Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/net/bpf_jit_comp.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* BPF Jit compiler for s390.
4
*
5
* Minimum build requirements:
6
*
7
* - HAVE_MARCH_Z196_FEATURES: laal, laalg
8
* - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9
* - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10
* - 64BIT
11
*
12
* Copyright IBM Corp. 2012,2015
13
*
14
* Author(s): Martin Schwidefsky <[email protected]>
15
* Michael Holzheu <[email protected]>
16
*/
17
18
#define KMSG_COMPONENT "bpf_jit"
19
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21
#include <linux/netdevice.h>
22
#include <linux/filter.h>
23
#include <linux/init.h>
24
#include <linux/bpf.h>
25
#include <linux/mm.h>
26
#include <linux/kernel.h>
27
#include <asm/cacheflush.h>
28
#include <asm/extable.h>
29
#include <asm/dis.h>
30
#include <asm/facility.h>
31
#include <asm/nospec-branch.h>
32
#include <asm/set_memory.h>
33
#include <asm/text-patching.h>
34
#include <asm/unwind.h>
35
36
struct bpf_jit {
37
u32 seen; /* Flags to remember seen eBPF instructions */
38
u16 seen_regs; /* Mask to remember which registers are used */
39
u32 *addrs; /* Array with relative instruction addresses */
40
u8 *prg_buf; /* Start of program */
41
int size; /* Size of program and literal pool */
42
int size_prg; /* Size of program */
43
int prg; /* Current position in program */
44
int lit32_start; /* Start of 32-bit literal pool */
45
int lit32; /* Current position in 32-bit literal pool */
46
int lit64_start; /* Start of 64-bit literal pool */
47
int lit64; /* Current position in 64-bit literal pool */
48
int base_ip; /* Base address for literal pool */
49
int exit_ip; /* Address of exit */
50
int tail_call_start; /* Tail call start offset */
51
int excnt; /* Number of exception table entries */
52
int prologue_plt_ret; /* Return address for prologue hotpatch PLT */
53
int prologue_plt; /* Start of prologue hotpatch PLT */
54
int kern_arena; /* Pool offset of kernel arena address */
55
u64 user_arena; /* User arena address */
56
u32 frame_off; /* Offset of struct bpf_prog from %r15 */
57
};
58
59
#define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
60
#define SEEN_LITERAL BIT(1) /* code uses literals */
61
#define SEEN_FUNC BIT(2) /* calls C functions */
62
#define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
63
64
#define NVREGS 0xffc0 /* %r6-%r15 */
65
66
/*
67
* s390 registers
68
*/
69
#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
70
#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
71
#define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
72
#define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
73
#define REG_0 REG_W0 /* Register 0 */
74
#define REG_1 REG_W1 /* Register 1 */
75
#define REG_2 BPF_REG_1 /* Register 2 */
76
#define REG_3 BPF_REG_2 /* Register 3 */
77
#define REG_4 BPF_REG_3 /* Register 4 */
78
#define REG_7 BPF_REG_6 /* Register 7 */
79
#define REG_8 BPF_REG_7 /* Register 8 */
80
#define REG_14 BPF_REG_0 /* Register 14 */
81
82
/*
83
* Mapping of BPF registers to s390 registers
84
*/
85
static const int reg2hex[] = {
86
/* Return code */
87
[BPF_REG_0] = 14,
88
/* Function parameters */
89
[BPF_REG_1] = 2,
90
[BPF_REG_2] = 3,
91
[BPF_REG_3] = 4,
92
[BPF_REG_4] = 5,
93
[BPF_REG_5] = 6,
94
/* Call saved registers */
95
[BPF_REG_6] = 7,
96
[BPF_REG_7] = 8,
97
[BPF_REG_8] = 9,
98
[BPF_REG_9] = 10,
99
/* BPF stack pointer */
100
[BPF_REG_FP] = 13,
101
/* Register for blinding */
102
[BPF_REG_AX] = 12,
103
/* Work registers for s390x backend */
104
[REG_W0] = 0,
105
[REG_W1] = 1,
106
[REG_L] = 11,
107
[REG_15] = 15,
108
};
109
110
static inline u32 reg(u32 dst_reg, u32 src_reg)
111
{
112
return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
113
}
114
115
static inline u32 reg_high(u32 reg)
116
{
117
return reg2hex[reg] << 4;
118
}
119
120
static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
121
{
122
u32 r1 = reg2hex[b1];
123
124
if (r1 >= 6 && r1 <= 15)
125
jit->seen_regs |= (1 << r1);
126
}
127
128
static s32 off_to_pcrel(struct bpf_jit *jit, u32 off)
129
{
130
return off - jit->prg;
131
}
132
133
static s64 ptr_to_pcrel(struct bpf_jit *jit, const void *ptr)
134
{
135
if (jit->prg_buf)
136
return (const u8 *)ptr - ((const u8 *)jit->prg_buf + jit->prg);
137
return 0;
138
}
139
140
#define REG_SET_SEEN(b1) \
141
({ \
142
reg_set_seen(jit, b1); \
143
})
144
145
/*
146
* EMIT macros for code generation
147
*/
148
149
#define _EMIT2(op) \
150
({ \
151
if (jit->prg_buf) \
152
*(u16 *) (jit->prg_buf + jit->prg) = (op); \
153
jit->prg += 2; \
154
})
155
156
#define EMIT2(op, b1, b2) \
157
({ \
158
_EMIT2((op) | reg(b1, b2)); \
159
REG_SET_SEEN(b1); \
160
REG_SET_SEEN(b2); \
161
})
162
163
#define _EMIT4(op) \
164
({ \
165
if (jit->prg_buf) \
166
*(u32 *) (jit->prg_buf + jit->prg) = (op); \
167
jit->prg += 4; \
168
})
169
170
#define EMIT4(op, b1, b2) \
171
({ \
172
_EMIT4((op) | reg(b1, b2)); \
173
REG_SET_SEEN(b1); \
174
REG_SET_SEEN(b2); \
175
})
176
177
#define EMIT4_RRF(op, b1, b2, b3) \
178
({ \
179
_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
180
REG_SET_SEEN(b1); \
181
REG_SET_SEEN(b2); \
182
REG_SET_SEEN(b3); \
183
})
184
185
#define _EMIT4_DISP(op, disp) \
186
({ \
187
unsigned int __disp = (disp) & 0xfff; \
188
_EMIT4((op) | __disp); \
189
})
190
191
#define EMIT4_DISP(op, b1, b2, disp) \
192
({ \
193
_EMIT4_DISP((op) | reg_high(b1) << 16 | \
194
reg_high(b2) << 8, (disp)); \
195
REG_SET_SEEN(b1); \
196
REG_SET_SEEN(b2); \
197
})
198
199
#define EMIT4_IMM(op, b1, imm) \
200
({ \
201
unsigned int __imm = (imm) & 0xffff; \
202
_EMIT4((op) | reg_high(b1) << 16 | __imm); \
203
REG_SET_SEEN(b1); \
204
})
205
206
#define EMIT4_PCREL(op, pcrel) \
207
({ \
208
long __pcrel = ((pcrel) >> 1) & 0xffff; \
209
_EMIT4((op) | __pcrel); \
210
})
211
212
#define EMIT4_PCREL_RIC(op, mask, target) \
213
({ \
214
int __rel = off_to_pcrel(jit, target) / 2; \
215
_EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
216
})
217
218
#define _EMIT6(op1, op2) \
219
({ \
220
if (jit->prg_buf) { \
221
*(u32 *) (jit->prg_buf + jit->prg) = (op1); \
222
*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
223
} \
224
jit->prg += 6; \
225
})
226
227
#define _EMIT6_DISP(op1, op2, disp) \
228
({ \
229
unsigned int __disp = (disp) & 0xfff; \
230
_EMIT6((op1) | __disp, op2); \
231
})
232
233
#define _EMIT6_DISP_LH(op1, op2, disp) \
234
({ \
235
u32 _disp = (u32) (disp); \
236
unsigned int __disp_h = _disp & 0xff000; \
237
unsigned int __disp_l = _disp & 0x00fff; \
238
_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
239
})
240
241
#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
242
({ \
243
_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
244
reg_high(b3) << 8, op2, disp); \
245
REG_SET_SEEN(b1); \
246
REG_SET_SEEN(b2); \
247
REG_SET_SEEN(b3); \
248
})
249
250
#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
251
({ \
252
unsigned int rel = off_to_pcrel(jit, target) / 2; \
253
_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
254
(op2) | (mask) << 12); \
255
REG_SET_SEEN(b1); \
256
REG_SET_SEEN(b2); \
257
})
258
259
#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
260
({ \
261
unsigned int rel = off_to_pcrel(jit, target) / 2; \
262
_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
263
(rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
264
REG_SET_SEEN(b1); \
265
BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
266
})
267
268
#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
269
({ \
270
int rel = off_to_pcrel(jit, addrs[(i) + (off) + 1]) / 2;\
271
_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
272
REG_SET_SEEN(b1); \
273
REG_SET_SEEN(b2); \
274
})
275
276
static void emit6_pcrel_ril(struct bpf_jit *jit, u32 op, s64 pcrel)
277
{
278
u32 pc32dbl = (s32)(pcrel / 2);
279
280
_EMIT6(op | pc32dbl >> 16, pc32dbl & 0xffff);
281
}
282
283
static void emit6_pcrel_rilb(struct bpf_jit *jit, u32 op, u8 b, s64 pcrel)
284
{
285
emit6_pcrel_ril(jit, op | reg_high(b) << 16, pcrel);
286
REG_SET_SEEN(b);
287
}
288
289
#define EMIT6_PCREL_RILB(op, b, target) \
290
emit6_pcrel_rilb(jit, op, b, off_to_pcrel(jit, target))
291
292
#define EMIT6_PCREL_RILB_PTR(op, b, target_ptr) \
293
emit6_pcrel_rilb(jit, op, b, ptr_to_pcrel(jit, target_ptr))
294
295
static void emit6_pcrel_rilc(struct bpf_jit *jit, u32 op, u8 mask, s64 pcrel)
296
{
297
emit6_pcrel_ril(jit, op | mask << 20, pcrel);
298
}
299
300
#define EMIT6_PCREL_RILC(op, mask, target) \
301
emit6_pcrel_rilc(jit, op, mask, off_to_pcrel(jit, target))
302
303
#define EMIT6_PCREL_RILC_PTR(op, mask, target_ptr) \
304
emit6_pcrel_rilc(jit, op, mask, ptr_to_pcrel(jit, target_ptr))
305
306
#define _EMIT6_IMM(op, imm) \
307
({ \
308
unsigned int __imm = (imm); \
309
_EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
310
})
311
312
#define EMIT6_IMM(op, b1, imm) \
313
({ \
314
_EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
315
REG_SET_SEEN(b1); \
316
})
317
318
#define _EMIT_CONST_U32(val) \
319
({ \
320
unsigned int ret; \
321
ret = jit->lit32; \
322
if (jit->prg_buf) \
323
*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
324
jit->lit32 += 4; \
325
ret; \
326
})
327
328
#define EMIT_CONST_U32(val) \
329
({ \
330
jit->seen |= SEEN_LITERAL; \
331
_EMIT_CONST_U32(val) - jit->base_ip; \
332
})
333
334
#define _EMIT_CONST_U64(val) \
335
({ \
336
unsigned int ret; \
337
ret = jit->lit64; \
338
if (jit->prg_buf) \
339
*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
340
jit->lit64 += 8; \
341
ret; \
342
})
343
344
#define EMIT_CONST_U64(val) \
345
({ \
346
jit->seen |= SEEN_LITERAL; \
347
_EMIT_CONST_U64(val) - jit->base_ip; \
348
})
349
350
#define EMIT_ZERO(b1) \
351
({ \
352
if (!fp->aux->verifier_zext) { \
353
/* llgfr %dst,%dst (zero extend to 64 bit) */ \
354
EMIT4(0xb9160000, b1, b1); \
355
REG_SET_SEEN(b1); \
356
} \
357
})
358
359
/*
360
* Return whether this is the first pass. The first pass is special, since we
361
* don't know any sizes yet, and thus must be conservative.
362
*/
363
static bool is_first_pass(struct bpf_jit *jit)
364
{
365
return jit->size == 0;
366
}
367
368
/*
369
* Return whether this is the code generation pass. The code generation pass is
370
* special, since we should change as little as possible.
371
*/
372
static bool is_codegen_pass(struct bpf_jit *jit)
373
{
374
return jit->prg_buf;
375
}
376
377
/*
378
* Return whether "rel" can be encoded as a short PC-relative offset
379
*/
380
static bool is_valid_rel(int rel)
381
{
382
return rel >= -65536 && rel <= 65534;
383
}
384
385
/*
386
* Return whether "off" can be reached using a short PC-relative offset
387
*/
388
static bool can_use_rel(struct bpf_jit *jit, int off)
389
{
390
return is_valid_rel(off - jit->prg);
391
}
392
393
/*
394
* Return whether given displacement can be encoded using
395
* Long-Displacement Facility
396
*/
397
static bool is_valid_ldisp(int disp)
398
{
399
return disp >= -524288 && disp <= 524287;
400
}
401
402
/*
403
* Return whether the next 32-bit literal pool entry can be referenced using
404
* Long-Displacement Facility
405
*/
406
static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
407
{
408
return is_valid_ldisp(jit->lit32 - jit->base_ip);
409
}
410
411
/*
412
* Return whether the next 64-bit literal pool entry can be referenced using
413
* Long-Displacement Facility
414
*/
415
static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
416
{
417
return is_valid_ldisp(jit->lit64 - jit->base_ip);
418
}
419
420
/*
421
* Fill whole space with illegal instructions
422
*/
423
static void jit_fill_hole(void *area, unsigned int size)
424
{
425
memset(area, 0, size);
426
}
427
428
/*
429
* Caller-allocated part of the frame.
430
* Thanks to packed stack, its otherwise unused initial part can be used for
431
* the BPF stack and for the next frame.
432
*/
433
struct prog_frame {
434
u64 unused[8];
435
/* BPF stack starts here and grows towards 0 */
436
u32 tail_call_cnt;
437
u32 pad;
438
u64 r6[10]; /* r6 - r15 */
439
u64 backchain;
440
} __packed;
441
442
/*
443
* Save registers from "rs" (register start) to "re" (register end) on stack
444
*/
445
static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
446
{
447
u32 off = offsetof(struct prog_frame, r6) + (rs - 6) * 8;
448
449
if (rs == re)
450
/* stg %rs,off(%r15) */
451
_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
452
else
453
/* stmg %rs,%re,off(%r15) */
454
_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
455
}
456
457
/*
458
* Restore registers from "rs" (register start) to "re" (register end) on stack
459
*/
460
static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
461
{
462
u32 off = jit->frame_off + offsetof(struct prog_frame, r6) + (rs - 6) * 8;
463
464
if (rs == re)
465
/* lg %rs,off(%r15) */
466
_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
467
else
468
/* lmg %rs,%re,off(%r15) */
469
_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
470
}
471
472
/*
473
* Return first seen register (from start)
474
*/
475
static int get_start(u16 seen_regs, int start)
476
{
477
int i;
478
479
for (i = start; i <= 15; i++) {
480
if (seen_regs & (1 << i))
481
return i;
482
}
483
return 0;
484
}
485
486
/*
487
* Return last seen register (from start) (gap >= 2)
488
*/
489
static int get_end(u16 seen_regs, int start)
490
{
491
int i;
492
493
for (i = start; i < 15; i++) {
494
if (!(seen_regs & (3 << i)))
495
return i - 1;
496
}
497
return (seen_regs & (1 << 15)) ? 15 : 14;
498
}
499
500
#define REGS_SAVE 1
501
#define REGS_RESTORE 0
502
/*
503
* Save and restore clobbered registers (6-15) on stack.
504
* We save/restore registers in chunks with gap >= 2 registers.
505
*/
506
static void save_restore_regs(struct bpf_jit *jit, int op, u16 extra_regs)
507
{
508
u16 seen_regs = jit->seen_regs | extra_regs;
509
const int last = 15, save_restore_size = 6;
510
int re = 6, rs;
511
512
if (is_first_pass(jit)) {
513
/*
514
* We don't know yet which registers are used. Reserve space
515
* conservatively.
516
*/
517
jit->prg += (last - re + 1) * save_restore_size;
518
return;
519
}
520
521
do {
522
rs = get_start(seen_regs, re);
523
if (!rs)
524
break;
525
re = get_end(seen_regs, rs + 1);
526
if (op == REGS_SAVE)
527
save_regs(jit, rs, re);
528
else
529
restore_regs(jit, rs, re);
530
re++;
531
} while (re <= last);
532
}
533
534
static void bpf_skip(struct bpf_jit *jit, int size)
535
{
536
if (size >= 6 && !is_valid_rel(size)) {
537
/* brcl 0xf,size */
538
EMIT6_PCREL_RILC(0xc0040000, 0xf, size);
539
size -= 6;
540
} else if (size >= 4 && is_valid_rel(size)) {
541
/* brc 0xf,size */
542
EMIT4_PCREL(0xa7f40000, size);
543
size -= 4;
544
}
545
while (size >= 2) {
546
/* bcr 0,%0 */
547
_EMIT2(0x0700);
548
size -= 2;
549
}
550
}
551
552
/*
553
* PLT for hotpatchable calls. The calling convention is the same as for the
554
* ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
555
*/
556
struct bpf_plt {
557
char code[16];
558
void *ret;
559
void *target;
560
} __packed;
561
extern const struct bpf_plt bpf_plt;
562
asm(
563
".pushsection .rodata\n"
564
" .balign 8\n"
565
"bpf_plt:\n"
566
" lgrl %r0,bpf_plt_ret\n"
567
" lgrl %r1,bpf_plt_target\n"
568
" br %r1\n"
569
" .balign 8\n"
570
"bpf_plt_ret: .quad 0\n"
571
"bpf_plt_target: .quad 0\n"
572
" .popsection\n"
573
);
574
575
static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
576
{
577
memcpy(plt, &bpf_plt, sizeof(*plt));
578
plt->ret = ret;
579
/*
580
* (target == NULL) implies that the branch to this PLT entry was
581
* patched and became a no-op. However, some CPU could have jumped
582
* to this PLT entry before patching and may be still executing it.
583
*
584
* Since the intention in this case is to make the PLT entry a no-op,
585
* make the target point to the return label instead of NULL.
586
*/
587
plt->target = target ?: ret;
588
}
589
590
/*
591
* Emit function prologue
592
*
593
* Save registers and create stack frame if necessary.
594
* Stack frame layout is described by struct prog_frame.
595
*/
596
static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp)
597
{
598
BUILD_BUG_ON(sizeof(struct prog_frame) != STACK_FRAME_OVERHEAD);
599
600
/* No-op for hotpatching */
601
/* brcl 0,prologue_plt */
602
EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
603
jit->prologue_plt_ret = jit->prg;
604
605
if (!bpf_is_subprog(fp)) {
606
/* Initialize the tail call counter in the main program. */
607
/* xc tail_call_cnt(4,%r15),tail_call_cnt(%r15) */
608
_EMIT6(0xd703f000 | offsetof(struct prog_frame, tail_call_cnt),
609
0xf000 | offsetof(struct prog_frame, tail_call_cnt));
610
} else {
611
/*
612
* Skip the tail call counter initialization in subprograms.
613
* Insert nops in order to have tail_call_start at a
614
* predictable offset.
615
*/
616
bpf_skip(jit, 6);
617
}
618
/* Tail calls have to skip above initialization */
619
jit->tail_call_start = jit->prg;
620
if (fp->aux->exception_cb) {
621
/*
622
* Switch stack, the new address is in the 2nd parameter.
623
*
624
* Arrange the restoration of %r6-%r15 in the epilogue.
625
* Do not restore them now, the prog does not need them.
626
*/
627
/* lgr %r15,%r3 */
628
EMIT4(0xb9040000, REG_15, REG_3);
629
jit->seen_regs |= NVREGS;
630
} else {
631
/* Save registers */
632
save_restore_regs(jit, REGS_SAVE,
633
fp->aux->exception_boundary ? NVREGS : 0);
634
}
635
/* Setup literal pool */
636
if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
637
if (!is_first_pass(jit) &&
638
is_valid_ldisp(jit->size - (jit->prg + 2))) {
639
/* basr %l,0 */
640
EMIT2(0x0d00, REG_L, REG_0);
641
jit->base_ip = jit->prg;
642
} else {
643
/* larl %l,lit32_start */
644
EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
645
jit->base_ip = jit->lit32_start;
646
}
647
}
648
/* Setup stack and backchain */
649
if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
650
/* lgr %w1,%r15 (backchain) */
651
EMIT4(0xb9040000, REG_W1, REG_15);
652
/* la %bfp,unused_end(%r15) (BPF frame pointer) */
653
EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15,
654
offsetofend(struct prog_frame, unused));
655
/* aghi %r15,-frame_off */
656
EMIT4_IMM(0xa70b0000, REG_15, -jit->frame_off);
657
/* stg %w1,backchain(%r15) */
658
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
659
REG_15,
660
offsetof(struct prog_frame, backchain));
661
}
662
}
663
664
/*
665
* Jump using a register either directly or via an expoline thunk
666
*/
667
#define EMIT_JUMP_REG(reg) do { \
668
if (nospec_uses_trampoline()) \
669
/* brcl 0xf,__s390_indirect_jump_rN */ \
670
EMIT6_PCREL_RILC_PTR(0xc0040000, 0x0f, \
671
__s390_indirect_jump_r ## reg); \
672
else \
673
/* br %rN */ \
674
_EMIT2(0x07f0 | reg); \
675
} while (0)
676
677
/*
678
* Call r1 either directly or via __s390_indirect_jump_r1 thunk
679
*/
680
static void call_r1(struct bpf_jit *jit)
681
{
682
if (nospec_uses_trampoline())
683
/* brasl %r14,__s390_indirect_jump_r1 */
684
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14,
685
__s390_indirect_jump_r1);
686
else
687
/* basr %r14,%r1 */
688
EMIT2(0x0d00, REG_14, REG_1);
689
}
690
691
/*
692
* Function epilogue
693
*/
694
static void bpf_jit_epilogue(struct bpf_jit *jit)
695
{
696
jit->exit_ip = jit->prg;
697
/* Load exit code: lgr %r2,%b0 */
698
EMIT4(0xb9040000, REG_2, BPF_REG_0);
699
/* Restore registers */
700
save_restore_regs(jit, REGS_RESTORE, 0);
701
EMIT_JUMP_REG(14);
702
703
jit->prg = ALIGN(jit->prg, 8);
704
jit->prologue_plt = jit->prg;
705
if (jit->prg_buf)
706
bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
707
jit->prg_buf + jit->prologue_plt_ret, NULL);
708
jit->prg += sizeof(struct bpf_plt);
709
}
710
711
bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
712
{
713
regs->psw.addr = extable_fixup(x);
714
if (x->data != -1)
715
regs->gprs[x->data] = 0;
716
return true;
717
}
718
719
/*
720
* A single BPF probe instruction
721
*/
722
struct bpf_jit_probe {
723
int prg; /* JITed instruction offset */
724
int nop_prg; /* JITed nop offset */
725
int reg; /* Register to clear on exception */
726
int arena_reg; /* Register to use for arena addressing */
727
};
728
729
static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
730
{
731
probe->prg = -1;
732
probe->nop_prg = -1;
733
probe->reg = -1;
734
probe->arena_reg = REG_0;
735
}
736
737
/*
738
* Handlers of certain exceptions leave psw.addr pointing to the instruction
739
* directly after the failing one. Therefore, create two exception table
740
* entries and also add a nop in case two probing instructions come directly
741
* after each other.
742
*/
743
static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
744
struct bpf_jit_probe *probe)
745
{
746
if (probe->prg == -1 || probe->nop_prg != -1)
747
/* The probe is not armed or nop is already emitted. */
748
return;
749
750
probe->nop_prg = jit->prg;
751
/* bcr 0,%0 */
752
_EMIT2(0x0700);
753
}
754
755
static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
756
struct bpf_jit_probe *probe)
757
{
758
if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
759
BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
760
BPF_MODE(insn->code) != BPF_PROBE_MEM32)
761
return;
762
763
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
764
/* lgrl %r1,kern_arena */
765
EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
766
probe->arena_reg = REG_W1;
767
}
768
probe->prg = jit->prg;
769
probe->reg = reg2hex[insn->dst_reg];
770
}
771
772
static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
773
struct bpf_jit_probe *probe)
774
{
775
if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
776
return;
777
778
/* lgrl %r1,kern_arena */
779
EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
780
probe->arena_reg = REG_W1;
781
probe->prg = jit->prg;
782
}
783
784
static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
785
struct bpf_insn *insn,
786
struct bpf_jit_probe *probe)
787
{
788
if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
789
return;
790
791
/* lgrl %r1,kern_arena */
792
EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
793
/* agr %r1,%dst */
794
EMIT4(0xb9080000, REG_W1, insn->dst_reg);
795
probe->arena_reg = REG_W1;
796
probe->prg = jit->prg;
797
}
798
799
static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
800
struct bpf_jit_probe *probe)
801
{
802
struct exception_table_entry *ex;
803
int i, prg;
804
s64 delta;
805
u8 *insn;
806
807
if (probe->prg == -1)
808
/* The probe is not armed. */
809
return 0;
810
bpf_jit_probe_emit_nop(jit, probe);
811
if (!fp->aux->extable)
812
/* Do nothing during early JIT passes. */
813
return 0;
814
insn = jit->prg_buf + probe->prg;
815
if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
816
/* JIT bug - gap between probe and nop instructions. */
817
return -1;
818
for (i = 0; i < 2; i++) {
819
if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
820
/* Verifier bug - not enough entries. */
821
return -1;
822
ex = &fp->aux->extable[jit->excnt];
823
/* Add extable entries for probe and nop instructions. */
824
prg = i == 0 ? probe->prg : probe->nop_prg;
825
delta = jit->prg_buf + prg - (u8 *)&ex->insn;
826
if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
827
/* JIT bug - code and extable must be close. */
828
return -1;
829
ex->insn = delta;
830
/*
831
* Land on the current instruction. Note that the extable
832
* infrastructure ignores the fixup field; it is handled by
833
* ex_handler_bpf().
834
*/
835
delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
836
if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
837
/* JIT bug - landing pad and extable must be close. */
838
return -1;
839
ex->fixup = delta;
840
ex->type = EX_TYPE_BPF;
841
ex->data = probe->reg;
842
jit->excnt++;
843
}
844
return 0;
845
}
846
847
/*
848
* Sign-extend the register if necessary
849
*/
850
static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
851
{
852
if (!(flags & BTF_FMODEL_SIGNED_ARG))
853
return 0;
854
855
switch (size) {
856
case 1:
857
/* lgbr %r,%r */
858
EMIT4(0xb9060000, r, r);
859
return 0;
860
case 2:
861
/* lghr %r,%r */
862
EMIT4(0xb9070000, r, r);
863
return 0;
864
case 4:
865
/* lgfr %r,%r */
866
EMIT4(0xb9140000, r, r);
867
return 0;
868
case 8:
869
return 0;
870
default:
871
return -1;
872
}
873
}
874
875
/*
876
* Compile one eBPF instruction into s390x code
877
*
878
* NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
879
* stack space for the large switch statement.
880
*/
881
static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
882
int i, bool extra_pass)
883
{
884
struct bpf_insn *insn = &fp->insnsi[i];
885
s32 branch_oc_off = insn->off;
886
u32 dst_reg = insn->dst_reg;
887
u32 src_reg = insn->src_reg;
888
struct bpf_jit_probe probe;
889
int last, insn_count = 1;
890
u32 *addrs = jit->addrs;
891
s32 imm = insn->imm;
892
s16 off = insn->off;
893
unsigned int mask;
894
int err;
895
896
bpf_jit_probe_init(&probe);
897
898
switch (insn->code) {
899
/*
900
* BPF_MOV
901
*/
902
case BPF_ALU | BPF_MOV | BPF_X:
903
switch (insn->off) {
904
case 0: /* DST = (u32) SRC */
905
/* llgfr %dst,%src */
906
EMIT4(0xb9160000, dst_reg, src_reg);
907
if (insn_is_zext(&insn[1]))
908
insn_count = 2;
909
break;
910
case 8: /* DST = (u32)(s8) SRC */
911
/* lbr %dst,%src */
912
EMIT4(0xb9260000, dst_reg, src_reg);
913
/* llgfr %dst,%dst */
914
EMIT4(0xb9160000, dst_reg, dst_reg);
915
break;
916
case 16: /* DST = (u32)(s16) SRC */
917
/* lhr %dst,%src */
918
EMIT4(0xb9270000, dst_reg, src_reg);
919
/* llgfr %dst,%dst */
920
EMIT4(0xb9160000, dst_reg, dst_reg);
921
break;
922
}
923
break;
924
case BPF_ALU64 | BPF_MOV | BPF_X:
925
if (insn_is_cast_user(insn)) {
926
int patch_brc;
927
928
/* ltgr %dst,%src */
929
EMIT4(0xb9020000, dst_reg, src_reg);
930
/* brc 8,0f */
931
patch_brc = jit->prg;
932
EMIT4_PCREL_RIC(0xa7040000, 8, 0);
933
/* iihf %dst,user_arena>>32 */
934
EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
935
/* 0: */
936
if (jit->prg_buf)
937
*(u16 *)(jit->prg_buf + patch_brc + 2) =
938
(jit->prg - patch_brc) >> 1;
939
break;
940
}
941
switch (insn->off) {
942
case 0: /* DST = SRC */
943
/* lgr %dst,%src */
944
EMIT4(0xb9040000, dst_reg, src_reg);
945
break;
946
case 8: /* DST = (s8) SRC */
947
/* lgbr %dst,%src */
948
EMIT4(0xb9060000, dst_reg, src_reg);
949
break;
950
case 16: /* DST = (s16) SRC */
951
/* lghr %dst,%src */
952
EMIT4(0xb9070000, dst_reg, src_reg);
953
break;
954
case 32: /* DST = (s32) SRC */
955
/* lgfr %dst,%src */
956
EMIT4(0xb9140000, dst_reg, src_reg);
957
break;
958
}
959
break;
960
case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
961
/* llilf %dst,imm */
962
EMIT6_IMM(0xc00f0000, dst_reg, imm);
963
if (insn_is_zext(&insn[1]))
964
insn_count = 2;
965
break;
966
case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
967
/* lgfi %dst,imm */
968
EMIT6_IMM(0xc0010000, dst_reg, imm);
969
break;
970
/*
971
* BPF_LD 64
972
*/
973
case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
974
{
975
/* 16 byte instruction that uses two 'struct bpf_insn' */
976
u64 imm64;
977
978
imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
979
/* lgrl %dst,imm */
980
EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
981
insn_count = 2;
982
break;
983
}
984
/*
985
* BPF_ADD
986
*/
987
case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
988
/* ar %dst,%src */
989
EMIT2(0x1a00, dst_reg, src_reg);
990
EMIT_ZERO(dst_reg);
991
break;
992
case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
993
/* agr %dst,%src */
994
EMIT4(0xb9080000, dst_reg, src_reg);
995
break;
996
case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
997
if (imm != 0) {
998
/* alfi %dst,imm */
999
EMIT6_IMM(0xc20b0000, dst_reg, imm);
1000
}
1001
EMIT_ZERO(dst_reg);
1002
break;
1003
case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
1004
if (!imm)
1005
break;
1006
/* agfi %dst,imm */
1007
EMIT6_IMM(0xc2080000, dst_reg, imm);
1008
break;
1009
/*
1010
* BPF_SUB
1011
*/
1012
case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
1013
/* sr %dst,%src */
1014
EMIT2(0x1b00, dst_reg, src_reg);
1015
EMIT_ZERO(dst_reg);
1016
break;
1017
case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
1018
/* sgr %dst,%src */
1019
EMIT4(0xb9090000, dst_reg, src_reg);
1020
break;
1021
case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1022
if (imm != 0) {
1023
/* alfi %dst,-imm */
1024
EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1025
}
1026
EMIT_ZERO(dst_reg);
1027
break;
1028
case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1029
if (!imm)
1030
break;
1031
if (imm == -0x80000000) {
1032
/* algfi %dst,0x80000000 */
1033
EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1034
} else {
1035
/* agfi %dst,-imm */
1036
EMIT6_IMM(0xc2080000, dst_reg, -imm);
1037
}
1038
break;
1039
/*
1040
* BPF_MUL
1041
*/
1042
case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1043
/* msr %dst,%src */
1044
EMIT4(0xb2520000, dst_reg, src_reg);
1045
EMIT_ZERO(dst_reg);
1046
break;
1047
case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1048
/* msgr %dst,%src */
1049
EMIT4(0xb90c0000, dst_reg, src_reg);
1050
break;
1051
case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1052
if (imm != 1) {
1053
/* msfi %r5,imm */
1054
EMIT6_IMM(0xc2010000, dst_reg, imm);
1055
}
1056
EMIT_ZERO(dst_reg);
1057
break;
1058
case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1059
if (imm == 1)
1060
break;
1061
/* msgfi %dst,imm */
1062
EMIT6_IMM(0xc2000000, dst_reg, imm);
1063
break;
1064
/*
1065
* BPF_DIV / BPF_MOD
1066
*/
1067
case BPF_ALU | BPF_DIV | BPF_X:
1068
case BPF_ALU | BPF_MOD | BPF_X:
1069
{
1070
int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1071
1072
switch (off) {
1073
case 0: /* dst = (u32) dst {/,%} (u32) src */
1074
/* xr %w0,%w0 */
1075
EMIT2(0x1700, REG_W0, REG_W0);
1076
/* lr %w1,%dst */
1077
EMIT2(0x1800, REG_W1, dst_reg);
1078
/* dlr %w0,%src */
1079
EMIT4(0xb9970000, REG_W0, src_reg);
1080
break;
1081
case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1082
/* lgfr %r1,%dst */
1083
EMIT4(0xb9140000, REG_W1, dst_reg);
1084
/* dsgfr %r0,%src */
1085
EMIT4(0xb91d0000, REG_W0, src_reg);
1086
break;
1087
}
1088
/* llgfr %dst,%rc */
1089
EMIT4(0xb9160000, dst_reg, rc_reg);
1090
if (insn_is_zext(&insn[1]))
1091
insn_count = 2;
1092
break;
1093
}
1094
case BPF_ALU64 | BPF_DIV | BPF_X:
1095
case BPF_ALU64 | BPF_MOD | BPF_X:
1096
{
1097
int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1098
1099
switch (off) {
1100
case 0: /* dst = dst {/,%} src */
1101
/* lghi %w0,0 */
1102
EMIT4_IMM(0xa7090000, REG_W0, 0);
1103
/* lgr %w1,%dst */
1104
EMIT4(0xb9040000, REG_W1, dst_reg);
1105
/* dlgr %w0,%src */
1106
EMIT4(0xb9870000, REG_W0, src_reg);
1107
break;
1108
case 1: /* dst = (s64) dst {/,%} (s64) src */
1109
/* lgr %w1,%dst */
1110
EMIT4(0xb9040000, REG_W1, dst_reg);
1111
/* dsgr %w0,%src */
1112
EMIT4(0xb90d0000, REG_W0, src_reg);
1113
break;
1114
}
1115
/* lgr %dst,%rc */
1116
EMIT4(0xb9040000, dst_reg, rc_reg);
1117
break;
1118
}
1119
case BPF_ALU | BPF_DIV | BPF_K:
1120
case BPF_ALU | BPF_MOD | BPF_K:
1121
{
1122
int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1123
1124
if (imm == 1) {
1125
if (BPF_OP(insn->code) == BPF_MOD)
1126
/* lghi %dst,0 */
1127
EMIT4_IMM(0xa7090000, dst_reg, 0);
1128
else
1129
EMIT_ZERO(dst_reg);
1130
break;
1131
}
1132
if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1133
switch (off) {
1134
case 0: /* dst = (u32) dst {/,%} (u32) imm */
1135
/* xr %w0,%w0 */
1136
EMIT2(0x1700, REG_W0, REG_W0);
1137
/* lr %w1,%dst */
1138
EMIT2(0x1800, REG_W1, dst_reg);
1139
/* dl %w0,<d(imm)>(%l) */
1140
EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1141
REG_L, EMIT_CONST_U32(imm));
1142
break;
1143
case 1: /* dst = (s32) dst {/,%} (s32) imm */
1144
/* lgfr %r1,%dst */
1145
EMIT4(0xb9140000, REG_W1, dst_reg);
1146
/* dsgf %r0,<d(imm)>(%l) */
1147
EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1148
REG_L, EMIT_CONST_U32(imm));
1149
break;
1150
}
1151
} else {
1152
switch (off) {
1153
case 0: /* dst = (u32) dst {/,%} (u32) imm */
1154
/* xr %w0,%w0 */
1155
EMIT2(0x1700, REG_W0, REG_W0);
1156
/* lr %w1,%dst */
1157
EMIT2(0x1800, REG_W1, dst_reg);
1158
/* lrl %dst,imm */
1159
EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1160
_EMIT_CONST_U32(imm));
1161
jit->seen |= SEEN_LITERAL;
1162
/* dlr %w0,%dst */
1163
EMIT4(0xb9970000, REG_W0, dst_reg);
1164
break;
1165
case 1: /* dst = (s32) dst {/,%} (s32) imm */
1166
/* lgfr %w1,%dst */
1167
EMIT4(0xb9140000, REG_W1, dst_reg);
1168
/* lgfrl %dst,imm */
1169
EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1170
_EMIT_CONST_U32(imm));
1171
jit->seen |= SEEN_LITERAL;
1172
/* dsgr %w0,%dst */
1173
EMIT4(0xb90d0000, REG_W0, dst_reg);
1174
break;
1175
}
1176
}
1177
/* llgfr %dst,%rc */
1178
EMIT4(0xb9160000, dst_reg, rc_reg);
1179
if (insn_is_zext(&insn[1]))
1180
insn_count = 2;
1181
break;
1182
}
1183
case BPF_ALU64 | BPF_DIV | BPF_K:
1184
case BPF_ALU64 | BPF_MOD | BPF_K:
1185
{
1186
int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1187
1188
if (imm == 1) {
1189
if (BPF_OP(insn->code) == BPF_MOD)
1190
/* lhgi %dst,0 */
1191
EMIT4_IMM(0xa7090000, dst_reg, 0);
1192
break;
1193
}
1194
if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1195
switch (off) {
1196
case 0: /* dst = dst {/,%} imm */
1197
/* lghi %w0,0 */
1198
EMIT4_IMM(0xa7090000, REG_W0, 0);
1199
/* lgr %w1,%dst */
1200
EMIT4(0xb9040000, REG_W1, dst_reg);
1201
/* dlg %w0,<d(imm)>(%l) */
1202
EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1203
REG_L, EMIT_CONST_U64(imm));
1204
break;
1205
case 1: /* dst = (s64) dst {/,%} (s64) imm */
1206
/* lgr %w1,%dst */
1207
EMIT4(0xb9040000, REG_W1, dst_reg);
1208
/* dsg %w0,<d(imm)>(%l) */
1209
EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1210
REG_L, EMIT_CONST_U64(imm));
1211
break;
1212
}
1213
} else {
1214
switch (off) {
1215
case 0: /* dst = dst {/,%} imm */
1216
/* lghi %w0,0 */
1217
EMIT4_IMM(0xa7090000, REG_W0, 0);
1218
/* lgr %w1,%dst */
1219
EMIT4(0xb9040000, REG_W1, dst_reg);
1220
/* lgrl %dst,imm */
1221
EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1222
_EMIT_CONST_U64(imm));
1223
jit->seen |= SEEN_LITERAL;
1224
/* dlgr %w0,%dst */
1225
EMIT4(0xb9870000, REG_W0, dst_reg);
1226
break;
1227
case 1: /* dst = (s64) dst {/,%} (s64) imm */
1228
/* lgr %w1,%dst */
1229
EMIT4(0xb9040000, REG_W1, dst_reg);
1230
/* lgrl %dst,imm */
1231
EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1232
_EMIT_CONST_U64(imm));
1233
jit->seen |= SEEN_LITERAL;
1234
/* dsgr %w0,%dst */
1235
EMIT4(0xb90d0000, REG_W0, dst_reg);
1236
break;
1237
}
1238
}
1239
/* lgr %dst,%rc */
1240
EMIT4(0xb9040000, dst_reg, rc_reg);
1241
break;
1242
}
1243
/*
1244
* BPF_AND
1245
*/
1246
case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1247
/* nr %dst,%src */
1248
EMIT2(0x1400, dst_reg, src_reg);
1249
EMIT_ZERO(dst_reg);
1250
break;
1251
case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1252
/* ngr %dst,%src */
1253
EMIT4(0xb9800000, dst_reg, src_reg);
1254
break;
1255
case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1256
/* nilf %dst,imm */
1257
EMIT6_IMM(0xc00b0000, dst_reg, imm);
1258
EMIT_ZERO(dst_reg);
1259
break;
1260
case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1261
if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1262
/* ng %dst,<d(imm)>(%l) */
1263
EMIT6_DISP_LH(0xe3000000, 0x0080,
1264
dst_reg, REG_0, REG_L,
1265
EMIT_CONST_U64(imm));
1266
} else {
1267
/* lgrl %w0,imm */
1268
EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1269
_EMIT_CONST_U64(imm));
1270
jit->seen |= SEEN_LITERAL;
1271
/* ngr %dst,%w0 */
1272
EMIT4(0xb9800000, dst_reg, REG_W0);
1273
}
1274
break;
1275
/*
1276
* BPF_OR
1277
*/
1278
case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1279
/* or %dst,%src */
1280
EMIT2(0x1600, dst_reg, src_reg);
1281
EMIT_ZERO(dst_reg);
1282
break;
1283
case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1284
/* ogr %dst,%src */
1285
EMIT4(0xb9810000, dst_reg, src_reg);
1286
break;
1287
case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1288
/* oilf %dst,imm */
1289
EMIT6_IMM(0xc00d0000, dst_reg, imm);
1290
EMIT_ZERO(dst_reg);
1291
break;
1292
case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1293
if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1294
/* og %dst,<d(imm)>(%l) */
1295
EMIT6_DISP_LH(0xe3000000, 0x0081,
1296
dst_reg, REG_0, REG_L,
1297
EMIT_CONST_U64(imm));
1298
} else {
1299
/* lgrl %w0,imm */
1300
EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1301
_EMIT_CONST_U64(imm));
1302
jit->seen |= SEEN_LITERAL;
1303
/* ogr %dst,%w0 */
1304
EMIT4(0xb9810000, dst_reg, REG_W0);
1305
}
1306
break;
1307
/*
1308
* BPF_XOR
1309
*/
1310
case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1311
/* xr %dst,%src */
1312
EMIT2(0x1700, dst_reg, src_reg);
1313
EMIT_ZERO(dst_reg);
1314
break;
1315
case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1316
/* xgr %dst,%src */
1317
EMIT4(0xb9820000, dst_reg, src_reg);
1318
break;
1319
case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1320
if (imm != 0) {
1321
/* xilf %dst,imm */
1322
EMIT6_IMM(0xc0070000, dst_reg, imm);
1323
}
1324
EMIT_ZERO(dst_reg);
1325
break;
1326
case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1327
if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1328
/* xg %dst,<d(imm)>(%l) */
1329
EMIT6_DISP_LH(0xe3000000, 0x0082,
1330
dst_reg, REG_0, REG_L,
1331
EMIT_CONST_U64(imm));
1332
} else {
1333
/* lgrl %w0,imm */
1334
EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1335
_EMIT_CONST_U64(imm));
1336
jit->seen |= SEEN_LITERAL;
1337
/* xgr %dst,%w0 */
1338
EMIT4(0xb9820000, dst_reg, REG_W0);
1339
}
1340
break;
1341
/*
1342
* BPF_LSH
1343
*/
1344
case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1345
/* sll %dst,0(%src) */
1346
EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1347
EMIT_ZERO(dst_reg);
1348
break;
1349
case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1350
/* sllg %dst,%dst,0(%src) */
1351
EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1352
break;
1353
case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1354
if (imm != 0) {
1355
/* sll %dst,imm(%r0) */
1356
EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1357
}
1358
EMIT_ZERO(dst_reg);
1359
break;
1360
case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1361
if (imm == 0)
1362
break;
1363
/* sllg %dst,%dst,imm(%r0) */
1364
EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1365
break;
1366
/*
1367
* BPF_RSH
1368
*/
1369
case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1370
/* srl %dst,0(%src) */
1371
EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1372
EMIT_ZERO(dst_reg);
1373
break;
1374
case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1375
/* srlg %dst,%dst,0(%src) */
1376
EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1377
break;
1378
case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1379
if (imm != 0) {
1380
/* srl %dst,imm(%r0) */
1381
EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1382
}
1383
EMIT_ZERO(dst_reg);
1384
break;
1385
case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1386
if (imm == 0)
1387
break;
1388
/* srlg %dst,%dst,imm(%r0) */
1389
EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1390
break;
1391
/*
1392
* BPF_ARSH
1393
*/
1394
case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1395
/* sra %dst,%dst,0(%src) */
1396
EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1397
EMIT_ZERO(dst_reg);
1398
break;
1399
case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1400
/* srag %dst,%dst,0(%src) */
1401
EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1402
break;
1403
case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1404
if (imm != 0) {
1405
/* sra %dst,imm(%r0) */
1406
EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1407
}
1408
EMIT_ZERO(dst_reg);
1409
break;
1410
case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1411
if (imm == 0)
1412
break;
1413
/* srag %dst,%dst,imm(%r0) */
1414
EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1415
break;
1416
/*
1417
* BPF_NEG
1418
*/
1419
case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1420
/* lcr %dst,%dst */
1421
EMIT2(0x1300, dst_reg, dst_reg);
1422
EMIT_ZERO(dst_reg);
1423
break;
1424
case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1425
/* lcgr %dst,%dst */
1426
EMIT4(0xb9030000, dst_reg, dst_reg);
1427
break;
1428
/*
1429
* BPF_FROM_BE/LE
1430
*/
1431
case BPF_ALU | BPF_END | BPF_FROM_BE:
1432
/* s390 is big endian, therefore only clear high order bytes */
1433
switch (imm) {
1434
case 16: /* dst = (u16) cpu_to_be16(dst) */
1435
/* llghr %dst,%dst */
1436
EMIT4(0xb9850000, dst_reg, dst_reg);
1437
if (insn_is_zext(&insn[1]))
1438
insn_count = 2;
1439
break;
1440
case 32: /* dst = (u32) cpu_to_be32(dst) */
1441
if (!fp->aux->verifier_zext)
1442
/* llgfr %dst,%dst */
1443
EMIT4(0xb9160000, dst_reg, dst_reg);
1444
break;
1445
case 64: /* dst = (u64) cpu_to_be64(dst) */
1446
break;
1447
}
1448
break;
1449
case BPF_ALU | BPF_END | BPF_FROM_LE:
1450
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1451
switch (imm) {
1452
case 16: /* dst = (u16) cpu_to_le16(dst) */
1453
/* lrvr %dst,%dst */
1454
EMIT4(0xb91f0000, dst_reg, dst_reg);
1455
/* srl %dst,16(%r0) */
1456
EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1457
/* llghr %dst,%dst */
1458
EMIT4(0xb9850000, dst_reg, dst_reg);
1459
if (insn_is_zext(&insn[1]))
1460
insn_count = 2;
1461
break;
1462
case 32: /* dst = (u32) cpu_to_le32(dst) */
1463
/* lrvr %dst,%dst */
1464
EMIT4(0xb91f0000, dst_reg, dst_reg);
1465
if (!fp->aux->verifier_zext)
1466
/* llgfr %dst,%dst */
1467
EMIT4(0xb9160000, dst_reg, dst_reg);
1468
break;
1469
case 64: /* dst = (u64) cpu_to_le64(dst) */
1470
/* lrvgr %dst,%dst */
1471
EMIT4(0xb90f0000, dst_reg, dst_reg);
1472
break;
1473
}
1474
break;
1475
/*
1476
* BPF_NOSPEC (speculation barrier)
1477
*/
1478
case BPF_ST | BPF_NOSPEC:
1479
break;
1480
/*
1481
* BPF_ST(X)
1482
*/
1483
case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1484
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1485
bpf_jit_probe_store_pre(jit, insn, &probe);
1486
/* stcy %src,off(%dst,%arena) */
1487
EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1488
probe.arena_reg, off);
1489
err = bpf_jit_probe_post(jit, fp, &probe);
1490
if (err < 0)
1491
return err;
1492
jit->seen |= SEEN_MEM;
1493
break;
1494
case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1495
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1496
bpf_jit_probe_store_pre(jit, insn, &probe);
1497
/* sthy %src,off(%dst,%arena) */
1498
EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1499
probe.arena_reg, off);
1500
err = bpf_jit_probe_post(jit, fp, &probe);
1501
if (err < 0)
1502
return err;
1503
jit->seen |= SEEN_MEM;
1504
break;
1505
case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1506
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1507
bpf_jit_probe_store_pre(jit, insn, &probe);
1508
/* sty %src,off(%dst,%arena) */
1509
EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1510
probe.arena_reg, off);
1511
err = bpf_jit_probe_post(jit, fp, &probe);
1512
if (err < 0)
1513
return err;
1514
jit->seen |= SEEN_MEM;
1515
break;
1516
case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1517
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1518
bpf_jit_probe_store_pre(jit, insn, &probe);
1519
/* stg %src,off(%dst,%arena) */
1520
EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1521
probe.arena_reg, off);
1522
err = bpf_jit_probe_post(jit, fp, &probe);
1523
if (err < 0)
1524
return err;
1525
jit->seen |= SEEN_MEM;
1526
break;
1527
case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1528
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1529
/* lhi %w0,imm */
1530
EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1531
bpf_jit_probe_store_pre(jit, insn, &probe);
1532
/* stcy %w0,off(%dst,%arena) */
1533
EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1534
probe.arena_reg, off);
1535
err = bpf_jit_probe_post(jit, fp, &probe);
1536
if (err < 0)
1537
return err;
1538
jit->seen |= SEEN_MEM;
1539
break;
1540
case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1541
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1542
/* lhi %w0,imm */
1543
EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1544
bpf_jit_probe_store_pre(jit, insn, &probe);
1545
/* sthy %w0,off(%dst,%arena) */
1546
EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1547
probe.arena_reg, off);
1548
err = bpf_jit_probe_post(jit, fp, &probe);
1549
if (err < 0)
1550
return err;
1551
jit->seen |= SEEN_MEM;
1552
break;
1553
case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1554
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1555
/* llilf %w0,imm */
1556
EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1557
bpf_jit_probe_store_pre(jit, insn, &probe);
1558
/* sty %w0,off(%dst,%arena) */
1559
EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1560
probe.arena_reg, off);
1561
err = bpf_jit_probe_post(jit, fp, &probe);
1562
if (err < 0)
1563
return err;
1564
jit->seen |= SEEN_MEM;
1565
break;
1566
case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1567
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1568
/* lgfi %w0,imm */
1569
EMIT6_IMM(0xc0010000, REG_W0, imm);
1570
bpf_jit_probe_store_pre(jit, insn, &probe);
1571
/* stg %w0,off(%dst,%arena) */
1572
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1573
probe.arena_reg, off);
1574
err = bpf_jit_probe_post(jit, fp, &probe);
1575
if (err < 0)
1576
return err;
1577
jit->seen |= SEEN_MEM;
1578
break;
1579
/*
1580
* BPF_ATOMIC
1581
*/
1582
case BPF_STX | BPF_ATOMIC | BPF_DW:
1583
case BPF_STX | BPF_ATOMIC | BPF_W:
1584
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1585
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1586
{
1587
bool is32 = BPF_SIZE(insn->code) == BPF_W;
1588
1589
/*
1590
* Unlike loads and stores, atomics have only a base register,
1591
* but no index register. For the non-arena case, simply use
1592
* %dst as a base. For the arena case, use the work register
1593
* %r1: first, load the arena base into it, and then add %dst
1594
* to it.
1595
*/
1596
probe.arena_reg = dst_reg;
1597
1598
switch (insn->imm) {
1599
#define EMIT_ATOMIC(op32, op64) do { \
1600
bpf_jit_probe_atomic_pre(jit, insn, &probe); \
1601
/* {op32|op64} {%w0|%src},%src,off(%arena) */ \
1602
EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1603
(insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1604
src_reg, probe.arena_reg, off); \
1605
err = bpf_jit_probe_post(jit, fp, &probe); \
1606
if (err < 0) \
1607
return err; \
1608
if (insn->imm & BPF_FETCH) { \
1609
/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */ \
1610
_EMIT2(0x07e0); \
1611
if (is32) \
1612
EMIT_ZERO(src_reg); \
1613
} \
1614
} while (0)
1615
case BPF_ADD:
1616
case BPF_ADD | BPF_FETCH:
1617
/* {laal|laalg} */
1618
EMIT_ATOMIC(0x00fa, 0x00ea);
1619
break;
1620
case BPF_AND:
1621
case BPF_AND | BPF_FETCH:
1622
/* {lan|lang} */
1623
EMIT_ATOMIC(0x00f4, 0x00e4);
1624
break;
1625
case BPF_OR:
1626
case BPF_OR | BPF_FETCH:
1627
/* {lao|laog} */
1628
EMIT_ATOMIC(0x00f6, 0x00e6);
1629
break;
1630
case BPF_XOR:
1631
case BPF_XOR | BPF_FETCH:
1632
/* {lax|laxg} */
1633
EMIT_ATOMIC(0x00f7, 0x00e7);
1634
break;
1635
#undef EMIT_ATOMIC
1636
case BPF_XCHG: {
1637
struct bpf_jit_probe load_probe = probe;
1638
int loop_start;
1639
1640
bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1641
/* {ly|lg} %w0,off(%arena) */
1642
EMIT6_DISP_LH(0xe3000000,
1643
is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1644
load_probe.arena_reg, off);
1645
bpf_jit_probe_emit_nop(jit, &load_probe);
1646
/* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1647
if (load_probe.prg != -1) {
1648
probe.prg = jit->prg;
1649
probe.arena_reg = load_probe.arena_reg;
1650
}
1651
loop_start = jit->prg;
1652
/* 0: {csy|csg} %w0,%src,off(%arena) */
1653
EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1654
REG_W0, src_reg, probe.arena_reg, off);
1655
bpf_jit_probe_emit_nop(jit, &probe);
1656
/* brc 4,0b */
1657
EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1658
/* {llgfr|lgr} %src,%w0 */
1659
EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1660
/* Both probes should land here on exception. */
1661
err = bpf_jit_probe_post(jit, fp, &load_probe);
1662
if (err < 0)
1663
return err;
1664
err = bpf_jit_probe_post(jit, fp, &probe);
1665
if (err < 0)
1666
return err;
1667
if (is32 && insn_is_zext(&insn[1]))
1668
insn_count = 2;
1669
break;
1670
}
1671
case BPF_CMPXCHG:
1672
bpf_jit_probe_atomic_pre(jit, insn, &probe);
1673
/* 0: {csy|csg} %b0,%src,off(%arena) */
1674
EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1675
BPF_REG_0, src_reg,
1676
probe.arena_reg, off);
1677
err = bpf_jit_probe_post(jit, fp, &probe);
1678
if (err < 0)
1679
return err;
1680
break;
1681
default:
1682
pr_err("Unknown atomic operation %02x\n", insn->imm);
1683
return -1;
1684
}
1685
1686
jit->seen |= SEEN_MEM;
1687
break;
1688
}
1689
/*
1690
* BPF_LDX
1691
*/
1692
case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1693
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1694
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1695
bpf_jit_probe_load_pre(jit, insn, &probe);
1696
/* llgc %dst,off(%src,%arena) */
1697
EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1698
probe.arena_reg, off);
1699
err = bpf_jit_probe_post(jit, fp, &probe);
1700
if (err < 0)
1701
return err;
1702
jit->seen |= SEEN_MEM;
1703
if (insn_is_zext(&insn[1]))
1704
insn_count = 2;
1705
break;
1706
case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1707
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1708
bpf_jit_probe_load_pre(jit, insn, &probe);
1709
/* lgb %dst,off(%src) */
1710
EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1711
err = bpf_jit_probe_post(jit, fp, &probe);
1712
if (err < 0)
1713
return err;
1714
jit->seen |= SEEN_MEM;
1715
break;
1716
case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1717
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1718
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1719
bpf_jit_probe_load_pre(jit, insn, &probe);
1720
/* llgh %dst,off(%src,%arena) */
1721
EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1722
probe.arena_reg, off);
1723
err = bpf_jit_probe_post(jit, fp, &probe);
1724
if (err < 0)
1725
return err;
1726
jit->seen |= SEEN_MEM;
1727
if (insn_is_zext(&insn[1]))
1728
insn_count = 2;
1729
break;
1730
case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1731
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1732
bpf_jit_probe_load_pre(jit, insn, &probe);
1733
/* lgh %dst,off(%src) */
1734
EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1735
err = bpf_jit_probe_post(jit, fp, &probe);
1736
if (err < 0)
1737
return err;
1738
jit->seen |= SEEN_MEM;
1739
break;
1740
case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1741
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1742
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1743
bpf_jit_probe_load_pre(jit, insn, &probe);
1744
/* llgf %dst,off(%src) */
1745
jit->seen |= SEEN_MEM;
1746
EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1747
probe.arena_reg, off);
1748
err = bpf_jit_probe_post(jit, fp, &probe);
1749
if (err < 0)
1750
return err;
1751
if (insn_is_zext(&insn[1]))
1752
insn_count = 2;
1753
break;
1754
case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1755
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1756
bpf_jit_probe_load_pre(jit, insn, &probe);
1757
/* lgf %dst,off(%src) */
1758
jit->seen |= SEEN_MEM;
1759
EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1760
err = bpf_jit_probe_post(jit, fp, &probe);
1761
if (err < 0)
1762
return err;
1763
break;
1764
case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1765
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1766
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1767
bpf_jit_probe_load_pre(jit, insn, &probe);
1768
/* lg %dst,off(%src,%arena) */
1769
jit->seen |= SEEN_MEM;
1770
EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1771
probe.arena_reg, off);
1772
err = bpf_jit_probe_post(jit, fp, &probe);
1773
if (err < 0)
1774
return err;
1775
break;
1776
/*
1777
* BPF_JMP / CALL
1778
*/
1779
case BPF_JMP | BPF_CALL:
1780
{
1781
const struct btf_func_model *m;
1782
bool func_addr_fixed;
1783
int j, ret;
1784
u64 func;
1785
1786
ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1787
&func, &func_addr_fixed);
1788
if (ret < 0)
1789
return -1;
1790
1791
REG_SET_SEEN(BPF_REG_5);
1792
jit->seen |= SEEN_FUNC;
1793
/*
1794
* Copy the tail call counter to where the callee expects it.
1795
*
1796
* Note 1: The callee can increment the tail call counter, but
1797
* we do not load it back, since the x86 JIT does not do this
1798
* either.
1799
*
1800
* Note 2: We assume that the verifier does not let us call the
1801
* main program, which clears the tail call counter on entry.
1802
*/
1803
/* mvc tail_call_cnt(4,%r15),frame_off+tail_call_cnt(%r15) */
1804
_EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
1805
0xf000 | (jit->frame_off +
1806
offsetof(struct prog_frame, tail_call_cnt)));
1807
1808
/* Sign-extend the kfunc arguments. */
1809
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1810
m = bpf_jit_find_kfunc_model(fp, insn);
1811
if (!m)
1812
return -1;
1813
1814
for (j = 0; j < m->nr_args; j++) {
1815
if (sign_extend(jit, BPF_REG_1 + j,
1816
m->arg_size[j],
1817
m->arg_flags[j]))
1818
return -1;
1819
}
1820
}
1821
1822
/* lgrl %w1,func */
1823
EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1824
/* %r1() */
1825
call_r1(jit);
1826
/* lgr %b0,%r2: load return value into %b0 */
1827
EMIT4(0xb9040000, BPF_REG_0, REG_2);
1828
break;
1829
}
1830
case BPF_JMP | BPF_TAIL_CALL: {
1831
int patch_1_clrj, patch_2_clij, patch_3_brc;
1832
1833
/*
1834
* Implicit input:
1835
* B1: pointer to ctx
1836
* B2: pointer to bpf_array
1837
* B3: index in bpf_array
1838
*
1839
* if (index >= array->map.max_entries)
1840
* goto out;
1841
*/
1842
1843
/* llgf %w1,map.max_entries(%b2) */
1844
EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1845
offsetof(struct bpf_array, map.max_entries));
1846
/* if ((u32)%b3 >= (u32)%w1) goto out; */
1847
/* clrj %b3,%w1,0xa,out */
1848
patch_1_clrj = jit->prg;
1849
EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1850
jit->prg);
1851
1852
/*
1853
* if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1854
* goto out;
1855
*/
1856
1857
off = jit->frame_off +
1858
offsetof(struct prog_frame, tail_call_cnt);
1859
/* lhi %w0,1 */
1860
EMIT4_IMM(0xa7080000, REG_W0, 1);
1861
/* laal %w1,%w0,off(%r15) */
1862
EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1863
/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1864
patch_2_clij = jit->prg;
1865
EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1866
2, jit->prg);
1867
1868
/*
1869
* prog = array->ptrs[index];
1870
* if (prog == NULL)
1871
* goto out;
1872
*/
1873
1874
/* llgfr %r1,%b3: %r1 = (u32) index */
1875
EMIT4(0xb9160000, REG_1, BPF_REG_3);
1876
/* sllg %r1,%r1,3: %r1 *= 8 */
1877
EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1878
/* ltg %r1,prog(%b2,%r1) */
1879
EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1880
REG_1, offsetof(struct bpf_array, ptrs));
1881
/* brc 0x8,out */
1882
patch_3_brc = jit->prg;
1883
EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1884
1885
/*
1886
* Restore registers before calling function
1887
*/
1888
save_restore_regs(jit, REGS_RESTORE, 0);
1889
1890
/*
1891
* goto *(prog->bpf_func + tail_call_start);
1892
*/
1893
1894
/* lg %r1,bpf_func(%r1) */
1895
EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1896
offsetof(struct bpf_prog, bpf_func));
1897
if (nospec_uses_trampoline()) {
1898
jit->seen |= SEEN_FUNC;
1899
/* aghi %r1,tail_call_start */
1900
EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1901
/* brcl 0xf,__s390_indirect_jump_r1 */
1902
EMIT6_PCREL_RILC_PTR(0xc0040000, 0xf,
1903
__s390_indirect_jump_r1);
1904
} else {
1905
/* bc 0xf,tail_call_start(%r1) */
1906
_EMIT4(0x47f01000 + jit->tail_call_start);
1907
}
1908
/* out: */
1909
if (jit->prg_buf) {
1910
*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1911
(jit->prg - patch_1_clrj) >> 1;
1912
*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1913
(jit->prg - patch_2_clij) >> 1;
1914
*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1915
(jit->prg - patch_3_brc) >> 1;
1916
}
1917
break;
1918
}
1919
case BPF_JMP | BPF_EXIT: /* return b0 */
1920
last = (i == fp->len - 1) ? 1 : 0;
1921
if (last)
1922
break;
1923
if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1924
/* brc 0xf, <exit> */
1925
EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1926
else
1927
/* brcl 0xf, <exit> */
1928
EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1929
break;
1930
/*
1931
* Branch relative (number of skipped instructions) to offset on
1932
* condition.
1933
*
1934
* Condition code to mask mapping:
1935
*
1936
* CC | Description | Mask
1937
* ------------------------------
1938
* 0 | Operands equal | 8
1939
* 1 | First operand low | 4
1940
* 2 | First operand high | 2
1941
* 3 | Unused | 1
1942
*
1943
* For s390x relative branches: ip = ip + off_bytes
1944
* For BPF relative branches: insn = insn + off_insns + 1
1945
*
1946
* For example for s390x with offset 0 we jump to the branch
1947
* instruction itself (loop) and for BPF with offset 0 we
1948
* branch to the instruction behind the branch.
1949
*/
1950
case BPF_JMP32 | BPF_JA: /* if (true) */
1951
branch_oc_off = imm;
1952
fallthrough;
1953
case BPF_JMP | BPF_JA: /* if (true) */
1954
mask = 0xf000; /* j */
1955
goto branch_oc;
1956
case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1957
case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1958
mask = 0x2000; /* jh */
1959
goto branch_ks;
1960
case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1961
case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1962
mask = 0x4000; /* jl */
1963
goto branch_ks;
1964
case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1965
case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1966
mask = 0xa000; /* jhe */
1967
goto branch_ks;
1968
case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1969
case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1970
mask = 0xc000; /* jle */
1971
goto branch_ks;
1972
case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1973
case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1974
mask = 0x2000; /* jh */
1975
goto branch_ku;
1976
case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1977
case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1978
mask = 0x4000; /* jl */
1979
goto branch_ku;
1980
case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1981
case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1982
mask = 0xa000; /* jhe */
1983
goto branch_ku;
1984
case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1985
case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1986
mask = 0xc000; /* jle */
1987
goto branch_ku;
1988
case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1989
case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1990
mask = 0x7000; /* jne */
1991
goto branch_ku;
1992
case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1993
case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1994
mask = 0x8000; /* je */
1995
goto branch_ku;
1996
case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1997
case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1998
mask = 0x7000; /* jnz */
1999
if (BPF_CLASS(insn->code) == BPF_JMP32) {
2000
/* llilf %w1,imm (load zero extend imm) */
2001
EMIT6_IMM(0xc00f0000, REG_W1, imm);
2002
/* nr %w1,%dst */
2003
EMIT2(0x1400, REG_W1, dst_reg);
2004
} else {
2005
/* lgfi %w1,imm (load sign extend imm) */
2006
EMIT6_IMM(0xc0010000, REG_W1, imm);
2007
/* ngr %w1,%dst */
2008
EMIT4(0xb9800000, REG_W1, dst_reg);
2009
}
2010
goto branch_oc;
2011
2012
case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
2013
case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
2014
mask = 0x2000; /* jh */
2015
goto branch_xs;
2016
case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
2017
case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
2018
mask = 0x4000; /* jl */
2019
goto branch_xs;
2020
case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2021
case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2022
mask = 0xa000; /* jhe */
2023
goto branch_xs;
2024
case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2025
case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2026
mask = 0xc000; /* jle */
2027
goto branch_xs;
2028
case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2029
case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2030
mask = 0x2000; /* jh */
2031
goto branch_xu;
2032
case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2033
case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2034
mask = 0x4000; /* jl */
2035
goto branch_xu;
2036
case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2037
case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2038
mask = 0xa000; /* jhe */
2039
goto branch_xu;
2040
case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2041
case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2042
mask = 0xc000; /* jle */
2043
goto branch_xu;
2044
case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2045
case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2046
mask = 0x7000; /* jne */
2047
goto branch_xu;
2048
case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2049
case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2050
mask = 0x8000; /* je */
2051
goto branch_xu;
2052
case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2053
case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2054
{
2055
bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2056
2057
mask = 0x7000; /* jnz */
2058
/* nrk or ngrk %w1,%dst,%src */
2059
EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2060
REG_W1, dst_reg, src_reg);
2061
goto branch_oc;
2062
branch_ks:
2063
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2064
/* cfi or cgfi %dst,imm */
2065
EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2066
dst_reg, imm);
2067
if (!is_first_pass(jit) &&
2068
can_use_rel(jit, addrs[i + off + 1])) {
2069
/* brc mask,off */
2070
EMIT4_PCREL_RIC(0xa7040000,
2071
mask >> 12, addrs[i + off + 1]);
2072
} else {
2073
/* brcl mask,off */
2074
EMIT6_PCREL_RILC(0xc0040000,
2075
mask >> 12, addrs[i + off + 1]);
2076
}
2077
break;
2078
branch_ku:
2079
/* lgfi %w1,imm (load sign extend imm) */
2080
src_reg = REG_1;
2081
EMIT6_IMM(0xc0010000, src_reg, imm);
2082
goto branch_xu;
2083
branch_xs:
2084
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2085
if (!is_first_pass(jit) &&
2086
can_use_rel(jit, addrs[i + off + 1])) {
2087
/* crj or cgrj %dst,%src,mask,off */
2088
EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2089
dst_reg, src_reg, i, off, mask);
2090
} else {
2091
/* cr or cgr %dst,%src */
2092
if (is_jmp32)
2093
EMIT2(0x1900, dst_reg, src_reg);
2094
else
2095
EMIT4(0xb9200000, dst_reg, src_reg);
2096
/* brcl mask,off */
2097
EMIT6_PCREL_RILC(0xc0040000,
2098
mask >> 12, addrs[i + off + 1]);
2099
}
2100
break;
2101
branch_xu:
2102
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2103
if (!is_first_pass(jit) &&
2104
can_use_rel(jit, addrs[i + off + 1])) {
2105
/* clrj or clgrj %dst,%src,mask,off */
2106
EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2107
dst_reg, src_reg, i, off, mask);
2108
} else {
2109
/* clr or clgr %dst,%src */
2110
if (is_jmp32)
2111
EMIT2(0x1500, dst_reg, src_reg);
2112
else
2113
EMIT4(0xb9210000, dst_reg, src_reg);
2114
/* brcl mask,off */
2115
EMIT6_PCREL_RILC(0xc0040000,
2116
mask >> 12, addrs[i + off + 1]);
2117
}
2118
break;
2119
branch_oc:
2120
if (!is_first_pass(jit) &&
2121
can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2122
/* brc mask,off */
2123
EMIT4_PCREL_RIC(0xa7040000,
2124
mask >> 12,
2125
addrs[i + branch_oc_off + 1]);
2126
} else {
2127
/* brcl mask,off */
2128
EMIT6_PCREL_RILC(0xc0040000,
2129
mask >> 12,
2130
addrs[i + branch_oc_off + 1]);
2131
}
2132
break;
2133
}
2134
default: /* too complex, give up */
2135
pr_err("Unknown opcode %02x\n", insn->code);
2136
return -1;
2137
}
2138
2139
return insn_count;
2140
}
2141
2142
/*
2143
* Return whether new i-th instruction address does not violate any invariant
2144
*/
2145
static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2146
{
2147
/* On the first pass anything goes */
2148
if (is_first_pass(jit))
2149
return true;
2150
2151
/* The codegen pass must not change anything */
2152
if (is_codegen_pass(jit))
2153
return jit->addrs[i] == jit->prg;
2154
2155
/* Passes in between must not increase code size */
2156
return jit->addrs[i] >= jit->prg;
2157
}
2158
2159
/*
2160
* Update the address of i-th instruction
2161
*/
2162
static int bpf_set_addr(struct bpf_jit *jit, int i)
2163
{
2164
int delta;
2165
2166
if (is_codegen_pass(jit)) {
2167
delta = jit->prg - jit->addrs[i];
2168
if (delta < 0)
2169
bpf_skip(jit, -delta);
2170
}
2171
if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2172
return -1;
2173
jit->addrs[i] = jit->prg;
2174
return 0;
2175
}
2176
2177
/*
2178
* Compile eBPF program into s390x code
2179
*/
2180
static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2181
bool extra_pass)
2182
{
2183
int i, insn_count, lit32_size, lit64_size;
2184
u64 kern_arena;
2185
2186
jit->lit32 = jit->lit32_start;
2187
jit->lit64 = jit->lit64_start;
2188
jit->prg = 0;
2189
jit->excnt = 0;
2190
if (is_first_pass(jit) || (jit->seen & SEEN_STACK))
2191
jit->frame_off = sizeof(struct prog_frame) -
2192
offsetofend(struct prog_frame, unused) +
2193
round_up(fp->aux->stack_depth, 8);
2194
else
2195
jit->frame_off = 0;
2196
2197
kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2198
if (kern_arena)
2199
jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2200
jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2201
2202
bpf_jit_prologue(jit, fp);
2203
if (bpf_set_addr(jit, 0) < 0)
2204
return -1;
2205
for (i = 0; i < fp->len; i += insn_count) {
2206
insn_count = bpf_jit_insn(jit, fp, i, extra_pass);
2207
if (insn_count < 0)
2208
return -1;
2209
/* Next instruction address */
2210
if (bpf_set_addr(jit, i + insn_count) < 0)
2211
return -1;
2212
}
2213
bpf_jit_epilogue(jit);
2214
2215
lit32_size = jit->lit32 - jit->lit32_start;
2216
lit64_size = jit->lit64 - jit->lit64_start;
2217
jit->lit32_start = jit->prg;
2218
if (lit32_size)
2219
jit->lit32_start = ALIGN(jit->lit32_start, 4);
2220
jit->lit64_start = jit->lit32_start + lit32_size;
2221
if (lit64_size)
2222
jit->lit64_start = ALIGN(jit->lit64_start, 8);
2223
jit->size = jit->lit64_start + lit64_size;
2224
jit->size_prg = jit->prg;
2225
2226
if (WARN_ON_ONCE(fp->aux->extable &&
2227
jit->excnt != fp->aux->num_exentries))
2228
/* Verifier bug - too many entries. */
2229
return -1;
2230
2231
return 0;
2232
}
2233
2234
bool bpf_jit_needs_zext(void)
2235
{
2236
return true;
2237
}
2238
2239
struct s390_jit_data {
2240
struct bpf_binary_header *header;
2241
struct bpf_jit ctx;
2242
int pass;
2243
};
2244
2245
static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2246
struct bpf_prog *fp)
2247
{
2248
struct bpf_binary_header *header;
2249
struct bpf_insn *insn;
2250
u32 extable_size;
2251
u32 code_size;
2252
int i;
2253
2254
for (i = 0; i < fp->len; i++) {
2255
insn = &fp->insnsi[i];
2256
2257
if (BPF_CLASS(insn->code) == BPF_STX &&
2258
BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2259
(BPF_SIZE(insn->code) == BPF_DW ||
2260
BPF_SIZE(insn->code) == BPF_W) &&
2261
insn->imm == BPF_XCHG)
2262
/*
2263
* bpf_jit_insn() emits a load and a compare-and-swap,
2264
* both of which need to be probed.
2265
*/
2266
fp->aux->num_exentries += 1;
2267
}
2268
/* We need two entries per insn. */
2269
fp->aux->num_exentries *= 2;
2270
2271
code_size = roundup(jit->size,
2272
__alignof__(struct exception_table_entry));
2273
extable_size = fp->aux->num_exentries *
2274
sizeof(struct exception_table_entry);
2275
header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2276
8, jit_fill_hole);
2277
if (!header)
2278
return NULL;
2279
fp->aux->extable = (struct exception_table_entry *)
2280
(jit->prg_buf + code_size);
2281
return header;
2282
}
2283
2284
/*
2285
* Compile eBPF program "fp"
2286
*/
2287
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2288
{
2289
struct bpf_prog *tmp, *orig_fp = fp;
2290
struct bpf_binary_header *header;
2291
struct s390_jit_data *jit_data;
2292
bool tmp_blinded = false;
2293
bool extra_pass = false;
2294
struct bpf_jit jit;
2295
int pass;
2296
2297
if (!fp->jit_requested)
2298
return orig_fp;
2299
2300
tmp = bpf_jit_blind_constants(fp);
2301
/*
2302
* If blinding was requested and we failed during blinding,
2303
* we must fall back to the interpreter.
2304
*/
2305
if (IS_ERR(tmp))
2306
return orig_fp;
2307
if (tmp != fp) {
2308
tmp_blinded = true;
2309
fp = tmp;
2310
}
2311
2312
jit_data = fp->aux->jit_data;
2313
if (!jit_data) {
2314
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2315
if (!jit_data) {
2316
fp = orig_fp;
2317
goto out;
2318
}
2319
fp->aux->jit_data = jit_data;
2320
}
2321
if (jit_data->ctx.addrs) {
2322
jit = jit_data->ctx;
2323
header = jit_data->header;
2324
extra_pass = true;
2325
pass = jit_data->pass + 1;
2326
goto skip_init_ctx;
2327
}
2328
2329
memset(&jit, 0, sizeof(jit));
2330
jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2331
if (jit.addrs == NULL) {
2332
fp = orig_fp;
2333
goto free_addrs;
2334
}
2335
/*
2336
* Three initial passes:
2337
* - 1/2: Determine clobbered registers
2338
* - 3: Calculate program size and addrs array
2339
*/
2340
for (pass = 1; pass <= 3; pass++) {
2341
if (bpf_jit_prog(&jit, fp, extra_pass)) {
2342
fp = orig_fp;
2343
goto free_addrs;
2344
}
2345
}
2346
/*
2347
* Final pass: Allocate and generate program
2348
*/
2349
header = bpf_jit_alloc(&jit, fp);
2350
if (!header) {
2351
fp = orig_fp;
2352
goto free_addrs;
2353
}
2354
skip_init_ctx:
2355
if (bpf_jit_prog(&jit, fp, extra_pass)) {
2356
bpf_jit_binary_free(header);
2357
fp = orig_fp;
2358
goto free_addrs;
2359
}
2360
if (bpf_jit_enable > 1) {
2361
bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2362
print_fn_code(jit.prg_buf, jit.size_prg);
2363
}
2364
if (!fp->is_func || extra_pass) {
2365
if (bpf_jit_binary_lock_ro(header)) {
2366
bpf_jit_binary_free(header);
2367
fp = orig_fp;
2368
goto free_addrs;
2369
}
2370
} else {
2371
jit_data->header = header;
2372
jit_data->ctx = jit;
2373
jit_data->pass = pass;
2374
}
2375
fp->bpf_func = (void *) jit.prg_buf;
2376
fp->jited = 1;
2377
fp->jited_len = jit.size;
2378
2379
if (!fp->is_func || extra_pass) {
2380
bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2381
free_addrs:
2382
kvfree(jit.addrs);
2383
kfree(jit_data);
2384
fp->aux->jit_data = NULL;
2385
}
2386
out:
2387
if (tmp_blinded)
2388
bpf_jit_prog_release_other(fp, fp == orig_fp ?
2389
tmp : orig_fp);
2390
return fp;
2391
}
2392
2393
bool bpf_jit_supports_kfunc_call(void)
2394
{
2395
return true;
2396
}
2397
2398
bool bpf_jit_supports_far_kfunc_call(void)
2399
{
2400
return true;
2401
}
2402
2403
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2404
void *old_addr, void *new_addr)
2405
{
2406
struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2407
struct {
2408
u16 opc;
2409
s32 disp;
2410
} __packed insn;
2411
char *ret;
2412
int err;
2413
2414
/* Verify the branch to be patched. */
2415
err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2416
if (err < 0)
2417
return err;
2418
if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2419
return -EINVAL;
2420
2421
if (t == BPF_MOD_JUMP &&
2422
insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2423
/*
2424
* The branch already points to the destination,
2425
* there is no PLT.
2426
*/
2427
} else {
2428
/* Verify the PLT. */
2429
plt = ip + (insn.disp << 1);
2430
err = copy_from_kernel_nofault(&current_plt, plt,
2431
sizeof(current_plt));
2432
if (err < 0)
2433
return err;
2434
ret = (char *)ip + 6;
2435
bpf_jit_plt(&expected_plt, ret, old_addr);
2436
if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2437
return -EINVAL;
2438
/* Adjust the call address. */
2439
bpf_jit_plt(&new_plt, ret, new_addr);
2440
s390_kernel_write(&plt->target, &new_plt.target,
2441
sizeof(void *));
2442
}
2443
2444
/* Adjust the mask of the branch. */
2445
insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2446
s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2447
2448
/* Make the new code visible to the other CPUs. */
2449
text_poke_sync_lock();
2450
2451
return 0;
2452
}
2453
2454
struct bpf_tramp_jit {
2455
struct bpf_jit common;
2456
int orig_stack_args_off;/* Offset of arguments placed on stack by the
2457
* func_addr's original caller
2458
*/
2459
int stack_size; /* Trampoline stack size */
2460
int backchain_off; /* Offset of backchain */
2461
int stack_args_off; /* Offset of stack arguments for calling
2462
* func_addr, has to be at the top
2463
*/
2464
int reg_args_off; /* Offset of register arguments for calling
2465
* func_addr
2466
*/
2467
int ip_off; /* For bpf_get_func_ip(), has to be at
2468
* (ctx - 16)
2469
*/
2470
int arg_cnt_off; /* For bpf_get_func_arg_cnt(), has to be at
2471
* (ctx - 8)
2472
*/
2473
int bpf_args_off; /* Offset of BPF_PROG context, which consists
2474
* of BPF arguments followed by return value
2475
*/
2476
int retval_off; /* Offset of return value (see above) */
2477
int r7_r8_off; /* Offset of saved %r7 and %r8, which are used
2478
* for __bpf_prog_enter() return value and
2479
* func_addr respectively
2480
*/
2481
int run_ctx_off; /* Offset of struct bpf_tramp_run_ctx */
2482
int tccnt_off; /* Offset of saved tailcall counter */
2483
int r14_off; /* Offset of saved %r14, has to be at the
2484
* bottom */
2485
int do_fexit; /* do_fexit: label */
2486
};
2487
2488
static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2489
{
2490
/* llihf %dst_reg,val_hi */
2491
EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2492
/* oilf %rdst_reg,val_lo */
2493
EMIT6_IMM(0xc00d0000, dst_reg, val);
2494
}
2495
2496
static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2497
const struct btf_func_model *m,
2498
struct bpf_tramp_link *tlink, bool save_ret)
2499
{
2500
struct bpf_jit *jit = &tjit->common;
2501
int cookie_off = tjit->run_ctx_off +
2502
offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2503
struct bpf_prog *p = tlink->link.prog;
2504
int patch;
2505
2506
/*
2507
* run_ctx.cookie = tlink->cookie;
2508
*/
2509
2510
/* %r0 = tlink->cookie */
2511
load_imm64(jit, REG_W0, tlink->cookie);
2512
/* stg %r0,cookie_off(%r15) */
2513
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2514
2515
/*
2516
* if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2517
* goto skip;
2518
*/
2519
2520
/* %r1 = __bpf_prog_enter */
2521
load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2522
/* %r2 = p */
2523
load_imm64(jit, REG_2, (u64)p);
2524
/* la %r3,run_ctx_off(%r15) */
2525
EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2526
/* %r1() */
2527
call_r1(jit);
2528
/* ltgr %r7,%r2 */
2529
EMIT4(0xb9020000, REG_7, REG_2);
2530
/* brcl 8,skip */
2531
patch = jit->prg;
2532
EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2533
2534
/*
2535
* retval = bpf_func(args, p->insnsi);
2536
*/
2537
2538
/* %r1 = p->bpf_func */
2539
load_imm64(jit, REG_1, (u64)p->bpf_func);
2540
/* la %r2,bpf_args_off(%r15) */
2541
EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2542
/* %r3 = p->insnsi */
2543
if (!p->jited)
2544
load_imm64(jit, REG_3, (u64)p->insnsi);
2545
/* %r1() */
2546
call_r1(jit);
2547
/* stg %r2,retval_off(%r15) */
2548
if (save_ret) {
2549
if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2550
return -1;
2551
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2552
tjit->retval_off);
2553
}
2554
2555
/* skip: */
2556
if (jit->prg_buf)
2557
*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2558
2559
/*
2560
* __bpf_prog_exit(p, start, &run_ctx);
2561
*/
2562
2563
/* %r1 = __bpf_prog_exit */
2564
load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2565
/* %r2 = p */
2566
load_imm64(jit, REG_2, (u64)p);
2567
/* lgr %r3,%r7 */
2568
EMIT4(0xb9040000, REG_3, REG_7);
2569
/* la %r4,run_ctx_off(%r15) */
2570
EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2571
/* %r1() */
2572
call_r1(jit);
2573
2574
return 0;
2575
}
2576
2577
static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2578
{
2579
int stack_offset = tjit->stack_size;
2580
2581
tjit->stack_size += size;
2582
return stack_offset;
2583
}
2584
2585
/* ABI uses %r2 - %r6 for parameter passing. */
2586
#define MAX_NR_REG_ARGS 5
2587
2588
/* The "L" field of the "mvc" instruction is 8 bits. */
2589
#define MAX_MVC_SIZE 256
2590
#define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2591
2592
/* -mfentry generates a 6-byte nop on s390x. */
2593
#define S390X_PATCH_SIZE 6
2594
2595
static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2596
struct bpf_tramp_jit *tjit,
2597
const struct btf_func_model *m,
2598
u32 flags,
2599
struct bpf_tramp_links *tlinks,
2600
void *func_addr)
2601
{
2602
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2603
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2604
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2605
int nr_bpf_args, nr_reg_args, nr_stack_args;
2606
struct bpf_jit *jit = &tjit->common;
2607
int arg, bpf_arg_off;
2608
int i, j;
2609
2610
/* Support as many stack arguments as "mvc" instruction can handle. */
2611
nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2612
nr_stack_args = m->nr_args - nr_reg_args;
2613
if (nr_stack_args > MAX_NR_STACK_ARGS)
2614
return -ENOTSUPP;
2615
2616
/* Return to %r14 in the struct_ops case. */
2617
if (flags & BPF_TRAMP_F_INDIRECT)
2618
flags |= BPF_TRAMP_F_SKIP_FRAME;
2619
2620
/*
2621
* Compute how many arguments we need to pass to BPF programs.
2622
* BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2623
* smaller are packed into 1 or 2 registers; larger arguments are
2624
* passed via pointers.
2625
* In s390x ABI, arguments that are 8 bytes or smaller are packed into
2626
* a register; larger arguments are passed via pointers.
2627
* We need to deal with this difference.
2628
*/
2629
nr_bpf_args = 0;
2630
for (i = 0; i < m->nr_args; i++) {
2631
if (m->arg_size[i] <= 8)
2632
nr_bpf_args += 1;
2633
else if (m->arg_size[i] <= 16)
2634
nr_bpf_args += 2;
2635
else
2636
return -ENOTSUPP;
2637
}
2638
2639
/*
2640
* Calculate the stack layout.
2641
*/
2642
2643
/*
2644
* Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2645
* ABI requires, put our backchain at the end of the allocated memory.
2646
*/
2647
tjit->stack_size = STACK_FRAME_OVERHEAD;
2648
tjit->backchain_off = tjit->stack_size - sizeof(u64);
2649
tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2650
tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2651
tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2652
tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2653
tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2654
tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2655
tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2656
tjit->run_ctx_off = alloc_stack(tjit,
2657
sizeof(struct bpf_tramp_run_ctx));
2658
tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2659
tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2660
/*
2661
* In accordance with the s390x ABI, the caller has allocated
2662
* STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2663
* backchain, and the rest we can use.
2664
*/
2665
tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2666
tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2667
2668
/* lgr %r1,%r15 */
2669
EMIT4(0xb9040000, REG_1, REG_15);
2670
/* aghi %r15,-stack_size */
2671
EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2672
/* stg %r1,backchain_off(%r15) */
2673
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2674
tjit->backchain_off);
2675
/* mvc tccnt_off(4,%r15),stack_size+tail_call_cnt(%r15) */
2676
_EMIT6(0xd203f000 | tjit->tccnt_off,
2677
0xf000 | (tjit->stack_size +
2678
offsetof(struct prog_frame, tail_call_cnt)));
2679
/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2680
if (nr_reg_args)
2681
EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2682
REG_2 + (nr_reg_args - 1), REG_15,
2683
tjit->reg_args_off);
2684
for (i = 0, j = 0; i < m->nr_args; i++) {
2685
if (i < MAX_NR_REG_ARGS)
2686
arg = REG_2 + i;
2687
else
2688
arg = tjit->orig_stack_args_off +
2689
(i - MAX_NR_REG_ARGS) * sizeof(u64);
2690
bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2691
if (m->arg_size[i] <= 8) {
2692
if (i < MAX_NR_REG_ARGS)
2693
/* stg %arg,bpf_arg_off(%r15) */
2694
EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2695
REG_0, REG_15, bpf_arg_off);
2696
else
2697
/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2698
_EMIT6(0xd207f000 | bpf_arg_off,
2699
0xf000 | arg);
2700
j += 1;
2701
} else {
2702
if (i < MAX_NR_REG_ARGS) {
2703
/* mvc bpf_arg_off(16,%r15),0(%arg) */
2704
_EMIT6(0xd20ff000 | bpf_arg_off,
2705
reg2hex[arg] << 12);
2706
} else {
2707
/* lg %r1,arg(%r15) */
2708
EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2709
REG_15, arg);
2710
/* mvc bpf_arg_off(16,%r15),0(%r1) */
2711
_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2712
}
2713
j += 2;
2714
}
2715
}
2716
/* stmg %r7,%r8,r7_r8_off(%r15) */
2717
EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2718
tjit->r7_r8_off);
2719
/* stg %r14,r14_off(%r15) */
2720
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2721
2722
if (flags & BPF_TRAMP_F_ORIG_STACK) {
2723
/*
2724
* The ftrace trampoline puts the return address (which is the
2725
* address of the original function + S390X_PATCH_SIZE) into
2726
* %r0; see ftrace_shared_hotpatch_trampoline_br and
2727
* ftrace_init_nop() for details.
2728
*/
2729
2730
/* lgr %r8,%r0 */
2731
EMIT4(0xb9040000, REG_8, REG_0);
2732
} else {
2733
/* %r8 = func_addr + S390X_PATCH_SIZE */
2734
load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2735
}
2736
2737
/*
2738
* ip = func_addr;
2739
* arg_cnt = m->nr_args;
2740
*/
2741
2742
if (flags & BPF_TRAMP_F_IP_ARG) {
2743
/* %r0 = func_addr */
2744
load_imm64(jit, REG_0, (u64)func_addr);
2745
/* stg %r0,ip_off(%r15) */
2746
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2747
tjit->ip_off);
2748
}
2749
/* lghi %r0,nr_bpf_args */
2750
EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2751
/* stg %r0,arg_cnt_off(%r15) */
2752
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2753
tjit->arg_cnt_off);
2754
2755
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2756
/*
2757
* __bpf_tramp_enter(im);
2758
*/
2759
2760
/* %r1 = __bpf_tramp_enter */
2761
load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2762
/* %r2 = im */
2763
load_imm64(jit, REG_2, (u64)im);
2764
/* %r1() */
2765
call_r1(jit);
2766
}
2767
2768
for (i = 0; i < fentry->nr_links; i++)
2769
if (invoke_bpf_prog(tjit, m, fentry->links[i],
2770
flags & BPF_TRAMP_F_RET_FENTRY_RET))
2771
return -EINVAL;
2772
2773
if (fmod_ret->nr_links) {
2774
/*
2775
* retval = 0;
2776
*/
2777
2778
/* xc retval_off(8,%r15),retval_off(%r15) */
2779
_EMIT6(0xd707f000 | tjit->retval_off,
2780
0xf000 | tjit->retval_off);
2781
2782
for (i = 0; i < fmod_ret->nr_links; i++) {
2783
if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2784
return -EINVAL;
2785
2786
/*
2787
* if (retval)
2788
* goto do_fexit;
2789
*/
2790
2791
/* ltg %r0,retval_off(%r15) */
2792
EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2793
tjit->retval_off);
2794
/* brcl 7,do_fexit */
2795
EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2796
}
2797
}
2798
2799
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2800
/*
2801
* retval = func_addr(args);
2802
*/
2803
2804
/* lmg %r2,%rN,reg_args_off(%r15) */
2805
if (nr_reg_args)
2806
EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2807
REG_2 + (nr_reg_args - 1), REG_15,
2808
tjit->reg_args_off);
2809
/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2810
if (nr_stack_args)
2811
_EMIT6(0xd200f000 |
2812
(nr_stack_args * sizeof(u64) - 1) << 16 |
2813
tjit->stack_args_off,
2814
0xf000 | tjit->orig_stack_args_off);
2815
/* mvc tail_call_cnt(4,%r15),tccnt_off(%r15) */
2816
_EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
2817
0xf000 | tjit->tccnt_off);
2818
/* lgr %r1,%r8 */
2819
EMIT4(0xb9040000, REG_1, REG_8);
2820
/* %r1() */
2821
call_r1(jit);
2822
/* stg %r2,retval_off(%r15) */
2823
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2824
tjit->retval_off);
2825
2826
im->ip_after_call = jit->prg_buf + jit->prg;
2827
2828
/*
2829
* The following nop will be patched by bpf_tramp_image_put().
2830
*/
2831
2832
/* brcl 0,im->ip_epilogue */
2833
EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2834
}
2835
2836
/* do_fexit: */
2837
tjit->do_fexit = jit->prg;
2838
for (i = 0; i < fexit->nr_links; i++)
2839
if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2840
return -EINVAL;
2841
2842
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2843
im->ip_epilogue = jit->prg_buf + jit->prg;
2844
2845
/*
2846
* __bpf_tramp_exit(im);
2847
*/
2848
2849
/* %r1 = __bpf_tramp_exit */
2850
load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2851
/* %r2 = im */
2852
load_imm64(jit, REG_2, (u64)im);
2853
/* %r1() */
2854
call_r1(jit);
2855
}
2856
2857
/* lmg %r2,%rN,reg_args_off(%r15) */
2858
if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2859
EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2860
REG_2 + (nr_reg_args - 1), REG_15,
2861
tjit->reg_args_off);
2862
/* lgr %r1,%r8 */
2863
if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2864
EMIT4(0xb9040000, REG_1, REG_8);
2865
/* lmg %r7,%r8,r7_r8_off(%r15) */
2866
EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2867
tjit->r7_r8_off);
2868
/* lg %r14,r14_off(%r15) */
2869
EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2870
/* lg %r2,retval_off(%r15) */
2871
if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2872
EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2873
tjit->retval_off);
2874
/* mvc stack_size+tail_call_cnt(4,%r15),tccnt_off(%r15) */
2875
_EMIT6(0xd203f000 | (tjit->stack_size +
2876
offsetof(struct prog_frame, tail_call_cnt)),
2877
0xf000 | tjit->tccnt_off);
2878
/* aghi %r15,stack_size */
2879
EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2880
if (flags & BPF_TRAMP_F_SKIP_FRAME)
2881
EMIT_JUMP_REG(14);
2882
else
2883
EMIT_JUMP_REG(1);
2884
2885
return 0;
2886
}
2887
2888
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2889
struct bpf_tramp_links *tlinks, void *orig_call)
2890
{
2891
struct bpf_tramp_image im;
2892
struct bpf_tramp_jit tjit;
2893
int ret;
2894
2895
memset(&tjit, 0, sizeof(tjit));
2896
2897
ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2898
tlinks, orig_call);
2899
2900
return ret < 0 ? ret : tjit.common.prg;
2901
}
2902
2903
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2904
void *image_end, const struct btf_func_model *m,
2905
u32 flags, struct bpf_tramp_links *tlinks,
2906
void *func_addr)
2907
{
2908
struct bpf_tramp_jit tjit;
2909
int ret;
2910
2911
/* Compute offsets, check whether the code fits. */
2912
memset(&tjit, 0, sizeof(tjit));
2913
ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2914
tlinks, func_addr);
2915
2916
if (ret < 0)
2917
return ret;
2918
if (tjit.common.prg > (char *)image_end - (char *)image)
2919
/*
2920
* Use the same error code as for exceeding
2921
* BPF_MAX_TRAMP_LINKS.
2922
*/
2923
return -E2BIG;
2924
2925
tjit.common.prg = 0;
2926
tjit.common.prg_buf = image;
2927
ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2928
tlinks, func_addr);
2929
2930
return ret < 0 ? ret : tjit.common.prg;
2931
}
2932
2933
bool bpf_jit_supports_subprog_tailcalls(void)
2934
{
2935
return true;
2936
}
2937
2938
bool bpf_jit_supports_arena(void)
2939
{
2940
return true;
2941
}
2942
2943
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2944
{
2945
if (!in_arena)
2946
return true;
2947
switch (insn->code) {
2948
case BPF_STX | BPF_ATOMIC | BPF_B:
2949
case BPF_STX | BPF_ATOMIC | BPF_H:
2950
case BPF_STX | BPF_ATOMIC | BPF_W:
2951
case BPF_STX | BPF_ATOMIC | BPF_DW:
2952
if (bpf_atomic_is_load_store(insn))
2953
return false;
2954
}
2955
return true;
2956
}
2957
2958
bool bpf_jit_supports_exceptions(void)
2959
{
2960
/*
2961
* Exceptions require unwinding support, which is always available,
2962
* because the kernel is always built with backchain.
2963
*/
2964
return true;
2965
}
2966
2967
void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2968
void *cookie)
2969
{
2970
unsigned long addr, prev_addr = 0;
2971
struct unwind_state state;
2972
2973
unwind_for_each_frame(&state, NULL, NULL, 0) {
2974
addr = unwind_get_return_address(&state);
2975
if (!addr)
2976
break;
2977
/*
2978
* addr is a return address and state.sp is the value of %r15
2979
* at this address. exception_cb needs %r15 at entry to the
2980
* function containing addr, so take the next state.sp.
2981
*
2982
* There is no bp, and the exception_cb prog does not need one
2983
* to perform a quasi-longjmp. The common code requires a
2984
* non-zero bp, so pass sp there as well.
2985
*/
2986
if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2987
state.sp))
2988
break;
2989
prev_addr = addr;
2990
}
2991
}
2992
2993