Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/kvm/kvm-s390.c
51970 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* hosting IBM Z kernel virtual machines (s390x)
4
*
5
* Copyright IBM Corp. 2008, 2020
6
*
7
* Author(s): Carsten Otte <[email protected]>
8
* Christian Borntraeger <[email protected]>
9
* Christian Ehrhardt <[email protected]>
10
* Jason J. Herne <[email protected]>
11
*/
12
13
#define pr_fmt(fmt) "kvm-s390: " fmt
14
15
#include <linux/compiler.h>
16
#include <linux/entry-virt.h>
17
#include <linux/export.h>
18
#include <linux/err.h>
19
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21
#include <linux/init.h>
22
#include <linux/kvm.h>
23
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/moduleparam.h>
27
#include <linux/cpufeature.h>
28
#include <linux/random.h>
29
#include <linux/slab.h>
30
#include <linux/timer.h>
31
#include <linux/vmalloc.h>
32
#include <linux/bitmap.h>
33
#include <linux/sched/signal.h>
34
#include <linux/string.h>
35
#include <linux/pgtable.h>
36
#include <linux/mmu_notifier.h>
37
38
#include <asm/access-regs.h>
39
#include <asm/asm-offsets.h>
40
#include <asm/lowcore.h>
41
#include <asm/machine.h>
42
#include <asm/stp.h>
43
#include <asm/gmap_helpers.h>
44
#include <asm/nmi.h>
45
#include <asm/isc.h>
46
#include <asm/sclp.h>
47
#include <asm/cpacf.h>
48
#include <asm/timex.h>
49
#include <asm/asm.h>
50
#include <asm/fpu.h>
51
#include <asm/ap.h>
52
#include <asm/uv.h>
53
#include "kvm-s390.h"
54
#include "gaccess.h"
55
#include "gmap.h"
56
#include "faultin.h"
57
#include "pci.h"
58
59
#define CREATE_TRACE_POINTS
60
#include "trace.h"
61
#include "trace-s390.h"
62
63
#define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
64
#define LOCAL_IRQS 32
65
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
66
(KVM_MAX_VCPUS + LOCAL_IRQS))
67
68
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
69
KVM_GENERIC_VM_STATS(),
70
STATS_DESC_COUNTER(VM, inject_io),
71
STATS_DESC_COUNTER(VM, inject_float_mchk),
72
STATS_DESC_COUNTER(VM, inject_pfault_done),
73
STATS_DESC_COUNTER(VM, inject_service_signal),
74
STATS_DESC_COUNTER(VM, inject_virtio),
75
STATS_DESC_COUNTER(VM, aen_forward),
76
STATS_DESC_COUNTER(VM, gmap_shadow_reuse),
77
STATS_DESC_COUNTER(VM, gmap_shadow_create),
78
STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry),
79
STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry),
80
STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry),
81
STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry),
82
STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry),
83
};
84
85
const struct kvm_stats_header kvm_vm_stats_header = {
86
.name_size = KVM_STATS_NAME_SIZE,
87
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
88
.id_offset = sizeof(struct kvm_stats_header),
89
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
90
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
91
sizeof(kvm_vm_stats_desc),
92
};
93
94
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
95
KVM_GENERIC_VCPU_STATS(),
96
STATS_DESC_COUNTER(VCPU, exit_userspace),
97
STATS_DESC_COUNTER(VCPU, exit_null),
98
STATS_DESC_COUNTER(VCPU, exit_external_request),
99
STATS_DESC_COUNTER(VCPU, exit_io_request),
100
STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
101
STATS_DESC_COUNTER(VCPU, exit_stop_request),
102
STATS_DESC_COUNTER(VCPU, exit_validity),
103
STATS_DESC_COUNTER(VCPU, exit_instruction),
104
STATS_DESC_COUNTER(VCPU, exit_pei),
105
STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
106
STATS_DESC_COUNTER(VCPU, instruction_lctl),
107
STATS_DESC_COUNTER(VCPU, instruction_lctlg),
108
STATS_DESC_COUNTER(VCPU, instruction_stctl),
109
STATS_DESC_COUNTER(VCPU, instruction_stctg),
110
STATS_DESC_COUNTER(VCPU, exit_program_interruption),
111
STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
112
STATS_DESC_COUNTER(VCPU, exit_operation_exception),
113
STATS_DESC_COUNTER(VCPU, deliver_ckc),
114
STATS_DESC_COUNTER(VCPU, deliver_cputm),
115
STATS_DESC_COUNTER(VCPU, deliver_external_call),
116
STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
117
STATS_DESC_COUNTER(VCPU, deliver_service_signal),
118
STATS_DESC_COUNTER(VCPU, deliver_virtio),
119
STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
120
STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
121
STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
122
STATS_DESC_COUNTER(VCPU, deliver_program),
123
STATS_DESC_COUNTER(VCPU, deliver_io),
124
STATS_DESC_COUNTER(VCPU, deliver_machine_check),
125
STATS_DESC_COUNTER(VCPU, exit_wait_state),
126
STATS_DESC_COUNTER(VCPU, inject_ckc),
127
STATS_DESC_COUNTER(VCPU, inject_cputm),
128
STATS_DESC_COUNTER(VCPU, inject_external_call),
129
STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
130
STATS_DESC_COUNTER(VCPU, inject_mchk),
131
STATS_DESC_COUNTER(VCPU, inject_pfault_init),
132
STATS_DESC_COUNTER(VCPU, inject_program),
133
STATS_DESC_COUNTER(VCPU, inject_restart),
134
STATS_DESC_COUNTER(VCPU, inject_set_prefix),
135
STATS_DESC_COUNTER(VCPU, inject_stop_signal),
136
STATS_DESC_COUNTER(VCPU, instruction_epsw),
137
STATS_DESC_COUNTER(VCPU, instruction_gs),
138
STATS_DESC_COUNTER(VCPU, instruction_io_other),
139
STATS_DESC_COUNTER(VCPU, instruction_lpsw),
140
STATS_DESC_COUNTER(VCPU, instruction_lpswe),
141
STATS_DESC_COUNTER(VCPU, instruction_lpswey),
142
STATS_DESC_COUNTER(VCPU, instruction_pfmf),
143
STATS_DESC_COUNTER(VCPU, instruction_ptff),
144
STATS_DESC_COUNTER(VCPU, instruction_sck),
145
STATS_DESC_COUNTER(VCPU, instruction_sckpf),
146
STATS_DESC_COUNTER(VCPU, instruction_stidp),
147
STATS_DESC_COUNTER(VCPU, instruction_spx),
148
STATS_DESC_COUNTER(VCPU, instruction_stpx),
149
STATS_DESC_COUNTER(VCPU, instruction_stap),
150
STATS_DESC_COUNTER(VCPU, instruction_iske),
151
STATS_DESC_COUNTER(VCPU, instruction_ri),
152
STATS_DESC_COUNTER(VCPU, instruction_rrbe),
153
STATS_DESC_COUNTER(VCPU, instruction_sske),
154
STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
155
STATS_DESC_COUNTER(VCPU, instruction_stsi),
156
STATS_DESC_COUNTER(VCPU, instruction_stfl),
157
STATS_DESC_COUNTER(VCPU, instruction_tb),
158
STATS_DESC_COUNTER(VCPU, instruction_tpi),
159
STATS_DESC_COUNTER(VCPU, instruction_tprot),
160
STATS_DESC_COUNTER(VCPU, instruction_tsch),
161
STATS_DESC_COUNTER(VCPU, instruction_sie),
162
STATS_DESC_COUNTER(VCPU, instruction_essa),
163
STATS_DESC_COUNTER(VCPU, instruction_sthyi),
164
STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
165
STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
166
STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
167
STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
168
STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
169
STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
170
STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
171
STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
172
STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
173
STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
174
STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
175
STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
176
STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
177
STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
178
STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
179
STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
180
STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
181
STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
182
STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
183
STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
184
STATS_DESC_COUNTER(VCPU, diag_9c_forward),
185
STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
186
STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
187
STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
188
STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
189
STATS_DESC_COUNTER(VCPU, pfault_sync),
190
STATS_DESC_COUNTER(VCPU, signal_exits)
191
};
192
193
const struct kvm_stats_header kvm_vcpu_stats_header = {
194
.name_size = KVM_STATS_NAME_SIZE,
195
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
196
.id_offset = sizeof(struct kvm_stats_header),
197
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
198
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
199
sizeof(kvm_vcpu_stats_desc),
200
};
201
202
/* allow nested virtualization in KVM (if enabled by user space) */
203
static int nested;
204
module_param(nested, int, S_IRUGO);
205
MODULE_PARM_DESC(nested, "Nested virtualization support");
206
207
/* allow 1m huge page guest backing, if !nested */
208
static int hpage;
209
module_param(hpage, int, 0444);
210
MODULE_PARM_DESC(hpage, "1m huge page backing support");
211
212
/* maximum percentage of steal time for polling. >100 is treated like 100 */
213
static u8 halt_poll_max_steal = 10;
214
module_param(halt_poll_max_steal, byte, 0644);
215
MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
216
217
/* if set to true, the GISA will be initialized and used if available */
218
static bool use_gisa = true;
219
module_param(use_gisa, bool, 0644);
220
MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
221
222
/* maximum diag9c forwarding per second */
223
unsigned int diag9c_forwarding_hz;
224
module_param(diag9c_forwarding_hz, uint, 0644);
225
MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
226
227
/*
228
* allow asynchronous deinit for protected guests; enable by default since
229
* the feature is opt-in anyway
230
*/
231
static int async_destroy = 1;
232
module_param(async_destroy, int, 0444);
233
MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
234
235
/*
236
* For now we handle at most 16 double words as this is what the s390 base
237
* kernel handles and stores in the prefix page. If we ever need to go beyond
238
* this, this requires changes to code, but the external uapi can stay.
239
*/
240
#define SIZE_INTERNAL 16
241
242
/*
243
* Base feature mask that defines default mask for facilities. Consists of the
244
* defines in FACILITIES_KVM and the non-hypervisor managed bits.
245
*/
246
static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
247
/*
248
* Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
249
* and defines the facilities that can be enabled via a cpu model.
250
*/
251
static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
252
253
static unsigned long kvm_s390_fac_size(void)
254
{
255
BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
256
BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
257
BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
258
sizeof(stfle_fac_list));
259
260
return SIZE_INTERNAL;
261
}
262
263
/* available cpu features supported by kvm */
264
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
265
/* available subfunctions indicated via query / "test bit" */
266
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
267
268
debug_info_t *kvm_s390_dbf;
269
debug_info_t *kvm_s390_dbf_uv;
270
271
/* Section: not file related */
272
/* forward declarations */
273
static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
274
{
275
u8 delta_idx = 0;
276
277
/*
278
* The TOD jumps by delta, we have to compensate this by adding
279
* -delta to the epoch.
280
*/
281
delta = -delta;
282
283
/* sign-extension - we're adding to signed values below */
284
if ((s64)delta < 0)
285
delta_idx = -1;
286
287
scb->epoch += delta;
288
if (scb->ecd & ECD_MEF) {
289
scb->epdx += delta_idx;
290
if (scb->epoch < delta)
291
scb->epdx += 1;
292
}
293
}
294
295
/*
296
* This callback is executed during stop_machine(). All CPUs are therefore
297
* temporarily stopped. In order not to change guest behavior, we have to
298
* disable preemption whenever we touch the epoch of kvm and the VCPUs,
299
* so a CPU won't be stopped while calculating with the epoch.
300
*/
301
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
302
void *v)
303
{
304
struct kvm *kvm;
305
struct kvm_vcpu *vcpu;
306
unsigned long i;
307
unsigned long long *delta = v;
308
309
list_for_each_entry(kvm, &vm_list, vm_list) {
310
kvm_for_each_vcpu(i, vcpu, kvm) {
311
kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
312
if (i == 0) {
313
kvm->arch.epoch = vcpu->arch.sie_block->epoch;
314
kvm->arch.epdx = vcpu->arch.sie_block->epdx;
315
}
316
if (vcpu->arch.cputm_enabled)
317
vcpu->arch.cputm_start += *delta;
318
if (vcpu->arch.vsie_block)
319
kvm_clock_sync_scb(vcpu->arch.vsie_block,
320
*delta);
321
}
322
}
323
return NOTIFY_OK;
324
}
325
326
static struct notifier_block kvm_clock_notifier = {
327
.notifier_call = kvm_clock_sync,
328
};
329
330
static void allow_cpu_feat(unsigned long nr)
331
{
332
set_bit_inv(nr, kvm_s390_available_cpu_feat);
333
}
334
335
static inline int plo_test_bit(unsigned char nr)
336
{
337
unsigned long function = (unsigned long)nr | 0x100;
338
int cc;
339
340
asm volatile(
341
" lgr 0,%[function]\n"
342
/* Parameter registers are ignored for "test bit" */
343
" plo 0,0,0,0(0)\n"
344
CC_IPM(cc)
345
: CC_OUT(cc, cc)
346
: [function] "d" (function)
347
: CC_CLOBBER_LIST("0"));
348
return CC_TRANSFORM(cc) == 0;
349
}
350
351
static __always_inline void pfcr_query(u8 (*query)[16])
352
{
353
asm volatile(
354
" lghi 0,0\n"
355
" .insn rsy,0xeb0000000016,0,0,%[query]"
356
: [query] "=QS" (*query)
357
:
358
: "cc", "0");
359
}
360
361
static __always_inline void __sortl_query(u8 (*query)[32])
362
{
363
asm volatile(
364
" lghi 0,0\n"
365
" la 1,%[query]\n"
366
/* Parameter registers are ignored */
367
" .insn rre,0xb9380000,2,4"
368
: [query] "=R" (*query)
369
:
370
: "cc", "0", "1");
371
}
372
373
static __always_inline void __dfltcc_query(u8 (*query)[32])
374
{
375
asm volatile(
376
" lghi 0,0\n"
377
" la 1,%[query]\n"
378
/* Parameter registers are ignored */
379
" .insn rrf,0xb9390000,2,4,6,0"
380
: [query] "=R" (*query)
381
:
382
: "cc", "0", "1");
383
}
384
385
static void __init kvm_s390_cpu_feat_init(void)
386
{
387
int i;
388
389
for (i = 0; i < 256; ++i) {
390
if (plo_test_bit(i))
391
kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
392
}
393
394
if (test_facility(28)) /* TOD-clock steering */
395
ptff(kvm_s390_available_subfunc.ptff,
396
sizeof(kvm_s390_available_subfunc.ptff),
397
PTFF_QAF);
398
399
if (test_facility(17)) { /* MSA */
400
__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
401
kvm_s390_available_subfunc.kmac);
402
__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
403
kvm_s390_available_subfunc.kmc);
404
__cpacf_query(CPACF_KM, (cpacf_mask_t *)
405
kvm_s390_available_subfunc.km);
406
__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
407
kvm_s390_available_subfunc.kimd);
408
__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
409
kvm_s390_available_subfunc.klmd);
410
}
411
if (test_facility(76)) /* MSA3 */
412
__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
413
kvm_s390_available_subfunc.pckmo);
414
if (test_facility(77)) { /* MSA4 */
415
__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
416
kvm_s390_available_subfunc.kmctr);
417
__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
418
kvm_s390_available_subfunc.kmf);
419
__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
420
kvm_s390_available_subfunc.kmo);
421
__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
422
kvm_s390_available_subfunc.pcc);
423
}
424
if (test_facility(57)) /* MSA5 */
425
__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
426
kvm_s390_available_subfunc.ppno);
427
428
if (test_facility(146)) /* MSA8 */
429
__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
430
kvm_s390_available_subfunc.kma);
431
432
if (test_facility(155)) /* MSA9 */
433
__cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
434
kvm_s390_available_subfunc.kdsa);
435
436
if (test_facility(150)) /* SORTL */
437
__sortl_query(&kvm_s390_available_subfunc.sortl);
438
439
if (test_facility(151)) /* DFLTCC */
440
__dfltcc_query(&kvm_s390_available_subfunc.dfltcc);
441
442
if (test_facility(201)) /* PFCR */
443
pfcr_query(&kvm_s390_available_subfunc.pfcr);
444
445
if (machine_has_esop())
446
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
447
/*
448
* We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
449
* 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
450
*/
451
if (!sclp.has_sief2 || !machine_has_esop() || !sclp.has_64bscao ||
452
!test_facility(3) || !nested)
453
return;
454
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
455
if (sclp.has_64bscao)
456
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
457
if (sclp.has_siif)
458
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
459
if (sclp.has_gpere)
460
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
461
if (sclp.has_gsls)
462
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
463
if (sclp.has_ib)
464
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
465
if (sclp.has_cei)
466
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
467
if (sclp.has_ibs)
468
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
469
if (sclp.has_kss)
470
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
471
/*
472
* KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
473
* all skey handling functions read/set the skey from the PGSTE
474
* instead of the real storage key.
475
*
476
* KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
477
* pages being detected as preserved although they are resident.
478
*
479
* KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
480
* have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
481
*
482
* For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
483
* KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
484
* correctly shadowed. We can do that for the PGSTE but not for PTE.I.
485
*
486
* KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
487
* cannot easily shadow the SCA because of the ipte lock.
488
*/
489
}
490
491
static int __init __kvm_s390_init(void)
492
{
493
int rc = -ENOMEM;
494
495
kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
496
if (!kvm_s390_dbf)
497
return -ENOMEM;
498
499
kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
500
if (!kvm_s390_dbf_uv)
501
goto err_kvm_uv;
502
503
if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
504
debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
505
goto err_debug_view;
506
507
kvm_s390_cpu_feat_init();
508
509
/* Register floating interrupt controller interface. */
510
rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
511
if (rc) {
512
pr_err("A FLIC registration call failed with rc=%d\n", rc);
513
goto err_flic;
514
}
515
516
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
517
rc = kvm_s390_pci_init();
518
if (rc) {
519
pr_err("Unable to allocate AIFT for PCI\n");
520
goto err_pci;
521
}
522
}
523
524
rc = kvm_s390_gib_init(GAL_ISC);
525
if (rc)
526
goto err_gib;
527
528
atomic_notifier_chain_register(&s390_epoch_delta_notifier,
529
&kvm_clock_notifier);
530
531
return 0;
532
533
err_gib:
534
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
535
kvm_s390_pci_exit();
536
err_pci:
537
err_flic:
538
err_debug_view:
539
debug_unregister(kvm_s390_dbf_uv);
540
err_kvm_uv:
541
debug_unregister(kvm_s390_dbf);
542
return rc;
543
}
544
545
static void __kvm_s390_exit(void)
546
{
547
atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
548
&kvm_clock_notifier);
549
550
kvm_s390_gib_destroy();
551
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
552
kvm_s390_pci_exit();
553
debug_unregister(kvm_s390_dbf);
554
debug_unregister(kvm_s390_dbf_uv);
555
}
556
557
static int kvm_s390_keyop(struct kvm_s390_mmu_cache *mc, struct kvm *kvm, int op,
558
unsigned long addr, union skey skey)
559
{
560
union asce asce = kvm->arch.gmap->asce;
561
gfn_t gfn = gpa_to_gfn(addr);
562
int r;
563
564
guard(read_lock)(&kvm->mmu_lock);
565
566
switch (op) {
567
case KVM_S390_KEYOP_SSKE:
568
r = dat_cond_set_storage_key(mc, asce, gfn, skey, &skey, 0, 0, 0);
569
if (r >= 0)
570
return skey.skey;
571
break;
572
case KVM_S390_KEYOP_ISKE:
573
r = dat_get_storage_key(asce, gfn, &skey);
574
if (!r)
575
return skey.skey;
576
break;
577
case KVM_S390_KEYOP_RRBE:
578
r = dat_reset_reference_bit(asce, gfn);
579
if (r > 0)
580
return r << 1;
581
break;
582
default:
583
return -EINVAL;
584
}
585
return r;
586
}
587
588
/* Section: device related */
589
long kvm_arch_dev_ioctl(struct file *filp,
590
unsigned int ioctl, unsigned long arg)
591
{
592
if (ioctl == KVM_S390_ENABLE_SIE)
593
return 0;
594
return -EINVAL;
595
}
596
597
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
598
{
599
int r;
600
601
switch (ext) {
602
case KVM_CAP_S390_PSW:
603
case KVM_CAP_S390_GMAP:
604
case KVM_CAP_SYNC_MMU:
605
#ifdef CONFIG_KVM_S390_UCONTROL
606
case KVM_CAP_S390_UCONTROL:
607
#endif
608
case KVM_CAP_ASYNC_PF:
609
case KVM_CAP_SYNC_REGS:
610
case KVM_CAP_ONE_REG:
611
case KVM_CAP_ENABLE_CAP:
612
case KVM_CAP_S390_CSS_SUPPORT:
613
case KVM_CAP_IOEVENTFD:
614
case KVM_CAP_S390_IRQCHIP:
615
case KVM_CAP_VM_ATTRIBUTES:
616
case KVM_CAP_MP_STATE:
617
case KVM_CAP_IMMEDIATE_EXIT:
618
case KVM_CAP_S390_INJECT_IRQ:
619
case KVM_CAP_S390_USER_SIGP:
620
case KVM_CAP_S390_USER_STSI:
621
case KVM_CAP_S390_SKEYS:
622
case KVM_CAP_S390_IRQ_STATE:
623
case KVM_CAP_S390_USER_INSTR0:
624
case KVM_CAP_S390_CMMA_MIGRATION:
625
case KVM_CAP_S390_AIS:
626
case KVM_CAP_S390_AIS_MIGRATION:
627
case KVM_CAP_S390_VCPU_RESETS:
628
case KVM_CAP_SET_GUEST_DEBUG:
629
case KVM_CAP_S390_DIAG318:
630
case KVM_CAP_IRQFD_RESAMPLE:
631
case KVM_CAP_S390_USER_OPEREXEC:
632
case KVM_CAP_S390_KEYOP:
633
r = 1;
634
break;
635
case KVM_CAP_SET_GUEST_DEBUG2:
636
r = KVM_GUESTDBG_VALID_MASK;
637
break;
638
case KVM_CAP_S390_HPAGE_1M:
639
r = 0;
640
if (hpage && !(kvm && kvm_is_ucontrol(kvm)))
641
r = 1;
642
break;
643
case KVM_CAP_S390_MEM_OP:
644
r = MEM_OP_MAX_SIZE;
645
break;
646
case KVM_CAP_S390_MEM_OP_EXTENSION:
647
/*
648
* Flag bits indicating which extensions are supported.
649
* If r > 0, the base extension must also be supported/indicated,
650
* in order to maintain backwards compatibility.
651
*/
652
r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
653
KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
654
break;
655
case KVM_CAP_NR_VCPUS:
656
case KVM_CAP_MAX_VCPUS:
657
case KVM_CAP_MAX_VCPU_ID:
658
/*
659
* Return the same value for KVM_CAP_MAX_VCPUS and
660
* KVM_CAP_MAX_VCPU_ID to conform with the KVM API.
661
*/
662
r = KVM_S390_ESCA_CPU_SLOTS;
663
if (!kvm_s390_use_sca_entries())
664
r = KVM_MAX_VCPUS;
665
if (ext == KVM_CAP_NR_VCPUS)
666
r = min_t(unsigned int, num_online_cpus(), r);
667
break;
668
case KVM_CAP_S390_COW:
669
r = machine_has_esop();
670
break;
671
case KVM_CAP_S390_VECTOR_REGISTERS:
672
r = test_facility(129);
673
break;
674
case KVM_CAP_S390_RI:
675
r = test_facility(64);
676
break;
677
case KVM_CAP_S390_GS:
678
r = test_facility(133);
679
break;
680
case KVM_CAP_S390_BPB:
681
r = test_facility(82);
682
break;
683
case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
684
r = async_destroy && is_prot_virt_host();
685
break;
686
case KVM_CAP_S390_PROTECTED:
687
r = is_prot_virt_host();
688
break;
689
case KVM_CAP_S390_PROTECTED_DUMP: {
690
u64 pv_cmds_dump[] = {
691
BIT_UVC_CMD_DUMP_INIT,
692
BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
693
BIT_UVC_CMD_DUMP_CPU,
694
BIT_UVC_CMD_DUMP_COMPLETE,
695
};
696
int i;
697
698
r = is_prot_virt_host();
699
700
for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
701
if (!test_bit_inv(pv_cmds_dump[i],
702
(unsigned long *)&uv_info.inst_calls_list)) {
703
r = 0;
704
break;
705
}
706
}
707
break;
708
}
709
case KVM_CAP_S390_ZPCI_OP:
710
r = kvm_s390_pci_interp_allowed();
711
break;
712
case KVM_CAP_S390_CPU_TOPOLOGY:
713
r = test_facility(11);
714
break;
715
default:
716
r = 0;
717
}
718
return r;
719
}
720
721
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
722
{
723
gfn_t last_gfn = memslot->base_gfn + memslot->npages;
724
725
scoped_guard(read_lock, &kvm->mmu_lock)
726
gmap_sync_dirty_log(kvm->arch.gmap, memslot->base_gfn, last_gfn);
727
}
728
729
/* Section: vm related */
730
static void sca_del_vcpu(struct kvm_vcpu *vcpu);
731
732
/*
733
* Get (and clear) the dirty memory log for a memory slot.
734
*/
735
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
736
struct kvm_dirty_log *log)
737
{
738
int r;
739
unsigned long n;
740
struct kvm_memory_slot *memslot;
741
int is_dirty;
742
743
if (kvm_is_ucontrol(kvm))
744
return -EINVAL;
745
746
mutex_lock(&kvm->slots_lock);
747
748
r = -EINVAL;
749
if (log->slot >= KVM_USER_MEM_SLOTS)
750
goto out;
751
752
r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
753
if (r)
754
goto out;
755
756
/* Clear the dirty log */
757
if (is_dirty) {
758
n = kvm_dirty_bitmap_bytes(memslot);
759
memset(memslot->dirty_bitmap, 0, n);
760
}
761
r = 0;
762
out:
763
mutex_unlock(&kvm->slots_lock);
764
return r;
765
}
766
767
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
768
{
769
unsigned long i;
770
struct kvm_vcpu *vcpu;
771
772
kvm_for_each_vcpu(i, vcpu, kvm) {
773
kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
774
}
775
}
776
777
int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
778
{
779
int r;
780
781
if (cap->flags)
782
return -EINVAL;
783
784
switch (cap->cap) {
785
case KVM_CAP_S390_IRQCHIP:
786
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
787
kvm->arch.use_irqchip = 1;
788
r = 0;
789
break;
790
case KVM_CAP_S390_USER_SIGP:
791
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
792
kvm->arch.user_sigp = 1;
793
r = 0;
794
break;
795
case KVM_CAP_S390_VECTOR_REGISTERS:
796
mutex_lock(&kvm->lock);
797
if (kvm->created_vcpus) {
798
r = -EBUSY;
799
} else if (cpu_has_vx()) {
800
set_kvm_facility(kvm->arch.model.fac_mask, 129);
801
set_kvm_facility(kvm->arch.model.fac_list, 129);
802
if (test_facility(134)) {
803
set_kvm_facility(kvm->arch.model.fac_mask, 134);
804
set_kvm_facility(kvm->arch.model.fac_list, 134);
805
}
806
if (test_facility(135)) {
807
set_kvm_facility(kvm->arch.model.fac_mask, 135);
808
set_kvm_facility(kvm->arch.model.fac_list, 135);
809
}
810
if (test_facility(148)) {
811
set_kvm_facility(kvm->arch.model.fac_mask, 148);
812
set_kvm_facility(kvm->arch.model.fac_list, 148);
813
}
814
if (test_facility(152)) {
815
set_kvm_facility(kvm->arch.model.fac_mask, 152);
816
set_kvm_facility(kvm->arch.model.fac_list, 152);
817
}
818
if (test_facility(192)) {
819
set_kvm_facility(kvm->arch.model.fac_mask, 192);
820
set_kvm_facility(kvm->arch.model.fac_list, 192);
821
}
822
if (test_facility(198)) {
823
set_kvm_facility(kvm->arch.model.fac_mask, 198);
824
set_kvm_facility(kvm->arch.model.fac_list, 198);
825
}
826
if (test_facility(199)) {
827
set_kvm_facility(kvm->arch.model.fac_mask, 199);
828
set_kvm_facility(kvm->arch.model.fac_list, 199);
829
}
830
r = 0;
831
} else
832
r = -EINVAL;
833
mutex_unlock(&kvm->lock);
834
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
835
r ? "(not available)" : "(success)");
836
break;
837
case KVM_CAP_S390_RI:
838
r = -EINVAL;
839
mutex_lock(&kvm->lock);
840
if (kvm->created_vcpus) {
841
r = -EBUSY;
842
} else if (test_facility(64)) {
843
set_kvm_facility(kvm->arch.model.fac_mask, 64);
844
set_kvm_facility(kvm->arch.model.fac_list, 64);
845
r = 0;
846
}
847
mutex_unlock(&kvm->lock);
848
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
849
r ? "(not available)" : "(success)");
850
break;
851
case KVM_CAP_S390_AIS:
852
mutex_lock(&kvm->lock);
853
if (kvm->created_vcpus) {
854
r = -EBUSY;
855
} else {
856
set_kvm_facility(kvm->arch.model.fac_mask, 72);
857
set_kvm_facility(kvm->arch.model.fac_list, 72);
858
r = 0;
859
}
860
mutex_unlock(&kvm->lock);
861
VM_EVENT(kvm, 3, "ENABLE: AIS %s",
862
r ? "(not available)" : "(success)");
863
break;
864
case KVM_CAP_S390_GS:
865
r = -EINVAL;
866
mutex_lock(&kvm->lock);
867
if (kvm->created_vcpus) {
868
r = -EBUSY;
869
} else if (test_facility(133)) {
870
set_kvm_facility(kvm->arch.model.fac_mask, 133);
871
set_kvm_facility(kvm->arch.model.fac_list, 133);
872
r = 0;
873
}
874
mutex_unlock(&kvm->lock);
875
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
876
r ? "(not available)" : "(success)");
877
break;
878
case KVM_CAP_S390_HPAGE_1M:
879
mutex_lock(&kvm->lock);
880
if (kvm->created_vcpus)
881
r = -EBUSY;
882
else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
883
r = -EINVAL;
884
else {
885
r = 0;
886
set_bit(GMAP_FLAG_ALLOW_HPAGE_1M, &kvm->arch.gmap->flags);
887
/*
888
* We might have to create fake 4k page
889
* tables. To avoid that the hardware works on
890
* stale PGSTEs, we emulate these instructions.
891
*/
892
kvm->arch.use_skf = 0;
893
kvm->arch.use_pfmfi = 0;
894
}
895
mutex_unlock(&kvm->lock);
896
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
897
r ? "(not available)" : "(success)");
898
break;
899
case KVM_CAP_S390_USER_STSI:
900
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
901
kvm->arch.user_stsi = 1;
902
r = 0;
903
break;
904
case KVM_CAP_S390_USER_INSTR0:
905
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
906
kvm->arch.user_instr0 = 1;
907
icpt_operexc_on_all_vcpus(kvm);
908
r = 0;
909
break;
910
case KVM_CAP_S390_CPU_TOPOLOGY:
911
r = -EINVAL;
912
mutex_lock(&kvm->lock);
913
if (kvm->created_vcpus) {
914
r = -EBUSY;
915
} else if (test_facility(11)) {
916
set_kvm_facility(kvm->arch.model.fac_mask, 11);
917
set_kvm_facility(kvm->arch.model.fac_list, 11);
918
r = 0;
919
}
920
mutex_unlock(&kvm->lock);
921
VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
922
r ? "(not available)" : "(success)");
923
break;
924
case KVM_CAP_S390_USER_OPEREXEC:
925
VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_OPEREXEC");
926
kvm->arch.user_operexec = 1;
927
icpt_operexc_on_all_vcpus(kvm);
928
r = 0;
929
break;
930
default:
931
r = -EINVAL;
932
break;
933
}
934
return r;
935
}
936
937
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
938
{
939
int ret;
940
941
switch (attr->attr) {
942
case KVM_S390_VM_MEM_LIMIT_SIZE:
943
ret = 0;
944
VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
945
kvm->arch.mem_limit);
946
if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
947
ret = -EFAULT;
948
break;
949
default:
950
ret = -ENXIO;
951
break;
952
}
953
return ret;
954
}
955
956
static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
957
{
958
int ret;
959
960
switch (attr->attr) {
961
case KVM_S390_VM_MEM_ENABLE_CMMA:
962
ret = -ENXIO;
963
if (!sclp.has_cmma)
964
break;
965
966
VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
967
mutex_lock(&kvm->lock);
968
if (kvm->created_vcpus)
969
ret = -EBUSY;
970
else {
971
kvm->arch.use_cmma = 1;
972
/* Not compatible with cmma. */
973
kvm->arch.use_pfmfi = 0;
974
ret = 0;
975
}
976
mutex_unlock(&kvm->lock);
977
break;
978
case KVM_S390_VM_MEM_CLR_CMMA: {
979
gfn_t start_gfn = 0;
980
981
ret = -ENXIO;
982
if (!sclp.has_cmma)
983
break;
984
ret = -EINVAL;
985
if (!kvm->arch.use_cmma)
986
break;
987
988
VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
989
do {
990
start_gfn = dat_reset_cmma(kvm->arch.gmap->asce, start_gfn);
991
cond_resched();
992
} while (start_gfn);
993
ret = 0;
994
break;
995
}
996
case KVM_S390_VM_MEM_LIMIT_SIZE: {
997
unsigned long new_limit;
998
999
if (kvm_is_ucontrol(kvm))
1000
return -EINVAL;
1001
1002
if (get_user(new_limit, (u64 __user *)attr->addr))
1003
return -EFAULT;
1004
1005
if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
1006
new_limit > kvm->arch.mem_limit)
1007
return -E2BIG;
1008
1009
if (!new_limit)
1010
return -EINVAL;
1011
1012
ret = -EBUSY;
1013
if (!kvm->created_vcpus)
1014
ret = gmap_set_limit(kvm->arch.gmap, gpa_to_gfn(new_limit));
1015
VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
1016
VM_EVENT(kvm, 3, "New guest asce: 0x%p",
1017
(void *)kvm->arch.gmap->asce.val);
1018
break;
1019
}
1020
default:
1021
ret = -ENXIO;
1022
break;
1023
}
1024
return ret;
1025
}
1026
1027
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
1028
1029
void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
1030
{
1031
struct kvm_vcpu *vcpu;
1032
unsigned long i;
1033
1034
kvm_s390_vcpu_block_all(kvm);
1035
1036
kvm_for_each_vcpu(i, vcpu, kvm) {
1037
kvm_s390_vcpu_crypto_setup(vcpu);
1038
/* recreate the shadow crycb by leaving the VSIE handler */
1039
kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1040
}
1041
1042
kvm_s390_vcpu_unblock_all(kvm);
1043
}
1044
1045
static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
1046
{
1047
mutex_lock(&kvm->lock);
1048
switch (attr->attr) {
1049
case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1050
if (!test_kvm_facility(kvm, 76)) {
1051
mutex_unlock(&kvm->lock);
1052
return -EINVAL;
1053
}
1054
get_random_bytes(
1055
kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1056
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1057
kvm->arch.crypto.aes_kw = 1;
1058
VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
1059
break;
1060
case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1061
if (!test_kvm_facility(kvm, 76)) {
1062
mutex_unlock(&kvm->lock);
1063
return -EINVAL;
1064
}
1065
get_random_bytes(
1066
kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1067
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1068
kvm->arch.crypto.dea_kw = 1;
1069
VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
1070
break;
1071
case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1072
if (!test_kvm_facility(kvm, 76)) {
1073
mutex_unlock(&kvm->lock);
1074
return -EINVAL;
1075
}
1076
kvm->arch.crypto.aes_kw = 0;
1077
memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
1078
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1079
VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
1080
break;
1081
case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1082
if (!test_kvm_facility(kvm, 76)) {
1083
mutex_unlock(&kvm->lock);
1084
return -EINVAL;
1085
}
1086
kvm->arch.crypto.dea_kw = 0;
1087
memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
1088
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1089
VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
1090
break;
1091
case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1092
if (!ap_instructions_available()) {
1093
mutex_unlock(&kvm->lock);
1094
return -EOPNOTSUPP;
1095
}
1096
kvm->arch.crypto.apie = 1;
1097
break;
1098
case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1099
if (!ap_instructions_available()) {
1100
mutex_unlock(&kvm->lock);
1101
return -EOPNOTSUPP;
1102
}
1103
kvm->arch.crypto.apie = 0;
1104
break;
1105
default:
1106
mutex_unlock(&kvm->lock);
1107
return -ENXIO;
1108
}
1109
1110
kvm_s390_vcpu_crypto_reset_all(kvm);
1111
mutex_unlock(&kvm->lock);
1112
return 0;
1113
}
1114
1115
static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
1116
{
1117
/* Only set the ECB bits after guest requests zPCI interpretation */
1118
if (!vcpu->kvm->arch.use_zpci_interp)
1119
return;
1120
1121
vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
1122
vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
1123
}
1124
1125
void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
1126
{
1127
struct kvm_vcpu *vcpu;
1128
unsigned long i;
1129
1130
lockdep_assert_held(&kvm->lock);
1131
1132
if (!kvm_s390_pci_interp_allowed())
1133
return;
1134
1135
/*
1136
* If host is configured for PCI and the necessary facilities are
1137
* available, turn on interpretation for the life of this guest
1138
*/
1139
kvm->arch.use_zpci_interp = 1;
1140
1141
kvm_s390_vcpu_block_all(kvm);
1142
1143
kvm_for_each_vcpu(i, vcpu, kvm) {
1144
kvm_s390_vcpu_pci_setup(vcpu);
1145
kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1146
}
1147
1148
kvm_s390_vcpu_unblock_all(kvm);
1149
}
1150
1151
static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
1152
{
1153
unsigned long cx;
1154
struct kvm_vcpu *vcpu;
1155
1156
kvm_for_each_vcpu(cx, vcpu, kvm)
1157
kvm_s390_sync_request(req, vcpu);
1158
}
1159
1160
/*
1161
* Must be called with kvm->srcu held to avoid races on memslots, and with
1162
* kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1163
*/
1164
static int kvm_s390_vm_start_migration(struct kvm *kvm)
1165
{
1166
struct kvm_memory_slot *ms;
1167
struct kvm_memslots *slots;
1168
unsigned long ram_pages = 0;
1169
int bkt;
1170
1171
/* migration mode already enabled */
1172
if (kvm->arch.migration_mode)
1173
return 0;
1174
slots = kvm_memslots(kvm);
1175
if (!slots || kvm_memslots_empty(slots))
1176
return -EINVAL;
1177
1178
if (!kvm->arch.use_cmma) {
1179
kvm->arch.migration_mode = 1;
1180
return 0;
1181
}
1182
kvm_for_each_memslot(ms, bkt, slots) {
1183
if (!ms->dirty_bitmap)
1184
return -EINVAL;
1185
ram_pages += ms->npages;
1186
}
1187
/* mark all the pages as dirty */
1188
gmap_set_cmma_all_dirty(kvm->arch.gmap);
1189
atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1190
kvm->arch.migration_mode = 1;
1191
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1192
return 0;
1193
}
1194
1195
/*
1196
* Must be called with kvm->slots_lock to avoid races with ourselves and
1197
* kvm_s390_vm_start_migration.
1198
*/
1199
static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1200
{
1201
/* migration mode already disabled */
1202
if (!kvm->arch.migration_mode)
1203
return 0;
1204
kvm->arch.migration_mode = 0;
1205
if (kvm->arch.use_cmma)
1206
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1207
return 0;
1208
}
1209
1210
static int kvm_s390_vm_set_migration(struct kvm *kvm,
1211
struct kvm_device_attr *attr)
1212
{
1213
int res = -ENXIO;
1214
1215
mutex_lock(&kvm->slots_lock);
1216
switch (attr->attr) {
1217
case KVM_S390_VM_MIGRATION_START:
1218
res = kvm_s390_vm_start_migration(kvm);
1219
break;
1220
case KVM_S390_VM_MIGRATION_STOP:
1221
res = kvm_s390_vm_stop_migration(kvm);
1222
break;
1223
default:
1224
break;
1225
}
1226
mutex_unlock(&kvm->slots_lock);
1227
1228
return res;
1229
}
1230
1231
static int kvm_s390_vm_get_migration(struct kvm *kvm,
1232
struct kvm_device_attr *attr)
1233
{
1234
u64 mig = kvm->arch.migration_mode;
1235
1236
if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1237
return -ENXIO;
1238
1239
if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1240
return -EFAULT;
1241
return 0;
1242
}
1243
1244
static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
1245
1246
static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1247
{
1248
struct kvm_s390_vm_tod_clock gtod;
1249
1250
if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
1251
return -EFAULT;
1252
1253
if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1254
return -EINVAL;
1255
__kvm_s390_set_tod_clock(kvm, &gtod);
1256
1257
VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1258
gtod.epoch_idx, gtod.tod);
1259
1260
return 0;
1261
}
1262
1263
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1264
{
1265
u8 gtod_high;
1266
1267
if (copy_from_user(&gtod_high, (void __user *)attr->addr,
1268
sizeof(gtod_high)))
1269
return -EFAULT;
1270
1271
if (gtod_high != 0)
1272
return -EINVAL;
1273
VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1274
1275
return 0;
1276
}
1277
1278
static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1279
{
1280
struct kvm_s390_vm_tod_clock gtod = { 0 };
1281
1282
if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
1283
sizeof(gtod.tod)))
1284
return -EFAULT;
1285
1286
__kvm_s390_set_tod_clock(kvm, &gtod);
1287
VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1288
return 0;
1289
}
1290
1291
static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1292
{
1293
int ret;
1294
1295
if (attr->flags)
1296
return -EINVAL;
1297
1298
mutex_lock(&kvm->lock);
1299
/*
1300
* For protected guests, the TOD is managed by the ultravisor, so trying
1301
* to change it will never bring the expected results.
1302
*/
1303
if (kvm_s390_pv_is_protected(kvm)) {
1304
ret = -EOPNOTSUPP;
1305
goto out_unlock;
1306
}
1307
1308
switch (attr->attr) {
1309
case KVM_S390_VM_TOD_EXT:
1310
ret = kvm_s390_set_tod_ext(kvm, attr);
1311
break;
1312
case KVM_S390_VM_TOD_HIGH:
1313
ret = kvm_s390_set_tod_high(kvm, attr);
1314
break;
1315
case KVM_S390_VM_TOD_LOW:
1316
ret = kvm_s390_set_tod_low(kvm, attr);
1317
break;
1318
default:
1319
ret = -ENXIO;
1320
break;
1321
}
1322
1323
out_unlock:
1324
mutex_unlock(&kvm->lock);
1325
return ret;
1326
}
1327
1328
static void kvm_s390_get_tod_clock(struct kvm *kvm,
1329
struct kvm_s390_vm_tod_clock *gtod)
1330
{
1331
union tod_clock clk;
1332
1333
preempt_disable();
1334
1335
store_tod_clock_ext(&clk);
1336
1337
gtod->tod = clk.tod + kvm->arch.epoch;
1338
gtod->epoch_idx = 0;
1339
if (test_kvm_facility(kvm, 139)) {
1340
gtod->epoch_idx = clk.ei + kvm->arch.epdx;
1341
if (gtod->tod < clk.tod)
1342
gtod->epoch_idx += 1;
1343
}
1344
1345
preempt_enable();
1346
}
1347
1348
static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1349
{
1350
struct kvm_s390_vm_tod_clock gtod;
1351
1352
memset(&gtod, 0, sizeof(gtod));
1353
kvm_s390_get_tod_clock(kvm, &gtod);
1354
if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1355
return -EFAULT;
1356
1357
VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1358
gtod.epoch_idx, gtod.tod);
1359
return 0;
1360
}
1361
1362
static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1363
{
1364
u8 gtod_high = 0;
1365
1366
if (copy_to_user((void __user *)attr->addr, &gtod_high,
1367
sizeof(gtod_high)))
1368
return -EFAULT;
1369
VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1370
1371
return 0;
1372
}
1373
1374
static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1375
{
1376
u64 gtod;
1377
1378
gtod = kvm_s390_get_tod_clock_fast(kvm);
1379
if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1380
return -EFAULT;
1381
VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1382
1383
return 0;
1384
}
1385
1386
static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1387
{
1388
int ret;
1389
1390
if (attr->flags)
1391
return -EINVAL;
1392
1393
switch (attr->attr) {
1394
case KVM_S390_VM_TOD_EXT:
1395
ret = kvm_s390_get_tod_ext(kvm, attr);
1396
break;
1397
case KVM_S390_VM_TOD_HIGH:
1398
ret = kvm_s390_get_tod_high(kvm, attr);
1399
break;
1400
case KVM_S390_VM_TOD_LOW:
1401
ret = kvm_s390_get_tod_low(kvm, attr);
1402
break;
1403
default:
1404
ret = -ENXIO;
1405
break;
1406
}
1407
return ret;
1408
}
1409
1410
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1411
{
1412
struct kvm_s390_vm_cpu_processor *proc;
1413
u16 lowest_ibc, unblocked_ibc;
1414
int ret = 0;
1415
1416
mutex_lock(&kvm->lock);
1417
if (kvm->created_vcpus) {
1418
ret = -EBUSY;
1419
goto out;
1420
}
1421
proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1422
if (!proc) {
1423
ret = -ENOMEM;
1424
goto out;
1425
}
1426
if (!copy_from_user(proc, (void __user *)attr->addr,
1427
sizeof(*proc))) {
1428
kvm->arch.model.cpuid = proc->cpuid;
1429
lowest_ibc = sclp.ibc >> 16 & 0xfff;
1430
unblocked_ibc = sclp.ibc & 0xfff;
1431
if (lowest_ibc && proc->ibc) {
1432
if (proc->ibc > unblocked_ibc)
1433
kvm->arch.model.ibc = unblocked_ibc;
1434
else if (proc->ibc < lowest_ibc)
1435
kvm->arch.model.ibc = lowest_ibc;
1436
else
1437
kvm->arch.model.ibc = proc->ibc;
1438
}
1439
memcpy(kvm->arch.model.fac_list, proc->fac_list,
1440
S390_ARCH_FAC_LIST_SIZE_BYTE);
1441
VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1442
kvm->arch.model.ibc,
1443
kvm->arch.model.cpuid);
1444
VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1445
kvm->arch.model.fac_list[0],
1446
kvm->arch.model.fac_list[1],
1447
kvm->arch.model.fac_list[2]);
1448
} else
1449
ret = -EFAULT;
1450
kfree(proc);
1451
out:
1452
mutex_unlock(&kvm->lock);
1453
return ret;
1454
}
1455
1456
static int kvm_s390_set_processor_feat(struct kvm *kvm,
1457
struct kvm_device_attr *attr)
1458
{
1459
struct kvm_s390_vm_cpu_feat data;
1460
1461
if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1462
return -EFAULT;
1463
if (!bitmap_subset((unsigned long *) data.feat,
1464
kvm_s390_available_cpu_feat,
1465
KVM_S390_VM_CPU_FEAT_NR_BITS))
1466
return -EINVAL;
1467
1468
mutex_lock(&kvm->lock);
1469
if (kvm->created_vcpus) {
1470
mutex_unlock(&kvm->lock);
1471
return -EBUSY;
1472
}
1473
bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1474
mutex_unlock(&kvm->lock);
1475
VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1476
data.feat[0],
1477
data.feat[1],
1478
data.feat[2]);
1479
return 0;
1480
}
1481
1482
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1483
struct kvm_device_attr *attr)
1484
{
1485
mutex_lock(&kvm->lock);
1486
if (kvm->created_vcpus) {
1487
mutex_unlock(&kvm->lock);
1488
return -EBUSY;
1489
}
1490
1491
if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1492
sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1493
mutex_unlock(&kvm->lock);
1494
return -EFAULT;
1495
}
1496
mutex_unlock(&kvm->lock);
1497
1498
VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1499
((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1500
((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1501
((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1502
((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1503
VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1504
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1505
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1506
VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1507
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1508
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1509
VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1510
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1511
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1512
VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
1513
((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1514
((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1515
VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1516
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1517
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1518
VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1519
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1520
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1521
VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1522
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1523
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1524
VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1525
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1526
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1527
VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1528
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1529
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1530
VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1531
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1532
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1533
VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1534
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1535
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1536
VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1537
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1538
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1539
VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1540
((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1541
((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1542
VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1543
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1544
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1545
VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1546
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1547
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1548
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1549
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1550
VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1551
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1552
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1553
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1554
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1555
VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx",
1556
((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1557
((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1558
1559
return 0;
1560
}
1561
1562
#define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \
1563
( \
1564
((struct kvm_s390_vm_cpu_uv_feat){ \
1565
.ap = 1, \
1566
.ap_intr = 1, \
1567
}) \
1568
.feat \
1569
)
1570
1571
static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1572
{
1573
struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
1574
unsigned long data, filter;
1575
1576
filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1577
if (get_user(data, &ptr->feat))
1578
return -EFAULT;
1579
if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
1580
return -EINVAL;
1581
1582
mutex_lock(&kvm->lock);
1583
if (kvm->created_vcpus) {
1584
mutex_unlock(&kvm->lock);
1585
return -EBUSY;
1586
}
1587
kvm->arch.model.uv_feat_guest.feat = data;
1588
mutex_unlock(&kvm->lock);
1589
1590
VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
1591
1592
return 0;
1593
}
1594
1595
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1596
{
1597
int ret = -ENXIO;
1598
1599
switch (attr->attr) {
1600
case KVM_S390_VM_CPU_PROCESSOR:
1601
ret = kvm_s390_set_processor(kvm, attr);
1602
break;
1603
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1604
ret = kvm_s390_set_processor_feat(kvm, attr);
1605
break;
1606
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1607
ret = kvm_s390_set_processor_subfunc(kvm, attr);
1608
break;
1609
case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1610
ret = kvm_s390_set_uv_feat(kvm, attr);
1611
break;
1612
}
1613
return ret;
1614
}
1615
1616
static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1617
{
1618
struct kvm_s390_vm_cpu_processor *proc;
1619
int ret = 0;
1620
1621
proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1622
if (!proc) {
1623
ret = -ENOMEM;
1624
goto out;
1625
}
1626
proc->cpuid = kvm->arch.model.cpuid;
1627
proc->ibc = kvm->arch.model.ibc;
1628
memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1629
S390_ARCH_FAC_LIST_SIZE_BYTE);
1630
VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1631
kvm->arch.model.ibc,
1632
kvm->arch.model.cpuid);
1633
VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1634
kvm->arch.model.fac_list[0],
1635
kvm->arch.model.fac_list[1],
1636
kvm->arch.model.fac_list[2]);
1637
if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1638
ret = -EFAULT;
1639
kfree(proc);
1640
out:
1641
return ret;
1642
}
1643
1644
static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1645
{
1646
struct kvm_s390_vm_cpu_machine *mach;
1647
int ret = 0;
1648
1649
mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
1650
if (!mach) {
1651
ret = -ENOMEM;
1652
goto out;
1653
}
1654
get_cpu_id((struct cpuid *) &mach->cpuid);
1655
mach->ibc = sclp.ibc;
1656
memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1657
S390_ARCH_FAC_LIST_SIZE_BYTE);
1658
memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
1659
sizeof(stfle_fac_list));
1660
VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
1661
kvm->arch.model.ibc,
1662
kvm->arch.model.cpuid);
1663
VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
1664
mach->fac_mask[0],
1665
mach->fac_mask[1],
1666
mach->fac_mask[2]);
1667
VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1668
mach->fac_list[0],
1669
mach->fac_list[1],
1670
mach->fac_list[2]);
1671
if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1672
ret = -EFAULT;
1673
kfree(mach);
1674
out:
1675
return ret;
1676
}
1677
1678
static int kvm_s390_get_processor_feat(struct kvm *kvm,
1679
struct kvm_device_attr *attr)
1680
{
1681
struct kvm_s390_vm_cpu_feat data;
1682
1683
bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1684
if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1685
return -EFAULT;
1686
VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1687
data.feat[0],
1688
data.feat[1],
1689
data.feat[2]);
1690
return 0;
1691
}
1692
1693
static int kvm_s390_get_machine_feat(struct kvm *kvm,
1694
struct kvm_device_attr *attr)
1695
{
1696
struct kvm_s390_vm_cpu_feat data;
1697
1698
bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1699
if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1700
return -EFAULT;
1701
VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1702
data.feat[0],
1703
data.feat[1],
1704
data.feat[2]);
1705
return 0;
1706
}
1707
1708
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1709
struct kvm_device_attr *attr)
1710
{
1711
if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1712
sizeof(struct kvm_s390_vm_cpu_subfunc)))
1713
return -EFAULT;
1714
1715
VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1716
((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1717
((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1718
((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1719
((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1720
VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1721
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1722
((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1723
VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1724
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1725
((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1726
VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1727
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1728
((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1729
VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
1730
((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1731
((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1732
VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1733
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1734
((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1735
VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1736
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1737
((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1738
VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1739
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1740
((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1741
VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1742
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1743
((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1744
VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1745
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1746
((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1747
VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1748
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1749
((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1750
VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1751
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1752
((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1753
VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1754
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1755
((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1756
VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1757
((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1758
((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1759
VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1760
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1761
((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1762
VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1763
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1764
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1765
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1766
((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1767
VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1768
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1769
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1770
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1771
((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1772
VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx",
1773
((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1774
((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1775
1776
return 0;
1777
}
1778
1779
static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1780
struct kvm_device_attr *attr)
1781
{
1782
if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1783
sizeof(struct kvm_s390_vm_cpu_subfunc)))
1784
return -EFAULT;
1785
1786
VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1787
((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1788
((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1789
((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1790
((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1791
VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
1792
((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1793
((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1794
VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
1795
((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1796
((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1797
VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
1798
((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1799
((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1800
VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
1801
((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1802
((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1803
VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
1804
((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1805
((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1806
VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
1807
((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1808
((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1809
VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
1810
((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1811
((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1812
VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
1813
((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1814
((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1815
VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
1816
((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1817
((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1818
VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
1819
((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1820
((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1821
VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
1822
((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1823
((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1824
VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
1825
((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1826
((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1827
VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
1828
((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1829
((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1830
VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
1831
((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1832
((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1833
VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1834
((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1835
((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1836
((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1837
((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1838
VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1839
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1840
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1841
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1842
((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1843
VM_EVENT(kvm, 3, "GET: host PFCR subfunc 0x%16.16lx.%16.16lx",
1844
((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0],
1845
((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]);
1846
1847
return 0;
1848
}
1849
1850
static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1851
{
1852
struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1853
unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
1854
1855
if (put_user(feat, &dst->feat))
1856
return -EFAULT;
1857
VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1858
1859
return 0;
1860
}
1861
1862
static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1863
{
1864
struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1865
unsigned long feat;
1866
1867
BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
1868
1869
feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1870
if (put_user(feat, &dst->feat))
1871
return -EFAULT;
1872
VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1873
1874
return 0;
1875
}
1876
1877
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1878
{
1879
int ret = -ENXIO;
1880
1881
switch (attr->attr) {
1882
case KVM_S390_VM_CPU_PROCESSOR:
1883
ret = kvm_s390_get_processor(kvm, attr);
1884
break;
1885
case KVM_S390_VM_CPU_MACHINE:
1886
ret = kvm_s390_get_machine(kvm, attr);
1887
break;
1888
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1889
ret = kvm_s390_get_processor_feat(kvm, attr);
1890
break;
1891
case KVM_S390_VM_CPU_MACHINE_FEAT:
1892
ret = kvm_s390_get_machine_feat(kvm, attr);
1893
break;
1894
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1895
ret = kvm_s390_get_processor_subfunc(kvm, attr);
1896
break;
1897
case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1898
ret = kvm_s390_get_machine_subfunc(kvm, attr);
1899
break;
1900
case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1901
ret = kvm_s390_get_processor_uv_feat(kvm, attr);
1902
break;
1903
case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
1904
ret = kvm_s390_get_machine_uv_feat(kvm, attr);
1905
break;
1906
}
1907
return ret;
1908
}
1909
1910
/**
1911
* kvm_s390_update_topology_change_report - update CPU topology change report
1912
* @kvm: guest KVM description
1913
* @val: set or clear the MTCR bit
1914
*
1915
* Updates the Multiprocessor Topology-Change-Report bit to signal
1916
* the guest with a topology change.
1917
* This is only relevant if the topology facility is present.
1918
*/
1919
static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
1920
{
1921
union sca_utility new, old;
1922
struct esca_block *sca;
1923
1924
sca = kvm->arch.sca;
1925
old = READ_ONCE(sca->utility);
1926
do {
1927
new = old;
1928
new.mtcr = val;
1929
} while (!try_cmpxchg(&sca->utility.val, &old.val, new.val));
1930
}
1931
1932
static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
1933
struct kvm_device_attr *attr)
1934
{
1935
if (!test_kvm_facility(kvm, 11))
1936
return -ENXIO;
1937
1938
kvm_s390_update_topology_change_report(kvm, !!attr->attr);
1939
return 0;
1940
}
1941
1942
static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
1943
struct kvm_device_attr *attr)
1944
{
1945
u8 topo;
1946
1947
if (!test_kvm_facility(kvm, 11))
1948
return -ENXIO;
1949
1950
topo = kvm->arch.sca->utility.mtcr;
1951
1952
return put_user(topo, (u8 __user *)attr->addr);
1953
}
1954
1955
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1956
{
1957
int ret;
1958
1959
switch (attr->group) {
1960
case KVM_S390_VM_MEM_CTRL:
1961
ret = kvm_s390_set_mem_control(kvm, attr);
1962
break;
1963
case KVM_S390_VM_TOD:
1964
ret = kvm_s390_set_tod(kvm, attr);
1965
break;
1966
case KVM_S390_VM_CPU_MODEL:
1967
ret = kvm_s390_set_cpu_model(kvm, attr);
1968
break;
1969
case KVM_S390_VM_CRYPTO:
1970
ret = kvm_s390_vm_set_crypto(kvm, attr);
1971
break;
1972
case KVM_S390_VM_MIGRATION:
1973
ret = kvm_s390_vm_set_migration(kvm, attr);
1974
break;
1975
case KVM_S390_VM_CPU_TOPOLOGY:
1976
ret = kvm_s390_set_topo_change_indication(kvm, attr);
1977
break;
1978
default:
1979
ret = -ENXIO;
1980
break;
1981
}
1982
1983
return ret;
1984
}
1985
1986
static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1987
{
1988
int ret;
1989
1990
switch (attr->group) {
1991
case KVM_S390_VM_MEM_CTRL:
1992
ret = kvm_s390_get_mem_control(kvm, attr);
1993
break;
1994
case KVM_S390_VM_TOD:
1995
ret = kvm_s390_get_tod(kvm, attr);
1996
break;
1997
case KVM_S390_VM_CPU_MODEL:
1998
ret = kvm_s390_get_cpu_model(kvm, attr);
1999
break;
2000
case KVM_S390_VM_MIGRATION:
2001
ret = kvm_s390_vm_get_migration(kvm, attr);
2002
break;
2003
case KVM_S390_VM_CPU_TOPOLOGY:
2004
ret = kvm_s390_get_topo_change_indication(kvm, attr);
2005
break;
2006
default:
2007
ret = -ENXIO;
2008
break;
2009
}
2010
2011
return ret;
2012
}
2013
2014
static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
2015
{
2016
int ret;
2017
2018
switch (attr->group) {
2019
case KVM_S390_VM_MEM_CTRL:
2020
switch (attr->attr) {
2021
case KVM_S390_VM_MEM_ENABLE_CMMA:
2022
case KVM_S390_VM_MEM_CLR_CMMA:
2023
ret = sclp.has_cmma ? 0 : -ENXIO;
2024
break;
2025
case KVM_S390_VM_MEM_LIMIT_SIZE:
2026
ret = 0;
2027
break;
2028
default:
2029
ret = -ENXIO;
2030
break;
2031
}
2032
break;
2033
case KVM_S390_VM_TOD:
2034
switch (attr->attr) {
2035
case KVM_S390_VM_TOD_LOW:
2036
case KVM_S390_VM_TOD_HIGH:
2037
ret = 0;
2038
break;
2039
default:
2040
ret = -ENXIO;
2041
break;
2042
}
2043
break;
2044
case KVM_S390_VM_CPU_MODEL:
2045
switch (attr->attr) {
2046
case KVM_S390_VM_CPU_PROCESSOR:
2047
case KVM_S390_VM_CPU_MACHINE:
2048
case KVM_S390_VM_CPU_PROCESSOR_FEAT:
2049
case KVM_S390_VM_CPU_MACHINE_FEAT:
2050
case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
2051
case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
2052
case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
2053
case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
2054
ret = 0;
2055
break;
2056
default:
2057
ret = -ENXIO;
2058
break;
2059
}
2060
break;
2061
case KVM_S390_VM_CRYPTO:
2062
switch (attr->attr) {
2063
case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
2064
case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
2065
case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
2066
case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
2067
ret = 0;
2068
break;
2069
case KVM_S390_VM_CRYPTO_ENABLE_APIE:
2070
case KVM_S390_VM_CRYPTO_DISABLE_APIE:
2071
ret = ap_instructions_available() ? 0 : -ENXIO;
2072
break;
2073
default:
2074
ret = -ENXIO;
2075
break;
2076
}
2077
break;
2078
case KVM_S390_VM_MIGRATION:
2079
ret = 0;
2080
break;
2081
case KVM_S390_VM_CPU_TOPOLOGY:
2082
ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
2083
break;
2084
default:
2085
ret = -ENXIO;
2086
break;
2087
}
2088
2089
return ret;
2090
}
2091
2092
static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2093
{
2094
union skey *keys;
2095
int i, r = 0;
2096
2097
if (args->flags != 0)
2098
return -EINVAL;
2099
2100
/* Is this guest using storage keys? */
2101
if (!uses_skeys(kvm->arch.gmap))
2102
return KVM_S390_GET_SKEYS_NONE;
2103
2104
/* Enforce sane limit on memory allocation */
2105
if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2106
return -EINVAL;
2107
2108
keys = kvmalloc_array(args->count, sizeof(*keys), GFP_KERNEL_ACCOUNT);
2109
if (!keys)
2110
return -ENOMEM;
2111
2112
scoped_guard(read_lock, &kvm->mmu_lock) {
2113
for (i = 0; i < args->count; i++) {
2114
r = dat_get_storage_key(kvm->arch.gmap->asce,
2115
args->start_gfn + i, keys + i);
2116
if (r)
2117
break;
2118
}
2119
}
2120
2121
if (!r) {
2122
r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
2123
sizeof(uint8_t) * args->count);
2124
if (r)
2125
r = -EFAULT;
2126
}
2127
2128
kvfree(keys);
2129
return r;
2130
}
2131
2132
static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2133
{
2134
struct kvm_s390_mmu_cache *mc;
2135
union skey *keys;
2136
int i, r = 0;
2137
2138
if (args->flags != 0)
2139
return -EINVAL;
2140
2141
/* Enforce sane limit on memory allocation */
2142
if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2143
return -EINVAL;
2144
2145
keys = kvmalloc_array(args->count, sizeof(*keys), GFP_KERNEL_ACCOUNT);
2146
if (!keys)
2147
return -ENOMEM;
2148
2149
r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
2150
sizeof(uint8_t) * args->count);
2151
if (r) {
2152
r = -EFAULT;
2153
goto out;
2154
}
2155
2156
/* Enable storage key handling for the guest */
2157
r = gmap_enable_skeys(kvm->arch.gmap);
2158
if (r)
2159
goto out;
2160
2161
r = -EINVAL;
2162
for (i = 0; i < args->count; i++) {
2163
/* Lowest order bit is reserved */
2164
if (keys[i].zero)
2165
goto out;
2166
}
2167
2168
mc = kvm_s390_new_mmu_cache();
2169
if (!mc) {
2170
r = -ENOMEM;
2171
goto out;
2172
}
2173
2174
r = 0;
2175
do {
2176
r = kvm_s390_mmu_cache_topup(mc);
2177
if (r == -ENOMEM)
2178
break;
2179
scoped_guard(read_lock, &kvm->mmu_lock) {
2180
for (i = 0 ; i < args->count; i++) {
2181
r = dat_set_storage_key(mc, kvm->arch.gmap->asce,
2182
args->start_gfn + i, keys[i], 0);
2183
if (r)
2184
break;
2185
}
2186
}
2187
} while (r == -ENOMEM);
2188
kvm_s390_free_mmu_cache(mc);
2189
out:
2190
kvfree(keys);
2191
return r;
2192
}
2193
2194
/*
2195
* This function searches for the next page with dirty CMMA attributes, and
2196
* saves the attributes in the buffer up to either the end of the buffer or
2197
* until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2198
* no trailing clean bytes are saved.
2199
* In case no dirty bits were found, or if CMMA was not enabled or used, the
2200
* output buffer will indicate 0 as length.
2201
*/
2202
static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2203
struct kvm_s390_cmma_log *args)
2204
{
2205
int peek, ret;
2206
u8 *values;
2207
2208
if (!kvm->arch.use_cmma)
2209
return -ENXIO;
2210
/* Invalid/unsupported flags were specified */
2211
if (args->flags & ~KVM_S390_CMMA_PEEK)
2212
return -EINVAL;
2213
/* Migration mode query, and we are not doing a migration */
2214
peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2215
if (!peek && !kvm->arch.migration_mode)
2216
return -EINVAL;
2217
/* CMMA is disabled or was not used, or the buffer has length zero */
2218
args->count = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2219
if (!args->count || !uses_cmm(kvm->arch.gmap)) {
2220
memset(args, 0, sizeof(*args));
2221
return 0;
2222
}
2223
/* We are not peeking, and there are no dirty pages */
2224
if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2225
memset(args, 0, sizeof(*args));
2226
return 0;
2227
}
2228
2229
values = vmalloc(args->count);
2230
if (!values)
2231
return -ENOMEM;
2232
2233
scoped_guard(read_lock, &kvm->mmu_lock) {
2234
if (peek)
2235
ret = dat_peek_cmma(args->start_gfn, kvm->arch.gmap->asce, &args->count,
2236
values);
2237
else
2238
ret = dat_get_cmma(kvm->arch.gmap->asce, &args->start_gfn, &args->count,
2239
values, &kvm->arch.cmma_dirty_pages);
2240
}
2241
2242
if (kvm->arch.migration_mode)
2243
args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2244
else
2245
args->remaining = 0;
2246
2247
if (copy_to_user((void __user *)args->values, values, args->count))
2248
ret = -EFAULT;
2249
2250
vfree(values);
2251
return ret;
2252
}
2253
2254
/*
2255
* This function sets the CMMA attributes for the given pages. If the input
2256
* buffer has zero length, no action is taken, otherwise the attributes are
2257
* set and the mm->context.uses_cmm flag is set.
2258
*/
2259
static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2260
const struct kvm_s390_cmma_log *args)
2261
{
2262
struct kvm_s390_mmu_cache *mc;
2263
u8 *bits = NULL;
2264
int r = 0;
2265
2266
if (!kvm->arch.use_cmma)
2267
return -ENXIO;
2268
/* invalid/unsupported flags */
2269
if (args->flags != 0)
2270
return -EINVAL;
2271
/* Enforce sane limit on memory allocation */
2272
if (args->count > KVM_S390_CMMA_SIZE_MAX)
2273
return -EINVAL;
2274
/* Nothing to do */
2275
if (args->count == 0)
2276
return 0;
2277
2278
mc = kvm_s390_new_mmu_cache();
2279
if (!mc)
2280
return -ENOMEM;
2281
bits = vmalloc(array_size(sizeof(*bits), args->count));
2282
if (!bits)
2283
goto out;
2284
2285
r = copy_from_user(bits, (void __user *)args->values, args->count);
2286
if (r) {
2287
r = -EFAULT;
2288
goto out;
2289
}
2290
2291
do {
2292
r = kvm_s390_mmu_cache_topup(mc);
2293
if (r)
2294
break;
2295
scoped_guard(read_lock, &kvm->mmu_lock) {
2296
r = dat_set_cmma_bits(mc, kvm->arch.gmap->asce, args->start_gfn,
2297
args->count, args->mask, bits);
2298
}
2299
} while (r == -ENOMEM);
2300
2301
set_bit(GMAP_FLAG_USES_CMM, &kvm->arch.gmap->flags);
2302
out:
2303
kvm_s390_free_mmu_cache(mc);
2304
vfree(bits);
2305
return r;
2306
}
2307
2308
/**
2309
* kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
2310
* non protected.
2311
* @kvm: the VM whose protected vCPUs are to be converted
2312
* @rc: return value for the RC field of the UVC (in case of error)
2313
* @rrc: return value for the RRC field of the UVC (in case of error)
2314
*
2315
* Does not stop in case of error, tries to convert as many
2316
* CPUs as possible. In case of error, the RC and RRC of the last error are
2317
* returned.
2318
*
2319
* Return: 0 in case of success, otherwise -EIO
2320
*/
2321
int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2322
{
2323
struct kvm_vcpu *vcpu;
2324
unsigned long i;
2325
u16 _rc, _rrc;
2326
int ret = 0;
2327
2328
/*
2329
* We ignore failures and try to destroy as many CPUs as possible.
2330
* At the same time we must not free the assigned resources when
2331
* this fails, as the ultravisor has still access to that memory.
2332
* So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2333
* behind.
2334
* We want to return the first failure rc and rrc, though.
2335
*/
2336
kvm_for_each_vcpu(i, vcpu, kvm) {
2337
mutex_lock(&vcpu->mutex);
2338
if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
2339
*rc = _rc;
2340
*rrc = _rrc;
2341
ret = -EIO;
2342
}
2343
mutex_unlock(&vcpu->mutex);
2344
}
2345
/* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
2346
if (use_gisa)
2347
kvm_s390_gisa_enable(kvm);
2348
return ret;
2349
}
2350
2351
/**
2352
* kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
2353
* to protected.
2354
* @kvm: the VM whose protected vCPUs are to be converted
2355
* @rc: return value for the RC field of the UVC (in case of error)
2356
* @rrc: return value for the RRC field of the UVC (in case of error)
2357
*
2358
* Tries to undo the conversion in case of error.
2359
*
2360
* Return: 0 in case of success, otherwise -EIO
2361
*/
2362
static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2363
{
2364
unsigned long i;
2365
int r = 0;
2366
u16 dummy;
2367
2368
struct kvm_vcpu *vcpu;
2369
2370
/* Disable the GISA if the ultravisor does not support AIV. */
2371
if (!uv_has_feature(BIT_UV_FEAT_AIV))
2372
kvm_s390_gisa_disable(kvm);
2373
2374
kvm_for_each_vcpu(i, vcpu, kvm) {
2375
mutex_lock(&vcpu->mutex);
2376
r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2377
mutex_unlock(&vcpu->mutex);
2378
if (r)
2379
break;
2380
}
2381
if (r)
2382
kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2383
return r;
2384
}
2385
2386
/*
2387
* Here we provide user space with a direct interface to query UV
2388
* related data like UV maxima and available features as well as
2389
* feature specific data.
2390
*
2391
* To facilitate future extension of the data structures we'll try to
2392
* write data up to the maximum requested length.
2393
*/
2394
static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
2395
{
2396
ssize_t len_min;
2397
2398
switch (info->header.id) {
2399
case KVM_PV_INFO_VM: {
2400
len_min = sizeof(info->header) + sizeof(info->vm);
2401
2402
if (info->header.len_max < len_min)
2403
return -EINVAL;
2404
2405
memcpy(info->vm.inst_calls_list,
2406
uv_info.inst_calls_list,
2407
sizeof(uv_info.inst_calls_list));
2408
2409
/* It's max cpuid not max cpus, so it's off by one */
2410
info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
2411
info->vm.max_guests = uv_info.max_num_sec_conf;
2412
info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
2413
info->vm.feature_indication = uv_info.uv_feature_indications;
2414
2415
return len_min;
2416
}
2417
case KVM_PV_INFO_DUMP: {
2418
len_min = sizeof(info->header) + sizeof(info->dump);
2419
2420
if (info->header.len_max < len_min)
2421
return -EINVAL;
2422
2423
info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
2424
info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
2425
info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
2426
return len_min;
2427
}
2428
default:
2429
return -EINVAL;
2430
}
2431
}
2432
2433
static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
2434
struct kvm_s390_pv_dmp dmp)
2435
{
2436
int r = -EINVAL;
2437
void __user *result_buff = (void __user *)dmp.buff_addr;
2438
2439
switch (dmp.subcmd) {
2440
case KVM_PV_DUMP_INIT: {
2441
if (kvm->arch.pv.dumping)
2442
break;
2443
2444
/*
2445
* Block SIE entry as concurrent dump UVCs could lead
2446
* to validities.
2447
*/
2448
kvm_s390_vcpu_block_all(kvm);
2449
2450
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2451
UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
2452
KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
2453
cmd->rc, cmd->rrc);
2454
if (!r) {
2455
kvm->arch.pv.dumping = true;
2456
} else {
2457
kvm_s390_vcpu_unblock_all(kvm);
2458
r = -EINVAL;
2459
}
2460
break;
2461
}
2462
case KVM_PV_DUMP_CONFIG_STOR_STATE: {
2463
if (!kvm->arch.pv.dumping)
2464
break;
2465
2466
/*
2467
* gaddr is an output parameter since we might stop
2468
* early. As dmp will be copied back in our caller, we
2469
* don't need to do it ourselves.
2470
*/
2471
r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
2472
&cmd->rc, &cmd->rrc);
2473
break;
2474
}
2475
case KVM_PV_DUMP_COMPLETE: {
2476
if (!kvm->arch.pv.dumping)
2477
break;
2478
2479
r = -EINVAL;
2480
if (dmp.buff_len < uv_info.conf_dump_finalize_len)
2481
break;
2482
2483
r = kvm_s390_pv_dump_complete(kvm, result_buff,
2484
&cmd->rc, &cmd->rrc);
2485
break;
2486
}
2487
default:
2488
r = -ENOTTY;
2489
break;
2490
}
2491
2492
return r;
2493
}
2494
2495
static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2496
{
2497
const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
2498
void __user *argp = (void __user *)cmd->data;
2499
int r = 0;
2500
u16 dummy;
2501
2502
if (need_lock)
2503
mutex_lock(&kvm->lock);
2504
2505
switch (cmd->cmd) {
2506
case KVM_PV_ENABLE: {
2507
r = -EINVAL;
2508
if (kvm_s390_pv_is_protected(kvm))
2509
break;
2510
2511
mmap_write_lock(kvm->mm);
2512
/*
2513
* Disable creation of new THPs. Existing THPs can stay, they
2514
* will be split when any part of them gets imported.
2515
*/
2516
mm_flags_clear(MMF_DISABLE_THP_EXCEPT_ADVISED, kvm->mm);
2517
mm_flags_set(MMF_DISABLE_THP_COMPLETELY, kvm->mm);
2518
set_bit(GMAP_FLAG_EXPORT_ON_UNMAP, &kvm->arch.gmap->flags);
2519
r = gmap_helper_disable_cow_sharing();
2520
mmap_write_unlock(kvm->mm);
2521
if (r)
2522
break;
2523
2524
r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2525
if (r)
2526
break;
2527
2528
r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2529
if (r)
2530
kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2531
2532
/* we need to block service interrupts from now on */
2533
set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2534
break;
2535
}
2536
case KVM_PV_ASYNC_CLEANUP_PREPARE:
2537
r = -EINVAL;
2538
if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
2539
break;
2540
2541
r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2542
/*
2543
* If a CPU could not be destroyed, destroy VM will also fail.
2544
* There is no point in trying to destroy it. Instead return
2545
* the rc and rrc from the first CPU that failed destroying.
2546
*/
2547
if (r)
2548
break;
2549
r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
2550
2551
/* no need to block service interrupts any more */
2552
clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2553
break;
2554
case KVM_PV_ASYNC_CLEANUP_PERFORM:
2555
r = -EINVAL;
2556
if (!async_destroy)
2557
break;
2558
/* kvm->lock must not be held; this is asserted inside the function. */
2559
r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
2560
break;
2561
case KVM_PV_DISABLE: {
2562
r = -EINVAL;
2563
if (!kvm_s390_pv_is_protected(kvm))
2564
break;
2565
2566
r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2567
/*
2568
* If a CPU could not be destroyed, destroy VM will also fail.
2569
* There is no point in trying to destroy it. Instead return
2570
* the rc and rrc from the first CPU that failed destroying.
2571
*/
2572
if (r)
2573
break;
2574
r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
2575
2576
/* no need to block service interrupts any more */
2577
clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2578
break;
2579
}
2580
case KVM_PV_SET_SEC_PARMS: {
2581
struct kvm_s390_pv_sec_parm parms = {};
2582
void *hdr;
2583
2584
r = -EINVAL;
2585
if (!kvm_s390_pv_is_protected(kvm))
2586
break;
2587
2588
r = -EFAULT;
2589
if (copy_from_user(&parms, argp, sizeof(parms)))
2590
break;
2591
2592
/* Currently restricted to 1MiB */
2593
r = -EINVAL;
2594
if (parms.length > SZ_1M)
2595
break;
2596
2597
r = -ENOMEM;
2598
hdr = vmalloc(parms.length);
2599
if (!hdr)
2600
break;
2601
2602
r = -EFAULT;
2603
if (!copy_from_user(hdr, (void __user *)parms.origin,
2604
parms.length))
2605
r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2606
&cmd->rc, &cmd->rrc);
2607
2608
vfree(hdr);
2609
break;
2610
}
2611
case KVM_PV_UNPACK: {
2612
struct kvm_s390_pv_unp unp = {};
2613
2614
r = -EINVAL;
2615
if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
2616
break;
2617
2618
r = -EFAULT;
2619
if (copy_from_user(&unp, argp, sizeof(unp)))
2620
break;
2621
2622
r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2623
&cmd->rc, &cmd->rrc);
2624
break;
2625
}
2626
case KVM_PV_VERIFY: {
2627
r = -EINVAL;
2628
if (!kvm_s390_pv_is_protected(kvm))
2629
break;
2630
2631
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2632
UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2633
KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2634
cmd->rrc);
2635
break;
2636
}
2637
case KVM_PV_PREP_RESET: {
2638
r = -EINVAL;
2639
if (!kvm_s390_pv_is_protected(kvm))
2640
break;
2641
2642
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2643
UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2644
KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2645
cmd->rc, cmd->rrc);
2646
break;
2647
}
2648
case KVM_PV_UNSHARE_ALL: {
2649
r = -EINVAL;
2650
if (!kvm_s390_pv_is_protected(kvm))
2651
break;
2652
2653
r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2654
UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2655
KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2656
cmd->rc, cmd->rrc);
2657
break;
2658
}
2659
case KVM_PV_INFO: {
2660
struct kvm_s390_pv_info info = {};
2661
ssize_t data_len;
2662
2663
/*
2664
* No need to check the VM protection here.
2665
*
2666
* Maybe user space wants to query some of the data
2667
* when the VM is still unprotected. If we see the
2668
* need to fence a new data command we can still
2669
* return an error in the info handler.
2670
*/
2671
2672
r = -EFAULT;
2673
if (copy_from_user(&info, argp, sizeof(info.header)))
2674
break;
2675
2676
r = -EINVAL;
2677
if (info.header.len_max < sizeof(info.header))
2678
break;
2679
2680
data_len = kvm_s390_handle_pv_info(&info);
2681
if (data_len < 0) {
2682
r = data_len;
2683
break;
2684
}
2685
/*
2686
* If a data command struct is extended (multiple
2687
* times) this can be used to determine how much of it
2688
* is valid.
2689
*/
2690
info.header.len_written = data_len;
2691
2692
r = -EFAULT;
2693
if (copy_to_user(argp, &info, data_len))
2694
break;
2695
2696
r = 0;
2697
break;
2698
}
2699
case KVM_PV_DUMP: {
2700
struct kvm_s390_pv_dmp dmp;
2701
2702
r = -EINVAL;
2703
if (!kvm_s390_pv_is_protected(kvm))
2704
break;
2705
2706
r = -EFAULT;
2707
if (copy_from_user(&dmp, argp, sizeof(dmp)))
2708
break;
2709
2710
r = kvm_s390_pv_dmp(kvm, cmd, dmp);
2711
if (r)
2712
break;
2713
2714
if (copy_to_user(argp, &dmp, sizeof(dmp))) {
2715
r = -EFAULT;
2716
break;
2717
}
2718
2719
break;
2720
}
2721
default:
2722
r = -ENOTTY;
2723
}
2724
if (need_lock)
2725
mutex_unlock(&kvm->lock);
2726
2727
return r;
2728
}
2729
2730
static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
2731
{
2732
if (mop->flags & ~supported_flags || !mop->size)
2733
return -EINVAL;
2734
if (mop->size > MEM_OP_MAX_SIZE)
2735
return -E2BIG;
2736
if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
2737
if (mop->key > 0xf)
2738
return -EINVAL;
2739
} else {
2740
mop->key = 0;
2741
}
2742
return 0;
2743
}
2744
2745
static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2746
{
2747
void __user *uaddr = (void __user *)mop->buf;
2748
void *tmpbuf __free(kvfree) = NULL;
2749
enum gacc_mode acc_mode;
2750
int r;
2751
2752
r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
2753
KVM_S390_MEMOP_F_CHECK_ONLY);
2754
if (r)
2755
return r;
2756
2757
if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2758
tmpbuf = vmalloc(mop->size);
2759
if (!tmpbuf)
2760
return -ENOMEM;
2761
}
2762
2763
acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
2764
2765
scoped_guard(srcu, &kvm->srcu) {
2766
if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)
2767
return check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
2768
2769
if (acc_mode == GACC_STORE && copy_from_user(tmpbuf, uaddr, mop->size))
2770
return -EFAULT;
2771
r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2772
mop->size, acc_mode, mop->key);
2773
if (r)
2774
return r;
2775
if (acc_mode != GACC_STORE && copy_to_user(uaddr, tmpbuf, mop->size))
2776
return -EFAULT;
2777
}
2778
return 0;
2779
}
2780
2781
static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2782
{
2783
void __user *uaddr = (void __user *)mop->buf;
2784
void __user *old_addr = (void __user *)mop->old_addr;
2785
union kvm_s390_quad old = { .sixteen = 0 };
2786
union kvm_s390_quad new = { .sixteen = 0 };
2787
bool success = false;
2788
int r;
2789
2790
r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
2791
if (r)
2792
return r;
2793
/*
2794
* This validates off_in_quad. Checking that size is a power
2795
* of two is not necessary, as cmpxchg_guest_abs_with_key
2796
* takes care of that
2797
*/
2798
if (mop->size > sizeof(new))
2799
return -EINVAL;
2800
if (copy_from_user(&new, uaddr, mop->size))
2801
return -EFAULT;
2802
if (copy_from_user(&old, old_addr, mop->size))
2803
return -EFAULT;
2804
2805
scoped_guard(srcu, &kvm->srcu) {
2806
r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old, new,
2807
mop->key, &success);
2808
2809
if (!success && copy_to_user(old_addr, &old, mop->size))
2810
return -EFAULT;
2811
}
2812
return r;
2813
}
2814
2815
static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2816
{
2817
/*
2818
* This is technically a heuristic only, if the kvm->lock is not
2819
* taken, it is not guaranteed that the vm is/remains non-protected.
2820
* This is ok from a kernel perspective, wrongdoing is detected
2821
* on the access, -EFAULT is returned and the vm may crash the
2822
* next time it accesses the memory in question.
2823
* There is no sane usecase to do switching and a memop on two
2824
* different CPUs at the same time.
2825
*/
2826
if (kvm_s390_pv_get_handle(kvm))
2827
return -EINVAL;
2828
2829
switch (mop->op) {
2830
case KVM_S390_MEMOP_ABSOLUTE_READ:
2831
case KVM_S390_MEMOP_ABSOLUTE_WRITE:
2832
return kvm_s390_vm_mem_op_abs(kvm, mop);
2833
case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
2834
return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
2835
default:
2836
return -EINVAL;
2837
}
2838
}
2839
2840
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2841
{
2842
struct kvm *kvm = filp->private_data;
2843
void __user *argp = (void __user *)arg;
2844
struct kvm_device_attr attr;
2845
int r;
2846
2847
switch (ioctl) {
2848
case KVM_S390_INTERRUPT: {
2849
struct kvm_s390_interrupt s390int;
2850
2851
r = -EFAULT;
2852
if (copy_from_user(&s390int, argp, sizeof(s390int)))
2853
break;
2854
r = kvm_s390_inject_vm(kvm, &s390int);
2855
break;
2856
}
2857
case KVM_CREATE_IRQCHIP: {
2858
r = -EINVAL;
2859
if (kvm->arch.use_irqchip)
2860
r = 0;
2861
break;
2862
}
2863
case KVM_SET_DEVICE_ATTR: {
2864
r = -EFAULT;
2865
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2866
break;
2867
r = kvm_s390_vm_set_attr(kvm, &attr);
2868
break;
2869
}
2870
case KVM_GET_DEVICE_ATTR: {
2871
r = -EFAULT;
2872
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2873
break;
2874
r = kvm_s390_vm_get_attr(kvm, &attr);
2875
break;
2876
}
2877
case KVM_HAS_DEVICE_ATTR: {
2878
r = -EFAULT;
2879
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2880
break;
2881
r = kvm_s390_vm_has_attr(kvm, &attr);
2882
break;
2883
}
2884
case KVM_S390_GET_SKEYS: {
2885
struct kvm_s390_skeys args;
2886
2887
r = -EFAULT;
2888
if (copy_from_user(&args, argp,
2889
sizeof(struct kvm_s390_skeys)))
2890
break;
2891
r = kvm_s390_get_skeys(kvm, &args);
2892
break;
2893
}
2894
case KVM_S390_SET_SKEYS: {
2895
struct kvm_s390_skeys args;
2896
2897
r = -EFAULT;
2898
if (copy_from_user(&args, argp,
2899
sizeof(struct kvm_s390_skeys)))
2900
break;
2901
r = kvm_s390_set_skeys(kvm, &args);
2902
break;
2903
}
2904
case KVM_S390_GET_CMMA_BITS: {
2905
struct kvm_s390_cmma_log args;
2906
2907
r = -EFAULT;
2908
if (copy_from_user(&args, argp, sizeof(args)))
2909
break;
2910
mutex_lock(&kvm->slots_lock);
2911
r = kvm_s390_get_cmma_bits(kvm, &args);
2912
mutex_unlock(&kvm->slots_lock);
2913
if (!r) {
2914
r = copy_to_user(argp, &args, sizeof(args));
2915
if (r)
2916
r = -EFAULT;
2917
}
2918
break;
2919
}
2920
case KVM_S390_SET_CMMA_BITS: {
2921
struct kvm_s390_cmma_log args;
2922
2923
r = -EFAULT;
2924
if (copy_from_user(&args, argp, sizeof(args)))
2925
break;
2926
mutex_lock(&kvm->slots_lock);
2927
r = kvm_s390_set_cmma_bits(kvm, &args);
2928
mutex_unlock(&kvm->slots_lock);
2929
break;
2930
}
2931
case KVM_S390_PV_COMMAND: {
2932
struct kvm_pv_cmd args;
2933
2934
/* protvirt means user cpu state */
2935
kvm_s390_set_user_cpu_state_ctrl(kvm);
2936
r = 0;
2937
if (!is_prot_virt_host()) {
2938
r = -EINVAL;
2939
break;
2940
}
2941
if (copy_from_user(&args, argp, sizeof(args))) {
2942
r = -EFAULT;
2943
break;
2944
}
2945
if (args.flags) {
2946
r = -EINVAL;
2947
break;
2948
}
2949
/* must be called without kvm->lock */
2950
r = kvm_s390_handle_pv(kvm, &args);
2951
if (copy_to_user(argp, &args, sizeof(args))) {
2952
r = -EFAULT;
2953
break;
2954
}
2955
break;
2956
}
2957
case KVM_S390_MEM_OP: {
2958
struct kvm_s390_mem_op mem_op;
2959
2960
if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
2961
r = kvm_s390_vm_mem_op(kvm, &mem_op);
2962
else
2963
r = -EFAULT;
2964
break;
2965
}
2966
case KVM_S390_KEYOP: {
2967
struct kvm_s390_mmu_cache *mc;
2968
struct kvm_s390_keyop kop;
2969
union skey skey;
2970
2971
if (copy_from_user(&kop, argp, sizeof(kop))) {
2972
r = -EFAULT;
2973
break;
2974
}
2975
skey.skey = kop.key;
2976
2977
mc = kvm_s390_new_mmu_cache();
2978
if (!mc)
2979
return -ENOMEM;
2980
2981
r = kvm_s390_keyop(mc, kvm, kop.operation, kop.guest_addr, skey);
2982
kvm_s390_free_mmu_cache(mc);
2983
if (r < 0)
2984
break;
2985
2986
kop.key = r;
2987
r = 0;
2988
if (copy_to_user(argp, &kop, sizeof(kop)))
2989
r = -EFAULT;
2990
break;
2991
}
2992
case KVM_S390_ZPCI_OP: {
2993
struct kvm_s390_zpci_op args;
2994
2995
r = -EINVAL;
2996
if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
2997
break;
2998
if (copy_from_user(&args, argp, sizeof(args))) {
2999
r = -EFAULT;
3000
break;
3001
}
3002
r = kvm_s390_pci_zpci_op(kvm, &args);
3003
break;
3004
}
3005
default:
3006
r = -ENOTTY;
3007
}
3008
3009
return r;
3010
}
3011
3012
static int kvm_s390_apxa_installed(void)
3013
{
3014
struct ap_config_info info;
3015
3016
if (ap_instructions_available()) {
3017
if (ap_qci(&info) == 0)
3018
return info.apxa;
3019
}
3020
3021
return 0;
3022
}
3023
3024
/*
3025
* The format of the crypto control block (CRYCB) is specified in the 3 low
3026
* order bits of the CRYCB designation (CRYCBD) field as follows:
3027
* Format 0: Neither the message security assist extension 3 (MSAX3) nor the
3028
* AP extended addressing (APXA) facility are installed.
3029
* Format 1: The APXA facility is not installed but the MSAX3 facility is.
3030
* Format 2: Both the APXA and MSAX3 facilities are installed
3031
*/
3032
static void kvm_s390_set_crycb_format(struct kvm *kvm)
3033
{
3034
kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb);
3035
3036
/* Clear the CRYCB format bits - i.e., set format 0 by default */
3037
kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
3038
3039
/* Check whether MSAX3 is installed */
3040
if (!test_kvm_facility(kvm, 76))
3041
return;
3042
3043
if (kvm_s390_apxa_installed())
3044
kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
3045
else
3046
kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
3047
}
3048
3049
/*
3050
* kvm_arch_crypto_set_masks
3051
*
3052
* @kvm: pointer to the target guest's KVM struct containing the crypto masks
3053
* to be set.
3054
* @apm: the mask identifying the accessible AP adapters
3055
* @aqm: the mask identifying the accessible AP domains
3056
* @adm: the mask identifying the accessible AP control domains
3057
*
3058
* Set the masks that identify the adapters, domains and control domains to
3059
* which the KVM guest is granted access.
3060
*
3061
* Note: The kvm->lock mutex must be locked by the caller before invoking this
3062
* function.
3063
*/
3064
void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
3065
unsigned long *aqm, unsigned long *adm)
3066
{
3067
struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
3068
3069
kvm_s390_vcpu_block_all(kvm);
3070
3071
switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
3072
case CRYCB_FORMAT2: /* APCB1 use 256 bits */
3073
memcpy(crycb->apcb1.apm, apm, 32);
3074
VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
3075
apm[0], apm[1], apm[2], apm[3]);
3076
memcpy(crycb->apcb1.aqm, aqm, 32);
3077
VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
3078
aqm[0], aqm[1], aqm[2], aqm[3]);
3079
memcpy(crycb->apcb1.adm, adm, 32);
3080
VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
3081
adm[0], adm[1], adm[2], adm[3]);
3082
break;
3083
case CRYCB_FORMAT1:
3084
case CRYCB_FORMAT0: /* Fall through both use APCB0 */
3085
memcpy(crycb->apcb0.apm, apm, 8);
3086
memcpy(crycb->apcb0.aqm, aqm, 2);
3087
memcpy(crycb->apcb0.adm, adm, 2);
3088
VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
3089
apm[0], *((unsigned short *)aqm),
3090
*((unsigned short *)adm));
3091
break;
3092
default: /* Can not happen */
3093
break;
3094
}
3095
3096
/* recreate the shadow crycb for each vcpu */
3097
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3098
kvm_s390_vcpu_unblock_all(kvm);
3099
}
3100
EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
3101
3102
/*
3103
* kvm_arch_crypto_clear_masks
3104
*
3105
* @kvm: pointer to the target guest's KVM struct containing the crypto masks
3106
* to be cleared.
3107
*
3108
* Clear the masks that identify the adapters, domains and control domains to
3109
* which the KVM guest is granted access.
3110
*
3111
* Note: The kvm->lock mutex must be locked by the caller before invoking this
3112
* function.
3113
*/
3114
void kvm_arch_crypto_clear_masks(struct kvm *kvm)
3115
{
3116
kvm_s390_vcpu_block_all(kvm);
3117
3118
memset(&kvm->arch.crypto.crycb->apcb0, 0,
3119
sizeof(kvm->arch.crypto.crycb->apcb0));
3120
memset(&kvm->arch.crypto.crycb->apcb1, 0,
3121
sizeof(kvm->arch.crypto.crycb->apcb1));
3122
3123
VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
3124
/* recreate the shadow crycb for each vcpu */
3125
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3126
kvm_s390_vcpu_unblock_all(kvm);
3127
}
3128
EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
3129
3130
static u64 kvm_s390_get_initial_cpuid(void)
3131
{
3132
struct cpuid cpuid;
3133
3134
get_cpu_id(&cpuid);
3135
cpuid.version = 0xff;
3136
return *((u64 *) &cpuid);
3137
}
3138
3139
static void kvm_s390_crypto_init(struct kvm *kvm)
3140
{
3141
kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
3142
kvm_s390_set_crycb_format(kvm);
3143
init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
3144
3145
if (!test_kvm_facility(kvm, 76))
3146
return;
3147
3148
/* Enable AES/DEA protected key functions by default */
3149
kvm->arch.crypto.aes_kw = 1;
3150
kvm->arch.crypto.dea_kw = 1;
3151
get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
3152
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
3153
get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
3154
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
3155
}
3156
3157
static void sca_dispose(struct kvm *kvm)
3158
{
3159
free_pages_exact(kvm->arch.sca, sizeof(*kvm->arch.sca));
3160
kvm->arch.sca = NULL;
3161
}
3162
3163
void kvm_arch_free_vm(struct kvm *kvm)
3164
{
3165
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3166
kvm_s390_pci_clear_list(kvm);
3167
3168
__kvm_arch_free_vm(kvm);
3169
}
3170
3171
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
3172
{
3173
gfp_t alloc_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
3174
char debug_name[16];
3175
int i, rc;
3176
3177
mutex_init(&kvm->arch.pv.import_lock);
3178
3179
rc = -EINVAL;
3180
#ifdef CONFIG_KVM_S390_UCONTROL
3181
if (type & ~KVM_VM_S390_UCONTROL)
3182
goto out_err;
3183
if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
3184
goto out_err;
3185
#else
3186
if (type)
3187
goto out_err;
3188
#endif
3189
rc = -ENOMEM;
3190
3191
if (!sclp.has_64bscao)
3192
alloc_flags |= GFP_DMA;
3193
mutex_lock(&kvm_lock);
3194
3195
kvm->arch.sca = alloc_pages_exact(sizeof(*kvm->arch.sca), alloc_flags);
3196
mutex_unlock(&kvm_lock);
3197
if (!kvm->arch.sca)
3198
goto out_err;
3199
3200
snprintf(debug_name, sizeof(debug_name), "kvm-%u", current->pid);
3201
3202
kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
3203
if (!kvm->arch.dbf)
3204
goto out_err;
3205
3206
BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
3207
kvm->arch.sie_page2 =
3208
(struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3209
if (!kvm->arch.sie_page2)
3210
goto out_err;
3211
3212
kvm->arch.sie_page2->kvm = kvm;
3213
kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
3214
3215
for (i = 0; i < kvm_s390_fac_size(); i++) {
3216
kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
3217
(kvm_s390_fac_base[i] |
3218
kvm_s390_fac_ext[i]);
3219
kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
3220
kvm_s390_fac_base[i];
3221
}
3222
kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
3223
3224
/* we are always in czam mode - even on pre z14 machines */
3225
set_kvm_facility(kvm->arch.model.fac_mask, 138);
3226
set_kvm_facility(kvm->arch.model.fac_list, 138);
3227
/* we emulate STHYI in kvm */
3228
set_kvm_facility(kvm->arch.model.fac_mask, 74);
3229
set_kvm_facility(kvm->arch.model.fac_list, 74);
3230
if (machine_has_tlb_guest()) {
3231
set_kvm_facility(kvm->arch.model.fac_mask, 147);
3232
set_kvm_facility(kvm->arch.model.fac_list, 147);
3233
}
3234
3235
if (css_general_characteristics.aiv && test_facility(65))
3236
set_kvm_facility(kvm->arch.model.fac_mask, 65);
3237
3238
kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
3239
kvm->arch.model.ibc = sclp.ibc & 0x0fff;
3240
3241
kvm->arch.model.uv_feat_guest.feat = 0;
3242
3243
kvm_s390_crypto_init(kvm);
3244
3245
if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3246
mutex_lock(&kvm->lock);
3247
kvm_s390_pci_init_list(kvm);
3248
kvm_s390_vcpu_pci_enable_interp(kvm);
3249
mutex_unlock(&kvm->lock);
3250
}
3251
3252
mutex_init(&kvm->arch.float_int.ais_lock);
3253
spin_lock_init(&kvm->arch.float_int.lock);
3254
for (i = 0; i < FIRQ_LIST_COUNT; i++)
3255
INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
3256
init_waitqueue_head(&kvm->arch.ipte_wq);
3257
mutex_init(&kvm->arch.ipte_mutex);
3258
3259
debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
3260
VM_EVENT(kvm, 3, "vm created with type %lu", type);
3261
3262
kvm->arch.mem_limit = type & KVM_VM_S390_UCONTROL ? KVM_S390_NO_MEM_LIMIT : sclp.hamax + 1;
3263
kvm->arch.gmap = gmap_new(kvm, gpa_to_gfn(kvm->arch.mem_limit));
3264
if (!kvm->arch.gmap)
3265
goto out_err;
3266
clear_bit(GMAP_FLAG_PFAULT_ENABLED, &kvm->arch.gmap->flags);
3267
3268
if (type & KVM_VM_S390_UCONTROL) {
3269
struct kvm_userspace_memory_region2 fake_memslot = {
3270
.slot = KVM_S390_UCONTROL_MEMSLOT,
3271
.guest_phys_addr = 0,
3272
.userspace_addr = 0,
3273
.memory_size = ALIGN_DOWN(TASK_SIZE, _SEGMENT_SIZE),
3274
.flags = 0,
3275
};
3276
3277
/* one flat fake memslot covering the whole address-space */
3278
mutex_lock(&kvm->slots_lock);
3279
KVM_BUG_ON(kvm_set_internal_memslot(kvm, &fake_memslot), kvm);
3280
mutex_unlock(&kvm->slots_lock);
3281
set_bit(GMAP_FLAG_IS_UCONTROL, &kvm->arch.gmap->flags);
3282
} else {
3283
struct crst_table *table = dereference_asce(kvm->arch.gmap->asce);
3284
3285
crst_table_init((void *)table, _CRSTE_HOLE(table->crstes[0].h.tt).val);
3286
}
3287
3288
kvm->arch.use_pfmfi = sclp.has_pfmfi;
3289
kvm->arch.use_skf = sclp.has_skey;
3290
spin_lock_init(&kvm->arch.start_stop_lock);
3291
kvm_s390_vsie_init(kvm);
3292
if (use_gisa)
3293
kvm_s390_gisa_init(kvm);
3294
INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
3295
kvm->arch.pv.set_aside = NULL;
3296
KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid);
3297
3298
return 0;
3299
out_err:
3300
free_page((unsigned long)kvm->arch.sie_page2);
3301
debug_unregister(kvm->arch.dbf);
3302
sca_dispose(kvm);
3303
KVM_EVENT(3, "creation of vm failed: %d", rc);
3304
return rc;
3305
}
3306
3307
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3308
{
3309
u16 rc, rrc;
3310
3311
VCPU_EVENT(vcpu, 3, "%s", "free cpu");
3312
trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
3313
kvm_s390_clear_local_irqs(vcpu);
3314
kvm_clear_async_pf_completion_queue(vcpu);
3315
if (!kvm_is_ucontrol(vcpu->kvm))
3316
sca_del_vcpu(vcpu);
3317
kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3318
3319
if (kvm_is_ucontrol(vcpu->kvm)) {
3320
scoped_guard(spinlock, &vcpu->kvm->arch.gmap->children_lock)
3321
gmap_remove_child(vcpu->arch.gmap);
3322
vcpu->arch.gmap = gmap_put(vcpu->arch.gmap);
3323
}
3324
3325
if (vcpu->kvm->arch.use_cmma)
3326
kvm_s390_vcpu_unsetup_cmma(vcpu);
3327
/* We can not hold the vcpu mutex here, we are already dying */
3328
if (kvm_s390_pv_cpu_get_handle(vcpu))
3329
kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
3330
free_page((unsigned long)(vcpu->arch.sie_block));
3331
kvm_s390_free_mmu_cache(vcpu->arch.mc);
3332
}
3333
3334
void kvm_arch_destroy_vm(struct kvm *kvm)
3335
{
3336
u16 rc, rrc;
3337
3338
kvm_destroy_vcpus(kvm);
3339
sca_dispose(kvm);
3340
kvm_s390_gisa_destroy(kvm);
3341
/*
3342
* We are already at the end of life and kvm->lock is not taken.
3343
* This is ok as the file descriptor is closed by now and nobody
3344
* can mess with the pv state.
3345
*/
3346
kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
3347
/*
3348
* Remove the mmu notifier only when the whole KVM VM is torn down,
3349
* and only if one was registered to begin with. If the VM is
3350
* currently not protected, but has been previously been protected,
3351
* then it's possible that the notifier is still registered.
3352
*/
3353
if (kvm->arch.pv.mmu_notifier.ops)
3354
mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
3355
3356
debug_unregister(kvm->arch.dbf);
3357
free_page((unsigned long)kvm->arch.sie_page2);
3358
kvm_s390_destroy_adapters(kvm);
3359
kvm_s390_clear_float_irqs(kvm);
3360
kvm_s390_vsie_destroy(kvm);
3361
kvm->arch.gmap = gmap_put(kvm->arch.gmap);
3362
KVM_EVENT(3, "vm 0x%p destroyed", kvm);
3363
}
3364
3365
/* Section: vcpu related */
3366
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
3367
{
3368
struct esca_block *sca = vcpu->kvm->arch.sca;
3369
3370
if (!kvm_s390_use_sca_entries())
3371
return;
3372
3373
clear_bit_inv(vcpu->vcpu_id, (unsigned long *)sca->mcn);
3374
sca->cpu[vcpu->vcpu_id].sda = 0;
3375
}
3376
3377
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
3378
{
3379
struct esca_block *sca = vcpu->kvm->arch.sca;
3380
phys_addr_t sca_phys = virt_to_phys(sca);
3381
3382
/* we still need the sca header for the ipte control */
3383
vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3384
vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
3385
vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3386
3387
if (!kvm_s390_use_sca_entries())
3388
return;
3389
3390
set_bit_inv(vcpu->vcpu_id, (unsigned long *)sca->mcn);
3391
sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3392
}
3393
3394
static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
3395
{
3396
if (!kvm_s390_use_sca_entries())
3397
return id < KVM_MAX_VCPUS;
3398
3399
return id < KVM_S390_ESCA_CPU_SLOTS;
3400
}
3401
3402
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3403
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3404
{
3405
WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
3406
raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3407
vcpu->arch.cputm_start = get_tod_clock_fast();
3408
raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3409
}
3410
3411
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3412
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3413
{
3414
WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
3415
raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3416
vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3417
vcpu->arch.cputm_start = 0;
3418
raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3419
}
3420
3421
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3422
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3423
{
3424
WARN_ON_ONCE(vcpu->arch.cputm_enabled);
3425
vcpu->arch.cputm_enabled = true;
3426
__start_cpu_timer_accounting(vcpu);
3427
}
3428
3429
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3430
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3431
{
3432
WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
3433
__stop_cpu_timer_accounting(vcpu);
3434
vcpu->arch.cputm_enabled = false;
3435
}
3436
3437
static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3438
{
3439
preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3440
__enable_cpu_timer_accounting(vcpu);
3441
preempt_enable();
3442
}
3443
3444
static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3445
{
3446
preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3447
__disable_cpu_timer_accounting(vcpu);
3448
preempt_enable();
3449
}
3450
3451
/* set the cpu timer - may only be called from the VCPU thread itself */
3452
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3453
{
3454
preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3455
raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3456
if (vcpu->arch.cputm_enabled)
3457
vcpu->arch.cputm_start = get_tod_clock_fast();
3458
vcpu->arch.sie_block->cputm = cputm;
3459
raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3460
preempt_enable();
3461
}
3462
3463
/* update and get the cpu timer - can also be called from other VCPU threads */
3464
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3465
{
3466
unsigned int seq;
3467
__u64 value;
3468
3469
if (unlikely(!vcpu->arch.cputm_enabled))
3470
return vcpu->arch.sie_block->cputm;
3471
3472
preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3473
do {
3474
seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3475
/*
3476
* If the writer would ever execute a read in the critical
3477
* section, e.g. in irq context, we have a deadlock.
3478
*/
3479
WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3480
value = vcpu->arch.sie_block->cputm;
3481
/* if cputm_start is 0, accounting is being started/stopped */
3482
if (likely(vcpu->arch.cputm_start))
3483
value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3484
} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3485
preempt_enable();
3486
return value;
3487
}
3488
3489
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3490
{
3491
3492
kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3493
if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3494
__start_cpu_timer_accounting(vcpu);
3495
vcpu->cpu = cpu;
3496
}
3497
3498
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3499
{
3500
vcpu->cpu = -1;
3501
if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3502
__stop_cpu_timer_accounting(vcpu);
3503
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3504
3505
}
3506
3507
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3508
{
3509
mutex_lock(&vcpu->kvm->lock);
3510
preempt_disable();
3511
vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3512
vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3513
preempt_enable();
3514
mutex_unlock(&vcpu->kvm->lock);
3515
if (!kvm_is_ucontrol(vcpu->kvm)) {
3516
vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3517
sca_add_vcpu(vcpu);
3518
}
3519
if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3520
vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3521
}
3522
3523
static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3524
{
3525
if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3526
test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3527
return true;
3528
return false;
3529
}
3530
3531
static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3532
{
3533
/* At least one ECC subfunction must be present */
3534
return kvm_has_pckmo_subfunc(kvm, 32) ||
3535
kvm_has_pckmo_subfunc(kvm, 33) ||
3536
kvm_has_pckmo_subfunc(kvm, 34) ||
3537
kvm_has_pckmo_subfunc(kvm, 40) ||
3538
kvm_has_pckmo_subfunc(kvm, 41);
3539
3540
}
3541
3542
static bool kvm_has_pckmo_hmac(struct kvm *kvm)
3543
{
3544
/* At least one HMAC subfunction must be present */
3545
return kvm_has_pckmo_subfunc(kvm, 118) ||
3546
kvm_has_pckmo_subfunc(kvm, 122);
3547
}
3548
3549
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3550
{
3551
/*
3552
* If the AP instructions are not being interpreted and the MSAX3
3553
* facility is not configured for the guest, there is nothing to set up.
3554
*/
3555
if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3556
return;
3557
3558
vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3559
vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3560
vcpu->arch.sie_block->eca &= ~ECA_APIE;
3561
vcpu->arch.sie_block->ecd &= ~(ECD_ECC | ECD_HMAC);
3562
3563
if (vcpu->kvm->arch.crypto.apie)
3564
vcpu->arch.sie_block->eca |= ECA_APIE;
3565
3566
/* Set up protected key support */
3567
if (vcpu->kvm->arch.crypto.aes_kw) {
3568
vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3569
/* ecc/hmac is also wrapped with AES key */
3570
if (kvm_has_pckmo_ecc(vcpu->kvm))
3571
vcpu->arch.sie_block->ecd |= ECD_ECC;
3572
if (kvm_has_pckmo_hmac(vcpu->kvm))
3573
vcpu->arch.sie_block->ecd |= ECD_HMAC;
3574
}
3575
3576
if (vcpu->kvm->arch.crypto.dea_kw)
3577
vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3578
}
3579
3580
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3581
{
3582
free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
3583
vcpu->arch.sie_block->cbrlo = 0;
3584
}
3585
3586
int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3587
{
3588
void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3589
3590
if (!cbrlo_page)
3591
return -ENOMEM;
3592
3593
vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
3594
return 0;
3595
}
3596
3597
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3598
{
3599
struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3600
3601
vcpu->arch.sie_block->ibc = model->ibc;
3602
if (test_kvm_facility(vcpu->kvm, 7))
3603
vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
3604
}
3605
3606
static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3607
{
3608
int rc = 0;
3609
u16 uvrc, uvrrc;
3610
3611
atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3612
CPUSTAT_SM |
3613
CPUSTAT_STOPPED);
3614
3615
if (test_kvm_facility(vcpu->kvm, 78))
3616
kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3617
else if (test_kvm_facility(vcpu->kvm, 8))
3618
kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3619
3620
kvm_s390_vcpu_setup_model(vcpu);
3621
3622
/* pgste_set_pte has special handling for !machine_has_esop() */
3623
if (machine_has_esop())
3624
vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3625
if (test_kvm_facility(vcpu->kvm, 9))
3626
vcpu->arch.sie_block->ecb |= ECB_SRSI;
3627
if (test_kvm_facility(vcpu->kvm, 11))
3628
vcpu->arch.sie_block->ecb |= ECB_PTF;
3629
if (test_kvm_facility(vcpu->kvm, 73))
3630
vcpu->arch.sie_block->ecb |= ECB_TE;
3631
if (!kvm_is_ucontrol(vcpu->kvm))
3632
vcpu->arch.sie_block->ecb |= ECB_SPECI;
3633
3634
if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3635
vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3636
if (test_kvm_facility(vcpu->kvm, 130))
3637
vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3638
vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3639
if (sclp.has_cei)
3640
vcpu->arch.sie_block->eca |= ECA_CEI;
3641
if (sclp.has_ib)
3642
vcpu->arch.sie_block->eca |= ECA_IB;
3643
if (sclp.has_siif)
3644
vcpu->arch.sie_block->eca |= ECA_SII;
3645
if (kvm_s390_use_sca_entries())
3646
vcpu->arch.sie_block->eca |= ECA_SIGPI;
3647
if (test_kvm_facility(vcpu->kvm, 129)) {
3648
vcpu->arch.sie_block->eca |= ECA_VX;
3649
vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3650
}
3651
if (test_kvm_facility(vcpu->kvm, 139))
3652
vcpu->arch.sie_block->ecd |= ECD_MEF;
3653
if (test_kvm_facility(vcpu->kvm, 156))
3654
vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3655
if (vcpu->arch.sie_block->gd) {
3656
vcpu->arch.sie_block->eca |= ECA_AIV;
3657
VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3658
vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3659
}
3660
vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
3661
vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
3662
3663
if (sclp.has_kss)
3664
kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3665
else
3666
vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3667
3668
if (vcpu->kvm->arch.use_cmma) {
3669
rc = kvm_s390_vcpu_setup_cmma(vcpu);
3670
if (rc)
3671
return rc;
3672
}
3673
hrtimer_setup(&vcpu->arch.ckc_timer, kvm_s390_idle_wakeup, CLOCK_MONOTONIC,
3674
HRTIMER_MODE_REL);
3675
3676
vcpu->arch.sie_block->hpid = HPID_KVM;
3677
3678
kvm_s390_vcpu_crypto_setup(vcpu);
3679
3680
kvm_s390_vcpu_pci_setup(vcpu);
3681
3682
mutex_lock(&vcpu->kvm->lock);
3683
if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3684
rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3685
if (rc)
3686
kvm_s390_vcpu_unsetup_cmma(vcpu);
3687
}
3688
mutex_unlock(&vcpu->kvm->lock);
3689
3690
return rc;
3691
}
3692
3693
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3694
{
3695
if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3696
return -EINVAL;
3697
return 0;
3698
}
3699
3700
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3701
{
3702
struct sie_page *sie_page;
3703
int rc;
3704
3705
BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3706
vcpu->arch.mc = kvm_s390_new_mmu_cache();
3707
if (!vcpu->arch.mc)
3708
return -ENOMEM;
3709
sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
3710
if (!sie_page) {
3711
kvm_s390_free_mmu_cache(vcpu->arch.mc);
3712
vcpu->arch.mc = NULL;
3713
return -ENOMEM;
3714
}
3715
3716
vcpu->arch.sie_block = &sie_page->sie_block;
3717
vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
3718
3719
/* the real guest size will always be smaller than msl */
3720
vcpu->arch.sie_block->mso = 0;
3721
vcpu->arch.sie_block->msl = sclp.hamax;
3722
3723
vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3724
spin_lock_init(&vcpu->arch.local_int.lock);
3725
vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
3726
seqcount_init(&vcpu->arch.cputm_seqcount);
3727
3728
vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3729
kvm_clear_async_pf_completion_queue(vcpu);
3730
vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
3731
KVM_SYNC_GPRS |
3732
KVM_SYNC_ACRS |
3733
KVM_SYNC_CRS |
3734
KVM_SYNC_ARCH0 |
3735
KVM_SYNC_PFAULT |
3736
KVM_SYNC_DIAG318;
3737
vcpu->arch.acrs_loaded = false;
3738
kvm_s390_set_prefix(vcpu, 0);
3739
if (test_kvm_facility(vcpu->kvm, 64))
3740
vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
3741
if (test_kvm_facility(vcpu->kvm, 82))
3742
vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
3743
if (test_kvm_facility(vcpu->kvm, 133))
3744
vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
3745
if (test_kvm_facility(vcpu->kvm, 156))
3746
vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
3747
/* fprs can be synchronized via vrs, even if the guest has no vx. With
3748
* cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format.
3749
*/
3750
if (cpu_has_vx())
3751
vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
3752
else
3753
vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
3754
3755
if (kvm_is_ucontrol(vcpu->kvm)) {
3756
rc = -ENOMEM;
3757
vcpu->arch.gmap = gmap_new_child(vcpu->kvm->arch.gmap, -1UL);
3758
if (!vcpu->arch.gmap)
3759
goto out_free_sie_block;
3760
}
3761
3762
VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%p, sie block at 0x%p",
3763
vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3764
trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3765
3766
rc = kvm_s390_vcpu_setup(vcpu);
3767
if (rc)
3768
goto out_ucontrol_uninit;
3769
3770
kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3771
return 0;
3772
3773
out_ucontrol_uninit:
3774
if (kvm_is_ucontrol(vcpu->kvm)) {
3775
gmap_remove_child(vcpu->arch.gmap);
3776
vcpu->arch.gmap = gmap_put(vcpu->arch.gmap);
3777
}
3778
out_free_sie_block:
3779
free_page((unsigned long)(vcpu->arch.sie_block));
3780
return rc;
3781
}
3782
3783
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3784
{
3785
clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
3786
return kvm_s390_vcpu_has_irq(vcpu, 0);
3787
}
3788
3789
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
3790
{
3791
return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
3792
}
3793
3794
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
3795
{
3796
atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
3797
exit_sie(vcpu);
3798
}
3799
3800
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
3801
{
3802
atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
3803
}
3804
3805
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
3806
{
3807
atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
3808
exit_sie(vcpu);
3809
}
3810
3811
bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
3812
{
3813
return atomic_read(&vcpu->arch.sie_block->prog20) &
3814
(PROG_BLOCK_SIE | PROG_REQUEST);
3815
}
3816
3817
static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
3818
{
3819
atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
3820
}
3821
3822
/*
3823
* Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
3824
* If the CPU is not running (e.g. waiting as idle) the function will
3825
* return immediately. */
3826
void exit_sie(struct kvm_vcpu *vcpu)
3827
{
3828
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
3829
kvm_s390_vsie_kick(vcpu);
3830
while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
3831
cpu_relax();
3832
}
3833
3834
/* Kick a guest cpu out of SIE to process a request synchronously */
3835
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
3836
{
3837
__kvm_make_request(req, vcpu);
3838
kvm_s390_vcpu_request(vcpu);
3839
}
3840
3841
bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
3842
{
3843
/* do not poll with more than halt_poll_max_steal percent of steal time */
3844
if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >=
3845
READ_ONCE(halt_poll_max_steal)) {
3846
vcpu->stat.halt_no_poll_steal++;
3847
return true;
3848
}
3849
return false;
3850
}
3851
3852
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
3853
{
3854
/* kvm common code refers to this, but never calls it */
3855
BUG();
3856
return 0;
3857
}
3858
3859
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
3860
struct kvm_one_reg *reg)
3861
{
3862
int r = -EINVAL;
3863
3864
switch (reg->id) {
3865
case KVM_REG_S390_TODPR:
3866
r = put_user(vcpu->arch.sie_block->todpr,
3867
(u32 __user *)reg->addr);
3868
break;
3869
case KVM_REG_S390_EPOCHDIFF:
3870
r = put_user(vcpu->arch.sie_block->epoch,
3871
(u64 __user *)reg->addr);
3872
break;
3873
case KVM_REG_S390_CPU_TIMER:
3874
r = put_user(kvm_s390_get_cpu_timer(vcpu),
3875
(u64 __user *)reg->addr);
3876
break;
3877
case KVM_REG_S390_CLOCK_COMP:
3878
r = put_user(vcpu->arch.sie_block->ckc,
3879
(u64 __user *)reg->addr);
3880
break;
3881
case KVM_REG_S390_PFTOKEN:
3882
r = put_user(vcpu->arch.pfault_token,
3883
(u64 __user *)reg->addr);
3884
break;
3885
case KVM_REG_S390_PFCOMPARE:
3886
r = put_user(vcpu->arch.pfault_compare,
3887
(u64 __user *)reg->addr);
3888
break;
3889
case KVM_REG_S390_PFSELECT:
3890
r = put_user(vcpu->arch.pfault_select,
3891
(u64 __user *)reg->addr);
3892
break;
3893
case KVM_REG_S390_PP:
3894
r = put_user(vcpu->arch.sie_block->pp,
3895
(u64 __user *)reg->addr);
3896
break;
3897
case KVM_REG_S390_GBEA:
3898
r = put_user(vcpu->arch.sie_block->gbea,
3899
(u64 __user *)reg->addr);
3900
break;
3901
default:
3902
break;
3903
}
3904
3905
return r;
3906
}
3907
3908
static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
3909
struct kvm_one_reg *reg)
3910
{
3911
int r = -EINVAL;
3912
__u64 val;
3913
3914
switch (reg->id) {
3915
case KVM_REG_S390_TODPR:
3916
r = get_user(vcpu->arch.sie_block->todpr,
3917
(u32 __user *)reg->addr);
3918
break;
3919
case KVM_REG_S390_EPOCHDIFF:
3920
r = get_user(vcpu->arch.sie_block->epoch,
3921
(u64 __user *)reg->addr);
3922
break;
3923
case KVM_REG_S390_CPU_TIMER:
3924
r = get_user(val, (u64 __user *)reg->addr);
3925
if (!r)
3926
kvm_s390_set_cpu_timer(vcpu, val);
3927
break;
3928
case KVM_REG_S390_CLOCK_COMP:
3929
r = get_user(vcpu->arch.sie_block->ckc,
3930
(u64 __user *)reg->addr);
3931
break;
3932
case KVM_REG_S390_PFTOKEN:
3933
r = get_user(vcpu->arch.pfault_token,
3934
(u64 __user *)reg->addr);
3935
if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
3936
kvm_clear_async_pf_completion_queue(vcpu);
3937
break;
3938
case KVM_REG_S390_PFCOMPARE:
3939
r = get_user(vcpu->arch.pfault_compare,
3940
(u64 __user *)reg->addr);
3941
break;
3942
case KVM_REG_S390_PFSELECT:
3943
r = get_user(vcpu->arch.pfault_select,
3944
(u64 __user *)reg->addr);
3945
break;
3946
case KVM_REG_S390_PP:
3947
r = get_user(vcpu->arch.sie_block->pp,
3948
(u64 __user *)reg->addr);
3949
break;
3950
case KVM_REG_S390_GBEA:
3951
r = get_user(vcpu->arch.sie_block->gbea,
3952
(u64 __user *)reg->addr);
3953
break;
3954
default:
3955
break;
3956
}
3957
3958
return r;
3959
}
3960
3961
static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
3962
{
3963
vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
3964
vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3965
memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
3966
3967
kvm_clear_async_pf_completion_queue(vcpu);
3968
if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
3969
kvm_s390_vcpu_stop(vcpu);
3970
kvm_s390_clear_local_irqs(vcpu);
3971
}
3972
3973
static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
3974
{
3975
/* Initial reset is a superset of the normal reset */
3976
kvm_arch_vcpu_ioctl_normal_reset(vcpu);
3977
3978
/*
3979
* This equals initial cpu reset in pop, but we don't switch to ESA.
3980
* We do not only reset the internal data, but also ...
3981
*/
3982
vcpu->arch.sie_block->gpsw.mask = 0;
3983
vcpu->arch.sie_block->gpsw.addr = 0;
3984
kvm_s390_set_prefix(vcpu, 0);
3985
kvm_s390_set_cpu_timer(vcpu, 0);
3986
vcpu->arch.sie_block->ckc = 0;
3987
memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
3988
vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
3989
vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
3990
3991
/* ... the data in sync regs */
3992
memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
3993
vcpu->run->s.regs.ckc = 0;
3994
vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
3995
vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
3996
vcpu->run->psw_addr = 0;
3997
vcpu->run->psw_mask = 0;
3998
vcpu->run->s.regs.todpr = 0;
3999
vcpu->run->s.regs.cputm = 0;
4000
vcpu->run->s.regs.ckc = 0;
4001
vcpu->run->s.regs.pp = 0;
4002
vcpu->run->s.regs.gbea = 1;
4003
vcpu->run->s.regs.fpc = 0;
4004
/*
4005
* Do not reset these registers in the protected case, as some of
4006
* them are overlaid and they are not accessible in this case
4007
* anyway.
4008
*/
4009
if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4010
vcpu->arch.sie_block->gbea = 1;
4011
vcpu->arch.sie_block->pp = 0;
4012
vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4013
vcpu->arch.sie_block->todpr = 0;
4014
}
4015
}
4016
4017
static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
4018
{
4019
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
4020
4021
/* Clear reset is a superset of the initial reset */
4022
kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4023
4024
memset(&regs->gprs, 0, sizeof(regs->gprs));
4025
memset(&regs->vrs, 0, sizeof(regs->vrs));
4026
memset(&regs->acrs, 0, sizeof(regs->acrs));
4027
memset(&regs->gscb, 0, sizeof(regs->gscb));
4028
4029
regs->etoken = 0;
4030
regs->etoken_extension = 0;
4031
}
4032
4033
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4034
{
4035
vcpu_load(vcpu);
4036
memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
4037
vcpu_put(vcpu);
4038
return 0;
4039
}
4040
4041
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4042
{
4043
vcpu_load(vcpu);
4044
memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
4045
vcpu_put(vcpu);
4046
return 0;
4047
}
4048
4049
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4050
struct kvm_sregs *sregs)
4051
{
4052
vcpu_load(vcpu);
4053
4054
memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
4055
memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
4056
4057
vcpu_put(vcpu);
4058
return 0;
4059
}
4060
4061
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4062
struct kvm_sregs *sregs)
4063
{
4064
vcpu_load(vcpu);
4065
4066
memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
4067
memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
4068
4069
vcpu_put(vcpu);
4070
return 0;
4071
}
4072
4073
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4074
{
4075
vcpu_load(vcpu);
4076
4077
vcpu->run->s.regs.fpc = fpu->fpc;
4078
if (cpu_has_vx())
4079
convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
4080
(freg_t *) fpu->fprs);
4081
else
4082
memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
4083
4084
vcpu_put(vcpu);
4085
return 0;
4086
}
4087
4088
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4089
{
4090
vcpu_load(vcpu);
4091
4092
if (cpu_has_vx())
4093
convert_vx_to_fp((freg_t *) fpu->fprs,
4094
(__vector128 *) vcpu->run->s.regs.vrs);
4095
else
4096
memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
4097
fpu->fpc = vcpu->run->s.regs.fpc;
4098
4099
vcpu_put(vcpu);
4100
return 0;
4101
}
4102
4103
static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
4104
{
4105
int rc = 0;
4106
4107
if (!is_vcpu_stopped(vcpu))
4108
rc = -EBUSY;
4109
else {
4110
vcpu->run->psw_mask = psw.mask;
4111
vcpu->run->psw_addr = psw.addr;
4112
}
4113
return rc;
4114
}
4115
4116
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4117
struct kvm_translation *tr)
4118
{
4119
return -EINVAL; /* not implemented yet */
4120
}
4121
4122
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
4123
KVM_GUESTDBG_USE_HW_BP | \
4124
KVM_GUESTDBG_ENABLE)
4125
4126
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4127
struct kvm_guest_debug *dbg)
4128
{
4129
int rc = 0;
4130
4131
vcpu_load(vcpu);
4132
4133
vcpu->guest_debug = 0;
4134
kvm_s390_clear_bp_data(vcpu);
4135
4136
if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
4137
rc = -EINVAL;
4138
goto out;
4139
}
4140
if (!sclp.has_gpere) {
4141
rc = -EINVAL;
4142
goto out;
4143
}
4144
4145
if (dbg->control & KVM_GUESTDBG_ENABLE) {
4146
vcpu->guest_debug = dbg->control;
4147
/* enforce guest PER */
4148
kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
4149
4150
if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
4151
rc = kvm_s390_import_bp_data(vcpu, dbg);
4152
} else {
4153
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4154
vcpu->arch.guestdbg.last_bp = 0;
4155
}
4156
4157
if (rc) {
4158
vcpu->guest_debug = 0;
4159
kvm_s390_clear_bp_data(vcpu);
4160
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4161
}
4162
4163
out:
4164
vcpu_put(vcpu);
4165
return rc;
4166
}
4167
4168
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4169
struct kvm_mp_state *mp_state)
4170
{
4171
int ret;
4172
4173
vcpu_load(vcpu);
4174
4175
/* CHECK_STOP and LOAD are not supported yet */
4176
ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
4177
KVM_MP_STATE_OPERATING;
4178
4179
vcpu_put(vcpu);
4180
return ret;
4181
}
4182
4183
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4184
struct kvm_mp_state *mp_state)
4185
{
4186
int rc = 0;
4187
4188
vcpu_load(vcpu);
4189
4190
/* user space knows about this interface - let it control the state */
4191
kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
4192
4193
switch (mp_state->mp_state) {
4194
case KVM_MP_STATE_STOPPED:
4195
rc = kvm_s390_vcpu_stop(vcpu);
4196
break;
4197
case KVM_MP_STATE_OPERATING:
4198
rc = kvm_s390_vcpu_start(vcpu);
4199
break;
4200
case KVM_MP_STATE_LOAD:
4201
if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4202
rc = -ENXIO;
4203
break;
4204
}
4205
rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
4206
break;
4207
case KVM_MP_STATE_CHECK_STOP:
4208
fallthrough; /* CHECK_STOP and LOAD are not supported yet */
4209
default:
4210
rc = -ENXIO;
4211
}
4212
4213
vcpu_put(vcpu);
4214
return rc;
4215
}
4216
4217
static bool ibs_enabled(struct kvm_vcpu *vcpu)
4218
{
4219
return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
4220
}
4221
4222
static int vcpu_ucontrol_translate(struct kvm_vcpu *vcpu, gpa_t *gaddr)
4223
{
4224
int rc;
4225
4226
if (kvm_is_ucontrol(vcpu->kvm)) {
4227
rc = gmap_ucas_translate(vcpu->arch.mc, vcpu->arch.gmap, gaddr);
4228
if (rc == -EREMOTE) {
4229
vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4230
vcpu->run->s390_ucontrol.trans_exc_code = *gaddr;
4231
vcpu->run->s390_ucontrol.pgm_code = PGM_SEGMENT_TRANSLATION;
4232
}
4233
return rc;
4234
}
4235
return 0;
4236
}
4237
4238
static int kvm_s390_fixup_prefix(struct kvm_vcpu *vcpu)
4239
{
4240
gpa_t gaddr = kvm_s390_get_prefix(vcpu);
4241
gfn_t gfn;
4242
int rc;
4243
4244
if (vcpu_ucontrol_translate(vcpu, &gaddr))
4245
return -EREMOTE;
4246
gfn = gpa_to_gfn(gaddr);
4247
4248
rc = kvm_s390_faultin_gfn_simple(vcpu, NULL, gfn, true);
4249
if (rc)
4250
return rc;
4251
rc = kvm_s390_faultin_gfn_simple(vcpu, NULL, gfn + 1, true);
4252
if (rc)
4253
return rc;
4254
4255
scoped_guard(write_lock, &vcpu->kvm->mmu_lock)
4256
rc = dat_set_prefix_notif_bit(vcpu->kvm->arch.gmap->asce, gfn);
4257
return rc;
4258
}
4259
4260
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
4261
{
4262
retry:
4263
kvm_s390_vcpu_request_handled(vcpu);
4264
if (!kvm_request_pending(vcpu))
4265
return 0;
4266
/*
4267
* If the guest prefix changed, re-arm the ipte notifier for the
4268
* guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
4269
* This ensures that the ipte instruction for this request has
4270
* already finished. We might race against a second unmapper that
4271
* wants to set the blocking bit. Lets just retry the request loop.
4272
*/
4273
if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
4274
int rc;
4275
4276
rc = kvm_s390_fixup_prefix(vcpu);
4277
if (rc) {
4278
kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4279
return rc;
4280
}
4281
goto retry;
4282
}
4283
4284
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
4285
vcpu->arch.sie_block->ihcpu = 0xffff;
4286
goto retry;
4287
}
4288
4289
if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
4290
if (!ibs_enabled(vcpu)) {
4291
trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
4292
kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
4293
}
4294
goto retry;
4295
}
4296
4297
if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
4298
if (ibs_enabled(vcpu)) {
4299
trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
4300
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
4301
}
4302
goto retry;
4303
}
4304
4305
if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
4306
vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
4307
goto retry;
4308
}
4309
4310
if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
4311
/*
4312
* Disable CMM virtualization; we will emulate the ESSA
4313
* instruction manually, in order to provide additional
4314
* functionalities needed for live migration.
4315
*/
4316
vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
4317
goto retry;
4318
}
4319
4320
if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
4321
/*
4322
* Re-enable CMM virtualization if CMMA is available and
4323
* CMM has been used.
4324
*/
4325
if (vcpu->kvm->arch.use_cmma && uses_cmm(vcpu->arch.gmap))
4326
vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
4327
goto retry;
4328
}
4329
4330
/* we left the vsie handler, nothing to do, just clear the request */
4331
kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
4332
4333
return 0;
4334
}
4335
4336
static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4337
{
4338
struct kvm_vcpu *vcpu;
4339
union tod_clock clk;
4340
unsigned long i;
4341
4342
preempt_disable();
4343
4344
store_tod_clock_ext(&clk);
4345
4346
kvm->arch.epoch = gtod->tod - clk.tod;
4347
kvm->arch.epdx = 0;
4348
if (test_kvm_facility(kvm, 139)) {
4349
kvm->arch.epdx = gtod->epoch_idx - clk.ei;
4350
if (kvm->arch.epoch > gtod->tod)
4351
kvm->arch.epdx -= 1;
4352
}
4353
4354
kvm_s390_vcpu_block_all(kvm);
4355
kvm_for_each_vcpu(i, vcpu, kvm) {
4356
vcpu->arch.sie_block->epoch = kvm->arch.epoch;
4357
vcpu->arch.sie_block->epdx = kvm->arch.epdx;
4358
}
4359
4360
kvm_s390_vcpu_unblock_all(kvm);
4361
preempt_enable();
4362
}
4363
4364
int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4365
{
4366
if (!mutex_trylock(&kvm->lock))
4367
return 0;
4368
__kvm_s390_set_tod_clock(kvm, gtod);
4369
mutex_unlock(&kvm->lock);
4370
return 1;
4371
}
4372
4373
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
4374
unsigned long token)
4375
{
4376
struct kvm_s390_interrupt inti;
4377
struct kvm_s390_irq irq;
4378
4379
if (start_token) {
4380
irq.u.ext.ext_params2 = token;
4381
irq.type = KVM_S390_INT_PFAULT_INIT;
4382
WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
4383
} else {
4384
inti.type = KVM_S390_INT_PFAULT_DONE;
4385
inti.parm64 = token;
4386
WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
4387
}
4388
}
4389
4390
bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
4391
struct kvm_async_pf *work)
4392
{
4393
trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
4394
__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
4395
4396
return true;
4397
}
4398
4399
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
4400
struct kvm_async_pf *work)
4401
{
4402
trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
4403
__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
4404
}
4405
4406
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
4407
struct kvm_async_pf *work)
4408
{
4409
/* s390 will always inject the page directly */
4410
}
4411
4412
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
4413
{
4414
/*
4415
* s390 will always inject the page directly,
4416
* but we still want check_async_completion to cleanup
4417
*/
4418
return true;
4419
}
4420
4421
bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
4422
{
4423
hva_t hva;
4424
struct kvm_arch_async_pf arch;
4425
4426
if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4427
return false;
4428
if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
4429
vcpu->arch.pfault_compare)
4430
return false;
4431
if (psw_extint_disabled(vcpu))
4432
return false;
4433
if (kvm_s390_vcpu_has_irq(vcpu, 0))
4434
return false;
4435
if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
4436
return false;
4437
if (!pfault_enabled(vcpu->arch.gmap))
4438
return false;
4439
4440
hva = gfn_to_hva(vcpu->kvm, current->thread.gmap_teid.addr);
4441
if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
4442
return false;
4443
4444
return kvm_setup_async_pf(vcpu, current->thread.gmap_teid.addr * PAGE_SIZE, hva, &arch);
4445
}
4446
4447
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
4448
{
4449
int rc, cpuflags;
4450
4451
/*
4452
* On s390 notifications for arriving pages will be delivered directly
4453
* to the guest but the house keeping for completed pfaults is
4454
* handled outside the worker.
4455
*/
4456
kvm_check_async_pf_completion(vcpu);
4457
4458
vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
4459
vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
4460
4461
if (!kvm_is_ucontrol(vcpu->kvm)) {
4462
rc = kvm_s390_deliver_pending_interrupts(vcpu);
4463
if (rc || guestdbg_exit_pending(vcpu))
4464
return rc;
4465
}
4466
4467
rc = kvm_s390_handle_requests(vcpu);
4468
if (rc)
4469
return rc;
4470
4471
if (guestdbg_enabled(vcpu)) {
4472
kvm_s390_backup_guest_per_regs(vcpu);
4473
kvm_s390_patch_guest_per_regs(vcpu);
4474
}
4475
4476
clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4477
4478
vcpu->arch.sie_block->icptcode = 0;
4479
current->thread.gmap_int_code = 0;
4480
cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4481
VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4482
trace_kvm_s390_sie_enter(vcpu, cpuflags);
4483
4484
return 0;
4485
}
4486
4487
static int vcpu_post_run_addressing_exception(struct kvm_vcpu *vcpu)
4488
{
4489
struct kvm_s390_pgm_info pgm_info = {
4490
.code = PGM_ADDRESSING,
4491
};
4492
u8 opcode, ilen;
4493
int rc;
4494
4495
VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4496
trace_kvm_s390_sie_fault(vcpu);
4497
4498
/*
4499
* We want to inject an addressing exception, which is defined as a
4500
* suppressing or terminating exception. However, since we came here
4501
* by a DAT access exception, the PSW still points to the faulting
4502
* instruction since DAT exceptions are nullifying. So we've got
4503
* to look up the current opcode to get the length of the instruction
4504
* to be able to forward the PSW.
4505
*/
4506
rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4507
ilen = insn_length(opcode);
4508
if (rc < 0) {
4509
return rc;
4510
} else if (rc) {
4511
/* Instruction-Fetching Exceptions - we can't detect the ilen.
4512
* Forward by arbitrary ilc, injection will take care of
4513
* nullification if necessary.
4514
*/
4515
pgm_info = vcpu->arch.pgm;
4516
ilen = 4;
4517
}
4518
pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4519
kvm_s390_forward_psw(vcpu, ilen);
4520
return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4521
}
4522
4523
static void kvm_s390_assert_primary_as(struct kvm_vcpu *vcpu)
4524
{
4525
KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm,
4526
"Unexpected program interrupt 0x%x, TEID 0x%016lx",
4527
current->thread.gmap_int_code, current->thread.gmap_teid.val);
4528
}
4529
4530
static int vcpu_dat_fault_handler(struct kvm_vcpu *vcpu, gpa_t gaddr, bool wr)
4531
{
4532
struct guest_fault f = {
4533
.write_attempt = wr,
4534
.attempt_pfault = pfault_enabled(vcpu->arch.gmap),
4535
};
4536
int rc;
4537
4538
if (vcpu_ucontrol_translate(vcpu, &gaddr))
4539
return -EREMOTE;
4540
f.gfn = gpa_to_gfn(gaddr);
4541
4542
rc = kvm_s390_faultin_gfn(vcpu, NULL, &f);
4543
if (rc <= 0)
4544
return rc;
4545
if (rc == PGM_ADDRESSING)
4546
return vcpu_post_run_addressing_exception(vcpu);
4547
KVM_BUG_ON(rc, vcpu->kvm);
4548
return -EINVAL;
4549
}
4550
4551
static int vcpu_post_run_handle_fault(struct kvm_vcpu *vcpu)
4552
{
4553
unsigned int foll = 0;
4554
unsigned long gaddr;
4555
int rc;
4556
4557
gaddr = current->thread.gmap_teid.addr * PAGE_SIZE;
4558
if (kvm_s390_cur_gmap_fault_is_write())
4559
foll = FOLL_WRITE;
4560
4561
switch (current->thread.gmap_int_code & PGM_INT_CODE_MASK) {
4562
case 0:
4563
vcpu->stat.exit_null++;
4564
break;
4565
case PGM_SECURE_STORAGE_ACCESS:
4566
case PGM_SECURE_STORAGE_VIOLATION:
4567
kvm_s390_assert_primary_as(vcpu);
4568
/*
4569
* This can happen after a reboot with asynchronous teardown;
4570
* the new guest (normal or protected) will run on top of the
4571
* previous protected guest. The old pages need to be destroyed
4572
* so the new guest can use them.
4573
*/
4574
if (kvm_s390_pv_destroy_page(vcpu->kvm, gaddr)) {
4575
/*
4576
* Either KVM messed up the secure guest mapping or the
4577
* same page is mapped into multiple secure guests.
4578
*
4579
* This exception is only triggered when a guest 2 is
4580
* running and can therefore never occur in kernel
4581
* context.
4582
*/
4583
pr_warn_ratelimited("Secure storage violation (%x) in task: %s, pid %d\n",
4584
current->thread.gmap_int_code, current->comm,
4585
current->pid);
4586
send_sig(SIGSEGV, current, 0);
4587
}
4588
break;
4589
case PGM_NON_SECURE_STORAGE_ACCESS:
4590
kvm_s390_assert_primary_as(vcpu);
4591
/*
4592
* This is normal operation; a page belonging to a protected
4593
* guest has not been imported yet. Try to import the page into
4594
* the protected guest.
4595
*/
4596
rc = kvm_s390_pv_convert_to_secure(vcpu->kvm, gaddr);
4597
if (rc == -EINVAL)
4598
send_sig(SIGSEGV, current, 0);
4599
if (rc != -ENXIO)
4600
break;
4601
foll = FOLL_WRITE;
4602
fallthrough;
4603
case PGM_PROTECTION:
4604
case PGM_SEGMENT_TRANSLATION:
4605
case PGM_PAGE_TRANSLATION:
4606
case PGM_ASCE_TYPE:
4607
case PGM_REGION_FIRST_TRANS:
4608
case PGM_REGION_SECOND_TRANS:
4609
case PGM_REGION_THIRD_TRANS:
4610
kvm_s390_assert_primary_as(vcpu);
4611
return vcpu_dat_fault_handler(vcpu, gaddr, foll);
4612
default:
4613
KVM_BUG(1, vcpu->kvm, "Unexpected program interrupt 0x%x, TEID 0x%016lx",
4614
current->thread.gmap_int_code, current->thread.gmap_teid.val);
4615
send_sig(SIGSEGV, current, 0);
4616
break;
4617
}
4618
return 0;
4619
}
4620
4621
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
4622
{
4623
struct mcck_volatile_info *mcck_info;
4624
struct sie_page *sie_page;
4625
int rc;
4626
4627
VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
4628
vcpu->arch.sie_block->icptcode);
4629
trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
4630
4631
if (guestdbg_enabled(vcpu))
4632
kvm_s390_restore_guest_per_regs(vcpu);
4633
4634
vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
4635
vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
4636
4637
if (exit_reason == -EINTR) {
4638
VCPU_EVENT(vcpu, 3, "%s", "machine check");
4639
sie_page = container_of(vcpu->arch.sie_block,
4640
struct sie_page, sie_block);
4641
mcck_info = &sie_page->mcck_info;
4642
kvm_s390_reinject_machine_check(vcpu, mcck_info);
4643
return 0;
4644
}
4645
4646
if (vcpu->arch.sie_block->icptcode > 0) {
4647
rc = kvm_handle_sie_intercept(vcpu);
4648
4649
if (rc != -EOPNOTSUPP)
4650
return rc;
4651
vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
4652
vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
4653
vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
4654
vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
4655
return -EREMOTE;
4656
}
4657
4658
return vcpu_post_run_handle_fault(vcpu);
4659
}
4660
4661
int noinstr kvm_s390_enter_exit_sie(struct kvm_s390_sie_block *scb,
4662
u64 *gprs, unsigned long gasce)
4663
{
4664
int ret;
4665
4666
guest_state_enter_irqoff();
4667
4668
/*
4669
* The guest_state_{enter,exit}_irqoff() functions inform lockdep and
4670
* tracing that entry to the guest will enable host IRQs, and exit from
4671
* the guest will disable host IRQs.
4672
*/
4673
ret = sie64a(scb, gprs, gasce);
4674
4675
guest_state_exit_irqoff();
4676
4677
return ret;
4678
}
4679
4680
#define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
4681
static int __vcpu_run(struct kvm_vcpu *vcpu)
4682
{
4683
int rc, exit_reason;
4684
struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
4685
4686
/*
4687
* We try to hold kvm->srcu during most of vcpu_run (except when run-
4688
* ning the guest), so that memslots (and other stuff) are protected
4689
*/
4690
kvm_vcpu_srcu_read_lock(vcpu);
4691
4692
while (true) {
4693
rc = vcpu_pre_run(vcpu);
4694
kvm_vcpu_srcu_read_unlock(vcpu);
4695
if (rc || guestdbg_exit_pending(vcpu))
4696
break;
4697
4698
/*
4699
* As PF_VCPU will be used in fault handler, between
4700
* guest_timing_enter_irqoff and guest_timing_exit_irqoff
4701
* should be no uaccess.
4702
*/
4703
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4704
memcpy(sie_page->pv_grregs,
4705
vcpu->run->s.regs.gprs,
4706
sizeof(sie_page->pv_grregs));
4707
}
4708
4709
xfer_to_guest_mode_check:
4710
local_irq_disable();
4711
xfer_to_guest_mode_prepare();
4712
if (xfer_to_guest_mode_work_pending()) {
4713
local_irq_enable();
4714
rc = kvm_xfer_to_guest_mode_handle_work(vcpu);
4715
if (rc)
4716
break;
4717
goto xfer_to_guest_mode_check;
4718
}
4719
4720
guest_timing_enter_irqoff();
4721
__disable_cpu_timer_accounting(vcpu);
4722
4723
exit_reason = kvm_s390_enter_exit_sie(vcpu->arch.sie_block,
4724
vcpu->run->s.regs.gprs,
4725
vcpu->arch.gmap->asce.val);
4726
4727
__enable_cpu_timer_accounting(vcpu);
4728
guest_timing_exit_irqoff();
4729
local_irq_enable();
4730
4731
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4732
memcpy(vcpu->run->s.regs.gprs,
4733
sie_page->pv_grregs,
4734
sizeof(sie_page->pv_grregs));
4735
/*
4736
* We're not allowed to inject interrupts on intercepts
4737
* that leave the guest state in an "in-between" state
4738
* where the next SIE entry will do a continuation.
4739
* Fence interrupts in our "internal" PSW.
4740
*/
4741
if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
4742
vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
4743
vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
4744
}
4745
}
4746
kvm_vcpu_srcu_read_lock(vcpu);
4747
4748
rc = vcpu_post_run(vcpu, exit_reason);
4749
if (rc || guestdbg_exit_pending(vcpu)) {
4750
kvm_vcpu_srcu_read_unlock(vcpu);
4751
break;
4752
}
4753
}
4754
4755
return rc;
4756
}
4757
4758
static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
4759
{
4760
struct kvm_run *kvm_run = vcpu->run;
4761
struct runtime_instr_cb *riccb;
4762
struct gs_cb *gscb;
4763
4764
riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
4765
gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
4766
vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
4767
vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
4768
if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4769
vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
4770
vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
4771
vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
4772
}
4773
if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
4774
vcpu->arch.pfault_token = kvm_run->s.regs.pft;
4775
vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
4776
vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
4777
if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4778
kvm_clear_async_pf_completion_queue(vcpu);
4779
}
4780
if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
4781
vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
4782
vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
4783
VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
4784
}
4785
/*
4786
* If userspace sets the riccb (e.g. after migration) to a valid state,
4787
* we should enable RI here instead of doing the lazy enablement.
4788
*/
4789
if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
4790
test_kvm_facility(vcpu->kvm, 64) &&
4791
riccb->v &&
4792
!(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
4793
VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
4794
vcpu->arch.sie_block->ecb3 |= ECB3_RI;
4795
}
4796
/*
4797
* If userspace sets the gscb (e.g. after migration) to non-zero,
4798
* we should enable GS here instead of doing the lazy enablement.
4799
*/
4800
if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
4801
test_kvm_facility(vcpu->kvm, 133) &&
4802
gscb->gssm &&
4803
!vcpu->arch.gs_enabled) {
4804
VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
4805
vcpu->arch.sie_block->ecb |= ECB_GS;
4806
vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
4807
vcpu->arch.gs_enabled = 1;
4808
}
4809
if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
4810
test_kvm_facility(vcpu->kvm, 82)) {
4811
vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4812
vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
4813
}
4814
if (cpu_has_gs()) {
4815
preempt_disable();
4816
local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
4817
if (current->thread.gs_cb) {
4818
vcpu->arch.host_gscb = current->thread.gs_cb;
4819
save_gs_cb(vcpu->arch.host_gscb);
4820
}
4821
if (vcpu->arch.gs_enabled) {
4822
current->thread.gs_cb = (struct gs_cb *)
4823
&vcpu->run->s.regs.gscb;
4824
restore_gs_cb(current->thread.gs_cb);
4825
}
4826
preempt_enable();
4827
}
4828
/* SIE will load etoken directly from SDNX and therefore kvm_run */
4829
}
4830
4831
static void sync_regs(struct kvm_vcpu *vcpu)
4832
{
4833
struct kvm_run *kvm_run = vcpu->run;
4834
4835
if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
4836
kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
4837
if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
4838
memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
4839
/* some control register changes require a tlb flush */
4840
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4841
}
4842
if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4843
kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
4844
vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
4845
}
4846
save_access_regs(vcpu->arch.host_acrs);
4847
restore_access_regs(vcpu->run->s.regs.acrs);
4848
vcpu->arch.acrs_loaded = true;
4849
kvm_s390_fpu_load(vcpu->run);
4850
/* Sync fmt2 only data */
4851
if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
4852
sync_regs_fmt2(vcpu);
4853
} else {
4854
/*
4855
* In several places we have to modify our internal view to
4856
* not do things that are disallowed by the ultravisor. For
4857
* example we must not inject interrupts after specific exits
4858
* (e.g. 112 prefix page not secure). We do this by turning
4859
* off the machine check, external and I/O interrupt bits
4860
* of our PSW copy. To avoid getting validity intercepts, we
4861
* do only accept the condition code from userspace.
4862
*/
4863
vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
4864
vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
4865
PSW_MASK_CC;
4866
}
4867
4868
kvm_run->kvm_dirty_regs = 0;
4869
}
4870
4871
static void store_regs_fmt2(struct kvm_vcpu *vcpu)
4872
{
4873
struct kvm_run *kvm_run = vcpu->run;
4874
4875
kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
4876
kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
4877
kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
4878
kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
4879
kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
4880
if (cpu_has_gs()) {
4881
preempt_disable();
4882
local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
4883
if (vcpu->arch.gs_enabled)
4884
save_gs_cb(current->thread.gs_cb);
4885
current->thread.gs_cb = vcpu->arch.host_gscb;
4886
restore_gs_cb(vcpu->arch.host_gscb);
4887
if (!vcpu->arch.host_gscb)
4888
local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT);
4889
vcpu->arch.host_gscb = NULL;
4890
preempt_enable();
4891
}
4892
/* SIE will save etoken directly into SDNX and therefore kvm_run */
4893
}
4894
4895
static void store_regs(struct kvm_vcpu *vcpu)
4896
{
4897
struct kvm_run *kvm_run = vcpu->run;
4898
4899
kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
4900
kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
4901
kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
4902
memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
4903
kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
4904
kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
4905
kvm_run->s.regs.pft = vcpu->arch.pfault_token;
4906
kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
4907
kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
4908
save_access_regs(vcpu->run->s.regs.acrs);
4909
restore_access_regs(vcpu->arch.host_acrs);
4910
vcpu->arch.acrs_loaded = false;
4911
kvm_s390_fpu_store(vcpu->run);
4912
if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
4913
store_regs_fmt2(vcpu);
4914
}
4915
4916
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
4917
{
4918
struct kvm_run *kvm_run = vcpu->run;
4919
DECLARE_KERNEL_FPU_ONSTACK32(fpu);
4920
int rc;
4921
4922
/*
4923
* Running a VM while dumping always has the potential to
4924
* produce inconsistent dump data. But for PV vcpus a SIE
4925
* entry while dumping could also lead to a fatal validity
4926
* intercept which we absolutely want to avoid.
4927
*/
4928
if (vcpu->kvm->arch.pv.dumping)
4929
return -EINVAL;
4930
4931
if (!vcpu->wants_to_run)
4932
return -EINTR;
4933
4934
if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
4935
kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
4936
return -EINVAL;
4937
4938
vcpu_load(vcpu);
4939
4940
if (guestdbg_exit_pending(vcpu)) {
4941
kvm_s390_prepare_debug_exit(vcpu);
4942
rc = 0;
4943
goto out;
4944
}
4945
4946
kvm_sigset_activate(vcpu);
4947
4948
/*
4949
* no need to check the return value of vcpu_start as it can only have
4950
* an error for protvirt, but protvirt means user cpu state
4951
*/
4952
if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
4953
kvm_s390_vcpu_start(vcpu);
4954
} else if (is_vcpu_stopped(vcpu)) {
4955
pr_err_ratelimited("can't run stopped vcpu %d\n",
4956
vcpu->vcpu_id);
4957
rc = -EINVAL;
4958
goto out;
4959
}
4960
4961
kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR);
4962
sync_regs(vcpu);
4963
enable_cpu_timer_accounting(vcpu);
4964
4965
might_fault();
4966
rc = __vcpu_run(vcpu);
4967
4968
if (signal_pending(current) && !rc) {
4969
kvm_run->exit_reason = KVM_EXIT_INTR;
4970
vcpu->stat.signal_exits++;
4971
rc = -EINTR;
4972
}
4973
4974
if (guestdbg_exit_pending(vcpu) && !rc) {
4975
kvm_s390_prepare_debug_exit(vcpu);
4976
rc = 0;
4977
}
4978
4979
if (rc == -EREMOTE) {
4980
/* userspace support is needed, kvm_run has been prepared */
4981
rc = 0;
4982
}
4983
4984
disable_cpu_timer_accounting(vcpu);
4985
store_regs(vcpu);
4986
kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR);
4987
4988
kvm_sigset_deactivate(vcpu);
4989
4990
vcpu->stat.exit_userspace++;
4991
out:
4992
vcpu_put(vcpu);
4993
return rc;
4994
}
4995
4996
/*
4997
* store status at address
4998
* we use have two special cases:
4999
* KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
5000
* KVM_S390_STORE_STATUS_PREFIXED: -> prefix
5001
*/
5002
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
5003
{
5004
unsigned char archmode = 1;
5005
freg_t fprs[NUM_FPRS];
5006
unsigned int px;
5007
u64 clkcomp, cputm;
5008
int rc;
5009
5010
px = kvm_s390_get_prefix(vcpu);
5011
if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
5012
if (write_guest_abs(vcpu, 163, &archmode, 1))
5013
return -EFAULT;
5014
gpa = 0;
5015
} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
5016
if (write_guest_real(vcpu, 163, &archmode, 1))
5017
return -EFAULT;
5018
gpa = px;
5019
} else
5020
gpa -= __LC_FPREGS_SAVE_AREA;
5021
5022
/* manually convert vector registers if necessary */
5023
if (cpu_has_vx()) {
5024
convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
5025
rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5026
fprs, 128);
5027
} else {
5028
rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5029
vcpu->run->s.regs.fprs, 128);
5030
}
5031
rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
5032
vcpu->run->s.regs.gprs, 128);
5033
rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
5034
&vcpu->arch.sie_block->gpsw, 16);
5035
rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
5036
&px, 4);
5037
rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
5038
&vcpu->run->s.regs.fpc, 4);
5039
rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
5040
&vcpu->arch.sie_block->todpr, 4);
5041
cputm = kvm_s390_get_cpu_timer(vcpu);
5042
rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
5043
&cputm, 8);
5044
clkcomp = vcpu->arch.sie_block->ckc >> 8;
5045
rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
5046
&clkcomp, 8);
5047
rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
5048
&vcpu->run->s.regs.acrs, 64);
5049
rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
5050
&vcpu->arch.sie_block->gcr, 128);
5051
return rc ? -EFAULT : 0;
5052
}
5053
5054
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
5055
{
5056
/*
5057
* The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
5058
* switch in the run ioctl. Let's update our copies before we save
5059
* it into the save area
5060
*/
5061
kvm_s390_fpu_store(vcpu->run);
5062
save_access_regs(vcpu->run->s.regs.acrs);
5063
5064
return kvm_s390_store_status_unloaded(vcpu, addr);
5065
}
5066
5067
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5068
{
5069
kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
5070
kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
5071
}
5072
5073
static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
5074
{
5075
unsigned long i;
5076
struct kvm_vcpu *vcpu;
5077
5078
kvm_for_each_vcpu(i, vcpu, kvm) {
5079
__disable_ibs_on_vcpu(vcpu);
5080
}
5081
}
5082
5083
static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5084
{
5085
if (!sclp.has_ibs)
5086
return;
5087
kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
5088
kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
5089
}
5090
5091
int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
5092
{
5093
int i, online_vcpus, r = 0, started_vcpus = 0;
5094
5095
if (!is_vcpu_stopped(vcpu))
5096
return 0;
5097
5098
trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
5099
/* Only one cpu at a time may enter/leave the STOPPED state. */
5100
spin_lock(&vcpu->kvm->arch.start_stop_lock);
5101
online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5102
5103
/* Let's tell the UV that we want to change into the operating state */
5104
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5105
r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
5106
if (r) {
5107
spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5108
return r;
5109
}
5110
}
5111
5112
for (i = 0; i < online_vcpus; i++) {
5113
if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
5114
started_vcpus++;
5115
}
5116
5117
if (started_vcpus == 0) {
5118
/* we're the only active VCPU -> speed it up */
5119
__enable_ibs_on_vcpu(vcpu);
5120
} else if (started_vcpus == 1) {
5121
/*
5122
* As we are starting a second VCPU, we have to disable
5123
* the IBS facility on all VCPUs to remove potentially
5124
* outstanding ENABLE requests.
5125
*/
5126
__disable_ibs_on_all_vcpus(vcpu->kvm);
5127
}
5128
5129
kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
5130
/*
5131
* The real PSW might have changed due to a RESTART interpreted by the
5132
* ultravisor. We block all interrupts and let the next sie exit
5133
* refresh our view.
5134
*/
5135
if (kvm_s390_pv_cpu_is_protected(vcpu))
5136
vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5137
/*
5138
* Another VCPU might have used IBS while we were offline.
5139
* Let's play safe and flush the VCPU at startup.
5140
*/
5141
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5142
spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5143
return 0;
5144
}
5145
5146
int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
5147
{
5148
int i, online_vcpus, r = 0, started_vcpus = 0;
5149
struct kvm_vcpu *started_vcpu = NULL;
5150
5151
if (is_vcpu_stopped(vcpu))
5152
return 0;
5153
5154
trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
5155
/* Only one cpu at a time may enter/leave the STOPPED state. */
5156
spin_lock(&vcpu->kvm->arch.start_stop_lock);
5157
online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5158
5159
/* Let's tell the UV that we want to change into the stopped state */
5160
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5161
r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
5162
if (r) {
5163
spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5164
return r;
5165
}
5166
}
5167
5168
/*
5169
* Set the VCPU to STOPPED and THEN clear the interrupt flag,
5170
* now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
5171
* have been fully processed. This will ensure that the VCPU
5172
* is kept BUSY if another VCPU is inquiring with SIGP SENSE.
5173
*/
5174
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
5175
kvm_s390_clear_stop_irq(vcpu);
5176
5177
__disable_ibs_on_vcpu(vcpu);
5178
5179
for (i = 0; i < online_vcpus; i++) {
5180
struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
5181
5182
if (!is_vcpu_stopped(tmp)) {
5183
started_vcpus++;
5184
started_vcpu = tmp;
5185
}
5186
}
5187
5188
if (started_vcpus == 1) {
5189
/*
5190
* As we only have one VCPU left, we want to enable the
5191
* IBS facility for that VCPU to speed it up.
5192
*/
5193
__enable_ibs_on_vcpu(started_vcpu);
5194
}
5195
5196
spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5197
return 0;
5198
}
5199
5200
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5201
struct kvm_enable_cap *cap)
5202
{
5203
int r;
5204
5205
if (cap->flags)
5206
return -EINVAL;
5207
5208
switch (cap->cap) {
5209
case KVM_CAP_S390_CSS_SUPPORT:
5210
if (!vcpu->kvm->arch.css_support) {
5211
vcpu->kvm->arch.css_support = 1;
5212
VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
5213
trace_kvm_s390_enable_css(vcpu->kvm);
5214
}
5215
r = 0;
5216
break;
5217
default:
5218
r = -EINVAL;
5219
break;
5220
}
5221
return r;
5222
}
5223
5224
static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
5225
struct kvm_s390_mem_op *mop)
5226
{
5227
void __user *uaddr = (void __user *)mop->buf;
5228
void *sida_addr;
5229
int r = 0;
5230
5231
if (mop->flags || !mop->size)
5232
return -EINVAL;
5233
if (mop->size + mop->sida_offset < mop->size)
5234
return -EINVAL;
5235
if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
5236
return -E2BIG;
5237
if (!kvm_s390_pv_cpu_is_protected(vcpu))
5238
return -EINVAL;
5239
5240
sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
5241
5242
switch (mop->op) {
5243
case KVM_S390_MEMOP_SIDA_READ:
5244
if (copy_to_user(uaddr, sida_addr, mop->size))
5245
r = -EFAULT;
5246
5247
break;
5248
case KVM_S390_MEMOP_SIDA_WRITE:
5249
if (copy_from_user(sida_addr, uaddr, mop->size))
5250
r = -EFAULT;
5251
break;
5252
}
5253
return r;
5254
}
5255
5256
static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
5257
struct kvm_s390_mem_op *mop)
5258
{
5259
void __user *uaddr = (void __user *)mop->buf;
5260
void *tmpbuf __free(kvfree) = NULL;
5261
enum gacc_mode acc_mode;
5262
int r;
5263
5264
r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
5265
KVM_S390_MEMOP_F_CHECK_ONLY |
5266
KVM_S390_MEMOP_F_SKEY_PROTECTION);
5267
if (r)
5268
return r;
5269
if (mop->ar >= NUM_ACRS)
5270
return -EINVAL;
5271
if (kvm_s390_pv_cpu_is_protected(vcpu))
5272
return -EINVAL;
5273
if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
5274
tmpbuf = vmalloc(mop->size);
5275
if (!tmpbuf)
5276
return -ENOMEM;
5277
}
5278
5279
acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
5280
if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
5281
r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
5282
acc_mode, mop->key);
5283
} else if (acc_mode == GACC_FETCH) {
5284
r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5285
mop->size, mop->key);
5286
if (!r && copy_to_user(uaddr, tmpbuf, mop->size))
5287
return -EFAULT;
5288
} else {
5289
if (copy_from_user(tmpbuf, uaddr, mop->size))
5290
return -EFAULT;
5291
r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5292
mop->size, mop->key);
5293
}
5294
5295
if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
5296
kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
5297
5298
return r;
5299
}
5300
5301
static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
5302
struct kvm_s390_mem_op *mop)
5303
{
5304
int r, srcu_idx;
5305
5306
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5307
5308
switch (mop->op) {
5309
case KVM_S390_MEMOP_LOGICAL_READ:
5310
case KVM_S390_MEMOP_LOGICAL_WRITE:
5311
r = kvm_s390_vcpu_mem_op(vcpu, mop);
5312
break;
5313
case KVM_S390_MEMOP_SIDA_READ:
5314
case KVM_S390_MEMOP_SIDA_WRITE:
5315
/* we are locked against sida going away by the vcpu->mutex */
5316
r = kvm_s390_vcpu_sida_op(vcpu, mop);
5317
break;
5318
default:
5319
r = -EINVAL;
5320
}
5321
5322
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5323
return r;
5324
}
5325
5326
long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
5327
unsigned long arg)
5328
{
5329
struct kvm_vcpu *vcpu = filp->private_data;
5330
void __user *argp = (void __user *)arg;
5331
int rc;
5332
5333
switch (ioctl) {
5334
case KVM_S390_IRQ: {
5335
struct kvm_s390_irq s390irq;
5336
5337
if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
5338
return -EFAULT;
5339
rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5340
break;
5341
}
5342
case KVM_S390_INTERRUPT: {
5343
struct kvm_s390_interrupt s390int;
5344
struct kvm_s390_irq s390irq = {};
5345
5346
if (copy_from_user(&s390int, argp, sizeof(s390int)))
5347
return -EFAULT;
5348
if (s390int_to_s390irq(&s390int, &s390irq))
5349
return -EINVAL;
5350
rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5351
break;
5352
}
5353
default:
5354
rc = -ENOIOCTLCMD;
5355
break;
5356
}
5357
5358
/*
5359
* To simplify single stepping of userspace-emulated instructions,
5360
* KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see
5361
* should_handle_per_ifetch()). However, if userspace emulation injects
5362
* an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens
5363
* after (and not before) the interrupt delivery.
5364
*/
5365
if (!rc)
5366
vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
5367
5368
return rc;
5369
}
5370
5371
static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
5372
struct kvm_pv_cmd *cmd)
5373
{
5374
struct kvm_s390_pv_dmp dmp;
5375
void *data;
5376
int ret;
5377
5378
/* Dump initialization is a prerequisite */
5379
if (!vcpu->kvm->arch.pv.dumping)
5380
return -EINVAL;
5381
5382
if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
5383
return -EFAULT;
5384
5385
/* We only handle this subcmd right now */
5386
if (dmp.subcmd != KVM_PV_DUMP_CPU)
5387
return -EINVAL;
5388
5389
/* CPU dump length is the same as create cpu storage donation. */
5390
if (dmp.buff_len != uv_info.guest_cpu_stor_len)
5391
return -EINVAL;
5392
5393
data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
5394
if (!data)
5395
return -ENOMEM;
5396
5397
ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
5398
5399
VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
5400
vcpu->vcpu_id, cmd->rc, cmd->rrc);
5401
5402
if (ret)
5403
ret = -EINVAL;
5404
5405
/* On success copy over the dump data */
5406
if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
5407
ret = -EFAULT;
5408
5409
kvfree(data);
5410
return ret;
5411
}
5412
5413
long kvm_arch_vcpu_ioctl(struct file *filp,
5414
unsigned int ioctl, unsigned long arg)
5415
{
5416
struct kvm_vcpu *vcpu = filp->private_data;
5417
void __user *argp = (void __user *)arg;
5418
int idx;
5419
long r;
5420
u16 rc, rrc;
5421
5422
vcpu_load(vcpu);
5423
5424
switch (ioctl) {
5425
case KVM_S390_STORE_STATUS:
5426
idx = srcu_read_lock(&vcpu->kvm->srcu);
5427
r = kvm_s390_store_status_unloaded(vcpu, arg);
5428
srcu_read_unlock(&vcpu->kvm->srcu, idx);
5429
break;
5430
case KVM_S390_SET_INITIAL_PSW: {
5431
psw_t psw;
5432
5433
r = -EFAULT;
5434
if (copy_from_user(&psw, argp, sizeof(psw)))
5435
break;
5436
r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
5437
break;
5438
}
5439
case KVM_S390_CLEAR_RESET:
5440
r = 0;
5441
kvm_arch_vcpu_ioctl_clear_reset(vcpu);
5442
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5443
r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5444
UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
5445
VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
5446
rc, rrc);
5447
}
5448
break;
5449
case KVM_S390_INITIAL_RESET:
5450
r = 0;
5451
kvm_arch_vcpu_ioctl_initial_reset(vcpu);
5452
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5453
r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5454
UVC_CMD_CPU_RESET_INITIAL,
5455
&rc, &rrc);
5456
VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
5457
rc, rrc);
5458
}
5459
break;
5460
case KVM_S390_NORMAL_RESET:
5461
r = 0;
5462
kvm_arch_vcpu_ioctl_normal_reset(vcpu);
5463
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5464
r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5465
UVC_CMD_CPU_RESET, &rc, &rrc);
5466
VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
5467
rc, rrc);
5468
}
5469
break;
5470
case KVM_SET_ONE_REG:
5471
case KVM_GET_ONE_REG: {
5472
struct kvm_one_reg reg;
5473
r = -EINVAL;
5474
if (kvm_s390_pv_cpu_is_protected(vcpu))
5475
break;
5476
r = -EFAULT;
5477
if (copy_from_user(&reg, argp, sizeof(reg)))
5478
break;
5479
if (ioctl == KVM_SET_ONE_REG)
5480
r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
5481
else
5482
r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
5483
break;
5484
}
5485
#ifdef CONFIG_KVM_S390_UCONTROL
5486
case KVM_S390_UCAS_MAP: {
5487
struct kvm_s390_ucas_mapping ucas;
5488
5489
r = -EFAULT;
5490
if (copy_from_user(&ucas, argp, sizeof(ucas)))
5491
break;
5492
5493
r = -EINVAL;
5494
if (!kvm_is_ucontrol(vcpu->kvm))
5495
break;
5496
if (!IS_ALIGNED(ucas.user_addr | ucas.vcpu_addr | ucas.length, _SEGMENT_SIZE))
5497
break;
5498
5499
r = gmap_ucas_map(vcpu->arch.gmap, gpa_to_gfn(ucas.user_addr),
5500
gpa_to_gfn(ucas.vcpu_addr),
5501
ucas.length >> _SEGMENT_SHIFT);
5502
break;
5503
}
5504
case KVM_S390_UCAS_UNMAP: {
5505
struct kvm_s390_ucas_mapping ucas;
5506
5507
r = -EFAULT;
5508
if (copy_from_user(&ucas, argp, sizeof(ucas)))
5509
break;
5510
5511
r = -EINVAL;
5512
if (!kvm_is_ucontrol(vcpu->kvm))
5513
break;
5514
if (!IS_ALIGNED(ucas.vcpu_addr | ucas.length, _SEGMENT_SIZE))
5515
break;
5516
5517
gmap_ucas_unmap(vcpu->arch.gmap, gpa_to_gfn(ucas.vcpu_addr),
5518
ucas.length >> _SEGMENT_SHIFT);
5519
r = 0;
5520
break;
5521
}
5522
#endif
5523
case KVM_S390_VCPU_FAULT: {
5524
idx = srcu_read_lock(&vcpu->kvm->srcu);
5525
r = vcpu_dat_fault_handler(vcpu, arg, 0);
5526
srcu_read_unlock(&vcpu->kvm->srcu, idx);
5527
break;
5528
}
5529
case KVM_ENABLE_CAP:
5530
{
5531
struct kvm_enable_cap cap;
5532
r = -EFAULT;
5533
if (copy_from_user(&cap, argp, sizeof(cap)))
5534
break;
5535
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5536
break;
5537
}
5538
case KVM_S390_MEM_OP: {
5539
struct kvm_s390_mem_op mem_op;
5540
5541
if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
5542
r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
5543
else
5544
r = -EFAULT;
5545
break;
5546
}
5547
case KVM_S390_SET_IRQ_STATE: {
5548
struct kvm_s390_irq_state irq_state;
5549
5550
r = -EFAULT;
5551
if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5552
break;
5553
if (irq_state.len > VCPU_IRQS_MAX_BUF ||
5554
irq_state.len == 0 ||
5555
irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
5556
r = -EINVAL;
5557
break;
5558
}
5559
/* do not use irq_state.flags, it will break old QEMUs */
5560
r = kvm_s390_set_irq_state(vcpu,
5561
(void __user *) irq_state.buf,
5562
irq_state.len);
5563
break;
5564
}
5565
case KVM_S390_GET_IRQ_STATE: {
5566
struct kvm_s390_irq_state irq_state;
5567
5568
r = -EFAULT;
5569
if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5570
break;
5571
if (irq_state.len == 0) {
5572
r = -EINVAL;
5573
break;
5574
}
5575
/* do not use irq_state.flags, it will break old QEMUs */
5576
r = kvm_s390_get_irq_state(vcpu,
5577
(__u8 __user *) irq_state.buf,
5578
irq_state.len);
5579
break;
5580
}
5581
case KVM_S390_PV_CPU_COMMAND: {
5582
struct kvm_pv_cmd cmd;
5583
5584
r = -EINVAL;
5585
if (!is_prot_virt_host())
5586
break;
5587
5588
r = -EFAULT;
5589
if (copy_from_user(&cmd, argp, sizeof(cmd)))
5590
break;
5591
5592
r = -EINVAL;
5593
if (cmd.flags)
5594
break;
5595
5596
/* We only handle this cmd right now */
5597
if (cmd.cmd != KVM_PV_DUMP)
5598
break;
5599
5600
r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
5601
5602
/* Always copy over UV rc / rrc data */
5603
if (copy_to_user((__u8 __user *)argp, &cmd.rc,
5604
sizeof(cmd.rc) + sizeof(cmd.rrc)))
5605
r = -EFAULT;
5606
break;
5607
}
5608
default:
5609
r = -ENOTTY;
5610
}
5611
5612
vcpu_put(vcpu);
5613
return r;
5614
}
5615
5616
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5617
{
5618
#ifdef CONFIG_KVM_S390_UCONTROL
5619
if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
5620
&& (kvm_is_ucontrol(vcpu->kvm))) {
5621
vmf->page = virt_to_page(vcpu->arch.sie_block);
5622
get_page(vmf->page);
5623
return 0;
5624
}
5625
#endif
5626
return VM_FAULT_SIGBUS;
5627
}
5628
5629
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
5630
{
5631
return true;
5632
}
5633
5634
/* Section: memory related */
5635
int kvm_arch_prepare_memory_region(struct kvm *kvm,
5636
const struct kvm_memory_slot *old,
5637
struct kvm_memory_slot *new,
5638
enum kvm_mr_change change)
5639
{
5640
gpa_t size;
5641
5642
if (kvm_is_ucontrol(kvm) && new->id < KVM_USER_MEM_SLOTS)
5643
return -EINVAL;
5644
5645
/* When we are protected, we should not change the memory slots */
5646
if (kvm_s390_pv_get_handle(kvm))
5647
return -EINVAL;
5648
5649
if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
5650
/*
5651
* A few sanity checks. We can have memory slots which have to be
5652
* located/ended at a segment boundary (1MB). The memory in userland is
5653
* ok to be fragmented into various different vmas. It is okay to mmap()
5654
* and munmap() stuff in this slot after doing this call at any time
5655
*/
5656
5657
if (new->userspace_addr & 0xffffful)
5658
return -EINVAL;
5659
5660
size = new->npages * PAGE_SIZE;
5661
if (size & 0xffffful)
5662
return -EINVAL;
5663
5664
if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
5665
return -EINVAL;
5666
}
5667
5668
if (!kvm->arch.migration_mode)
5669
return 0;
5670
5671
/*
5672
* Turn off migration mode when:
5673
* - userspace creates a new memslot with dirty logging off,
5674
* - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
5675
* dirty logging is turned off.
5676
* Migration mode expects dirty page logging being enabled to store
5677
* its dirty bitmap.
5678
*/
5679
if (change != KVM_MR_DELETE &&
5680
!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
5681
WARN(kvm_s390_vm_stop_migration(kvm),
5682
"Failed to stop migration mode");
5683
5684
return 0;
5685
}
5686
5687
void kvm_arch_commit_memory_region(struct kvm *kvm,
5688
struct kvm_memory_slot *old,
5689
const struct kvm_memory_slot *new,
5690
enum kvm_mr_change change)
5691
{
5692
struct kvm_s390_mmu_cache *mc = NULL;
5693
int rc = 0;
5694
5695
if (change == KVM_MR_FLAGS_ONLY)
5696
return;
5697
5698
mc = kvm_s390_new_mmu_cache();
5699
if (!mc) {
5700
rc = -ENOMEM;
5701
goto out;
5702
}
5703
5704
scoped_guard(write_lock, &kvm->mmu_lock) {
5705
switch (change) {
5706
case KVM_MR_DELETE:
5707
rc = dat_delete_slot(mc, kvm->arch.gmap->asce, old->base_gfn, old->npages);
5708
break;
5709
case KVM_MR_MOVE:
5710
rc = dat_delete_slot(mc, kvm->arch.gmap->asce, old->base_gfn, old->npages);
5711
if (rc)
5712
break;
5713
fallthrough;
5714
case KVM_MR_CREATE:
5715
rc = dat_create_slot(mc, kvm->arch.gmap->asce, new->base_gfn, new->npages);
5716
break;
5717
case KVM_MR_FLAGS_ONLY:
5718
break;
5719
default:
5720
WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
5721
}
5722
}
5723
out:
5724
if (rc)
5725
pr_warn("failed to commit memory region\n");
5726
kvm_s390_free_mmu_cache(mc);
5727
return;
5728
}
5729
5730
/**
5731
* kvm_test_age_gfn() - test young
5732
* @kvm: the kvm instance
5733
* @range: the range of guest addresses whose young status needs to be cleared
5734
*
5735
* Context: called by KVM common code without holding the kvm mmu lock
5736
* Return: true if any page in the given range is young, otherwise 0.
5737
*/
5738
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
5739
{
5740
scoped_guard(read_lock, &kvm->mmu_lock)
5741
return dat_test_age_gfn(kvm->arch.gmap->asce, range->start, range->end);
5742
}
5743
5744
/**
5745
* kvm_age_gfn() - clear young
5746
* @kvm: the kvm instance
5747
* @range: the range of guest addresses whose young status needs to be cleared
5748
*
5749
* Context: called by KVM common code without holding the kvm mmu lock
5750
* Return: true if any page in the given range was young, otherwise 0.
5751
*/
5752
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
5753
{
5754
scoped_guard(read_lock, &kvm->mmu_lock)
5755
return gmap_age_gfn(kvm->arch.gmap, range->start, range->end);
5756
}
5757
5758
/**
5759
* kvm_unmap_gfn_range() - Unmap a range of guest addresses
5760
* @kvm: the kvm instance
5761
* @range: the range of guest page frames to invalidate
5762
*
5763
* This function always returns false because every DAT table modification
5764
* has to use the appropriate DAT table manipulation instructions, which will
5765
* keep the TLB coherent, hence no additional TLB flush is ever required.
5766
*
5767
* Context: called by KVM common code with the kvm mmu write lock held
5768
* Return: false
5769
*/
5770
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
5771
{
5772
return gmap_unmap_gfn_range(kvm->arch.gmap, range->slot, range->start, range->end);
5773
}
5774
5775
static inline unsigned long nonhyp_mask(int i)
5776
{
5777
unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
5778
5779
return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
5780
}
5781
5782
static int __init kvm_s390_init(void)
5783
{
5784
int i, r;
5785
5786
if (!sclp.has_sief2) {
5787
pr_info("SIE is not available\n");
5788
return -ENODEV;
5789
}
5790
5791
for (i = 0; i < 16; i++)
5792
kvm_s390_fac_base[i] |=
5793
stfle_fac_list[i] & nonhyp_mask(i);
5794
5795
r = __kvm_s390_init();
5796
if (r)
5797
return r;
5798
5799
r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
5800
if (r) {
5801
__kvm_s390_exit();
5802
return r;
5803
}
5804
return 0;
5805
}
5806
5807
static void __exit kvm_s390_exit(void)
5808
{
5809
kvm_exit();
5810
5811
__kvm_s390_exit();
5812
}
5813
5814
module_init(kvm_s390_init);
5815
module_exit(kvm_s390_exit);
5816
5817
/*
5818
* Enable autoloading of the kvm module.
5819
* Note that we add the module alias here instead of virt/kvm/kvm_main.c
5820
* since x86 takes a different approach.
5821
*/
5822
#include <linux/miscdevice.h>
5823
MODULE_ALIAS_MISCDEV(KVM_MINOR);
5824
MODULE_ALIAS("devname:kvm");
5825
5826