vcpu))
412
vcpu->arch.sie_block->ictl |= ICTL_LPSW;
413
else
414
vcpu->arch.sie_block->lctl |= LCTL_CR14;
415
}
416
417
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
418
{
419
if (kvm_s390_is_stop_irq_pending(vcpu))
420
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
421
}
422
423
/* Set interception request for non-deliverable interrupts */
424
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
425
{
426
set_intercept_indicators_io(vcpu);
427
set_intercept_indicators_ext(vcpu);
428
set_intercept_indicators_mchk(vcpu);
429
set_intercept_indicators_stop(vcpu);
430
}
431
432
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
433
{
434
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
435
int rc = 0;
436
437
vcpu->stat.deliver_cputm++;
438
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
439
0, 0);
440
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
441
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
442
vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
443
} else {
444
rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
445
(u16 *)__LC_EXT_INT_CODE);
446
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
447
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
448
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
449
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
450
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
451
}
452
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
453
return rc ? -EFAULT : 0;
454
}
455
456
static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
457
{
458
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
459
int rc = 0;
460
461
vcpu->stat.deliver_ckc++;
462
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
463
0, 0);
464
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
465
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
466
vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
467
} else {
468
rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
469
(u16 __user *)__LC_EXT_INT_CODE);
470
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
471
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
472
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
473
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
474
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
475
}
476
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
477
return rc ? -EFAULT : 0;
478
}
479
480
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
481
{
482
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
483
struct kvm_s390_ext_info ext;
484
int rc;
485
486
spin_lock(&li->lock);
487
ext = li->irq.ext;
488
clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
489
li->irq.ext.ext_params2 = 0;
490
spin_unlock(&li->lock);
491
492
VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
493
ext.ext_params2);
494
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
495
KVM_S390_INT_PFAULT_INIT,
496
0, ext.ext_params2);
497
498
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
499
rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
500
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
501
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
502
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
503
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
504
rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
505
return rc ? -EFAULT : 0;
506
}
507
508
static int __write_machine_check(struct kvm_vcpu *vcpu,
509
struct kvm_s390_mchk_info *mchk)
510
{
511
unsigned long ext_sa_addr;
512
unsigned long lc;
513
freg_t fprs[NUM_FPRS];
514
union mci mci;
515
int rc;
516
517
/*
518
* All other possible payload for a machine check (e.g. the register
519
* contents in the save area) will be handled by the ultravisor, as
520
* the hypervisor does not not have the needed information for
521
* protected guests.
522
*/
523
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
524
vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
525
vcpu->arch.sie_block->mcic = mchk->mcic;
526
vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
527
vcpu->arch.sie_block->edc = mchk->ext_damage_code;
528
return 0;
529
}
530
531
mci.val = mchk->mcic;
532
/* take care of lazy register loading */
533
kvm_s390_fpu_store(vcpu->run);
534
save_access_regs(vcpu->run->s.regs.acrs);
535
if (cpu_has_gs() && vcpu->arch.gs_enabled)
536
save_gs_cb(current->thread.gs_cb);
537
538
/* Extended save area */
539
rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
540
sizeof(unsigned long));
541
/* Only bits 0 through 63-LC are used for address formation */
542
lc = ext_sa_addr & MCESA_LC_MASK;
543
if (test_kvm_facility(vcpu->kvm, 133)) {
544
switch (lc) {
545
case 0:
546
case 10:
547
ext_sa_addr &= ~0x3ffUL;
548
break;
549
case 11:
550
ext_sa_addr &= ~0x7ffUL;
551
break;
552
case 12:
553
ext_sa_addr &= ~0xfffUL;
554
break;
555
default:
556
ext_sa_addr = 0;
557
break;
558
}
559
} else {
560
ext_sa_addr &= ~0x3ffUL;
561
}
562
563
if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
564
if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
565
512))
566
mci.vr = 0;
567
} else {
568
mci.vr = 0;
569
}
570
if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
571
&& (lc == 11 || lc == 12)) {
572
if (write_guest_abs(vcpu, ext_sa_addr + 1024,
573
&vcpu->run->s.regs.gscb, 32))
574
mci.gs = 0;
575
} else {
576
mci.gs = 0;
577
}
578
579
/* General interruption information */
580
rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
581
rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
582
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
583
rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
584
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
585
rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
586
587
/* Register-save areas */
588
if (cpu_has_vx()) {
589
convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
590
rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
591
} else {
592
rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
593
vcpu->run->s.regs.fprs, 128);
594
}
595
rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
596
vcpu->run->s.regs.gprs, 128);
597
rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc,
598
(u32 __user *) __LC_FP_CREG_SAVE_AREA);
599
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
600
(u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
601
rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
602
(u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
603
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
604
(u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
605
rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
606
&vcpu->run->s.regs.acrs, 64);
607
rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
608
&vcpu->arch.sie_block->gcr, 128);
609
610
/* Extended interruption information */
611
rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
612
(u32 __user *) __LC_EXT_DAMAGE_CODE);
613
rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
614
(u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
615
rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
616
sizeof(mchk->fixed_logout));
617
return rc ? -EFAULT : 0;
618
}
619
620
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
621
{
622
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
623
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
624
struct kvm_s390_mchk_info mchk = {};
625
int deliver = 0;
626
int rc = 0;
627
628
spin_lock(&fi->lock);
629
spin_lock(&li->lock);
630
if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
631
test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
632
/*
633
* If there was an exigent machine check pending, then any
634
* repressible machine checks that might have been pending
635
* are indicated along with it, so always clear bits for
636
* repressible and exigent interrupts
637
*/
638
mchk = li->irq.mchk;
639
clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
640
clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
641
memset(&li->irq.mchk, 0, sizeof(mchk));
642
deliver = 1;
643
}
644
/*
645
* We indicate floating repressible conditions along with
646
* other pending conditions. Channel Report Pending and Channel
647
* Subsystem damage are the only two and are indicated by
648
* bits in mcic and masked in cr14.
649
*/
650
if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
651
mchk.mcic |= fi->mchk.mcic;
652
mchk.cr14 |= fi->mchk.cr14;
653
memset(&fi->mchk, 0, sizeof(mchk));
654
deliver = 1;
655
}
656
spin_unlock(&li->lock);
657
spin_unlock(&fi->lock);
658
659
if (deliver) {
660
VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
661
mchk.mcic);
662
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
663
KVM_S390_MCHK,
664
mchk.cr14, mchk.mcic);
665
vcpu->stat.deliver_machine_check++;
666
rc = __write_machine_check(vcpu, &mchk);
667
}
668
return rc;
669
}
670
671
static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
672
{
673
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
674
int rc = 0;
675
676
VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
677
vcpu->stat.deliver_restart_signal++;
678
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
679
680
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
681
vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
682
} else {
683
rc = write_guest_lc(vcpu,
684
offsetof(struct lowcore, restart_old_psw),
685
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
686
rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
687
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
688
}
689
clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
690
return rc ? -EFAULT : 0;
691
}
692
693
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
694
{
695
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
696
struct kvm_s390_prefix_info prefix;
697
698
spin_lock(&li->lock);
699
prefix = li->irq.prefix;
700
li->irq.prefix.address = 0;
701
clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
702
spin_unlock(&li->lock);
703
704
vcpu->stat.deliver_prefix_signal++;
705
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
706
KVM_S390_SIGP_SET_PREFIX,
707
prefix.address, 0);
708
709
kvm_s390_set_prefix(vcpu, prefix.address);
710
return 0;
711
}
712
713
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
714
{
715
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
716
int rc;
717
int cpu_addr;
718
719
spin_lock(&li->lock);
720
cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
721
clear_bit(cpu_addr, li->sigp_emerg_pending);
722
if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
723
clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
724
spin_unlock(&li->lock);
725
726
VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
727
vcpu->stat.deliver_emergency_signal++;
728
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
729
cpu_addr, 0);
730
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
731
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
732
vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
733
vcpu->arch.sie_block->extcpuaddr = cpu_addr;
734
return 0;
735
}
736
737
rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
738
(u16 *)__LC_EXT_INT_CODE);
739
rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
740
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
741
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
742
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
743
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
744
return rc ? -EFAULT : 0;
745
}
746
747
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
748
{
749
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
750
struct kvm_s390_extcall_info extcall;
751
int rc;
752
753
spin_lock(&li->lock);
754
extcall = li->irq.extcall;
755
li->irq.extcall.code = 0;
756
clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
757
spin_unlock(&li->lock);
758
759
VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
760
vcpu->stat.deliver_external_call++;
761
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
762
KVM_S390_INT_EXTERNAL_CALL,
763
extcall.code, 0);
764
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
765
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
766
vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
767
vcpu->arch.sie_block->extcpuaddr = extcall.code;
768
return 0;
769
}
770
771
rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
772
(u16 *)__LC_EXT_INT_CODE);
773
rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
774
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
775
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
776
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
777
sizeof(psw_t));
778
return rc ? -EFAULT : 0;
779
}
780
781
static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
782
{
783
switch (code) {
784
case PGM_SPECIFICATION:
785
vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
786
break;
787
case PGM_OPERAND:
788
vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
789
break;
790
default:
791
return -EINVAL;
792
}
793
return 0;
794
}
795
796
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
797
{
798
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
799
struct kvm_s390_pgm_info pgm_info;
800
int rc = 0, nullifying = false;
801
u16 ilen;
802
803
spin_lock(&li->lock);
804
pgm_info = li->irq.pgm;
805
clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
806
memset(&li->irq.pgm, 0, sizeof(pgm_info));
807
spin_unlock(&li->lock);
808
809
ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
810
VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
811
pgm_info.code, ilen);
812
vcpu->stat.deliver_program++;
813
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
814
pgm_info.code, 0);
815
816
/* PER is handled by the ultravisor */
817
if (kvm_s390_pv_cpu_is_protected(vcpu))
818
return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
819
820
switch (pgm_info.code & ~PGM_PER) {
821
case PGM_AFX_TRANSLATION:
822
case PGM_ASX_TRANSLATION:
823
case PGM_EX_TRANSLATION:
824
case PGM_LFX_TRANSLATION:
825
case PGM_LSTE_SEQUENCE:
826
case PGM_LSX_TRANSLATION:
827
case PGM_LX_TRANSLATION:
828
case PGM_PRIMARY_AUTHORITY:
829
case PGM_SECONDARY_AUTHORITY:
830
nullifying = true;
831
fallthrough;
832
case PGM_SPACE_SWITCH:
833
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
834
(u64 *)__LC_TRANS_EXC_CODE);
835
break;
836
case PGM_ALEN_TRANSLATION:
837
case PGM_ALE_SEQUENCE:
838
case PGM_ASTE_INSTANCE:
839
case PGM_ASTE_SEQUENCE:
840
case PGM_ASTE_VALIDITY:
841
case PGM_EXTENDED_AUTHORITY:
842
rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
843
(u8 *)__LC_EXC_ACCESS_ID);
844
nullifying = true;
845
break;
846
case PGM_ASCE_TYPE:
847
case PGM_PAGE_TRANSLATION:
848
case PGM_REGION_FIRST_TRANS:
849
case PGM_REGION_SECOND_TRANS:
850
case PGM_REGION_THIRD_TRANS:
851
case PGM_SEGMENT_TRANSLATION:
852
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
853
(u64 *)__LC_TRANS_EXC_CODE);
854
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
855
(u8 *)__LC_EXC_ACCESS_ID);
856
rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
857
(u8 *)__LC_OP_ACCESS_ID);
858
nullifying = true;
859
break;
860
case PGM_MONITOR:
861
rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
862
(u16 *)__LC_MON_CLASS_NR);
863
rc |= put_guest_lc(vcpu, pgm_info.mon_code,
864
(u64 *)__LC_MON_CODE);
865
break;
866
case PGM_VECTOR_PROCESSING:
867
case PGM_DATA:
868
rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
869
(u32 *)__LC_DATA_EXC_CODE);
870
break;
871
case PGM_PROTECTION:
872
rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
873
(u64 *)__LC_TRANS_EXC_CODE);
874
rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
875
(u8 *)__LC_EXC_ACCESS_ID);
876
break;
877
case PGM_STACK_FULL:
878
case PGM_STACK_EMPTY:
879
case PGM_STACK_SPECIFICATION:
880
case PGM_STACK_TYPE:
881
case PGM_STACK_OPERATION:
882
case PGM_TRACE_TABEL:
883
case PGM_CRYPTO_OPERATION:
884
nullifying = true;
885
break;
886
}
887
888
if (pgm_info.code & PGM_PER) {
889
rc |= put_guest_lc(vcpu, pgm_info.per_code,
890
(u8 *) __LC_PER_CODE);
891
rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
892
(u8 *)__LC_PER_ATMID);
893
rc |= put_guest_lc(vcpu, pgm_info.per_address,
894
(u64 *) __LC_PER_ADDRESS);
895
rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
896
(u8 *) __LC_PER_ACCESS_ID);
897
}
898
899
if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
900
kvm_s390_rewind_psw(vcpu, ilen);
901
902
/* bit 1+2 of the target are the ilc, so we can directly use ilen */
903
rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
904
rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
905
(u64 *) __LC_PGM_LAST_BREAK);
906
rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_CODE);
907
rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
908
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
909
rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
910
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
911
return rc ? -EFAULT : 0;
912
}
913
914
#define SCCB_MASK 0xFFFFFFF8
915
#define SCCB_EVENT_PENDING 0x3
916
917
static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
918
{
919
int rc;
920
921
if (kvm_s390_pv_cpu_get_handle(vcpu)) {
922
vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
923
vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
924
vcpu->arch.sie_block->eiparams = parm;
925
return 0;
926
}
927
928
rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
929
rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
930
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
931
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
932
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
933
&vcpu->arch.sie_block->gpsw, sizeof(psw_t));
934
rc |= put_guest_lc(vcpu, parm,
935
(u32 *)__LC_EXT_PARAMS);
936
937
return rc ? -EFAULT : 0;
938
}
939
940
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
941
{
942
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
943
struct kvm_s390_ext_info ext;
944
945
spin_lock(&fi->lock);
946
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
947
!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
948
spin_unlock(&fi->lock);
949
return 0;
950
}
951
ext = fi->srv_signal;
952
memset(&fi->srv_signal, 0, sizeof(ext));
953
clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
954
clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
955
if (kvm_s390_pv_cpu_is_protected(vcpu))
956
set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
957
spin_unlock(&fi->lock);
958
959
VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
960
ext.ext_params);
961
vcpu->stat.deliver_service_signal++;
962
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
963
ext.ext_params, 0);
964
965
return write_sclp(vcpu, ext.ext_params);
966
}
967
968
static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
969
{
970
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
971
struct kvm_s390_ext_info ext;
972
973
spin_lock(&fi->lock);
974
if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
975
spin_unlock(&fi->lock);
976
return 0;
977
}
978
ext = fi->srv_signal;
979
/* only clear the event bits */
980
fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
981
clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
982
spin_unlock(&fi->lock);
983
984
VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
985
vcpu->stat.deliver_service_signal++;
986
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
987
ext.ext_params, 0);
988
989
return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING);
990
}
991
992
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
993
{
994
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
995
struct kvm_s390_interrupt_info *inti;
996
int rc = 0;
997
998
spin_lock(&fi->lock);
999
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1000
struct kvm_s390_interrupt_info,
1001
list);
1002
if (inti) {
1003
list_del(&inti->list);
1004
fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1005
}
1006
if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1007
clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1008
spin_unlock(&fi->lock);
1009
1010
if (inti) {
1011
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1012
KVM_S390_INT_PFAULT_DONE, 0,
1013
inti->ext.ext_params2);
1014
VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1015
inti->ext.ext_params2);
1016
1017
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1018
(u16 *)__LC_EXT_INT_CODE);
1019
rc |= put_guest_lc(vcpu, PFAULT_DONE,
1020
(u16 *)__LC_EXT_CPU_ADDR);
1021
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1022
&vcpu->arch.sie_block->gpsw,
1023
sizeof(psw_t));
1024
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1025
&vcpu->arch.sie_block->gpsw,
1026
sizeof(psw_t));
1027
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1028
(u64 *)__LC_EXT_PARAMS2);
1029
kfree(inti);
1030
}
1031
return rc ? -EFAULT : 0;
1032
}
1033
1034
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1035
{
1036
struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1037
struct kvm_s390_interrupt_info *inti;
1038
int rc = 0;
1039
1040
spin_lock(&fi->lock);
1041
inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1042
struct kvm_s390_interrupt_info,
1043
list);
1044
if (inti) {
1045
VCPU_EVENT(vcpu, 4,
1046
"deliver: virtio parm: 0x%x,parm64: 0x%llx",
1047
inti->ext.ext_params, inti->ext.ext_params2);
1048
vcpu->stat.deliver_virtio++;
1049
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1050
inti->type,
1051
inti->ext.ext_params,
1052
inti->ext.ext_params2);
1053
list_del(&inti->list);
1054
fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1055
}
1056
if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1057
clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1058
spin_unlock(&fi->lock);
1059
1060
if (inti) {
1061
rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1062
(u16 *)__LC_EXT_INT_CODE);
1063
rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1064
(u16 *)__LC_EXT_CPU_ADDR);
1065
rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1066
&vcpu->arch.sie_block->gpsw,
1067
sizeof(psw_t));
1068
rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1069
&vcpu->arch.sie_block->gpsw,
1070
sizeof(psw_t));
1071
rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1072
(u32 *)__LC_EXT_PARAMS);
1073
rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1074
(u64 *)__LC_EXT_PARAMS2);
1075
kfree(inti);
1076
}
1077
return rc ? -EFAULT : 0;
1078
}
1079
1080
static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1081
{
1082
int rc;
1083
1084
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1085
vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1086
vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1087
vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1088
vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1089
vcpu->arch.sie_block->io_int_word = io->io_int_word;
1090
return 0;
1091
}
1092
1093
rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1094
rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1095
rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1096
rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1097
rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1098
&vcpu->arch.sie_block->gpsw,
1099
sizeof(psw_t));
1100
rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1101
&vcpu->arch.sie_block->gpsw,
1102
sizeof(psw_t));
1103
return rc ? -EFAULT : 0;
1104
}
1105
1106
static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1107
unsigned long irq_type)
1108
{
1109
struct list_head *isc_list;
1110
struct kvm_s390_float_interrupt *fi;
1111
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1112
struct kvm_s390_interrupt_info *inti = NULL;
1113
struct kvm_s390_io_info io;
1114
u32 isc;
1115
int rc = 0;
1116
1117
fi = &vcpu->kvm->arch.float_int;
1118
1119
spin_lock(&fi->lock);
1120
isc = irq_type_to_isc(irq_type);
1121
isc_list = &fi->lists[isc];
1122
inti = list_first_entry_or_null(isc_list,
1123
struct kvm_s390_interrupt_info,
1124
list);
1125
if (inti) {
1126
if (inti->type & KVM_S390_INT_IO_AI_MASK)
1127
VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1128
else
1129
VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1130
inti->io.subchannel_id >> 8,
1131
inti->io.subchannel_id >> 1 & 0x3,
1132
inti->io.subchannel_nr);
1133
1134
vcpu->stat.deliver_io++;
1135
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1136
inti->type,
1137
((__u32)inti->io.subchannel_id << 16) |
1138
inti->io.subchannel_nr,
1139
((__u64)inti->io.io_int_parm << 32) |
1140
inti->io.io_int_word);
1141
list_del(&inti->list);
1142
fi->counters[FIRQ_CNTR_IO] -= 1;
1143
}
1144
if (list_empty(isc_list))
1145
clear_bit(irq_type, &fi->pending_irqs);
1146
spin_unlock(&fi->lock);
1147
1148
if (inti) {
1149
rc = __do_deliver_io(vcpu, &(inti->io));
1150
kfree(inti);
1151
goto out;
1152
}
1153
1154
if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1155
/*
1156
* in case an adapter interrupt was not delivered
1157
* in SIE context KVM will handle the delivery
1158
*/
1159
VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1160
memset(&io, 0, sizeof(io));
1161
io.io_int_word = isc_to_int_word(isc);
1162
vcpu->stat.deliver_io++;
1163
trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1164
KVM_S390_INT_IO(1, 0, 0, 0),
1165
((__u32)io.subchannel_id << 16) |
1166
io.subchannel_nr,
1167
((__u64)io.io_int_parm << 32) |
1168
io.io_int_word);
1169
rc = __do_deliver_io(vcpu, &io);
1170
}
1171
out:
1172
return rc;
1173
}
1174
1175
/* Check whether an external call is pending (deliverable or not) */
1176
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1177
{
1178
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1179
1180
if (!kvm_s390_use_sca_entries())
1181
return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1182
1183
return sca_ext_call_pending(vcpu, NULL);
1184
}
1185
1186
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1187
{
1188
if (deliverable_irqs(vcpu))
1189
return 1;
1190
1191
if (kvm_cpu_has_pending_timer(vcpu))
1192
return 1;
1193
1194
/* external call pending and deliverable */
1195
if (kvm_s390_ext_call_pending(vcpu) &&
1196
!psw_extint_disabled(vcpu) &&
1197
(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1198
return 1;
1199
1200
if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1201
return 1;
1202
return 0;
1203
}
1204
1205
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1206
{
1207
return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1208
}
1209
1210
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1211
{
1212
const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1213
const u64 ckc = vcpu->arch.sie_block->ckc;
1214
u64 cputm, sltime = 0;
1215
1216
if (ckc_interrupts_enabled(vcpu)) {
1217
if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1218
if ((s64)now < (s64)ckc)
1219
sltime = tod_to_ns((s64)ckc - (s64)now);
1220
} else if (now < ckc) {
1221
sltime = tod_to_ns(ckc - now);
1222
}
1223
/* already expired */
1224
if (!sltime)
1225
return 0;
1226
if (cpu_timer_interrupts_enabled(vcpu)) {
1227
cputm = kvm_s390_get_cpu_timer(vcpu);
1228
/* already expired? */
1229
if (cputm >> 63)
1230
return 0;
1231
return min_t(u64, sltime, tod_to_ns(cputm));
1232
}
1233
} else if (cpu_timer_interrupts_enabled(vcpu)) {
1234
sltime = kvm_s390_get_cpu_timer(vcpu);
1235
/* already expired? */
1236
if (sltime >> 63)
1237
return 0;
1238
}
1239
return sltime;
1240
}
1241
1242
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1243
{
1244
struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1245
u64 sltime;
1246
1247
vcpu->stat.exit_wait_state++;
1248
1249
/* fast path */
1250
if (kvm_arch_vcpu_runnable(vcpu))
1251
return 0;
1252
1253
if (psw_interrupts_disabled(vcpu)) {
1254
VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1255
return -EOPNOTSUPP; /* disabled wait */
1256
}
1257
1258
if (gi->origin &&
1259
(gisa_get_ipm_or_restore_iam(gi) &
1260
vcpu->arch.sie_block->gcr[6] >> 24))
1261
return 0;
1262
1263
if (!ckc_interrupts_enabled(vcpu) &&
1264
!cpu_timer_interrupts_enabled(vcpu)) {
1265
VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1266
__set_cpu_idle(vcpu);
1267
goto no_timer;
1268
}
1269
1270
sltime = __calculate_sltime(vcpu);
1271
if (!sltime)
1272
return 0;
1273
1274
__set_cpu_idle(vcpu);
1275
hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1276
VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1277
no_timer:
1278
kvm_vcpu_srcu_read_unlock(vcpu);
1279
vcpu->kvm->arch.float_int.last_sleep_cpu = vcpu->vcpu_idx;
1280
kvm_vcpu_halt(vcpu);
1281
vcpu->valid_wakeup = false;
1282
__unset_cpu_idle(vcpu);
1283
kvm_vcpu_srcu_read_lock(vcpu);
1284
1285
hrtimer_cancel(&vcpu->arch.ckc_timer);
1286
return 0;
1287
}
1288
1289
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1290
{
1291
vcpu->valid_wakeup = true;
1292
kvm_vcpu_wake_up(vcpu);
1293
1294
/*
1295
* The VCPU might not be sleeping but rather executing VSIE. Let's
1296
* kick it, so it leaves the SIE to process the request.
1297
*/
1298
kvm_s390_vsie_kick(vcpu);
1299
}
1300
1301
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1302
{
1303
struct kvm_vcpu *vcpu;
1304
u64 sltime;
1305
1306
vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1307
sltime = __calculate_sltime(vcpu);
1308
1309
/*
1310
* If the monotonic clock runs faster than the tod clock we might be
1311
* woken up too early and have to go back to sleep to avoid deadlocks.
1312
*/
1313
if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1314
return HRTIMER_RESTART;
1315
kvm_s390_vcpu_wakeup(vcpu);
1316
return HRTIMER_NORESTART;
1317
}
1318
1319
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1320
{
1321
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1322
1323
spin_lock(&li->lock);
1324
li->pending_irqs = 0;
1325
bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1326
memset(&li->irq, 0, sizeof(li->irq));
1327
spin_unlock(&li->lock);
1328
1329
sca_clear_ext_call(vcpu);
1330
}
1331
1332
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1333
{
1334
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1335
int rc = 0;
1336
bool delivered = false;
1337
unsigned long irq_type;
1338
unsigned long irqs;
1339
1340
__reset_intercept_indicators(vcpu);
1341
1342
/* pending ckc conditions might have been invalidated */
1343
clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1344
if (ckc_irq_pending(vcpu))
1345
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1346
1347
/* pending cpu timer conditions might have been invalidated */
1348
clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1349
if (cpu_timer_irq_pending(vcpu))
1350
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1351
1352
while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1353
/* bits are in the reverse order of interrupt priority */
1354
irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1355
switch (irq_type) {
1356
case IRQ_PEND_IO_ISC_0:
1357
case IRQ_PEND_IO_ISC_1:
1358
case IRQ_PEND_IO_ISC_2:
1359
case IRQ_PEND_IO_ISC_3:
1360
case IRQ_PEND_IO_ISC_4:
1361
case IRQ_PEND_IO_ISC_5:
1362
case IRQ_PEND_IO_ISC_6:
1363
case IRQ_PEND_IO_ISC_7:
1364
rc = __deliver_io(vcpu, irq_type);
1365
break;
1366
case IRQ_PEND_MCHK_EX:
1367
case IRQ_PEND_MCHK_REP:
1368
rc = __deliver_machine_check(vcpu);
1369
break;
1370
case IRQ_PEND_PROG:
1371
rc = __deliver_prog(vcpu);
1372
break;
1373
case IRQ_PEND_EXT_EMERGENCY:
1374
rc = __deliver_emergency_signal(vcpu);
1375
break;
1376
case IRQ_PEND_EXT_EXTERNAL:
1377
rc = __deliver_external_call(vcpu);
1378
break;
1379
case IRQ_PEND_EXT_CLOCK_COMP:
1380
rc = __deliver_ckc(vcpu);
1381
break;
1382
case IRQ_PEND_EXT_CPU_TIMER:
1383
rc = __deliver_cpu_timer(vcpu);
1384
break;
1385
case IRQ_PEND_RESTART:
1386
rc = __deliver_restart(vcpu);
1387
break;
1388
case IRQ_PEND_SET_PREFIX:
1389
rc = __deliver_set_prefix(vcpu);
1390
break;
1391
case IRQ_PEND_PFAULT_INIT:
1392
rc = __deliver_pfault_init(vcpu);
1393
break;
1394
case IRQ_PEND_EXT_SERVICE:
1395
rc = __deliver_service(vcpu);
1396
break;
1397
case IRQ_PEND_EXT_SERVICE_EV:
1398
rc = __deliver_service_ev(vcpu);
1399
break;
1400
case IRQ_PEND_PFAULT_DONE:
1401
rc = __deliver_pfault_done(vcpu);
1402
break;
1403
case IRQ_PEND_VIRTIO:
1404
rc = __deliver_virtio(vcpu);
1405
break;
1406
default:
1407
WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1408
clear_bit(irq_type, &li->pending_irqs);
1409
}
1410
delivered |= !rc;
1411
}
1412
1413
/*
1414
* We delivered at least one interrupt and modified the PC. Force a
1415
* singlestep event now.
1416
*/
1417
if (delivered && guestdbg_sstep_enabled(vcpu)) {
1418
struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
1419
1420
debug_exit->addr = vcpu->arch.sie_block->gpsw.addr;
1421
debug_exit->type = KVM_SINGLESTEP;
1422
vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
1423
}
1424
1425
set_intercept_indicators(vcpu);
1426
1427
return rc;
1428
}
1429
1430
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1431
{
1432
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1433
1434
vcpu->stat.inject_program++;
1435
VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1436
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1437
irq->u.pgm.code, 0);
1438
1439
if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1440
/* auto detection if no valid ILC was given */
1441
irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1442
irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1443
irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1444
}
1445
1446
if (irq->u.pgm.code == PGM_PER) {
1447
li->irq.pgm.code |= PGM_PER;
1448
li->irq.pgm.flags = irq->u.pgm.flags;
1449
/* only modify PER related information */
1450
li->irq.pgm.per_address = irq->u.pgm.per_address;
1451
li->irq.pgm.per_code = irq->u.pgm.per_code;
1452
li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1453
li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1454
} else if (!(irq->u.pgm.code & PGM_PER)) {
1455
li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1456
irq->u.pgm.code;
1457
li->irq.pgm.flags = irq->u.pgm.flags;
1458
/* only modify non-PER information */
1459
li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1460
li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1461
li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1462
li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1463
li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1464
li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1465
} else {
1466
li->irq.pgm = irq->u.pgm;
1467
}
1468
set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1469
return 0;
1470
}
1471
1472
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1473
{
1474
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1475
1476
vcpu->stat.inject_pfault_init++;
1477
VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1478
irq->u.ext.ext_params2);
1479
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1480
irq->u.ext.ext_params,
1481
irq->u.ext.ext_params2);
1482
1483
li->irq.ext = irq->u.ext;
1484
set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1485
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1486
return 0;
1487
}
1488
1489
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1490
{
1491
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1492
struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1493
uint16_t src_id = irq->u.extcall.code;
1494
1495
vcpu->stat.inject_external_call++;
1496
VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1497
src_id);
1498
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1499
src_id, 0);
1500
1501
/* sending vcpu invalid */
1502
if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1503
return -EINVAL;
1504
1505
if (kvm_s390_use_sca_entries() && !kvm_s390_pv_cpu_get_handle(vcpu))
1506
return sca_inject_ext_call(vcpu, src_id);
1507
1508
if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1509
return -EBUSY;
1510
*extcall = irq->u.extcall;
1511
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1512
return 0;
1513
}
1514
1515
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1516
{
1517
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1518
struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1519
1520
vcpu->stat.inject_set_prefix++;
1521
VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1522
irq->u.prefix.address);
1523
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1524
irq->u.prefix.address, 0);
1525
1526
if (!is_vcpu_stopped(vcpu))
1527
return -EBUSY;
1528
1529
*prefix = irq->u.prefix;
1530
set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1531
return 0;
1532
}
1533
1534
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1535
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1536
{
1537
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1538
struct kvm_s390_stop_info *stop = &li->irq.stop;
1539
int rc = 0;
1540
1541
vcpu->stat.inject_stop_signal++;
1542
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1543
1544
if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1545
return -EINVAL;
1546
1547
if (is_vcpu_stopped(vcpu)) {
1548
if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1549
rc = kvm_s390_store_status_unloaded(vcpu,
1550
KVM_S390_STORE_STATUS_NOADDR);
1551
return rc;
1552
}
1553
1554
if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1555
return -EBUSY;
1556
stop->flags = irq->u.stop.flags;
1557
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1558
return 0;
1559
}
1560
1561
static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1562
{
1563
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1564
1565
vcpu->stat.inject_restart++;
1566
VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1567
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1568
1569
set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1570
return 0;
1571
}
1572
1573
static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1574
struct kvm_s390_irq *irq)
1575
{
1576
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1577
1578
vcpu->stat.inject_emergency_signal++;
1579
VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1580
irq->u.emerg.code);
1581
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1582
irq->u.emerg.code, 0);
1583
1584
/* sending vcpu invalid */
1585
if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1586
return -EINVAL;
1587
1588
set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1589
set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1590
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1591
return 0;
1592
}
1593
1594
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1595
{
1596
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1597
struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1598
1599
vcpu->stat.inject_mchk++;
1600
VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1601
irq->u.mchk.mcic);
1602
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1603
irq->u.mchk.mcic);
1604
1605
/*
1606
* Because repressible machine checks can be indicated along with
1607
* exigent machine checks (PoP, Chapter 11, Interruption action)
1608
* we need to combine cr14, mcic and external damage code.
1609
* Failing storage address and the logout area should not be or'ed
1610
* together, we just indicate the last occurrence of the corresponding
1611
* machine check
1612
*/
1613
mchk->cr14 |= irq->u.mchk.cr14;
1614
mchk->mcic |= irq->u.mchk.mcic;
1615
mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1616
mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1617
memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1618
sizeof(mchk->fixed_logout));
1619
if (mchk->mcic & MCHK_EX_MASK)
1620
set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1621
else if (mchk->mcic & MCHK_REP_MASK)
1622
set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1623
return 0;
1624
}
1625
1626
static int __inject_ckc(struct kvm_vcpu *vcpu)
1627
{
1628
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1629
1630
vcpu->stat.inject_ckc++;
1631
VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1632
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1633
0, 0);
1634
1635
set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1636
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1637
return 0;
1638
}
1639
1640
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1641
{
1642
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1643
1644
vcpu->stat.inject_cputm++;
1645
VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1646
trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1647
0, 0);
1648
1649
set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1650
kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1651
return 0;
1652
}
1653
1654
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1655
int isc, u32 schid)
1656
{
1657
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1658
struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1659
struct kvm_s390_interrupt_info *iter;
1660
u16 id = (schid & 0xffff0000U) >> 16;
1661
u16 nr = schid & 0x0000ffffU;
1662
1663
spin_lock(&fi->lock);
1664
list_for_each_entry(iter, isc_list, list) {
1665
if (schid && (id != iter->io.subchannel_id ||
1666
nr != iter->io.subchannel_nr))
1667
continue;
1668
/* found an appropriate entry */
1669
list_del_init(&iter->list);
1670
fi->counters[FIRQ_CNTR_IO] -= 1;
1671
if (list_empty(isc_list))
1672
clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1673
spin_unlock(&fi->lock);
1674
return iter;
1675
}
1676
spin_unlock(&fi->lock);
1677
return NULL;
1678
}
1679
1680
static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1681
u64 isc_mask, u32 schid)
1682
{
1683
struct kvm_s390_interrupt_info *inti = NULL;
1684
int isc;
1685
1686
for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1687
if (isc_mask & isc_to_isc_bits(isc))
1688
inti = get_io_int(kvm, isc, schid);
1689
}
1690
return inti;
1691
}
1692
1693
static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1694
{
1695
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1696
unsigned long active_mask;
1697
int isc;
1698
1699
if (schid)
1700
goto out;
1701
if (!gi->origin)
1702
goto out;
1703
1704
active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1705
while (active_mask) {
1706
isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1707
if (gisa_tac_ipm_gisc(gi->origin, isc))
1708
return isc;
1709
clear_bit_inv(isc, &active_mask);
1710
}
1711
out:
1712
return -EINVAL;
1713
}
1714
1715
/*
1716
* Dequeue and return an I/O interrupt matching any of the interruption
1717
* subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1718
* Take into account the interrupts pending in the interrupt list and in GISA.
1719
*
1720
* Note that for a guest that does not enable I/O interrupts
1721
* but relies on TPI, a flood of classic interrupts may starve
1722
* out adapter interrupts on the same isc. Linux does not do
1723
* that, and it is possible to work around the issue by configuring
1724
* different iscs for classic and adapter interrupts in the guest,
1725
* but we may want to revisit this in the future.
1726
*/
1727
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1728
u64 isc_mask, u32 schid)
1729
{
1730
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1731
struct kvm_s390_interrupt_info *inti, *tmp_inti;
1732
int isc;
1733
1734
inti = get_top_io_int(kvm, isc_mask, schid);
1735
1736
isc = get_top_gisa_isc(kvm, isc_mask, schid);
1737
if (isc < 0)
1738
/* no AI in GISA */
1739
goto out;
1740
1741
if (!inti)
1742
/* AI in GISA but no classical IO int */
1743
goto gisa_out;
1744
1745
/* both types of interrupts present */
1746
if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1747
/* classical IO int with higher priority */
1748
gisa_set_ipm_gisc(gi->origin, isc);
1749
goto out;
1750
}
1751
gisa_out:
1752
tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1753
if (tmp_inti) {
1754
tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1755
tmp_inti->io.io_int_word = isc_to_int_word(isc);
1756
if (inti)
1757
kvm_s390_reinject_io_int(kvm, inti);
1758
inti = tmp_inti;
1759
} else
1760
gisa_set_ipm_gisc(gi->origin, isc);
1761
out:
1762
return inti;
1763
}
1764
1765
static int __inject_service(struct kvm *kvm,
1766
struct kvm_s390_interrupt_info *inti)
1767
{
1768
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1769
1770
kvm->stat.inject_service_signal++;
1771
spin_lock(&fi->lock);
1772
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1773
1774
/* We always allow events, track them separately from the sccb ints */
1775
if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1776
set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1777
1778
/*
1779
* Early versions of the QEMU s390 bios will inject several
1780
* service interrupts after another without handling a
1781
* condition code indicating busy.
1782
* We will silently ignore those superfluous sccb values.
1783
* A future version of QEMU will take care of serialization
1784
* of servc requests
1785
*/
1786
if (fi->srv_signal.ext_params & SCCB_MASK)
1787
goto out;
1788
fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1789
set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1790
out:
1791
spin_unlock(&fi->lock);
1792
kfree(inti);
1793
return 0;
1794
}
1795
1796
static int __inject_virtio(struct kvm *kvm,
1797
struct kvm_s390_interrupt_info *inti)
1798
{
1799
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1800
1801
kvm->stat.inject_virtio++;
1802
spin_lock(&fi->lock);
1803
if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1804
spin_unlock(&fi->lock);
1805
return -EBUSY;
1806
}
1807
fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1808
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1809
set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1810
spin_unlock(&fi->lock);
1811
return 0;
1812
}
1813
1814
static int __inject_pfault_done(struct kvm *kvm,
1815
struct kvm_s390_interrupt_info *inti)
1816
{
1817
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1818
1819
kvm->stat.inject_pfault_done++;
1820
spin_lock(&fi->lock);
1821
if (fi->counters[FIRQ_CNTR_PFAULT] >=
1822
(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1823
spin_unlock(&fi->lock);
1824
return -EBUSY;
1825
}
1826
fi->counters[FIRQ_CNTR_PFAULT] += 1;
1827
list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1828
set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1829
spin_unlock(&fi->lock);
1830
return 0;
1831
}
1832
1833
#define CR_PENDING_SUBCLASS 28
1834
static int __inject_float_mchk(struct kvm *kvm,
1835
struct kvm_s390_interrupt_info *inti)
1836
{
1837
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1838
1839
kvm->stat.inject_float_mchk++;
1840
spin_lock(&fi->lock);
1841
fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1842
fi->mchk.mcic |= inti->mchk.mcic;
1843
set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1844
spin_unlock(&fi->lock);
1845
kfree(inti);
1846
return 0;
1847
}
1848
1849
static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1850
{
1851
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1852
struct kvm_s390_float_interrupt *fi;
1853
struct list_head *list;
1854
int isc;
1855
1856
kvm->stat.inject_io++;
1857
isc = int_word_to_isc(inti->io.io_int_word);
1858
1859
/*
1860
* We do not use the lock checking variant as this is just a
1861
* performance optimization and we do not hold the lock here.
1862
* This is ok as the code will pick interrupts from both "lists"
1863
* for delivery.
1864
*/
1865
if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1866
VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1867
gisa_set_ipm_gisc(gi->origin, isc);
1868
kfree(inti);
1869
return 0;
1870
}
1871
1872
fi = &kvm->arch.float_int;
1873
spin_lock(&fi->lock);
1874
if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1875
spin_unlock(&fi->lock);
1876
return -EBUSY;
1877
}
1878
fi->counters[FIRQ_CNTR_IO] += 1;
1879
1880
if (inti->type & KVM_S390_INT_IO_AI_MASK)
1881
VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1882
else
1883
VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1884
inti->io.subchannel_id >> 8,
1885
inti->io.subchannel_id >> 1 & 0x3,
1886
inti->io.subchannel_nr);
1887
list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1888
list_add_tail(&inti->list, list);
1889
set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1890
spin_unlock(&fi->lock);
1891
return 0;
1892
}
1893
1894
/*
1895
* Find a destination VCPU for a floating irq and kick it.
1896
*/
1897
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1898
{
1899
struct kvm_vcpu *dst_vcpu;
1900
int sigcpu, online_vcpus, nr_tries = 0;
1901
1902
online_vcpus = atomic_read(&kvm->online_vcpus);
1903
if (!online_vcpus)
1904
return;
1905
1906
for (sigcpu = kvm->arch.float_int.last_sleep_cpu; ; sigcpu++) {
1907
sigcpu %= online_vcpus;
1908
dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1909
if (!is_vcpu_stopped(dst_vcpu))
1910
break;
1911
/* avoid endless loops if all vcpus are stopped */
1912
if (nr_tries++ >= online_vcpus)
1913
return;
1914
}
1915
1916
/* make the VCPU drop out of the SIE, or wake it up if sleeping */
1917
switch (type) {
1918
case KVM_S390_MCHK:
1919
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1920
break;
1921
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1922
if (!(type & KVM_S390_INT_IO_AI_MASK &&
1923
kvm->arch.gisa_int.origin) ||
1924
kvm_s390_pv_cpu_get_handle(dst_vcpu))
1925
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1926
break;
1927
default:
1928
kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1929
break;
1930
}
1931
kvm_s390_vcpu_wakeup(dst_vcpu);
1932
}
1933
1934
static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1935
{
1936
u64 type = READ_ONCE(inti->type);
1937
int rc;
1938
1939
switch (type) {
1940
case KVM_S390_MCHK:
1941
rc = __inject_float_mchk(kvm, inti);
1942
break;
1943
case KVM_S390_INT_VIRTIO:
1944
rc = __inject_virtio(kvm, inti);
1945
break;
1946
case KVM_S390_INT_SERVICE:
1947
rc = __inject_service(kvm, inti);
1948
break;
1949
case KVM_S390_INT_PFAULT_DONE:
1950
rc = __inject_pfault_done(kvm, inti);
1951
break;
1952
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1953
rc = __inject_io(kvm, inti);
1954
break;
1955
default:
1956
rc = -EINVAL;
1957
}
1958
if (rc)
1959
return rc;
1960
1961
__floating_irq_kick(kvm, type);
1962
return 0;
1963
}
1964
1965
int kvm_s390_inject_vm(struct kvm *kvm,
1966
struct kvm_s390_interrupt *s390int)
1967
{
1968
struct kvm_s390_interrupt_info *inti;
1969
int rc;
1970
1971
inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1972
if (!inti)
1973
return -ENOMEM;
1974
1975
inti->type = s390int->type;
1976
switch (inti->type) {
1977
case KVM_S390_INT_VIRTIO:
1978
VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1979
s390int->parm, s390int->parm64);
1980
inti->ext.ext_params = s390int->parm;
1981
inti->ext.ext_params2 = s390int->parm64;
1982
break;
1983
case KVM_S390_INT_SERVICE:
1984
VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1985
inti->ext.ext_params = s390int->parm;
1986
break;
1987
case KVM_S390_INT_PFAULT_DONE:
1988
inti->ext.ext_params2 = s390int->parm64;
1989
break;
1990
case KVM_S390_MCHK:
1991
VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1992
s390int->parm64);
1993
inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
1994
inti->mchk.mcic = s390int->parm64;
1995
break;
1996
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1997
inti->io.subchannel_id = s390int->parm >> 16;
1998
inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
1999
inti->io.io_int_parm = s390int->parm64 >> 32;
2000
inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2001
break;
2002
default:
2003
kfree(inti);
2004
return -EINVAL;
2005
}
2006
trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2007
2);
2008
2009
rc = __inject_vm(kvm, inti);
2010
if (rc)
2011
kfree(inti);
2012
return rc;
2013
}
2014
2015
int kvm_s390_reinject_io_int(struct kvm *kvm,
2016
struct kvm_s390_interrupt_info *inti)
2017
{
2018
return __inject_vm(kvm, inti);
2019
}
2020
2021
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2022
struct kvm_s390_irq *irq)
2023
{
2024
irq->type = s390int->type;
2025
switch (irq->type) {
2026
case KVM_S390_PROGRAM_INT:
2027
if (s390int->parm & 0xffff0000)
2028
return -EINVAL;
2029
irq->u.pgm.code = s390int->parm;
2030
break;
2031
case KVM_S390_SIGP_SET_PREFIX:
2032
irq->u.prefix.address = s390int->parm;
2033
break;
2034
case KVM_S390_SIGP_STOP:
2035
irq->u.stop.flags = s390int->parm;
2036
break;
2037
case KVM_S390_INT_EXTERNAL_CALL:
2038
if (s390int->parm & 0xffff0000)
2039
return -EINVAL;
2040
irq->u.extcall.code = s390int->parm;
2041
break;
2042
case KVM_S390_INT_EMERGENCY:
2043
if (s390int->parm & 0xffff0000)
2044
return -EINVAL;
2045
irq->u.emerg.code = s390int->parm;
2046
break;
2047
case KVM_S390_MCHK:
2048
irq->u.mchk.mcic = s390int->parm64;
2049
break;
2050
case KVM_S390_INT_PFAULT_INIT:
2051
irq->u.ext.ext_params = s390int->parm;
2052
irq->u.ext.ext_params2 = s390int->parm64;
2053
break;
2054
case KVM_S390_RESTART:
2055
case KVM_S390_INT_CLOCK_COMP:
2056
case KVM_S390_INT_CPU_TIMER:
2057
break;
2058
default:
2059
return -EINVAL;
2060
}
2061
return 0;
2062
}
2063
2064
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2065
{
2066
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2067
2068
return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2069
}
2070
2071
int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2072
{
2073
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2074
2075
return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2076
}
2077
2078
void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2079
{
2080
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2081
2082
spin_lock(&li->lock);
2083
li->irq.stop.flags = 0;
2084
clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2085
spin_unlock(&li->lock);
2086
}
2087
2088
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2089
{
2090
int rc;
2091
2092
switch (irq->type) {
2093
case KVM_S390_PROGRAM_INT:
2094
rc = __inject_prog(vcpu, irq);
2095
break;
2096
case KVM_S390_SIGP_SET_PREFIX:
2097
rc = __inject_set_prefix(vcpu, irq);
2098
break;
2099
case KVM_S390_SIGP_STOP:
2100
rc = __inject_sigp_stop(vcpu, irq);
2101
break;
2102
case KVM_S390_RESTART:
2103
rc = __inject_sigp_restart(vcpu);
2104
break;
2105
case KVM_S390_INT_CLOCK_COMP:
2106
rc = __inject_ckc(vcpu);
2107
break;
2108
case KVM_S390_INT_CPU_TIMER:
2109
rc = __inject_cpu_timer(vcpu);
2110
break;
2111
case KVM_S390_INT_EXTERNAL_CALL:
2112
rc = __inject_extcall(vcpu, irq);
2113
break;
2114
case KVM_S390_INT_EMERGENCY:
2115
rc = __inject_sigp_emergency(vcpu, irq);
2116
break;
2117
case KVM_S390_MCHK:
2118
rc = __inject_mchk(vcpu, irq);
2119
break;
2120
case KVM_S390_INT_PFAULT_INIT:
2121
rc = __inject_pfault_init(vcpu, irq);
2122
break;
2123
case KVM_S390_INT_VIRTIO:
2124
case KVM_S390_INT_SERVICE:
2125
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2126
default:
2127
rc = -EINVAL;
2128
}
2129
2130
return rc;
2131
}
2132
2133
int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2134
{
2135
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2136
int rc;
2137
2138
spin_lock(&li->lock);
2139
rc = do_inject_vcpu(vcpu, irq);
2140
spin_unlock(&li->lock);
2141
if (!rc)
2142
kvm_s390_vcpu_wakeup(vcpu);
2143
return rc;
2144
}
2145
2146
static inline void clear_irq_list(struct list_head *_list)
2147
{
2148
struct kvm_s390_interrupt_info *inti, *n;
2149
2150
list_for_each_entry_safe(inti, n, _list, list) {
2151
list_del(&inti->list);
2152
kfree(inti);
2153
}
2154
}
2155
2156
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2157
struct kvm_s390_irq *irq)
2158
{
2159
irq->type = inti->type;
2160
switch (inti->type) {
2161
case KVM_S390_INT_PFAULT_INIT:
2162
case KVM_S390_INT_PFAULT_DONE:
2163
case KVM_S390_INT_VIRTIO:
2164
irq->u.ext = inti->ext;
2165
break;
2166
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2167
irq->u.io = inti->io;
2168
break;
2169
}
2170
}
2171
2172
void kvm_s390_clear_float_irqs(struct kvm *kvm)
2173
{
2174
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2175
int i;
2176
2177
mutex_lock(&kvm->lock);
2178
if (!kvm_s390_pv_is_protected(kvm))
2179
fi->masked_irqs = 0;
2180
mutex_unlock(&kvm->lock);
2181
spin_lock(&fi->lock);
2182
fi->pending_irqs = 0;
2183
memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2184
memset(&fi->mchk, 0, sizeof(fi->mchk));
2185
for (i = 0; i < FIRQ_LIST_COUNT; i++)
2186
clear_irq_list(&fi->lists[i]);
2187
for (i = 0; i < FIRQ_MAX_COUNT; i++)
2188
fi->counters[i] = 0;
2189
spin_unlock(&fi->lock);
2190
kvm_s390_gisa_clear(kvm);
2191
};
2192
2193
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2194
{
2195
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2196
struct kvm_s390_interrupt_info *inti;
2197
struct kvm_s390_float_interrupt *fi;
2198
struct kvm_s390_irq *buf;
2199
struct kvm_s390_irq *irq;
2200
int max_irqs;
2201
int ret = 0;
2202
int n = 0;
2203
int i;
2204
2205
if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2206
return -EINVAL;
2207
2208
/*
2209
* We are already using -ENOMEM to signal
2210
* userspace it may retry with a bigger buffer,
2211
* so we need to use something else for this case
2212
*/
2213
buf = vzalloc(len);
2214
if (!buf)
2215
return -ENOBUFS;
2216
2217
max_irqs = len / sizeof(struct kvm_s390_irq);
2218
2219
if (gi->origin && gisa_get_ipm(gi->origin)) {
2220
for (i = 0; i <= MAX_ISC; i++) {
2221
if (n == max_irqs) {
2222
/* signal userspace to try again */
2223
ret = -ENOMEM;
2224
goto out_nolock;
2225
}
2226
if (gisa_tac_ipm_gisc(gi->origin, i)) {
2227
irq = (struct kvm_s390_irq *) &buf[n];
2228
irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2229
irq->u.io.io_int_word = isc_to_int_word(i);
2230
n++;
2231
}
2232
}
2233
}
2234
fi = &kvm->arch.float_int;
2235
spin_lock(&fi->lock);
2236
for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2237
list_for_each_entry(inti, &fi->lists[i], list) {
2238
if (n == max_irqs) {
2239
/* signal userspace to try again */
2240
ret = -ENOMEM;
2241
goto out;
2242
}
2243
inti_to_irq(inti, &buf[n]);
2244
n++;
2245
}
2246
}
2247
if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2248
test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2249
if (n == max_irqs) {
2250
/* signal userspace to try again */
2251
ret = -ENOMEM;
2252
goto out;
2253
}
2254
irq = (struct kvm_s390_irq *) &buf[n];
2255
irq->type = KVM_S390_INT_SERVICE;
2256
irq->u.ext = fi->srv_signal;
2257
n++;
2258
}
2259
if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2260
if (n == max_irqs) {
2261
/* signal userspace to try again */
2262
ret = -ENOMEM;
2263
goto out;
2264
}
2265
irq = (struct kvm_s390_irq *) &buf[n];
2266
irq->type = KVM_S390_MCHK;
2267
irq->u.mchk = fi->mchk;
2268
n++;
2269
}
2270
2271
out:
2272
spin_unlock(&fi->lock);
2273
out_nolock:
2274
if (!ret && n > 0) {
2275
if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2276
ret = -EFAULT;
2277
}
2278
vfree(buf);
2279
2280
return ret < 0 ? ret : n;
2281
}
2282
2283
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2284
{
2285
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2286
struct kvm_s390_ais_all ais;
2287
2288
if (attr->attr < sizeof(ais))
2289
return -EINVAL;
2290
2291
if (!test_kvm_facility(kvm, 72))
2292
return -EOPNOTSUPP;
2293
2294
mutex_lock(&fi->ais_lock);
2295
ais.simm = fi->simm;
2296
ais.nimm = fi->nimm;
2297
mutex_unlock(&fi->ais_lock);
2298
2299
if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2300
return -EFAULT;
2301
2302
return 0;
2303
}
2304
2305
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2306
{
2307
int r;
2308
2309
switch (attr->group) {
2310
case KVM_DEV_FLIC_GET_ALL_IRQS:
2311
r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2312
attr->attr);
2313
break;
2314
case KVM_DEV_FLIC_AISM_ALL:
2315
r = flic_ais_mode_get_all(dev->kvm, attr);
2316
break;
2317
default:
2318
r = -EINVAL;
2319
}
2320
2321
return r;
2322
}
2323
2324
static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2325
u64 addr)
2326
{
2327
struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2328
void *target = NULL;
2329
void __user *source;
2330
u64 size;
2331
2332
if (get_user(inti->type, (u64 __user *)addr))
2333
return -EFAULT;
2334
2335
switch (inti->type) {
2336
case KVM_S390_INT_PFAULT_INIT:
2337
case KVM_S390_INT_PFAULT_DONE:
2338
case KVM_S390_INT_VIRTIO:
2339
case KVM_S390_INT_SERVICE:
2340
target = (void *) &inti->ext;
2341
source = &uptr->u.ext;
2342
size = sizeof(inti->ext);
2343
break;
2344
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2345
target = (void *) &inti->io;
2346
source = &uptr->u.io;
2347
size = sizeof(inti->io);
2348
break;
2349
case KVM_S390_MCHK:
2350
target = (void *) &inti->mchk;
2351
source = &uptr->u.mchk;
2352
size = sizeof(inti->mchk);
2353
break;
2354
default:
2355
return -EINVAL;
2356
}
2357
2358
if (copy_from_user(target, source, size))
2359
return -EFAULT;
2360
2361
return 0;
2362
}
2363
2364
static int enqueue_floating_irq(struct kvm_device *dev,
2365
struct kvm_device_attr *attr)
2366
{
2367
struct kvm_s390_interrupt_info *inti = NULL;
2368
int r = 0;
2369
int len = attr->attr;
2370
2371
if (len % sizeof(struct kvm_s390_irq) != 0)
2372
return -EINVAL;
2373
else if (len > KVM_S390_FLIC_MAX_BUFFER)
2374
return -EINVAL;
2375
2376
while (len >= sizeof(struct kvm_s390_irq)) {
2377
inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2378
if (!inti)
2379
return -ENOMEM;
2380
2381
r = copy_irq_from_user(inti, attr->addr);
2382
if (r) {
2383
kfree(inti);
2384
return r;
2385
}
2386
r = __inject_vm(dev->kvm, inti);
2387
if (r) {
2388
kfree(inti);
2389
return r;
2390
}
2391
len -= sizeof(struct kvm_s390_irq);
2392
attr->addr += sizeof(struct kvm_s390_irq);
2393
}
2394
2395
return r;
2396
}
2397
2398
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2399
{
2400
if (id >= MAX_S390_IO_ADAPTERS)
2401
return NULL;
2402
id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2403
return kvm->arch.adapters[id];
2404
}
2405
2406
static int register_io_adapter(struct kvm_device *dev,
2407
struct kvm_device_attr *attr)
2408
{
2409
struct s390_io_adapter *adapter;
2410
struct kvm_s390_io_adapter adapter_info;
2411
2412
if (copy_from_user(&adapter_info,
2413
(void __user *)attr->addr, sizeof(adapter_info)))
2414
return -EFAULT;
2415
2416
if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2417
return -EINVAL;
2418
2419
adapter_info.id = array_index_nospec(adapter_info.id,
2420
MAX_S390_IO_ADAPTERS);
2421
2422
if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2423
return -EINVAL;
2424
2425
adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2426
if (!adapter)
2427
return -ENOMEM;
2428
2429
adapter->id = adapter_info.id;
2430
adapter->isc = adapter_info.isc;
2431
adapter->maskable = adapter_info.maskable;
2432
adapter->masked = false;
2433
adapter->swap = adapter_info.swap;
2434
adapter->suppressible = (adapter_info.flags) &
2435
KVM_S390_ADAPTER_SUPPRESSIBLE;
2436
dev->kvm->arch.adapters[adapter->id] = adapter;
2437
2438
return 0;
2439
}
2440
2441
int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2442
{
2443
int ret;
2444
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2445
2446
if (!adapter || !adapter->maskable)
2447
return -EINVAL;
2448
ret = adapter->masked;
2449
adapter->masked = masked;
2450
return ret;
2451
}
2452
2453
void kvm_s390_destroy_adapters(struct kvm *kvm)
2454
{
2455
int i;
2456
2457
for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2458
kfree(kvm->arch.adapters[i]);
2459
}
2460
2461
static int modify_io_adapter(struct kvm_device *dev,
2462
struct kvm_device_attr *attr)
2463
{
2464
struct kvm_s390_io_adapter_req req;
2465
struct s390_io_adapter *adapter;
2466
int ret;
2467
2468
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2469
return -EFAULT;
2470
2471
adapter = get_io_adapter(dev->kvm, req.id);
2472
if (!adapter)
2473
return -EINVAL;
2474
switch (req.type) {
2475
case KVM_S390_IO_ADAPTER_MASK:
2476
ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2477
if (ret > 0)
2478
ret = 0;
2479
break;
2480
/*
2481
* The following operations are no longer needed and therefore no-ops.
2482
* The gpa to hva translation is done when an IRQ route is set up. The
2483
* set_irq code uses get_user_pages_remote() to do the actual write.
2484
*/
2485
case KVM_S390_IO_ADAPTER_MAP:
2486
case KVM_S390_IO_ADAPTER_UNMAP:
2487
ret = 0;
2488
break;
2489
default:
2490
ret = -EINVAL;
2491
}
2492
2493
return ret;
2494
}
2495
2496
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2497
2498
{
2499
const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2500
u32 schid;
2501
2502
if (attr->flags)
2503
return -EINVAL;
2504
if (attr->attr != sizeof(schid))
2505
return -EINVAL;
2506
if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2507
return -EFAULT;
2508
if (!schid)
2509
return -EINVAL;
2510
kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2511
/*
2512
* If userspace is conforming to the architecture, we can have at most
2513
* one pending I/O interrupt per subchannel, so this is effectively a
2514
* clear all.
2515
*/
2516
return 0;
2517
}
2518
2519
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2520
{
2521
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2522
struct kvm_s390_ais_req req;
2523
int ret = 0;
2524
2525
if (!test_kvm_facility(kvm, 72))
2526
return -EOPNOTSUPP;
2527
2528
if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2529
return -EFAULT;
2530
2531
if (req.isc > MAX_ISC)
2532
return -EINVAL;
2533
2534
trace_kvm_s390_modify_ais_mode(req.isc,
2535
(fi->simm & AIS_MODE_MASK(req.isc)) ?
2536
(fi->nimm & AIS_MODE_MASK(req.isc)) ?
2537
2 : KVM_S390_AIS_MODE_SINGLE :
2538
KVM_S390_AIS_MODE_ALL, req.mode);
2539
2540
mutex_lock(&fi->ais_lock);
2541
switch (req.mode) {
2542
case KVM_S390_AIS_MODE_ALL:
2543
fi->simm &= ~AIS_MODE_MASK(req.isc);
2544
fi->nimm &= ~AIS_MODE_MASK(req.isc);
2545
break;
2546
case KVM_S390_AIS_MODE_SINGLE:
2547
fi->simm |= AIS_MODE_MASK(req.isc);
2548
fi->nimm &= ~AIS_MODE_MASK(req.isc);
2549
break;
2550
default:
2551
ret = -EINVAL;
2552
}
2553
mutex_unlock(&fi->ais_lock);
2554
2555
return ret;
2556
}
2557
2558
static int kvm_s390_inject_airq(struct kvm *kvm,
2559
struct s390_io_adapter *adapter)
2560
{
2561
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2562
struct kvm_s390_interrupt s390int = {
2563
.type = KVM_S390_INT_IO(1, 0, 0, 0),
2564
.parm = 0,
2565
.parm64 = isc_to_int_word(adapter->isc),
2566
};
2567
int ret = 0;
2568
2569
if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2570
return kvm_s390_inject_vm(kvm, &s390int);
2571
2572
mutex_lock(&fi->ais_lock);
2573
if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2574
trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2575
goto out;
2576
}
2577
2578
ret = kvm_s390_inject_vm(kvm, &s390int);
2579
if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2580
fi->nimm |= AIS_MODE_MASK(adapter->isc);
2581
trace_kvm_s390_modify_ais_mode(adapter->isc,
2582
KVM_S390_AIS_MODE_SINGLE, 2);
2583
}
2584
out:
2585
mutex_unlock(&fi->ais_lock);
2586
return ret;
2587
}
2588
2589
static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2590
{
2591
unsigned int id = attr->attr;
2592
struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2593
2594
if (!adapter)
2595
return -EINVAL;
2596
2597
return kvm_s390_inject_airq(kvm, adapter);
2598
}
2599
2600
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2601
{
2602
struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2603
struct kvm_s390_ais_all ais;
2604
2605
if (!test_kvm_facility(kvm, 72))
2606
return -EOPNOTSUPP;
2607
2608
if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2609
return -EFAULT;
2610
2611
mutex_lock(&fi->ais_lock);
2612
fi->simm = ais.simm;
2613
fi->nimm = ais.nimm;
2614
mutex_unlock(&fi->ais_lock);
2615
2616
return 0;
2617
}
2618
2619
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2620
{
2621
int r = 0;
2622
unsigned long i;
2623
struct kvm_vcpu *vcpu;
2624
2625
switch (attr->group) {
2626
case KVM_DEV_FLIC_ENQUEUE:
2627
r = enqueue_floating_irq(dev, attr);
2628
break;
2629
case KVM_DEV_FLIC_CLEAR_IRQS:
2630
kvm_s390_clear_float_irqs(dev->kvm);
2631
break;
2632
case KVM_DEV_FLIC_APF_ENABLE:
2633
if (kvm_is_ucontrol(dev->kvm))
2634
return -EINVAL;
2635
dev->kvm->arch.gmap->pfault_enabled = 1;
2636
break;
2637
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2638
if (kvm_is_ucontrol(dev->kvm))
2639
return -EINVAL;
2640
dev->kvm->arch.gmap->pfault_enabled = 0;
2641
/*
2642
* Make sure no async faults are in transition when
2643
* clearing the queues. So we don't need to worry
2644
* about late coming workers.
2645
*/
2646
synchronize_srcu(&dev->kvm->srcu);
2647
kvm_for_each_vcpu(i, vcpu, dev->kvm)
2648
kvm_clear_async_pf_completion_queue(vcpu);
2649
break;
2650
case KVM_DEV_FLIC_ADAPTER_REGISTER:
2651
r = register_io_adapter(dev, attr);
2652
break;
2653
case KVM_DEV_FLIC_ADAPTER_MODIFY:
2654
r = modify_io_adapter(dev, attr);
2655
break;
2656
case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2657
r = clear_io_irq(dev->kvm, attr);
2658
break;
2659
case KVM_DEV_FLIC_AISM:
2660
r = modify_ais_mode(dev->kvm, attr);
2661
break;
2662
case KVM_DEV_FLIC_AIRQ_INJECT:
2663
r = flic_inject_airq(dev->kvm, attr);
2664
break;
2665
case KVM_DEV_FLIC_AISM_ALL:
2666
r = flic_ais_mode_set_all(dev->kvm, attr);
2667
break;
2668
default:
2669
r = -EINVAL;
2670
}
2671
2672
return r;
2673
}
2674
2675
static int flic_has_attr(struct kvm_device *dev,
2676
struct kvm_device_attr *attr)
2677
{
2678
switch (attr->group) {
2679
case KVM_DEV_FLIC_GET_ALL_IRQS:
2680
case KVM_DEV_FLIC_ENQUEUE:
2681
case KVM_DEV_FLIC_CLEAR_IRQS:
2682
case KVM_DEV_FLIC_APF_ENABLE:
2683
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2684
case KVM_DEV_FLIC_ADAPTER_REGISTER:
2685
case KVM_DEV_FLIC_ADAPTER_MODIFY:
2686
case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2687
case KVM_DEV_FLIC_AISM:
2688
case KVM_DEV_FLIC_AIRQ_INJECT:
2689
case KVM_DEV_FLIC_AISM_ALL:
2690
return 0;
2691
}
2692
return -ENXIO;
2693
}
2694
2695
static int flic_create(struct kvm_device *dev, u32 type)
2696
{
2697
if (!dev)
2698
return -EINVAL;
2699
if (dev->kvm->arch.flic)
2700
return -EINVAL;
2701
dev->kvm->arch.flic = dev;
2702
return 0;
2703
}
2704
2705
static void flic_destroy(struct kvm_device *dev)
2706
{
2707
dev->kvm->arch.flic = NULL;
2708
kfree(dev);
2709
}
2710
2711
/* s390 floating irq controller (flic) */
2712
struct kvm_device_ops kvm_flic_ops = {
2713
.name = "kvm-flic",
2714
.get_attr = flic_get_attr,
2715
.set_attr = flic_set_attr,
2716
.has_attr = flic_has_attr,
2717
.create = flic_create,
2718
.destroy = flic_destroy,
2719
};
2720
2721
static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2722
{
2723
unsigned long bit;
2724
2725
bit = bit_nr + (addr % PAGE_SIZE) * 8;
2726
2727
return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2728
}
2729
2730
static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2731
{
2732
struct mm_struct *mm = kvm->mm;
2733
struct page *page = NULL;
2734
int locked = 1;
2735
2736
if (mmget_not_zero(mm)) {
2737
mmap_read_lock(mm);
2738
get_user_pages_remote(mm, uaddr, 1, FOLL_WRITE,
2739
&page, &locked);
2740
if (locked)
2741
mmap_read_unlock(mm);
2742
mmput(mm);
2743
}
2744
2745
return page;
2746
}
2747
2748
static int adapter_indicators_set(struct kvm *kvm,
2749
struct s390_io_adapter *adapter,
2750
struct kvm_s390_adapter_int *adapter_int)
2751
{
2752
unsigned long bit;
2753
int summary_set, idx;
2754
struct page *ind_page, *summary_page;
2755
void *map;
2756
2757
ind_page = get_map_page(kvm, adapter_int->ind_addr);
2758
if (!ind_page)
2759
return -1;
2760
summary_page = get_map_page(kvm, adapter_int->summary_addr);
2761
if (!summary_page) {
2762
put_page(ind_page);
2763
return -1;
2764
}
2765
2766
idx = srcu_read_lock(&kvm->srcu);
2767
map = page_address(ind_page);
2768
bit = get_ind_bit(adapter_int->ind_addr,
2769
adapter_int->ind_offset, adapter->swap);
2770
set_bit(bit, map);
2771
mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2772
set_page_dirty_lock(ind_page);
2773
map = page_address(summary_page);
2774
bit = get_ind_bit(adapter_int->summary_addr,
2775
adapter_int->summary_offset, adapter->swap);
2776
summary_set = test_and_set_bit(bit, map);
2777
mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2778
set_page_dirty_lock(summary_page);
2779
srcu_read_unlock(&kvm->srcu, idx);
2780
2781
put_page(ind_page);
2782
put_page(summary_page);
2783
return summary_set ? 0 : 1;
2784
}
2785
2786
/*
2787
* < 0 - not injected due to error
2788
* = 0 - coalesced, summary indicator already active
2789
* > 0 - injected interrupt
2790
*/
2791
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2792
struct kvm *kvm, int irq_source_id, int level,
2793
bool line_status)
2794
{
2795
int ret;
2796
struct s390_io_adapter *adapter;
2797
2798
/* We're only interested in the 0->1 transition. */
2799
if (!level)
2800
return 0;
2801
adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2802
if (!adapter)
2803
return -1;
2804
ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2805
if ((ret > 0) && !adapter->masked) {
2806
ret = kvm_s390_inject_airq(kvm, adapter);
2807
if (ret == 0)
2808
ret = 1;
2809
}
2810
return ret;
2811
}
2812
2813
/*
2814
* Inject the machine check to the guest.
2815
*/
2816
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2817
struct mcck_volatile_info *mcck_info)
2818
{
2819
struct kvm_s390_interrupt_info inti;
2820
struct kvm_s390_irq irq;
2821
struct kvm_s390_mchk_info *mchk;
2822
union mci mci;
2823
__u64 cr14 = 0; /* upper bits are not used */
2824
int rc;
2825
2826
mci.val = mcck_info->mcic;
2827
if (mci.sr)
2828
cr14 |= CR14_RECOVERY_SUBMASK;
2829
if (mci.dg)
2830
cr14 |= CR14_DEGRADATION_SUBMASK;
2831
if (mci.w)
2832
cr14 |= CR14_WARNING_SUBMASK;
2833
2834
mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2835
mchk->cr14 = cr14;
2836
mchk->mcic = mcck_info->mcic;
2837
mchk->ext_damage_code = mcck_info->ext_damage_code;
2838
mchk->failing_storage_address = mcck_info->failing_storage_address;
2839
if (mci.ck) {
2840
/* Inject the floating machine check */
2841
inti.type = KVM_S390_MCHK;
2842
rc = __inject_vm(vcpu->kvm, &inti);
2843
} else {
2844
/* Inject the machine check to specified vcpu */
2845
irq.type = KVM_S390_MCHK;
2846
rc = kvm_s390_inject_vcpu(vcpu, &irq);
2847
}
2848
WARN_ON_ONCE(rc);
2849
}
2850
2851
int kvm_set_routing_entry(struct kvm *kvm,
2852
struct kvm_kernel_irq_routing_entry *e,
2853
const struct kvm_irq_routing_entry *ue)
2854
{
2855
u64 uaddr_s, uaddr_i;
2856
int idx;
2857
2858
switch (ue->type) {
2859
/* we store the userspace addresses instead of the guest addresses */
2860
case KVM_IRQ_ROUTING_S390_ADAPTER:
2861
if (kvm_is_ucontrol(kvm))
2862
return -EINVAL;
2863
e->set = set_adapter_int;
2864
2865
idx = srcu_read_lock(&kvm->srcu);
2866
uaddr_s = gpa_to_hva(kvm, ue->u.adapter.summary_addr);
2867
uaddr_i = gpa_to_hva(kvm, ue->u.adapter.ind_addr);
2868
srcu_read_unlock(&kvm->srcu, idx);
2869
2870
if (kvm_is_error_hva(uaddr_s) || kvm_is_error_hva(uaddr_i))
2871
return -EFAULT;
2872
e->adapter.summary_addr = uaddr_s;
2873
e->adapter.ind_addr = uaddr_i;
2874
e->adapter.summary_offset = ue->u.adapter.summary_offset;
2875
e->adapter.ind_offset = ue->u.adapter.ind_offset;
2876
e->adapter.adapter_id = ue->u.adapter.adapter_id;
2877
return 0;
2878
default:
2879
return -EINVAL;
2880
}
2881
}
2882
2883
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2884
int irq_source_id, int level, bool line_status)
2885
{
2886
return -EINVAL;
2887
}
2888
2889
int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2890
{
2891
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2892
struct kvm_s390_irq *buf;
2893
int r = 0;
2894
int n;
2895
2896
buf = vmalloc(len);
2897
if (!buf)
2898
return -ENOMEM;
2899
2900
if (copy_from_user((void *) buf, irqstate, len)) {
2901
r = -EFAULT;
2902
goto out_free;
2903
}
2904
2905
/*
2906
* Don't allow setting the interrupt state
2907
* when there are already interrupts pending
2908
*/
2909
spin_lock(&li->lock);
2910
if (li->pending_irqs) {
2911
r = -EBUSY;
2912
goto out_unlock;
2913
}
2914
2915
for (n = 0; n < len / sizeof(*buf); n++) {
2916
r = do_inject_vcpu(vcpu, &buf[n]);
2917
if (r)
2918
break;
2919
}
2920
2921
out_unlock:
2922
spin_unlock(&li->lock);
2923
out_free:
2924
vfree(buf);
2925
2926
return r;
2927
}
2928
2929
static void store_local_irq(struct kvm_s390_local_interrupt *li,
2930
struct kvm_s390_irq *irq,
2931
unsigned long irq_type)
2932
{
2933
switch (irq_type) {
2934
case IRQ_PEND_MCHK_EX:
2935
case IRQ_PEND_MCHK_REP:
2936
irq->type = KVM_S390_MCHK;
2937
irq->u.mchk = li->irq.mchk;
2938
break;
2939
case IRQ_PEND_PROG:
2940
irq->type = KVM_S390_PROGRAM_INT;
2941
irq->u.pgm = li->irq.pgm;
2942
break;
2943
case IRQ_PEND_PFAULT_INIT:
2944
irq->type = KVM_S390_INT_PFAULT_INIT;
2945
irq->u.ext = li->irq.ext;
2946
break;
2947
case IRQ_PEND_EXT_EXTERNAL:
2948
irq->type = KVM_S390_INT_EXTERNAL_CALL;
2949
irq->u.extcall = li->irq.extcall;
2950
break;
2951
case IRQ_PEND_EXT_CLOCK_COMP:
2952
irq->type = KVM_S390_INT_CLOCK_COMP;
2953
break;
2954
case IRQ_PEND_EXT_CPU_TIMER:
2955
irq->type = KVM_S390_INT_CPU_TIMER;
2956
break;
2957
case IRQ_PEND_SIGP_STOP:
2958
irq->type = KVM_S390_SIGP_STOP;
2959
irq->u.stop = li->irq.stop;
2960
break;
2961
case IRQ_PEND_RESTART:
2962
irq->type = KVM_S390_RESTART;
2963
break;
2964
case IRQ_PEND_SET_PREFIX:
2965
irq->type = KVM_S390_SIGP_SET_PREFIX;
2966
irq->u.prefix = li->irq.prefix;
2967
break;
2968
}
2969
}
2970
2971
int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
2972
{
2973
int scn;
2974
DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
2975
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2976
unsigned long pending_irqs;
2977
struct kvm_s390_irq irq;
2978
unsigned long irq_type;
2979
int cpuaddr;
2980
int n = 0;
2981
2982
spin_lock(&li->lock);
2983
pending_irqs = li->pending_irqs;
2984
memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
2985
sizeof(sigp_emerg_pending));
2986
spin_unlock(&li->lock);
2987
2988
for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
2989
memset(&irq, 0, sizeof(irq));
2990
if (irq_type == IRQ_PEND_EXT_EMERGENCY)
2991
continue;
2992
if (n + sizeof(irq) > len)
2993
return -ENOBUFS;
2994
store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
2995
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
2996
return -EFAULT;
2997
n += sizeof(irq);
2998
}
2999
3000
if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3001
for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3002
memset(&irq, 0, sizeof(irq));
3003
if (n + sizeof(irq) > len)
3004
return -ENOBUFS;
3005
irq.type = KVM_S390_INT_EMERGENCY;
3006
irq.u.emerg.code = cpuaddr;
3007
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3008
return -EFAULT;
3009
n += sizeof(irq);
3010
}
3011
}
3012
3013
if (sca_ext_call_pending(vcpu, &scn)) {
3014
if (n + sizeof(irq) > len)
3015
return -ENOBUFS;
3016
memset(&irq, 0, sizeof(irq));
3017
irq.type = KVM_S390_INT_EXTERNAL_CALL;
3018
irq.u.extcall.code = scn;
3019
if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3020
return -EFAULT;
3021
n += sizeof(irq);
3022
}
3023
3024
return n;
3025
}
3026
3027
static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3028
{
3029
int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3030
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3031
struct kvm_vcpu *vcpu;
3032
u8 vcpu_isc_mask;
3033
3034
for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3035
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3036
if (psw_ioint_disabled(vcpu))
3037
continue;
3038
vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3039
if (deliverable_mask & vcpu_isc_mask) {
3040
/* lately kicked but not yet running */
3041
if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3042
return;
3043
kvm_s390_vcpu_wakeup(vcpu);
3044
return;
3045
}
3046
}
3047
}
3048
3049
static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3050
{
3051
struct kvm_s390_gisa_interrupt *gi =
3052
container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3053
struct kvm *kvm =
3054
container_of(gi->origin, struct sie_page2, gisa)->kvm;
3055
u8 pending_mask;
3056
3057
pending_mask = gisa_get_ipm_or_restore_iam(gi);
3058
if (pending_mask) {
3059
__airqs_kick_single_vcpu(kvm, pending_mask);
3060
hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3061
return HRTIMER_RESTART;
3062
}
3063
3064
return HRTIMER_NORESTART;
3065
}
3066
3067
#define NULL_GISA_ADDR 0x00000000UL
3068
#define NONE_GISA_ADDR 0x00000001UL
3069
#define GISA_ADDR_MASK 0xfffff000UL
3070
3071
static void process_gib_alert_list(void)
3072
{
3073
struct kvm_s390_gisa_interrupt *gi;
3074
u32 final, gisa_phys, origin = 0UL;
3075
struct kvm_s390_gisa *gisa;
3076
struct kvm *kvm;
3077
3078
do {
3079
/*
3080
* If the NONE_GISA_ADDR is still stored in the alert list
3081
* origin, we will leave the outer loop. No further GISA has
3082
* been added to the alert list by millicode while processing
3083
* the current alert list.
3084
*/
3085
final = (origin & NONE_GISA_ADDR);
3086
/*
3087
* Cut off the alert list and store the NONE_GISA_ADDR in the
3088
* alert list origin to avoid further GAL interruptions.
3089
* A new alert list can be build up by millicode in parallel
3090
* for guests not in the yet cut-off alert list. When in the
3091
* final loop, store the NULL_GISA_ADDR instead. This will re-
3092
* enable GAL interruptions on the host again.
3093
*/
3094
origin = xchg(&gib->alert_list_origin,
3095
(!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3096
/*
3097
* Loop through the just cut-off alert list and start the
3098
* gisa timers to kick idle vcpus to consume the pending
3099
* interruptions asap.
3100
*/
3101
while (origin & GISA_ADDR_MASK) {
3102
gisa_phys = origin;
3103
gisa = phys_to_virt(gisa_phys);
3104
origin = gisa->next_alert;
3105
gisa->next_alert = gisa_phys;
3106
kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3107
gi = &kvm->arch.gisa_int;
3108
if (hrtimer_active(&gi->timer))
3109
hrtimer_cancel(&gi->timer);
3110
hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3111
}
3112
} while (!final);
3113
3114
}
3115
3116
void kvm_s390_gisa_clear(struct kvm *kvm)
3117
{
3118
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3119
3120
if (!gi->origin)
3121
return;
3122
gisa_clear_ipm(gi->origin);
3123
VM_EVENT(kvm, 3, "gisa 0x%p cleared", gi->origin);
3124
}
3125
3126
void kvm_s390_gisa_init(struct kvm *kvm)
3127
{
3128
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3129
3130
if (!css_general_characteristics.aiv)
3131
return;
3132
gi->origin = &kvm->arch.sie_page2->gisa;
3133
gi->alert.mask = 0;
3134
spin_lock_init(&gi->alert.ref_lock);
3135
gi->expires = 50 * 1000; /* 50 usec */
3136
hrtimer_setup(&gi->timer, gisa_vcpu_kicker, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3137
memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3138
gi->origin->next_alert = (u32)virt_to_phys(gi->origin);
3139
VM_EVENT(kvm, 3, "gisa 0x%p initialized", gi->origin);
3140
}
3141
3142
void kvm_s390_gisa_enable(struct kvm *kvm)
3143
{
3144
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3145
struct kvm_vcpu *vcpu;
3146
unsigned long i;
3147
u32 gisa_desc;
3148
3149
if (gi->origin)
3150
return;
3151
kvm_s390_gisa_init(kvm);
3152
gisa_desc = kvm_s390_get_gisa_desc(kvm);
3153
if (!gisa_desc)
3154
return;
3155
kvm_for_each_vcpu(i, vcpu, kvm) {
3156
mutex_lock(&vcpu->mutex);
3157
vcpu->arch.sie_block->gd = gisa_desc;
3158
vcpu->arch.sie_block->eca |= ECA_AIV;
3159
VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3160
vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3161
mutex_unlock(&vcpu->mutex);
3162
}
3163
}
3164
3165
void kvm_s390_gisa_destroy(struct kvm *kvm)
3166
{
3167
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3168
struct kvm_s390_gisa *gisa = gi->origin;
3169
3170
if (!gi->origin)
3171
return;
3172
WARN(gi->alert.mask != 0x00,
3173
"unexpected non zero alert.mask 0x%02x",
3174
gi->alert.mask);
3175
gi->alert.mask = 0x00;
3176
if (gisa_set_iam(gi->origin, gi->alert.mask))
3177
process_gib_alert_list();
3178
hrtimer_cancel(&gi->timer);
3179
gi->origin = NULL;
3180
VM_EVENT(kvm, 3, "gisa 0x%p destroyed", gisa);
3181
}
3182
3183
void kvm_s390_gisa_disable(struct kvm *kvm)
3184
{
3185
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3186
struct kvm_vcpu *vcpu;
3187
unsigned long i;
3188
3189
if (!gi->origin)
3190
return;
3191
kvm_for_each_vcpu(i, vcpu, kvm) {
3192
mutex_lock(&vcpu->mutex);
3193
vcpu->arch.sie_block->eca &= ~ECA_AIV;
3194
vcpu->arch.sie_block->gd = 0U;
3195
mutex_unlock(&vcpu->mutex);
3196
VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3197
}
3198
kvm_s390_gisa_destroy(kvm);
3199
}
3200
3201
/**
3202
* kvm_s390_gisc_register - register a guest ISC
3203
*
3204
* @kvm: the kernel vm to work with
3205
* @gisc: the guest interruption sub class to register
3206
*
3207
* The function extends the vm specific alert mask to use.
3208
* The effective IAM mask in the GISA is updated as well
3209
* in case the GISA is not part of the GIB alert list.
3210
* It will be updated latest when the IAM gets restored
3211
* by gisa_get_ipm_or_restore_iam().
3212
*
3213
* Returns: the nonspecific ISC (NISC) the gib alert mechanism
3214
* has registered with the channel subsystem.
3215
* -ENODEV in case the vm uses no GISA
3216
* -ERANGE in case the guest ISC is invalid
3217
*/
3218
int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3219
{
3220
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3221
3222
if (!gi->origin)
3223
return -ENODEV;
3224
if (gisc > MAX_ISC)
3225
return -ERANGE;
3226
3227
spin_lock(&gi->alert.ref_lock);
3228
gi->alert.ref_count[gisc]++;
3229
if (gi->alert.ref_count[gisc] == 1) {
3230
gi->alert.mask |= 0x80 >> gisc;
3231
gisa_set_iam(gi->origin, gi->alert.mask);
3232
}
3233
spin_unlock(&gi->alert.ref_lock);
3234
3235
return gib->nisc;
3236
}
3237
EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3238
3239
/**
3240
* kvm_s390_gisc_unregister - unregister a guest ISC
3241
*
3242
* @kvm: the kernel vm to work with
3243
* @gisc: the guest interruption sub class to register
3244
*
3245
* The function reduces the vm specific alert mask to use.
3246
* The effective IAM mask in the GISA is updated as well
3247
* in case the GISA is not part of the GIB alert list.
3248
* It will be updated latest when the IAM gets restored
3249
* by gisa_get_ipm_or_restore_iam().
3250
*
3251
* Returns: the nonspecific ISC (NISC) the gib alert mechanism
3252
* has registered with the channel subsystem.
3253
* -ENODEV in case the vm uses no GISA
3254
* -ERANGE in case the guest ISC is invalid
3255
* -EINVAL in case the guest ISC is not registered
3256
*/
3257
int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3258
{
3259
struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3260
int rc = 0;
3261
3262
if (!gi->origin)
3263
return -ENODEV;
3264
if (gisc > MAX_ISC)
3265
return -ERANGE;
3266
3267
spin_lock(&gi->alert.ref_lock);
3268
if (gi->alert.ref_count[gisc] == 0) {
3269
rc = -EINVAL;
3270
goto out;
3271
}
3272
gi->alert.ref_count[gisc]--;
3273
if (gi->alert.ref_count[gisc] == 0) {
3274
gi->alert.mask &= ~(0x80 >> gisc);
3275
gisa_set_iam(gi->origin, gi->alert.mask);
3276
}
3277
out:
3278
spin_unlock(&gi->alert.ref_lock);
3279
3280
return rc;
3281
}
3282
EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3283
3284
static void aen_host_forward(unsigned long si)
3285
{
3286
struct kvm_s390_gisa_interrupt *gi;
3287
struct zpci_gaite *gaite;
3288
struct kvm *kvm;
3289
3290
gaite = (struct zpci_gaite *)aift->gait +
3291
(si * sizeof(struct zpci_gaite));
3292
if (gaite->count == 0)
3293
return;
3294
if (gaite->aisb != 0)
3295
set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb));
3296
3297
kvm = kvm_s390_pci_si_to_kvm(aift, si);
3298
if (!kvm)
3299
return;
3300
gi = &kvm->arch.gisa_int;
3301
3302
if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) ||
3303
!(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) {
3304
gisa_set_ipm_gisc(gi->origin, gaite->gisc);
3305
if (hrtimer_active(&gi->timer))
3306
hrtimer_cancel(&gi->timer);
3307
hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3308
kvm->stat.aen_forward++;
3309
}
3310
}
3311
3312
static void aen_process_gait(u8 isc)
3313
{
3314
bool found = false, first = true;
3315
union zpci_sic_iib iib = {{0}};
3316
unsigned long si, flags;
3317
3318
spin_lock_irqsave(&aift->gait_lock, flags);
3319
3320
if (!aift->gait) {
3321
spin_unlock_irqrestore(&aift->gait_lock, flags);
3322
return;
3323
}
3324
3325
for (si = 0;;) {
3326
/* Scan adapter summary indicator bit vector */
3327
si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv));
3328
if (si == -1UL) {
3329
if (first || found) {
3330
/* Re-enable interrupts. */
3331
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc,
3332
&iib);
3333
first = found = false;
3334
} else {
3335
/* Interrupts on and all bits processed */
3336
break;
3337
}
3338
found = false;
3339
si = 0;
3340
/* Scan again after re-enabling interrupts */
3341
continue;
3342
}
3343
found = true;
3344
aen_host_forward(si);
3345
}
3346
3347
spin_unlock_irqrestore(&aift->gait_lock, flags);
3348
}
3349
3350
static void gib_alert_irq_handler(struct airq_struct *airq,
3351
struct tpi_info *tpi_info)
3352
{
3353
struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info;
3354
3355
inc_irq_stat(IRQIO_GAL);
3356
3357
if ((info->forward || info->error) &&
3358
IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3359
aen_process_gait(info->isc);
3360
if (info->aism != 0)
3361
process_gib_alert_list();
3362
} else {
3363
process_gib_alert_list();
3364
}
3365
}
3366
3367
static struct airq_struct gib_alert_irq = {
3368
.handler = gib_alert_irq_handler,
3369
};
3370
3371
void kvm_s390_gib_destroy(void)
3372
{
3373
if (!gib)
3374
return;
3375
if (kvm_s390_pci_interp_allowed() && aift) {
3376
mutex_lock(&aift->aift_lock);
3377
kvm_s390_pci_aen_exit();
3378
mutex_unlock(&aift->aift_lock);
3379
}
3380
chsc_sgib(0);
3381
unregister_adapter_interrupt(&gib_alert_irq);
3382
free_page((unsigned long)gib);
3383
gib = NULL;
3384
}
3385
3386
int __init kvm_s390_gib_init(u8 nisc)
3387
{
3388
u32 gib_origin;
3389
int rc = 0;
3390
3391
if (!css_general_characteristics.aiv) {
3392
KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3393
goto out;
3394
}
3395
3396
gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3397
if (!gib) {
3398
rc = -ENOMEM;
3399
goto out;
3400
}
3401
3402
gib_alert_irq.isc = nisc;
3403
if (register_adapter_interrupt(&gib_alert_irq)) {
3404
pr_err("Registering the GIB alert interruption handler failed\n");
3405
rc = -EIO;
3406
goto out_free_gib;
3407
}
3408
/* adapter interrupts used for AP (applicable here) don't use the LSI */
3409
*gib_alert_irq.lsi_ptr = 0xff;
3410
3411
gib->nisc = nisc;
3412
gib_origin = virt_to_phys(gib);
3413
if (chsc_sgib(gib_origin)) {
3414
pr_err("Associating the GIB with the AIV facility failed\n");
3415
free_page((unsigned long)gib);
3416
gib = NULL;
3417
rc = -EIO;
3418
goto out_unreg_gal;
3419
}
3420
3421
if (kvm_s390_pci_interp_allowed()) {
3422
if (kvm_s390_pci_aen_init(nisc)) {
3423
pr_err("Initializing AEN for PCI failed\n");
3424
rc = -EIO;
3425
goto out_unreg_gal;
3426
}
3427
}
3428
3429
KVM_EVENT(3, "gib 0x%p (nisc=%d) initialized", gib, gib->nisc);
3430
goto out;
3431
3432
out_unreg_gal:
3433
unregister_adapter_interrupt(&gib_alert_irq);
3434
out_free_gib:
3435
free_page((unsigned long)gib);
3436
gib = NULL;
3437
out:
3438
return rc;
3439
}
3440
3441