Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/net/bpf_jit_comp.c
50647 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* BPF Jit compiler for s390.
4
*
5
* Minimum build requirements:
6
*
7
* - HAVE_MARCH_Z196_FEATURES: laal, laalg
8
* - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9
* - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10
* - 64BIT
11
*
12
* Copyright IBM Corp. 2012,2015
13
*
14
* Author(s): Martin Schwidefsky <[email protected]>
15
* Michael Holzheu <[email protected]>
16
*/
17
18
#define pr_fmt(fmt) "bpf_jit: " fmt
19
20
#include <linux/netdevice.h>
21
#include <linux/filter.h>
22
#include <linux/init.h>
23
#include <linux/bpf.h>
24
#include <linux/mm.h>
25
#include <linux/kernel.h>
26
#include <asm/cacheflush.h>
27
#include <asm/extable.h>
28
#include <asm/dis.h>
29
#include <asm/facility.h>
30
#include <asm/nospec-branch.h>
31
#include <asm/set_memory.h>
32
#include <asm/text-patching.h>
33
#include <asm/unwind.h>
34
35
struct bpf_jit {
36
u32 seen; /* Flags to remember seen eBPF instructions */
37
u16 seen_regs; /* Mask to remember which registers are used */
38
u32 *addrs; /* Array with relative instruction addresses */
39
u8 *prg_buf; /* Start of program */
40
int size; /* Size of program and literal pool */
41
int size_prg; /* Size of program */
42
int prg; /* Current position in program */
43
int lit32_start; /* Start of 32-bit literal pool */
44
int lit32; /* Current position in 32-bit literal pool */
45
int lit64_start; /* Start of 64-bit literal pool */
46
int lit64; /* Current position in 64-bit literal pool */
47
int base_ip; /* Base address for literal pool */
48
int exit_ip; /* Address of exit */
49
int tail_call_start; /* Tail call start offset */
50
int excnt; /* Number of exception table entries */
51
int prologue_plt_ret; /* Return address for prologue hotpatch PLT */
52
int prologue_plt; /* Start of prologue hotpatch PLT */
53
int kern_arena; /* Pool offset of kernel arena address */
54
u64 user_arena; /* User arena address */
55
u32 frame_off; /* Offset of struct bpf_prog from %r15 */
56
};
57
58
#define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
59
#define SEEN_LITERAL BIT(1) /* code uses literals */
60
#define SEEN_FUNC BIT(2) /* calls C functions */
61
#define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
62
63
#define NVREGS 0xffc0 /* %r6-%r15 */
64
65
/*
66
* s390 registers
67
*/
68
#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
69
#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
70
#define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
71
#define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
72
#define REG_0 REG_W0 /* Register 0 */
73
#define REG_1 REG_W1 /* Register 1 */
74
#define REG_2 BPF_REG_1 /* Register 2 */
75
#define REG_3 BPF_REG_2 /* Register 3 */
76
#define REG_4 BPF_REG_3 /* Register 4 */
77
#define REG_7 BPF_REG_6 /* Register 7 */
78
#define REG_8 BPF_REG_7 /* Register 8 */
79
#define REG_14 BPF_REG_0 /* Register 14 */
80
81
/*
82
* Mapping of BPF registers to s390 registers
83
*/
84
static const int reg2hex[] = {
85
/* Return code */
86
[BPF_REG_0] = 14,
87
/* Function parameters */
88
[BPF_REG_1] = 2,
89
[BPF_REG_2] = 3,
90
[BPF_REG_3] = 4,
91
[BPF_REG_4] = 5,
92
[BPF_REG_5] = 6,
93
/* Call saved registers */
94
[BPF_REG_6] = 7,
95
[BPF_REG_7] = 8,
96
[BPF_REG_8] = 9,
97
[BPF_REG_9] = 10,
98
/* BPF stack pointer */
99
[BPF_REG_FP] = 13,
100
/* Register for blinding */
101
[BPF_REG_AX] = 12,
102
/* Work registers for s390x backend */
103
[REG_W0] = 0,
104
[REG_W1] = 1,
105
[REG_L] = 11,
106
[REG_15] = 15,
107
};
108
109
static inline u32 reg(u32 dst_reg, u32 src_reg)
110
{
111
return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
112
}
113
114
static inline u32 reg_high(u32 reg)
115
{
116
return reg2hex[reg] << 4;
117
}
118
119
static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
120
{
121
u32 r1 = reg2hex[b1];
122
123
if (r1 >= 6 && r1 <= 15)
124
jit->seen_regs |= (1 << r1);
125
}
126
127
static s32 off_to_pcrel(struct bpf_jit *jit, u32 off)
128
{
129
return off - jit->prg;
130
}
131
132
static s64 ptr_to_pcrel(struct bpf_jit *jit, const void *ptr)
133
{
134
if (jit->prg_buf)
135
return (const u8 *)ptr - ((const u8 *)jit->prg_buf + jit->prg);
136
return 0;
137
}
138
139
#define REG_SET_SEEN(b1) \
140
({ \
141
reg_set_seen(jit, b1); \
142
})
143
144
/*
145
* EMIT macros for code generation
146
*/
147
148
#define _EMIT2(op) \
149
({ \
150
if (jit->prg_buf) \
151
*(u16 *) (jit->prg_buf + jit->prg) = (op); \
152
jit->prg += 2; \
153
})
154
155
#define EMIT2(op, b1, b2) \
156
({ \
157
_EMIT2((op) | reg(b1, b2)); \
158
REG_SET_SEEN(b1); \
159
REG_SET_SEEN(b2); \
160
})
161
162
#define _EMIT4(op) \
163
({ \
164
if (jit->prg_buf) \
165
*(u32 *) (jit->prg_buf + jit->prg) = (op); \
166
jit->prg += 4; \
167
})
168
169
#define EMIT4(op, b1, b2) \
170
({ \
171
_EMIT4((op) | reg(b1, b2)); \
172
REG_SET_SEEN(b1); \
173
REG_SET_SEEN(b2); \
174
})
175
176
#define EMIT4_RRF(op, b1, b2, b3) \
177
({ \
178
_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
179
REG_SET_SEEN(b1); \
180
REG_SET_SEEN(b2); \
181
REG_SET_SEEN(b3); \
182
})
183
184
#define _EMIT4_DISP(op, disp) \
185
({ \
186
unsigned int __disp = (disp) & 0xfff; \
187
_EMIT4((op) | __disp); \
188
})
189
190
#define EMIT4_DISP(op, b1, b2, disp) \
191
({ \
192
_EMIT4_DISP((op) | reg_high(b1) << 16 | \
193
reg_high(b2) << 8, (disp)); \
194
REG_SET_SEEN(b1); \
195
REG_SET_SEEN(b2); \
196
})
197
198
#define EMIT4_IMM(op, b1, imm) \
199
({ \
200
unsigned int __imm = (imm) & 0xffff; \
201
_EMIT4((op) | reg_high(b1) << 16 | __imm); \
202
REG_SET_SEEN(b1); \
203
})
204
205
#define EMIT4_PCREL(op, pcrel) \
206
({ \
207
long __pcrel = ((pcrel) >> 1) & 0xffff; \
208
_EMIT4((op) | __pcrel); \
209
})
210
211
#define EMIT4_PCREL_RIC(op, mask, target) \
212
({ \
213
int __rel = off_to_pcrel(jit, target) / 2; \
214
_EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
215
})
216
217
#define _EMIT6(op1, op2) \
218
({ \
219
if (jit->prg_buf) { \
220
*(u32 *) (jit->prg_buf + jit->prg) = (op1); \
221
*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
222
} \
223
jit->prg += 6; \
224
})
225
226
#define _EMIT6_DISP(op1, op2, disp) \
227
({ \
228
unsigned int __disp = (disp) & 0xfff; \
229
_EMIT6((op1) | __disp, op2); \
230
})
231
232
#define _EMIT6_DISP_LH(op1, op2, disp) \
233
({ \
234
u32 _disp = (u32) (disp); \
235
unsigned int __disp_h = _disp & 0xff000; \
236
unsigned int __disp_l = _disp & 0x00fff; \
237
_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
238
})
239
240
#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
241
({ \
242
_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
243
reg_high(b3) << 8, op2, disp); \
244
REG_SET_SEEN(b1); \
245
REG_SET_SEEN(b2); \
246
REG_SET_SEEN(b3); \
247
})
248
249
#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
250
({ \
251
unsigned int rel = off_to_pcrel(jit, target) / 2; \
252
_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
253
(op2) | (mask) << 12); \
254
REG_SET_SEEN(b1); \
255
REG_SET_SEEN(b2); \
256
})
257
258
#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
259
({ \
260
unsigned int rel = off_to_pcrel(jit, target) / 2; \
261
_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
262
(rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
263
REG_SET_SEEN(b1); \
264
BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
265
})
266
267
#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
268
({ \
269
int rel = off_to_pcrel(jit, addrs[(i) + (off) + 1]) / 2;\
270
_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
271
REG_SET_SEEN(b1); \
272
REG_SET_SEEN(b2); \
273
})
274
275
static void emit6_pcrel_ril(struct bpf_jit *jit, u32 op, s64 pcrel)
276
{
277
u32 pc32dbl = (s32)(pcrel / 2);
278
279
_EMIT6(op | pc32dbl >> 16, pc32dbl & 0xffff);
280
}
281
282
static void emit6_pcrel_rilb(struct bpf_jit *jit, u32 op, u8 b, s64 pcrel)
283
{
284
emit6_pcrel_ril(jit, op | reg_high(b) << 16, pcrel);
285
REG_SET_SEEN(b);
286
}
287
288
#define EMIT6_PCREL_RILB(op, b, target) \
289
emit6_pcrel_rilb(jit, op, b, off_to_pcrel(jit, target))
290
291
#define EMIT6_PCREL_RILB_PTR(op, b, target_ptr) \
292
emit6_pcrel_rilb(jit, op, b, ptr_to_pcrel(jit, target_ptr))
293
294
static void emit6_pcrel_rilc(struct bpf_jit *jit, u32 op, u8 mask, s64 pcrel)
295
{
296
emit6_pcrel_ril(jit, op | mask << 20, pcrel);
297
}
298
299
#define EMIT6_PCREL_RILC(op, mask, target) \
300
emit6_pcrel_rilc(jit, op, mask, off_to_pcrel(jit, target))
301
302
#define EMIT6_PCREL_RILC_PTR(op, mask, target_ptr) \
303
emit6_pcrel_rilc(jit, op, mask, ptr_to_pcrel(jit, target_ptr))
304
305
#define _EMIT6_IMM(op, imm) \
306
({ \
307
unsigned int __imm = (imm); \
308
_EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
309
})
310
311
#define EMIT6_IMM(op, b1, imm) \
312
({ \
313
_EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
314
REG_SET_SEEN(b1); \
315
})
316
317
#define _EMIT_CONST_U32(val) \
318
({ \
319
unsigned int ret; \
320
ret = jit->lit32; \
321
if (jit->prg_buf) \
322
*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
323
jit->lit32 += 4; \
324
ret; \
325
})
326
327
#define EMIT_CONST_U32(val) \
328
({ \
329
jit->seen |= SEEN_LITERAL; \
330
_EMIT_CONST_U32(val) - jit->base_ip; \
331
})
332
333
#define _EMIT_CONST_U64(val) \
334
({ \
335
unsigned int ret; \
336
ret = jit->lit64; \
337
if (jit->prg_buf) \
338
*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
339
jit->lit64 += 8; \
340
ret; \
341
})
342
343
#define EMIT_CONST_U64(val) \
344
({ \
345
jit->seen |= SEEN_LITERAL; \
346
_EMIT_CONST_U64(val) - jit->base_ip; \
347
})
348
349
#define EMIT_ZERO(b1) \
350
({ \
351
if (!fp->aux->verifier_zext) { \
352
/* llgfr %dst,%dst (zero extend to 64 bit) */ \
353
EMIT4(0xb9160000, b1, b1); \
354
REG_SET_SEEN(b1); \
355
} \
356
})
357
358
/*
359
* Return whether this is the first pass. The first pass is special, since we
360
* don't know any sizes yet, and thus must be conservative.
361
*/
362
static bool is_first_pass(struct bpf_jit *jit)
363
{
364
return jit->size == 0;
365
}
366
367
/*
368
* Return whether this is the code generation pass. The code generation pass is
369
* special, since we should change as little as possible.
370
*/
371
static bool is_codegen_pass(struct bpf_jit *jit)
372
{
373
return jit->prg_buf;
374
}
375
376
/*
377
* Return whether "rel" can be encoded as a short PC-relative offset
378
*/
379
static bool is_valid_rel(int rel)
380
{
381
return rel >= -65536 && rel <= 65534;
382
}
383
384
/*
385
* Return whether "off" can be reached using a short PC-relative offset
386
*/
387
static bool can_use_rel(struct bpf_jit *jit, int off)
388
{
389
return is_valid_rel(off - jit->prg);
390
}
391
392
/*
393
* Return whether given displacement can be encoded using
394
* Long-Displacement Facility
395
*/
396
static bool is_valid_ldisp(int disp)
397
{
398
return disp >= -524288 && disp <= 524287;
399
}
400
401
/*
402
* Return whether the next 32-bit literal pool entry can be referenced using
403
* Long-Displacement Facility
404
*/
405
static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
406
{
407
return is_valid_ldisp(jit->lit32 - jit->base_ip);
408
}
409
410
/*
411
* Return whether the next 64-bit literal pool entry can be referenced using
412
* Long-Displacement Facility
413
*/
414
static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
415
{
416
return is_valid_ldisp(jit->lit64 - jit->base_ip);
417
}
418
419
/*
420
* Fill whole space with illegal instructions
421
*/
422
static void jit_fill_hole(void *area, unsigned int size)
423
{
424
memset(area, 0, size);
425
}
426
427
/*
428
* Caller-allocated part of the frame.
429
* Thanks to packed stack, its otherwise unused initial part can be used for
430
* the BPF stack and for the next frame.
431
*/
432
struct prog_frame {
433
u64 unused[8];
434
/* BPF stack starts here and grows towards 0 */
435
u32 tail_call_cnt;
436
u32 pad;
437
u64 r6[10]; /* r6 - r15 */
438
u64 backchain;
439
} __packed;
440
441
/*
442
* Save registers from "rs" (register start) to "re" (register end) on stack
443
*/
444
static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
445
{
446
u32 off = offsetof(struct prog_frame, r6) + (rs - 6) * 8;
447
448
if (rs == re)
449
/* stg %rs,off(%r15) */
450
_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
451
else
452
/* stmg %rs,%re,off(%r15) */
453
_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
454
}
455
456
/*
457
* Restore registers from "rs" (register start) to "re" (register end) on stack
458
*/
459
static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
460
{
461
u32 off = jit->frame_off + offsetof(struct prog_frame, r6) + (rs - 6) * 8;
462
463
if (rs == re)
464
/* lg %rs,off(%r15) */
465
_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
466
else
467
/* lmg %rs,%re,off(%r15) */
468
_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
469
}
470
471
/*
472
* Return first seen register (from start)
473
*/
474
static int get_start(u16 seen_regs, int start)
475
{
476
int i;
477
478
for (i = start; i <= 15; i++) {
479
if (seen_regs & (1 << i))
480
return i;
481
}
482
return 0;
483
}
484
485
/*
486
* Return last seen register (from start) (gap >= 2)
487
*/
488
static int get_end(u16 seen_regs, int start)
489
{
490
int i;
491
492
for (i = start; i < 15; i++) {
493
if (!(seen_regs & (3 << i)))
494
return i - 1;
495
}
496
return (seen_regs & (1 << 15)) ? 15 : 14;
497
}
498
499
#define REGS_SAVE 1
500
#define REGS_RESTORE 0
501
/*
502
* Save and restore clobbered registers (6-15) on stack.
503
* We save/restore registers in chunks with gap >= 2 registers.
504
*/
505
static void save_restore_regs(struct bpf_jit *jit, int op, u16 extra_regs)
506
{
507
u16 seen_regs = jit->seen_regs | extra_regs;
508
const int last = 15, save_restore_size = 6;
509
int re = 6, rs;
510
511
if (is_first_pass(jit)) {
512
/*
513
* We don't know yet which registers are used. Reserve space
514
* conservatively.
515
*/
516
jit->prg += (last - re + 1) * save_restore_size;
517
return;
518
}
519
520
do {
521
rs = get_start(seen_regs, re);
522
if (!rs)
523
break;
524
re = get_end(seen_regs, rs + 1);
525
if (op == REGS_SAVE)
526
save_regs(jit, rs, re);
527
else
528
restore_regs(jit, rs, re);
529
re++;
530
} while (re <= last);
531
}
532
533
static void bpf_skip(struct bpf_jit *jit, int size)
534
{
535
if (size >= 6 && !is_valid_rel(size)) {
536
/* brcl 0xf,size */
537
EMIT6_PCREL_RILC(0xc0040000, 0xf, size);
538
size -= 6;
539
} else if (size >= 4 && is_valid_rel(size)) {
540
/* brc 0xf,size */
541
EMIT4_PCREL(0xa7f40000, size);
542
size -= 4;
543
}
544
while (size >= 2) {
545
/* bcr 0,%0 */
546
_EMIT2(0x0700);
547
size -= 2;
548
}
549
}
550
551
/*
552
* PLT for hotpatchable calls. The calling convention is the same as for the
553
* ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
554
*/
555
struct bpf_plt {
556
char code[16];
557
void *ret;
558
void *target;
559
} __packed;
560
extern const struct bpf_plt bpf_plt;
561
asm(
562
".pushsection .rodata\n"
563
" .balign 8\n"
564
"bpf_plt:\n"
565
" lgrl %r0,bpf_plt_ret\n"
566
" lgrl %r1,bpf_plt_target\n"
567
" br %r1\n"
568
" .balign 8\n"
569
"bpf_plt_ret: .quad 0\n"
570
"bpf_plt_target: .quad 0\n"
571
" .popsection\n"
572
);
573
574
static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
575
{
576
memcpy(plt, &bpf_plt, sizeof(*plt));
577
plt->ret = ret;
578
/*
579
* (target == NULL) implies that the branch to this PLT entry was
580
* patched and became a no-op. However, some CPU could have jumped
581
* to this PLT entry before patching and may be still executing it.
582
*
583
* Since the intention in this case is to make the PLT entry a no-op,
584
* make the target point to the return label instead of NULL.
585
*/
586
plt->target = target ?: ret;
587
}
588
589
/*
590
* Emit function prologue
591
*
592
* Save registers and create stack frame if necessary.
593
* Stack frame layout is described by struct prog_frame.
594
*/
595
static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp)
596
{
597
BUILD_BUG_ON(sizeof(struct prog_frame) != STACK_FRAME_OVERHEAD);
598
599
/* No-op for hotpatching */
600
/* brcl 0,prologue_plt */
601
EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
602
jit->prologue_plt_ret = jit->prg;
603
604
if (!bpf_is_subprog(fp)) {
605
/* Initialize the tail call counter in the main program. */
606
/* xc tail_call_cnt(4,%r15),tail_call_cnt(%r15) */
607
_EMIT6(0xd703f000 | offsetof(struct prog_frame, tail_call_cnt),
608
0xf000 | offsetof(struct prog_frame, tail_call_cnt));
609
} else {
610
/*
611
* Skip the tail call counter initialization in subprograms.
612
* Insert nops in order to have tail_call_start at a
613
* predictable offset.
614
*/
615
bpf_skip(jit, 6);
616
}
617
/* Tail calls have to skip above initialization */
618
jit->tail_call_start = jit->prg;
619
if (fp->aux->exception_cb) {
620
/*
621
* Switch stack, the new address is in the 2nd parameter.
622
*
623
* Arrange the restoration of %r6-%r15 in the epilogue.
624
* Do not restore them now, the prog does not need them.
625
*/
626
/* lgr %r15,%r3 */
627
EMIT4(0xb9040000, REG_15, REG_3);
628
jit->seen_regs |= NVREGS;
629
} else {
630
/* Save registers */
631
save_restore_regs(jit, REGS_SAVE,
632
fp->aux->exception_boundary ? NVREGS : 0);
633
}
634
/* Setup literal pool */
635
if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
636
if (!is_first_pass(jit) &&
637
is_valid_ldisp(jit->size - (jit->prg + 2))) {
638
/* basr %l,0 */
639
EMIT2(0x0d00, REG_L, REG_0);
640
jit->base_ip = jit->prg;
641
} else {
642
/* larl %l,lit32_start */
643
EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
644
jit->base_ip = jit->lit32_start;
645
}
646
}
647
/* Setup stack and backchain */
648
if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
649
/* lgr %w1,%r15 (backchain) */
650
EMIT4(0xb9040000, REG_W1, REG_15);
651
/* la %bfp,unused_end(%r15) (BPF frame pointer) */
652
EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15,
653
offsetofend(struct prog_frame, unused));
654
/* aghi %r15,-frame_off */
655
EMIT4_IMM(0xa70b0000, REG_15, -jit->frame_off);
656
/* stg %w1,backchain(%r15) */
657
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
658
REG_15,
659
offsetof(struct prog_frame, backchain));
660
}
661
}
662
663
/*
664
* Jump using a register either directly or via an expoline thunk
665
*/
666
#define EMIT_JUMP_REG(reg) do { \
667
if (nospec_uses_trampoline()) \
668
/* brcl 0xf,__s390_indirect_jump_rN */ \
669
EMIT6_PCREL_RILC_PTR(0xc0040000, 0x0f, \
670
__s390_indirect_jump_r ## reg); \
671
else \
672
/* br %rN */ \
673
_EMIT2(0x07f0 | reg); \
674
} while (0)
675
676
/*
677
* Function epilogue
678
*/
679
static void bpf_jit_epilogue(struct bpf_jit *jit)
680
{
681
jit->exit_ip = jit->prg;
682
/* Load exit code: lgr %r2,%b0 */
683
EMIT4(0xb9040000, REG_2, BPF_REG_0);
684
/* Restore registers */
685
save_restore_regs(jit, REGS_RESTORE, 0);
686
EMIT_JUMP_REG(14);
687
688
jit->prg = ALIGN(jit->prg, 8);
689
jit->prologue_plt = jit->prg;
690
if (jit->prg_buf)
691
bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
692
jit->prg_buf + jit->prologue_plt_ret, NULL);
693
jit->prg += sizeof(struct bpf_plt);
694
}
695
696
bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
697
{
698
regs->psw.addr = extable_fixup(x);
699
if (x->data != -1)
700
regs->gprs[x->data] = 0;
701
return true;
702
}
703
704
/*
705
* A single BPF probe instruction
706
*/
707
struct bpf_jit_probe {
708
int prg; /* JITed instruction offset */
709
int nop_prg; /* JITed nop offset */
710
int reg; /* Register to clear on exception */
711
int arena_reg; /* Register to use for arena addressing */
712
};
713
714
static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
715
{
716
probe->prg = -1;
717
probe->nop_prg = -1;
718
probe->reg = -1;
719
probe->arena_reg = REG_0;
720
}
721
722
/*
723
* Handlers of certain exceptions leave psw.addr pointing to the instruction
724
* directly after the failing one. Therefore, create two exception table
725
* entries and also add a nop in case two probing instructions come directly
726
* after each other.
727
*/
728
static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
729
struct bpf_jit_probe *probe)
730
{
731
if (probe->prg == -1 || probe->nop_prg != -1)
732
/* The probe is not armed or nop is already emitted. */
733
return;
734
735
probe->nop_prg = jit->prg;
736
/* bcr 0,%0 */
737
_EMIT2(0x0700);
738
}
739
740
static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
741
struct bpf_jit_probe *probe)
742
{
743
if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
744
BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
745
BPF_MODE(insn->code) != BPF_PROBE_MEM32)
746
return;
747
748
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
749
/* lgrl %r1,kern_arena */
750
EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
751
probe->arena_reg = REG_W1;
752
}
753
probe->prg = jit->prg;
754
probe->reg = reg2hex[insn->dst_reg];
755
}
756
757
static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
758
struct bpf_jit_probe *probe)
759
{
760
if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
761
return;
762
763
/* lgrl %r1,kern_arena */
764
EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
765
probe->arena_reg = REG_W1;
766
probe->prg = jit->prg;
767
}
768
769
static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
770
struct bpf_insn *insn,
771
struct bpf_jit_probe *probe)
772
{
773
if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
774
return;
775
776
/* lgrl %r1,kern_arena */
777
EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
778
/* agr %r1,%dst */
779
EMIT4(0xb9080000, REG_W1, insn->dst_reg);
780
probe->arena_reg = REG_W1;
781
probe->prg = jit->prg;
782
}
783
784
static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
785
struct bpf_jit_probe *probe)
786
{
787
struct exception_table_entry *ex;
788
int i, prg;
789
s64 delta;
790
u8 *insn;
791
792
if (probe->prg == -1)
793
/* The probe is not armed. */
794
return 0;
795
bpf_jit_probe_emit_nop(jit, probe);
796
if (!fp->aux->extable)
797
/* Do nothing during early JIT passes. */
798
return 0;
799
insn = jit->prg_buf + probe->prg;
800
if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
801
/* JIT bug - gap between probe and nop instructions. */
802
return -1;
803
for (i = 0; i < 2; i++) {
804
if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
805
/* Verifier bug - not enough entries. */
806
return -1;
807
ex = &fp->aux->extable[jit->excnt];
808
/* Add extable entries for probe and nop instructions. */
809
prg = i == 0 ? probe->prg : probe->nop_prg;
810
delta = jit->prg_buf + prg - (u8 *)&ex->insn;
811
if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
812
/* JIT bug - code and extable must be close. */
813
return -1;
814
ex->insn = delta;
815
/*
816
* Land on the current instruction. Note that the extable
817
* infrastructure ignores the fixup field; it is handled by
818
* ex_handler_bpf().
819
*/
820
delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
821
if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
822
/* JIT bug - landing pad and extable must be close. */
823
return -1;
824
ex->fixup = delta;
825
ex->type = EX_TYPE_BPF;
826
ex->data = probe->reg;
827
jit->excnt++;
828
}
829
return 0;
830
}
831
832
/*
833
* Sign-extend the register if necessary
834
*/
835
static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
836
{
837
if (!(flags & BTF_FMODEL_SIGNED_ARG))
838
return 0;
839
840
switch (size) {
841
case 1:
842
/* lgbr %r,%r */
843
EMIT4(0xb9060000, r, r);
844
return 0;
845
case 2:
846
/* lghr %r,%r */
847
EMIT4(0xb9070000, r, r);
848
return 0;
849
case 4:
850
/* lgfr %r,%r */
851
EMIT4(0xb9140000, r, r);
852
return 0;
853
case 8:
854
return 0;
855
default:
856
return -1;
857
}
858
}
859
860
/*
861
* Compile one eBPF instruction into s390x code
862
*
863
* NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
864
* stack space for the large switch statement.
865
*/
866
static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
867
int i, bool extra_pass)
868
{
869
struct bpf_insn *insn = &fp->insnsi[i];
870
s32 branch_oc_off = insn->off;
871
u32 dst_reg = insn->dst_reg;
872
u32 src_reg = insn->src_reg;
873
struct bpf_jit_probe probe;
874
int last, insn_count = 1;
875
u32 *addrs = jit->addrs;
876
s32 imm = insn->imm;
877
s16 off = insn->off;
878
unsigned int mask;
879
int err;
880
881
bpf_jit_probe_init(&probe);
882
883
switch (insn->code) {
884
/*
885
* BPF_MOV
886
*/
887
case BPF_ALU | BPF_MOV | BPF_X:
888
switch (insn->off) {
889
case 0: /* DST = (u32) SRC */
890
/* llgfr %dst,%src */
891
EMIT4(0xb9160000, dst_reg, src_reg);
892
if (insn_is_zext(&insn[1]))
893
insn_count = 2;
894
break;
895
case 8: /* DST = (u32)(s8) SRC */
896
/* lbr %dst,%src */
897
EMIT4(0xb9260000, dst_reg, src_reg);
898
/* llgfr %dst,%dst */
899
EMIT4(0xb9160000, dst_reg, dst_reg);
900
break;
901
case 16: /* DST = (u32)(s16) SRC */
902
/* lhr %dst,%src */
903
EMIT4(0xb9270000, dst_reg, src_reg);
904
/* llgfr %dst,%dst */
905
EMIT4(0xb9160000, dst_reg, dst_reg);
906
break;
907
}
908
break;
909
case BPF_ALU64 | BPF_MOV | BPF_X:
910
if (insn_is_cast_user(insn)) {
911
int patch_brc;
912
913
/* ltgr %dst,%src */
914
EMIT4(0xb9020000, dst_reg, src_reg);
915
/* brc 8,0f */
916
patch_brc = jit->prg;
917
EMIT4_PCREL_RIC(0xa7040000, 8, 0);
918
/* iihf %dst,user_arena>>32 */
919
EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
920
/* 0: */
921
if (jit->prg_buf)
922
*(u16 *)(jit->prg_buf + patch_brc + 2) =
923
(jit->prg - patch_brc) >> 1;
924
break;
925
}
926
switch (insn->off) {
927
case 0: /* DST = SRC */
928
/* lgr %dst,%src */
929
EMIT4(0xb9040000, dst_reg, src_reg);
930
break;
931
case 8: /* DST = (s8) SRC */
932
/* lgbr %dst,%src */
933
EMIT4(0xb9060000, dst_reg, src_reg);
934
break;
935
case 16: /* DST = (s16) SRC */
936
/* lghr %dst,%src */
937
EMIT4(0xb9070000, dst_reg, src_reg);
938
break;
939
case 32: /* DST = (s32) SRC */
940
/* lgfr %dst,%src */
941
EMIT4(0xb9140000, dst_reg, src_reg);
942
break;
943
}
944
break;
945
case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
946
/* llilf %dst,imm */
947
EMIT6_IMM(0xc00f0000, dst_reg, imm);
948
if (insn_is_zext(&insn[1]))
949
insn_count = 2;
950
break;
951
case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
952
/* lgfi %dst,imm */
953
EMIT6_IMM(0xc0010000, dst_reg, imm);
954
break;
955
/*
956
* BPF_LD 64
957
*/
958
case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
959
{
960
/* 16 byte instruction that uses two 'struct bpf_insn' */
961
u64 imm64;
962
963
imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
964
/* lgrl %dst,imm */
965
EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
966
insn_count = 2;
967
break;
968
}
969
/*
970
* BPF_ADD
971
*/
972
case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
973
/* ar %dst,%src */
974
EMIT2(0x1a00, dst_reg, src_reg);
975
EMIT_ZERO(dst_reg);
976
break;
977
case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
978
/* agr %dst,%src */
979
EMIT4(0xb9080000, dst_reg, src_reg);
980
break;
981
case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
982
if (imm != 0) {
983
/* alfi %dst,imm */
984
EMIT6_IMM(0xc20b0000, dst_reg, imm);
985
}
986
EMIT_ZERO(dst_reg);
987
break;
988
case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
989
if (!imm)
990
break;
991
/* agfi %dst,imm */
992
EMIT6_IMM(0xc2080000, dst_reg, imm);
993
break;
994
/*
995
* BPF_SUB
996
*/
997
case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
998
/* sr %dst,%src */
999
EMIT2(0x1b00, dst_reg, src_reg);
1000
EMIT_ZERO(dst_reg);
1001
break;
1002
case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
1003
/* sgr %dst,%src */
1004
EMIT4(0xb9090000, dst_reg, src_reg);
1005
break;
1006
case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1007
if (imm != 0) {
1008
/* alfi %dst,-imm */
1009
EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1010
}
1011
EMIT_ZERO(dst_reg);
1012
break;
1013
case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1014
if (!imm)
1015
break;
1016
if (imm == -0x80000000) {
1017
/* algfi %dst,0x80000000 */
1018
EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1019
} else {
1020
/* agfi %dst,-imm */
1021
EMIT6_IMM(0xc2080000, dst_reg, -imm);
1022
}
1023
break;
1024
/*
1025
* BPF_MUL
1026
*/
1027
case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1028
/* msr %dst,%src */
1029
EMIT4(0xb2520000, dst_reg, src_reg);
1030
EMIT_ZERO(dst_reg);
1031
break;
1032
case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1033
/* msgr %dst,%src */
1034
EMIT4(0xb90c0000, dst_reg, src_reg);
1035
break;
1036
case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1037
if (imm != 1) {
1038
/* msfi %r5,imm */
1039
EMIT6_IMM(0xc2010000, dst_reg, imm);
1040
}
1041
EMIT_ZERO(dst_reg);
1042
break;
1043
case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1044
if (imm == 1)
1045
break;
1046
/* msgfi %dst,imm */
1047
EMIT6_IMM(0xc2000000, dst_reg, imm);
1048
break;
1049
/*
1050
* BPF_DIV / BPF_MOD
1051
*/
1052
case BPF_ALU | BPF_DIV | BPF_X:
1053
case BPF_ALU | BPF_MOD | BPF_X:
1054
{
1055
int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1056
1057
switch (off) {
1058
case 0: /* dst = (u32) dst {/,%} (u32) src */
1059
/* xr %w0,%w0 */
1060
EMIT2(0x1700, REG_W0, REG_W0);
1061
/* lr %w1,%dst */
1062
EMIT2(0x1800, REG_W1, dst_reg);
1063
/* dlr %w0,%src */
1064
EMIT4(0xb9970000, REG_W0, src_reg);
1065
break;
1066
case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1067
/* lgfr %r1,%dst */
1068
EMIT4(0xb9140000, REG_W1, dst_reg);
1069
/* dsgfr %r0,%src */
1070
EMIT4(0xb91d0000, REG_W0, src_reg);
1071
break;
1072
}
1073
/* llgfr %dst,%rc */
1074
EMIT4(0xb9160000, dst_reg, rc_reg);
1075
if (insn_is_zext(&insn[1]))
1076
insn_count = 2;
1077
break;
1078
}
1079
case BPF_ALU64 | BPF_DIV | BPF_X:
1080
case BPF_ALU64 | BPF_MOD | BPF_X:
1081
{
1082
int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1083
1084
switch (off) {
1085
case 0: /* dst = dst {/,%} src */
1086
/* lghi %w0,0 */
1087
EMIT4_IMM(0xa7090000, REG_W0, 0);
1088
/* lgr %w1,%dst */
1089
EMIT4(0xb9040000, REG_W1, dst_reg);
1090
/* dlgr %w0,%src */
1091
EMIT4(0xb9870000, REG_W0, src_reg);
1092
break;
1093
case 1: /* dst = (s64) dst {/,%} (s64) src */
1094
/* lgr %w1,%dst */
1095
EMIT4(0xb9040000, REG_W1, dst_reg);
1096
/* dsgr %w0,%src */
1097
EMIT4(0xb90d0000, REG_W0, src_reg);
1098
break;
1099
}
1100
/* lgr %dst,%rc */
1101
EMIT4(0xb9040000, dst_reg, rc_reg);
1102
break;
1103
}
1104
case BPF_ALU | BPF_DIV | BPF_K:
1105
case BPF_ALU | BPF_MOD | BPF_K:
1106
{
1107
int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1108
1109
if (imm == 1) {
1110
if (BPF_OP(insn->code) == BPF_MOD)
1111
/* lghi %dst,0 */
1112
EMIT4_IMM(0xa7090000, dst_reg, 0);
1113
else
1114
EMIT_ZERO(dst_reg);
1115
break;
1116
}
1117
if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1118
switch (off) {
1119
case 0: /* dst = (u32) dst {/,%} (u32) imm */
1120
/* xr %w0,%w0 */
1121
EMIT2(0x1700, REG_W0, REG_W0);
1122
/* lr %w1,%dst */
1123
EMIT2(0x1800, REG_W1, dst_reg);
1124
/* dl %w0,<d(imm)>(%l) */
1125
EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1126
REG_L, EMIT_CONST_U32(imm));
1127
break;
1128
case 1: /* dst = (s32) dst {/,%} (s32) imm */
1129
/* lgfr %r1,%dst */
1130
EMIT4(0xb9140000, REG_W1, dst_reg);
1131
/* dsgf %r0,<d(imm)>(%l) */
1132
EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1133
REG_L, EMIT_CONST_U32(imm));
1134
break;
1135
}
1136
} else {
1137
switch (off) {
1138
case 0: /* dst = (u32) dst {/,%} (u32) imm */
1139
/* xr %w0,%w0 */
1140
EMIT2(0x1700, REG_W0, REG_W0);
1141
/* lr %w1,%dst */
1142
EMIT2(0x1800, REG_W1, dst_reg);
1143
/* lrl %dst,imm */
1144
EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1145
_EMIT_CONST_U32(imm));
1146
jit->seen |= SEEN_LITERAL;
1147
/* dlr %w0,%dst */
1148
EMIT4(0xb9970000, REG_W0, dst_reg);
1149
break;
1150
case 1: /* dst = (s32) dst {/,%} (s32) imm */
1151
/* lgfr %w1,%dst */
1152
EMIT4(0xb9140000, REG_W1, dst_reg);
1153
/* lgfrl %dst,imm */
1154
EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1155
_EMIT_CONST_U32(imm));
1156
jit->seen |= SEEN_LITERAL;
1157
/* dsgr %w0,%dst */
1158
EMIT4(0xb90d0000, REG_W0, dst_reg);
1159
break;
1160
}
1161
}
1162
/* llgfr %dst,%rc */
1163
EMIT4(0xb9160000, dst_reg, rc_reg);
1164
if (insn_is_zext(&insn[1]))
1165
insn_count = 2;
1166
break;
1167
}
1168
case BPF_ALU64 | BPF_DIV | BPF_K:
1169
case BPF_ALU64 | BPF_MOD | BPF_K:
1170
{
1171
int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1172
1173
if (imm == 1) {
1174
if (BPF_OP(insn->code) == BPF_MOD)
1175
/* lhgi %dst,0 */
1176
EMIT4_IMM(0xa7090000, dst_reg, 0);
1177
break;
1178
}
1179
if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1180
switch (off) {
1181
case 0: /* dst = dst {/,%} imm */
1182
/* lghi %w0,0 */
1183
EMIT4_IMM(0xa7090000, REG_W0, 0);
1184
/* lgr %w1,%dst */
1185
EMIT4(0xb9040000, REG_W1, dst_reg);
1186
/* dlg %w0,<d(imm)>(%l) */
1187
EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1188
REG_L, EMIT_CONST_U64(imm));
1189
break;
1190
case 1: /* dst = (s64) dst {/,%} (s64) imm */
1191
/* lgr %w1,%dst */
1192
EMIT4(0xb9040000, REG_W1, dst_reg);
1193
/* dsg %w0,<d(imm)>(%l) */
1194
EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1195
REG_L, EMIT_CONST_U64(imm));
1196
break;
1197
}
1198
} else {
1199
switch (off) {
1200
case 0: /* dst = dst {/,%} imm */
1201
/* lghi %w0,0 */
1202
EMIT4_IMM(0xa7090000, REG_W0, 0);
1203
/* lgr %w1,%dst */
1204
EMIT4(0xb9040000, REG_W1, dst_reg);
1205
/* lgrl %dst,imm */
1206
EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1207
_EMIT_CONST_U64(imm));
1208
jit->seen |= SEEN_LITERAL;
1209
/* dlgr %w0,%dst */
1210
EMIT4(0xb9870000, REG_W0, dst_reg);
1211
break;
1212
case 1: /* dst = (s64) dst {/,%} (s64) imm */
1213
/* lgr %w1,%dst */
1214
EMIT4(0xb9040000, REG_W1, dst_reg);
1215
/* lgrl %dst,imm */
1216
EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1217
_EMIT_CONST_U64(imm));
1218
jit->seen |= SEEN_LITERAL;
1219
/* dsgr %w0,%dst */
1220
EMIT4(0xb90d0000, REG_W0, dst_reg);
1221
break;
1222
}
1223
}
1224
/* lgr %dst,%rc */
1225
EMIT4(0xb9040000, dst_reg, rc_reg);
1226
break;
1227
}
1228
/*
1229
* BPF_AND
1230
*/
1231
case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1232
/* nr %dst,%src */
1233
EMIT2(0x1400, dst_reg, src_reg);
1234
EMIT_ZERO(dst_reg);
1235
break;
1236
case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1237
/* ngr %dst,%src */
1238
EMIT4(0xb9800000, dst_reg, src_reg);
1239
break;
1240
case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1241
/* nilf %dst,imm */
1242
EMIT6_IMM(0xc00b0000, dst_reg, imm);
1243
EMIT_ZERO(dst_reg);
1244
break;
1245
case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1246
if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1247
/* ng %dst,<d(imm)>(%l) */
1248
EMIT6_DISP_LH(0xe3000000, 0x0080,
1249
dst_reg, REG_0, REG_L,
1250
EMIT_CONST_U64(imm));
1251
} else {
1252
/* lgrl %w0,imm */
1253
EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1254
_EMIT_CONST_U64(imm));
1255
jit->seen |= SEEN_LITERAL;
1256
/* ngr %dst,%w0 */
1257
EMIT4(0xb9800000, dst_reg, REG_W0);
1258
}
1259
break;
1260
/*
1261
* BPF_OR
1262
*/
1263
case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1264
/* or %dst,%src */
1265
EMIT2(0x1600, dst_reg, src_reg);
1266
EMIT_ZERO(dst_reg);
1267
break;
1268
case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1269
/* ogr %dst,%src */
1270
EMIT4(0xb9810000, dst_reg, src_reg);
1271
break;
1272
case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1273
/* oilf %dst,imm */
1274
EMIT6_IMM(0xc00d0000, dst_reg, imm);
1275
EMIT_ZERO(dst_reg);
1276
break;
1277
case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1278
if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1279
/* og %dst,<d(imm)>(%l) */
1280
EMIT6_DISP_LH(0xe3000000, 0x0081,
1281
dst_reg, REG_0, REG_L,
1282
EMIT_CONST_U64(imm));
1283
} else {
1284
/* lgrl %w0,imm */
1285
EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1286
_EMIT_CONST_U64(imm));
1287
jit->seen |= SEEN_LITERAL;
1288
/* ogr %dst,%w0 */
1289
EMIT4(0xb9810000, dst_reg, REG_W0);
1290
}
1291
break;
1292
/*
1293
* BPF_XOR
1294
*/
1295
case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1296
/* xr %dst,%src */
1297
EMIT2(0x1700, dst_reg, src_reg);
1298
EMIT_ZERO(dst_reg);
1299
break;
1300
case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1301
/* xgr %dst,%src */
1302
EMIT4(0xb9820000, dst_reg, src_reg);
1303
break;
1304
case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1305
if (imm != 0) {
1306
/* xilf %dst,imm */
1307
EMIT6_IMM(0xc0070000, dst_reg, imm);
1308
}
1309
EMIT_ZERO(dst_reg);
1310
break;
1311
case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1312
if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1313
/* xg %dst,<d(imm)>(%l) */
1314
EMIT6_DISP_LH(0xe3000000, 0x0082,
1315
dst_reg, REG_0, REG_L,
1316
EMIT_CONST_U64(imm));
1317
} else {
1318
/* lgrl %w0,imm */
1319
EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1320
_EMIT_CONST_U64(imm));
1321
jit->seen |= SEEN_LITERAL;
1322
/* xgr %dst,%w0 */
1323
EMIT4(0xb9820000, dst_reg, REG_W0);
1324
}
1325
break;
1326
/*
1327
* BPF_LSH
1328
*/
1329
case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1330
/* sll %dst,0(%src) */
1331
EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1332
EMIT_ZERO(dst_reg);
1333
break;
1334
case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1335
/* sllg %dst,%dst,0(%src) */
1336
EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1337
break;
1338
case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1339
if (imm != 0) {
1340
/* sll %dst,imm(%r0) */
1341
EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1342
}
1343
EMIT_ZERO(dst_reg);
1344
break;
1345
case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1346
if (imm == 0)
1347
break;
1348
/* sllg %dst,%dst,imm(%r0) */
1349
EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1350
break;
1351
/*
1352
* BPF_RSH
1353
*/
1354
case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1355
/* srl %dst,0(%src) */
1356
EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1357
EMIT_ZERO(dst_reg);
1358
break;
1359
case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1360
/* srlg %dst,%dst,0(%src) */
1361
EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1362
break;
1363
case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1364
if (imm != 0) {
1365
/* srl %dst,imm(%r0) */
1366
EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1367
}
1368
EMIT_ZERO(dst_reg);
1369
break;
1370
case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1371
if (imm == 0)
1372
break;
1373
/* srlg %dst,%dst,imm(%r0) */
1374
EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1375
break;
1376
/*
1377
* BPF_ARSH
1378
*/
1379
case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1380
/* sra %dst,%dst,0(%src) */
1381
EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1382
EMIT_ZERO(dst_reg);
1383
break;
1384
case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1385
/* srag %dst,%dst,0(%src) */
1386
EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1387
break;
1388
case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1389
if (imm != 0) {
1390
/* sra %dst,imm(%r0) */
1391
EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1392
}
1393
EMIT_ZERO(dst_reg);
1394
break;
1395
case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1396
if (imm == 0)
1397
break;
1398
/* srag %dst,%dst,imm(%r0) */
1399
EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1400
break;
1401
/*
1402
* BPF_NEG
1403
*/
1404
case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1405
/* lcr %dst,%dst */
1406
EMIT2(0x1300, dst_reg, dst_reg);
1407
EMIT_ZERO(dst_reg);
1408
break;
1409
case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1410
/* lcgr %dst,%dst */
1411
EMIT4(0xb9030000, dst_reg, dst_reg);
1412
break;
1413
/*
1414
* BPF_FROM_BE/LE
1415
*/
1416
case BPF_ALU | BPF_END | BPF_FROM_BE:
1417
/* s390 is big endian, therefore only clear high order bytes */
1418
switch (imm) {
1419
case 16: /* dst = (u16) cpu_to_be16(dst) */
1420
/* llghr %dst,%dst */
1421
EMIT4(0xb9850000, dst_reg, dst_reg);
1422
if (insn_is_zext(&insn[1]))
1423
insn_count = 2;
1424
break;
1425
case 32: /* dst = (u32) cpu_to_be32(dst) */
1426
if (!fp->aux->verifier_zext)
1427
/* llgfr %dst,%dst */
1428
EMIT4(0xb9160000, dst_reg, dst_reg);
1429
break;
1430
case 64: /* dst = (u64) cpu_to_be64(dst) */
1431
break;
1432
}
1433
break;
1434
case BPF_ALU | BPF_END | BPF_FROM_LE:
1435
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1436
switch (imm) {
1437
case 16: /* dst = (u16) cpu_to_le16(dst) */
1438
/* lrvr %dst,%dst */
1439
EMIT4(0xb91f0000, dst_reg, dst_reg);
1440
/* srl %dst,16(%r0) */
1441
EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1442
/* llghr %dst,%dst */
1443
EMIT4(0xb9850000, dst_reg, dst_reg);
1444
if (insn_is_zext(&insn[1]))
1445
insn_count = 2;
1446
break;
1447
case 32: /* dst = (u32) cpu_to_le32(dst) */
1448
/* lrvr %dst,%dst */
1449
EMIT4(0xb91f0000, dst_reg, dst_reg);
1450
if (!fp->aux->verifier_zext)
1451
/* llgfr %dst,%dst */
1452
EMIT4(0xb9160000, dst_reg, dst_reg);
1453
break;
1454
case 64: /* dst = (u64) cpu_to_le64(dst) */
1455
/* lrvgr %dst,%dst */
1456
EMIT4(0xb90f0000, dst_reg, dst_reg);
1457
break;
1458
}
1459
break;
1460
/*
1461
* BPF_NOSPEC (speculation barrier)
1462
*/
1463
case BPF_ST | BPF_NOSPEC:
1464
break;
1465
/*
1466
* BPF_ST(X)
1467
*/
1468
case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1469
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1470
bpf_jit_probe_store_pre(jit, insn, &probe);
1471
/* stcy %src,off(%dst,%arena) */
1472
EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1473
probe.arena_reg, off);
1474
err = bpf_jit_probe_post(jit, fp, &probe);
1475
if (err < 0)
1476
return err;
1477
jit->seen |= SEEN_MEM;
1478
break;
1479
case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1480
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1481
bpf_jit_probe_store_pre(jit, insn, &probe);
1482
/* sthy %src,off(%dst,%arena) */
1483
EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1484
probe.arena_reg, off);
1485
err = bpf_jit_probe_post(jit, fp, &probe);
1486
if (err < 0)
1487
return err;
1488
jit->seen |= SEEN_MEM;
1489
break;
1490
case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1491
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1492
bpf_jit_probe_store_pre(jit, insn, &probe);
1493
/* sty %src,off(%dst,%arena) */
1494
EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1495
probe.arena_reg, off);
1496
err = bpf_jit_probe_post(jit, fp, &probe);
1497
if (err < 0)
1498
return err;
1499
jit->seen |= SEEN_MEM;
1500
break;
1501
case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1502
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1503
bpf_jit_probe_store_pre(jit, insn, &probe);
1504
/* stg %src,off(%dst,%arena) */
1505
EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1506
probe.arena_reg, off);
1507
err = bpf_jit_probe_post(jit, fp, &probe);
1508
if (err < 0)
1509
return err;
1510
jit->seen |= SEEN_MEM;
1511
break;
1512
case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1513
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1514
/* lhi %w0,imm */
1515
EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1516
bpf_jit_probe_store_pre(jit, insn, &probe);
1517
/* stcy %w0,off(%dst,%arena) */
1518
EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1519
probe.arena_reg, off);
1520
err = bpf_jit_probe_post(jit, fp, &probe);
1521
if (err < 0)
1522
return err;
1523
jit->seen |= SEEN_MEM;
1524
break;
1525
case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1526
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1527
/* lhi %w0,imm */
1528
EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1529
bpf_jit_probe_store_pre(jit, insn, &probe);
1530
/* sthy %w0,off(%dst,%arena) */
1531
EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1532
probe.arena_reg, off);
1533
err = bpf_jit_probe_post(jit, fp, &probe);
1534
if (err < 0)
1535
return err;
1536
jit->seen |= SEEN_MEM;
1537
break;
1538
case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1539
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1540
/* llilf %w0,imm */
1541
EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1542
bpf_jit_probe_store_pre(jit, insn, &probe);
1543
/* sty %w0,off(%dst,%arena) */
1544
EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1545
probe.arena_reg, off);
1546
err = bpf_jit_probe_post(jit, fp, &probe);
1547
if (err < 0)
1548
return err;
1549
jit->seen |= SEEN_MEM;
1550
break;
1551
case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1552
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1553
/* lgfi %w0,imm */
1554
EMIT6_IMM(0xc0010000, REG_W0, imm);
1555
bpf_jit_probe_store_pre(jit, insn, &probe);
1556
/* stg %w0,off(%dst,%arena) */
1557
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1558
probe.arena_reg, off);
1559
err = bpf_jit_probe_post(jit, fp, &probe);
1560
if (err < 0)
1561
return err;
1562
jit->seen |= SEEN_MEM;
1563
break;
1564
/*
1565
* BPF_ATOMIC
1566
*/
1567
case BPF_STX | BPF_ATOMIC | BPF_DW:
1568
case BPF_STX | BPF_ATOMIC | BPF_W:
1569
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1570
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1571
{
1572
bool is32 = BPF_SIZE(insn->code) == BPF_W;
1573
1574
/*
1575
* Unlike loads and stores, atomics have only a base register,
1576
* but no index register. For the non-arena case, simply use
1577
* %dst as a base. For the arena case, use the work register
1578
* %r1: first, load the arena base into it, and then add %dst
1579
* to it.
1580
*/
1581
probe.arena_reg = dst_reg;
1582
1583
switch (insn->imm) {
1584
#define EMIT_ATOMIC(op32, op64) do { \
1585
bpf_jit_probe_atomic_pre(jit, insn, &probe); \
1586
/* {op32|op64} {%w0|%src},%src,off(%arena) */ \
1587
EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1588
(insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1589
src_reg, probe.arena_reg, off); \
1590
err = bpf_jit_probe_post(jit, fp, &probe); \
1591
if (err < 0) \
1592
return err; \
1593
if (insn->imm & BPF_FETCH) { \
1594
/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */ \
1595
_EMIT2(0x07e0); \
1596
if (is32) \
1597
EMIT_ZERO(src_reg); \
1598
} \
1599
} while (0)
1600
case BPF_ADD:
1601
case BPF_ADD | BPF_FETCH:
1602
/* {laal|laalg} */
1603
EMIT_ATOMIC(0x00fa, 0x00ea);
1604
break;
1605
case BPF_AND:
1606
case BPF_AND | BPF_FETCH:
1607
/* {lan|lang} */
1608
EMIT_ATOMIC(0x00f4, 0x00e4);
1609
break;
1610
case BPF_OR:
1611
case BPF_OR | BPF_FETCH:
1612
/* {lao|laog} */
1613
EMIT_ATOMIC(0x00f6, 0x00e6);
1614
break;
1615
case BPF_XOR:
1616
case BPF_XOR | BPF_FETCH:
1617
/* {lax|laxg} */
1618
EMIT_ATOMIC(0x00f7, 0x00e7);
1619
break;
1620
#undef EMIT_ATOMIC
1621
case BPF_XCHG: {
1622
struct bpf_jit_probe load_probe = probe;
1623
int loop_start;
1624
1625
bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1626
/* {ly|lg} %w0,off(%arena) */
1627
EMIT6_DISP_LH(0xe3000000,
1628
is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1629
load_probe.arena_reg, off);
1630
bpf_jit_probe_emit_nop(jit, &load_probe);
1631
/* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1632
if (load_probe.prg != -1) {
1633
probe.prg = jit->prg;
1634
probe.arena_reg = load_probe.arena_reg;
1635
}
1636
loop_start = jit->prg;
1637
/* 0: {csy|csg} %w0,%src,off(%arena) */
1638
EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1639
REG_W0, src_reg, probe.arena_reg, off);
1640
bpf_jit_probe_emit_nop(jit, &probe);
1641
/* brc 4,0b */
1642
EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1643
/* {llgfr|lgr} %src,%w0 */
1644
EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1645
/* Both probes should land here on exception. */
1646
err = bpf_jit_probe_post(jit, fp, &load_probe);
1647
if (err < 0)
1648
return err;
1649
err = bpf_jit_probe_post(jit, fp, &probe);
1650
if (err < 0)
1651
return err;
1652
if (is32 && insn_is_zext(&insn[1]))
1653
insn_count = 2;
1654
break;
1655
}
1656
case BPF_CMPXCHG:
1657
bpf_jit_probe_atomic_pre(jit, insn, &probe);
1658
/* 0: {csy|csg} %b0,%src,off(%arena) */
1659
EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1660
BPF_REG_0, src_reg,
1661
probe.arena_reg, off);
1662
err = bpf_jit_probe_post(jit, fp, &probe);
1663
if (err < 0)
1664
return err;
1665
break;
1666
default:
1667
pr_err("Unknown atomic operation %02x\n", insn->imm);
1668
return -1;
1669
}
1670
1671
jit->seen |= SEEN_MEM;
1672
break;
1673
}
1674
/*
1675
* BPF_LDX
1676
*/
1677
case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1678
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1679
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1680
bpf_jit_probe_load_pre(jit, insn, &probe);
1681
/* llgc %dst,off(%src,%arena) */
1682
EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1683
probe.arena_reg, off);
1684
err = bpf_jit_probe_post(jit, fp, &probe);
1685
if (err < 0)
1686
return err;
1687
jit->seen |= SEEN_MEM;
1688
if (insn_is_zext(&insn[1]))
1689
insn_count = 2;
1690
break;
1691
case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1692
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1693
bpf_jit_probe_load_pre(jit, insn, &probe);
1694
/* lgb %dst,off(%src) */
1695
EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1696
err = bpf_jit_probe_post(jit, fp, &probe);
1697
if (err < 0)
1698
return err;
1699
jit->seen |= SEEN_MEM;
1700
break;
1701
case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1702
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1703
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1704
bpf_jit_probe_load_pre(jit, insn, &probe);
1705
/* llgh %dst,off(%src,%arena) */
1706
EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1707
probe.arena_reg, off);
1708
err = bpf_jit_probe_post(jit, fp, &probe);
1709
if (err < 0)
1710
return err;
1711
jit->seen |= SEEN_MEM;
1712
if (insn_is_zext(&insn[1]))
1713
insn_count = 2;
1714
break;
1715
case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1716
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1717
bpf_jit_probe_load_pre(jit, insn, &probe);
1718
/* lgh %dst,off(%src) */
1719
EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1720
err = bpf_jit_probe_post(jit, fp, &probe);
1721
if (err < 0)
1722
return err;
1723
jit->seen |= SEEN_MEM;
1724
break;
1725
case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1726
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1727
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1728
bpf_jit_probe_load_pre(jit, insn, &probe);
1729
/* llgf %dst,off(%src) */
1730
jit->seen |= SEEN_MEM;
1731
EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1732
probe.arena_reg, off);
1733
err = bpf_jit_probe_post(jit, fp, &probe);
1734
if (err < 0)
1735
return err;
1736
if (insn_is_zext(&insn[1]))
1737
insn_count = 2;
1738
break;
1739
case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1740
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1741
bpf_jit_probe_load_pre(jit, insn, &probe);
1742
/* lgf %dst,off(%src) */
1743
jit->seen |= SEEN_MEM;
1744
EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1745
err = bpf_jit_probe_post(jit, fp, &probe);
1746
if (err < 0)
1747
return err;
1748
break;
1749
case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1750
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1751
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1752
bpf_jit_probe_load_pre(jit, insn, &probe);
1753
/* lg %dst,off(%src,%arena) */
1754
jit->seen |= SEEN_MEM;
1755
EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1756
probe.arena_reg, off);
1757
err = bpf_jit_probe_post(jit, fp, &probe);
1758
if (err < 0)
1759
return err;
1760
break;
1761
/*
1762
* BPF_JMP / CALL
1763
*/
1764
case BPF_JMP | BPF_CALL:
1765
{
1766
const struct btf_func_model *m;
1767
bool func_addr_fixed;
1768
int j, ret;
1769
u64 func;
1770
1771
ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1772
&func, &func_addr_fixed);
1773
if (ret < 0)
1774
return -1;
1775
1776
REG_SET_SEEN(BPF_REG_5);
1777
jit->seen |= SEEN_FUNC;
1778
1779
/*
1780
* Copy the tail call counter to where the callee expects it.
1781
*/
1782
1783
if (insn->src_reg == BPF_PSEUDO_CALL)
1784
/*
1785
* mvc tail_call_cnt(4,%r15),
1786
* frame_off+tail_call_cnt(%r15)
1787
*/
1788
_EMIT6(0xd203f000 | offsetof(struct prog_frame,
1789
tail_call_cnt),
1790
0xf000 | (jit->frame_off +
1791
offsetof(struct prog_frame,
1792
tail_call_cnt)));
1793
1794
/* Sign-extend the kfunc arguments. */
1795
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1796
m = bpf_jit_find_kfunc_model(fp, insn);
1797
if (!m)
1798
return -1;
1799
1800
for (j = 0; j < m->nr_args; j++) {
1801
if (sign_extend(jit, BPF_REG_1 + j,
1802
m->arg_size[j],
1803
m->arg_flags[j]))
1804
return -1;
1805
}
1806
}
1807
1808
if ((void *)func == arch_bpf_timed_may_goto) {
1809
/*
1810
* arch_bpf_timed_may_goto() has a special ABI: the
1811
* parameters are in BPF_REG_AX and BPF_REG_10; the
1812
* return value is in BPF_REG_AX; and all GPRs except
1813
* REG_W0, REG_W1, and BPF_REG_AX are callee-saved.
1814
*/
1815
1816
/* brasl %r0,func */
1817
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_0, (void *)func);
1818
} else {
1819
/* brasl %r14,func */
1820
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14, (void *)func);
1821
/* lgr %b0,%r2: load return value into %b0 */
1822
EMIT4(0xb9040000, BPF_REG_0, REG_2);
1823
}
1824
1825
/*
1826
* Copy the potentially updated tail call counter back.
1827
*/
1828
1829
if (insn->src_reg == BPF_PSEUDO_CALL)
1830
/*
1831
* mvc frame_off+tail_call_cnt(%r15),
1832
* tail_call_cnt(4,%r15)
1833
*/
1834
_EMIT6(0xd203f000 | (jit->frame_off +
1835
offsetof(struct prog_frame,
1836
tail_call_cnt)),
1837
0xf000 | offsetof(struct prog_frame,
1838
tail_call_cnt));
1839
1840
break;
1841
}
1842
case BPF_JMP | BPF_TAIL_CALL: {
1843
int patch_1_clrj, patch_2_clij, patch_3_brc;
1844
1845
/*
1846
* Implicit input:
1847
* B1: pointer to ctx
1848
* B2: pointer to bpf_array
1849
* B3: index in bpf_array
1850
*
1851
* if (index >= array->map.max_entries)
1852
* goto out;
1853
*/
1854
1855
/* llgf %w1,map.max_entries(%b2) */
1856
EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1857
offsetof(struct bpf_array, map.max_entries));
1858
/* if ((u32)%b3 >= (u32)%w1) goto out; */
1859
/* clrj %b3,%w1,0xa,out */
1860
patch_1_clrj = jit->prg;
1861
EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1862
jit->prg);
1863
1864
/*
1865
* if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1866
* goto out;
1867
*/
1868
1869
off = jit->frame_off +
1870
offsetof(struct prog_frame, tail_call_cnt);
1871
/* lhi %w0,1 */
1872
EMIT4_IMM(0xa7080000, REG_W0, 1);
1873
/* laal %w1,%w0,off(%r15) */
1874
EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1875
/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1876
patch_2_clij = jit->prg;
1877
EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1878
2, jit->prg);
1879
1880
/*
1881
* prog = array->ptrs[index];
1882
* if (prog == NULL)
1883
* goto out;
1884
*/
1885
1886
/* llgfr %r1,%b3: %r1 = (u32) index */
1887
EMIT4(0xb9160000, REG_1, BPF_REG_3);
1888
/* sllg %r1,%r1,3: %r1 *= 8 */
1889
EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1890
/* ltg %r1,prog(%b2,%r1) */
1891
EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1892
REG_1, offsetof(struct bpf_array, ptrs));
1893
/* brc 0x8,out */
1894
patch_3_brc = jit->prg;
1895
EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1896
1897
/*
1898
* Restore registers before calling function
1899
*/
1900
save_restore_regs(jit, REGS_RESTORE, 0);
1901
1902
/*
1903
* goto *(prog->bpf_func + tail_call_start);
1904
*/
1905
1906
/* lg %r1,bpf_func(%r1) */
1907
EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1908
offsetof(struct bpf_prog, bpf_func));
1909
if (nospec_uses_trampoline()) {
1910
jit->seen |= SEEN_FUNC;
1911
/* aghi %r1,tail_call_start */
1912
EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1913
/* brcl 0xf,__s390_indirect_jump_r1 */
1914
EMIT6_PCREL_RILC_PTR(0xc0040000, 0xf,
1915
__s390_indirect_jump_r1);
1916
} else {
1917
/* bc 0xf,tail_call_start(%r1) */
1918
_EMIT4(0x47f01000 + jit->tail_call_start);
1919
}
1920
/* out: */
1921
if (jit->prg_buf) {
1922
*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1923
(jit->prg - patch_1_clrj) >> 1;
1924
*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1925
(jit->prg - patch_2_clij) >> 1;
1926
*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1927
(jit->prg - patch_3_brc) >> 1;
1928
}
1929
break;
1930
}
1931
case BPF_JMP | BPF_EXIT: /* return b0 */
1932
last = (i == fp->len - 1) ? 1 : 0;
1933
if (last)
1934
break;
1935
if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1936
/* brc 0xf, <exit> */
1937
EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1938
else
1939
/* brcl 0xf, <exit> */
1940
EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1941
break;
1942
/*
1943
* Branch relative (number of skipped instructions) to offset on
1944
* condition.
1945
*
1946
* Condition code to mask mapping:
1947
*
1948
* CC | Description | Mask
1949
* ------------------------------
1950
* 0 | Operands equal | 8
1951
* 1 | First operand low | 4
1952
* 2 | First operand high | 2
1953
* 3 | Unused | 1
1954
*
1955
* For s390x relative branches: ip = ip + off_bytes
1956
* For BPF relative branches: insn = insn + off_insns + 1
1957
*
1958
* For example for s390x with offset 0 we jump to the branch
1959
* instruction itself (loop) and for BPF with offset 0 we
1960
* branch to the instruction behind the branch.
1961
*/
1962
case BPF_JMP32 | BPF_JA: /* if (true) */
1963
branch_oc_off = imm;
1964
fallthrough;
1965
case BPF_JMP | BPF_JA: /* if (true) */
1966
mask = 0xf000; /* j */
1967
goto branch_oc;
1968
case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1969
case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1970
mask = 0x2000; /* jh */
1971
goto branch_ks;
1972
case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1973
case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1974
mask = 0x4000; /* jl */
1975
goto branch_ks;
1976
case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1977
case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1978
mask = 0xa000; /* jhe */
1979
goto branch_ks;
1980
case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1981
case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1982
mask = 0xc000; /* jle */
1983
goto branch_ks;
1984
case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1985
case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1986
mask = 0x2000; /* jh */
1987
goto branch_ku;
1988
case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1989
case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1990
mask = 0x4000; /* jl */
1991
goto branch_ku;
1992
case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1993
case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1994
mask = 0xa000; /* jhe */
1995
goto branch_ku;
1996
case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1997
case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1998
mask = 0xc000; /* jle */
1999
goto branch_ku;
2000
case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
2001
case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
2002
mask = 0x7000; /* jne */
2003
goto branch_ku;
2004
case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
2005
case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
2006
mask = 0x8000; /* je */
2007
goto branch_ku;
2008
case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
2009
case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
2010
mask = 0x7000; /* jnz */
2011
if (BPF_CLASS(insn->code) == BPF_JMP32) {
2012
/* llilf %w1,imm (load zero extend imm) */
2013
EMIT6_IMM(0xc00f0000, REG_W1, imm);
2014
/* nr %w1,%dst */
2015
EMIT2(0x1400, REG_W1, dst_reg);
2016
} else {
2017
/* lgfi %w1,imm (load sign extend imm) */
2018
EMIT6_IMM(0xc0010000, REG_W1, imm);
2019
/* ngr %w1,%dst */
2020
EMIT4(0xb9800000, REG_W1, dst_reg);
2021
}
2022
goto branch_oc;
2023
2024
case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
2025
case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
2026
mask = 0x2000; /* jh */
2027
goto branch_xs;
2028
case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
2029
case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
2030
mask = 0x4000; /* jl */
2031
goto branch_xs;
2032
case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2033
case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2034
mask = 0xa000; /* jhe */
2035
goto branch_xs;
2036
case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2037
case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2038
mask = 0xc000; /* jle */
2039
goto branch_xs;
2040
case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2041
case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2042
mask = 0x2000; /* jh */
2043
goto branch_xu;
2044
case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2045
case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2046
mask = 0x4000; /* jl */
2047
goto branch_xu;
2048
case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2049
case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2050
mask = 0xa000; /* jhe */
2051
goto branch_xu;
2052
case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2053
case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2054
mask = 0xc000; /* jle */
2055
goto branch_xu;
2056
case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2057
case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2058
mask = 0x7000; /* jne */
2059
goto branch_xu;
2060
case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2061
case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2062
mask = 0x8000; /* je */
2063
goto branch_xu;
2064
case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2065
case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2066
{
2067
bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2068
2069
mask = 0x7000; /* jnz */
2070
/* nrk or ngrk %w1,%dst,%src */
2071
EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2072
REG_W1, dst_reg, src_reg);
2073
goto branch_oc;
2074
branch_ks:
2075
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2076
/* cfi or cgfi %dst,imm */
2077
EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2078
dst_reg, imm);
2079
if (!is_first_pass(jit) &&
2080
can_use_rel(jit, addrs[i + off + 1])) {
2081
/* brc mask,off */
2082
EMIT4_PCREL_RIC(0xa7040000,
2083
mask >> 12, addrs[i + off + 1]);
2084
} else {
2085
/* brcl mask,off */
2086
EMIT6_PCREL_RILC(0xc0040000,
2087
mask >> 12, addrs[i + off + 1]);
2088
}
2089
break;
2090
branch_ku:
2091
/* lgfi %w1,imm (load sign extend imm) */
2092
src_reg = REG_1;
2093
EMIT6_IMM(0xc0010000, src_reg, imm);
2094
goto branch_xu;
2095
branch_xs:
2096
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2097
if (!is_first_pass(jit) &&
2098
can_use_rel(jit, addrs[i + off + 1])) {
2099
/* crj or cgrj %dst,%src,mask,off */
2100
EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2101
dst_reg, src_reg, i, off, mask);
2102
} else {
2103
/* cr or cgr %dst,%src */
2104
if (is_jmp32)
2105
EMIT2(0x1900, dst_reg, src_reg);
2106
else
2107
EMIT4(0xb9200000, dst_reg, src_reg);
2108
/* brcl mask,off */
2109
EMIT6_PCREL_RILC(0xc0040000,
2110
mask >> 12, addrs[i + off + 1]);
2111
}
2112
break;
2113
branch_xu:
2114
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2115
if (!is_first_pass(jit) &&
2116
can_use_rel(jit, addrs[i + off + 1])) {
2117
/* clrj or clgrj %dst,%src,mask,off */
2118
EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2119
dst_reg, src_reg, i, off, mask);
2120
} else {
2121
/* clr or clgr %dst,%src */
2122
if (is_jmp32)
2123
EMIT2(0x1500, dst_reg, src_reg);
2124
else
2125
EMIT4(0xb9210000, dst_reg, src_reg);
2126
/* brcl mask,off */
2127
EMIT6_PCREL_RILC(0xc0040000,
2128
mask >> 12, addrs[i + off + 1]);
2129
}
2130
break;
2131
branch_oc:
2132
if (!is_first_pass(jit) &&
2133
can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2134
/* brc mask,off */
2135
EMIT4_PCREL_RIC(0xa7040000,
2136
mask >> 12,
2137
addrs[i + branch_oc_off + 1]);
2138
} else {
2139
/* brcl mask,off */
2140
EMIT6_PCREL_RILC(0xc0040000,
2141
mask >> 12,
2142
addrs[i + branch_oc_off + 1]);
2143
}
2144
break;
2145
}
2146
default: /* too complex, give up */
2147
pr_err("Unknown opcode %02x\n", insn->code);
2148
return -1;
2149
}
2150
2151
return insn_count;
2152
}
2153
2154
/*
2155
* Return whether new i-th instruction address does not violate any invariant
2156
*/
2157
static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2158
{
2159
/* On the first pass anything goes */
2160
if (is_first_pass(jit))
2161
return true;
2162
2163
/* The codegen pass must not change anything */
2164
if (is_codegen_pass(jit))
2165
return jit->addrs[i] == jit->prg;
2166
2167
/* Passes in between must not increase code size */
2168
return jit->addrs[i] >= jit->prg;
2169
}
2170
2171
/*
2172
* Update the address of i-th instruction
2173
*/
2174
static int bpf_set_addr(struct bpf_jit *jit, int i)
2175
{
2176
int delta;
2177
2178
if (is_codegen_pass(jit)) {
2179
delta = jit->prg - jit->addrs[i];
2180
if (delta < 0)
2181
bpf_skip(jit, -delta);
2182
}
2183
if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2184
return -1;
2185
jit->addrs[i] = jit->prg;
2186
return 0;
2187
}
2188
2189
/*
2190
* Compile eBPF program into s390x code
2191
*/
2192
static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2193
bool extra_pass)
2194
{
2195
int i, insn_count, lit32_size, lit64_size;
2196
u64 kern_arena;
2197
2198
jit->lit32 = jit->lit32_start;
2199
jit->lit64 = jit->lit64_start;
2200
jit->prg = 0;
2201
jit->excnt = 0;
2202
if (is_first_pass(jit) || (jit->seen & SEEN_STACK))
2203
jit->frame_off = sizeof(struct prog_frame) -
2204
offsetofend(struct prog_frame, unused) +
2205
round_up(fp->aux->stack_depth, 8);
2206
else
2207
jit->frame_off = 0;
2208
2209
kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2210
if (kern_arena)
2211
jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2212
jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2213
2214
bpf_jit_prologue(jit, fp);
2215
if (bpf_set_addr(jit, 0) < 0)
2216
return -1;
2217
for (i = 0; i < fp->len; i += insn_count) {
2218
insn_count = bpf_jit_insn(jit, fp, i, extra_pass);
2219
if (insn_count < 0)
2220
return -1;
2221
/* Next instruction address */
2222
if (bpf_set_addr(jit, i + insn_count) < 0)
2223
return -1;
2224
}
2225
bpf_jit_epilogue(jit);
2226
2227
lit32_size = jit->lit32 - jit->lit32_start;
2228
lit64_size = jit->lit64 - jit->lit64_start;
2229
jit->lit32_start = jit->prg;
2230
if (lit32_size)
2231
jit->lit32_start = ALIGN(jit->lit32_start, 4);
2232
jit->lit64_start = jit->lit32_start + lit32_size;
2233
if (lit64_size)
2234
jit->lit64_start = ALIGN(jit->lit64_start, 8);
2235
jit->size = jit->lit64_start + lit64_size;
2236
jit->size_prg = jit->prg;
2237
2238
if (WARN_ON_ONCE(fp->aux->extable &&
2239
jit->excnt != fp->aux->num_exentries))
2240
/* Verifier bug - too many entries. */
2241
return -1;
2242
2243
return 0;
2244
}
2245
2246
bool bpf_jit_needs_zext(void)
2247
{
2248
return true;
2249
}
2250
2251
struct s390_jit_data {
2252
struct bpf_binary_header *header;
2253
struct bpf_jit ctx;
2254
int pass;
2255
};
2256
2257
static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2258
struct bpf_prog *fp)
2259
{
2260
struct bpf_binary_header *header;
2261
struct bpf_insn *insn;
2262
u32 extable_size;
2263
u32 code_size;
2264
int i;
2265
2266
for (i = 0; i < fp->len; i++) {
2267
insn = &fp->insnsi[i];
2268
2269
if (BPF_CLASS(insn->code) == BPF_STX &&
2270
BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2271
(BPF_SIZE(insn->code) == BPF_DW ||
2272
BPF_SIZE(insn->code) == BPF_W) &&
2273
insn->imm == BPF_XCHG)
2274
/*
2275
* bpf_jit_insn() emits a load and a compare-and-swap,
2276
* both of which need to be probed.
2277
*/
2278
fp->aux->num_exentries += 1;
2279
}
2280
/* We need two entries per insn. */
2281
fp->aux->num_exentries *= 2;
2282
2283
code_size = roundup(jit->size,
2284
__alignof__(struct exception_table_entry));
2285
extable_size = fp->aux->num_exentries *
2286
sizeof(struct exception_table_entry);
2287
header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2288
8, jit_fill_hole);
2289
if (!header)
2290
return NULL;
2291
fp->aux->extable = (struct exception_table_entry *)
2292
(jit->prg_buf + code_size);
2293
return header;
2294
}
2295
2296
/*
2297
* Compile eBPF program "fp"
2298
*/
2299
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2300
{
2301
struct bpf_prog *tmp, *orig_fp = fp;
2302
struct bpf_binary_header *header;
2303
struct s390_jit_data *jit_data;
2304
bool tmp_blinded = false;
2305
bool extra_pass = false;
2306
struct bpf_jit jit;
2307
int pass;
2308
2309
if (!fp->jit_requested)
2310
return orig_fp;
2311
2312
tmp = bpf_jit_blind_constants(fp);
2313
/*
2314
* If blinding was requested and we failed during blinding,
2315
* we must fall back to the interpreter.
2316
*/
2317
if (IS_ERR(tmp))
2318
return orig_fp;
2319
if (tmp != fp) {
2320
tmp_blinded = true;
2321
fp = tmp;
2322
}
2323
2324
jit_data = fp->aux->jit_data;
2325
if (!jit_data) {
2326
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2327
if (!jit_data) {
2328
fp = orig_fp;
2329
goto out;
2330
}
2331
fp->aux->jit_data = jit_data;
2332
}
2333
if (jit_data->ctx.addrs) {
2334
jit = jit_data->ctx;
2335
header = jit_data->header;
2336
extra_pass = true;
2337
pass = jit_data->pass + 1;
2338
goto skip_init_ctx;
2339
}
2340
2341
memset(&jit, 0, sizeof(jit));
2342
jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2343
if (jit.addrs == NULL) {
2344
fp = orig_fp;
2345
goto free_addrs;
2346
}
2347
/*
2348
* Three initial passes:
2349
* - 1/2: Determine clobbered registers
2350
* - 3: Calculate program size and addrs array
2351
*/
2352
for (pass = 1; pass <= 3; pass++) {
2353
if (bpf_jit_prog(&jit, fp, extra_pass)) {
2354
fp = orig_fp;
2355
goto free_addrs;
2356
}
2357
}
2358
/*
2359
* Final pass: Allocate and generate program
2360
*/
2361
header = bpf_jit_alloc(&jit, fp);
2362
if (!header) {
2363
fp = orig_fp;
2364
goto free_addrs;
2365
}
2366
skip_init_ctx:
2367
if (bpf_jit_prog(&jit, fp, extra_pass)) {
2368
bpf_jit_binary_free(header);
2369
fp = orig_fp;
2370
goto free_addrs;
2371
}
2372
if (bpf_jit_enable > 1) {
2373
bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2374
print_fn_code(jit.prg_buf, jit.size_prg);
2375
}
2376
if (!fp->is_func || extra_pass) {
2377
if (bpf_jit_binary_lock_ro(header)) {
2378
bpf_jit_binary_free(header);
2379
fp = orig_fp;
2380
goto free_addrs;
2381
}
2382
} else {
2383
jit_data->header = header;
2384
jit_data->ctx = jit;
2385
jit_data->pass = pass;
2386
}
2387
fp->bpf_func = (void *) jit.prg_buf;
2388
fp->jited = 1;
2389
fp->jited_len = jit.size;
2390
2391
if (!fp->is_func || extra_pass) {
2392
bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2393
free_addrs:
2394
kvfree(jit.addrs);
2395
kfree(jit_data);
2396
fp->aux->jit_data = NULL;
2397
}
2398
out:
2399
if (tmp_blinded)
2400
bpf_jit_prog_release_other(fp, fp == orig_fp ?
2401
tmp : orig_fp);
2402
return fp;
2403
}
2404
2405
bool bpf_jit_supports_kfunc_call(void)
2406
{
2407
return true;
2408
}
2409
2410
bool bpf_jit_supports_far_kfunc_call(void)
2411
{
2412
return true;
2413
}
2414
2415
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
2416
enum bpf_text_poke_type new_t, void *old_addr,
2417
void *new_addr)
2418
{
2419
struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2420
struct {
2421
u16 opc;
2422
s32 disp;
2423
} __packed insn;
2424
char *ret;
2425
int err;
2426
2427
/* Verify the branch to be patched. */
2428
err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2429
if (err < 0)
2430
return err;
2431
if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2432
return -EINVAL;
2433
2434
if ((new_t == BPF_MOD_JUMP || old_t == BPF_MOD_JUMP) &&
2435
insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2436
/*
2437
* The branch already points to the destination,
2438
* there is no PLT.
2439
*/
2440
} else {
2441
/* Verify the PLT. */
2442
plt = ip + (insn.disp << 1);
2443
err = copy_from_kernel_nofault(&current_plt, plt,
2444
sizeof(current_plt));
2445
if (err < 0)
2446
return err;
2447
ret = (char *)ip + 6;
2448
bpf_jit_plt(&expected_plt, ret, old_addr);
2449
if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2450
return -EINVAL;
2451
/* Adjust the call address. */
2452
bpf_jit_plt(&new_plt, ret, new_addr);
2453
s390_kernel_write(&plt->target, &new_plt.target,
2454
sizeof(void *));
2455
}
2456
2457
/* Adjust the mask of the branch. */
2458
insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2459
s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2460
2461
/* Make the new code visible to the other CPUs. */
2462
text_poke_sync_lock();
2463
2464
return 0;
2465
}
2466
2467
struct bpf_tramp_jit {
2468
struct bpf_jit common;
2469
int orig_stack_args_off;/* Offset of arguments placed on stack by the
2470
* func_addr's original caller
2471
*/
2472
int stack_size; /* Trampoline stack size */
2473
int backchain_off; /* Offset of backchain */
2474
int stack_args_off; /* Offset of stack arguments for calling
2475
* func_addr, has to be at the top
2476
*/
2477
int reg_args_off; /* Offset of register arguments for calling
2478
* func_addr
2479
*/
2480
int ip_off; /* For bpf_get_func_ip(), has to be at
2481
* (ctx - 16)
2482
*/
2483
int arg_cnt_off; /* For bpf_get_func_arg_cnt(), has to be at
2484
* (ctx - 8)
2485
*/
2486
int bpf_args_off; /* Offset of BPF_PROG context, which consists
2487
* of BPF arguments followed by return value
2488
*/
2489
int retval_off; /* Offset of return value (see above) */
2490
int r7_r8_off; /* Offset of saved %r7 and %r8, which are used
2491
* for __bpf_prog_enter() return value and
2492
* func_addr respectively
2493
*/
2494
int run_ctx_off; /* Offset of struct bpf_tramp_run_ctx */
2495
int tccnt_off; /* Offset of saved tailcall counter */
2496
int r14_off; /* Offset of saved %r14, has to be at the
2497
* bottom */
2498
int do_fexit; /* do_fexit: label */
2499
};
2500
2501
static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2502
{
2503
/* llihf %dst_reg,val_hi */
2504
EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2505
/* oilf %rdst_reg,val_lo */
2506
EMIT6_IMM(0xc00d0000, dst_reg, val);
2507
}
2508
2509
static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2510
const struct btf_func_model *m,
2511
struct bpf_tramp_link *tlink, bool save_ret)
2512
{
2513
struct bpf_jit *jit = &tjit->common;
2514
int cookie_off = tjit->run_ctx_off +
2515
offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2516
struct bpf_prog *p = tlink->link.prog;
2517
int patch;
2518
2519
/*
2520
* run_ctx.cookie = tlink->cookie;
2521
*/
2522
2523
/* %r0 = tlink->cookie */
2524
load_imm64(jit, REG_W0, tlink->cookie);
2525
/* stg %r0,cookie_off(%r15) */
2526
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2527
2528
/*
2529
* if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2530
* goto skip;
2531
*/
2532
2533
/* %r2 = p */
2534
load_imm64(jit, REG_2, (u64)p);
2535
/* la %r3,run_ctx_off(%r15) */
2536
EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2537
/* brasl %r14,__bpf_prog_enter */
2538
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14, bpf_trampoline_enter(p));
2539
/* ltgr %r7,%r2 */
2540
EMIT4(0xb9020000, REG_7, REG_2);
2541
/* brcl 8,skip */
2542
patch = jit->prg;
2543
EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2544
2545
/*
2546
* retval = bpf_func(args, p->insnsi);
2547
*/
2548
2549
/* la %r2,bpf_args_off(%r15) */
2550
EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2551
/* %r3 = p->insnsi */
2552
if (!p->jited)
2553
load_imm64(jit, REG_3, (u64)p->insnsi);
2554
/* brasl %r14,p->bpf_func */
2555
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14, p->bpf_func);
2556
/* stg %r2,retval_off(%r15) */
2557
if (save_ret) {
2558
if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2559
return -1;
2560
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2561
tjit->retval_off);
2562
}
2563
2564
/* skip: */
2565
if (jit->prg_buf)
2566
*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2567
2568
/*
2569
* __bpf_prog_exit(p, start, &run_ctx);
2570
*/
2571
2572
/* %r2 = p */
2573
load_imm64(jit, REG_2, (u64)p);
2574
/* lgr %r3,%r7 */
2575
EMIT4(0xb9040000, REG_3, REG_7);
2576
/* la %r4,run_ctx_off(%r15) */
2577
EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2578
/* brasl %r14,__bpf_prog_exit */
2579
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14, bpf_trampoline_exit(p));
2580
2581
return 0;
2582
}
2583
2584
static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2585
{
2586
int stack_offset = tjit->stack_size;
2587
2588
tjit->stack_size += size;
2589
return stack_offset;
2590
}
2591
2592
/* ABI uses %r2 - %r6 for parameter passing. */
2593
#define MAX_NR_REG_ARGS 5
2594
2595
/* The "L" field of the "mvc" instruction is 8 bits. */
2596
#define MAX_MVC_SIZE 256
2597
#define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2598
2599
/* -mfentry generates a 6-byte nop on s390x. */
2600
#define S390X_PATCH_SIZE 6
2601
2602
static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2603
struct bpf_tramp_jit *tjit,
2604
const struct btf_func_model *m,
2605
u32 flags,
2606
struct bpf_tramp_links *tlinks,
2607
void *func_addr)
2608
{
2609
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2610
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2611
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2612
int nr_bpf_args, nr_reg_args, nr_stack_args;
2613
struct bpf_jit *jit = &tjit->common;
2614
int arg, bpf_arg_off;
2615
int i, j;
2616
2617
/* Support as many stack arguments as "mvc" instruction can handle. */
2618
nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2619
nr_stack_args = m->nr_args - nr_reg_args;
2620
if (nr_stack_args > MAX_NR_STACK_ARGS)
2621
return -ENOTSUPP;
2622
2623
/* Return to %r14 in the struct_ops case. */
2624
if (flags & BPF_TRAMP_F_INDIRECT)
2625
flags |= BPF_TRAMP_F_SKIP_FRAME;
2626
2627
/*
2628
* Compute how many arguments we need to pass to BPF programs.
2629
* BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2630
* smaller are packed into 1 or 2 registers; larger arguments are
2631
* passed via pointers.
2632
* In s390x ABI, arguments that are 8 bytes or smaller are packed into
2633
* a register; larger arguments are passed via pointers.
2634
* We need to deal with this difference.
2635
*/
2636
nr_bpf_args = 0;
2637
for (i = 0; i < m->nr_args; i++) {
2638
if (m->arg_size[i] <= 8)
2639
nr_bpf_args += 1;
2640
else if (m->arg_size[i] <= 16)
2641
nr_bpf_args += 2;
2642
else
2643
return -ENOTSUPP;
2644
}
2645
2646
/*
2647
* Calculate the stack layout.
2648
*/
2649
2650
/*
2651
* Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2652
* ABI requires, put our backchain at the end of the allocated memory.
2653
*/
2654
tjit->stack_size = STACK_FRAME_OVERHEAD;
2655
tjit->backchain_off = tjit->stack_size - sizeof(u64);
2656
tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2657
tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2658
tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2659
tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2660
tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2661
tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2662
tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2663
tjit->run_ctx_off = alloc_stack(tjit,
2664
sizeof(struct bpf_tramp_run_ctx));
2665
tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2666
tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2667
/*
2668
* In accordance with the s390x ABI, the caller has allocated
2669
* STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2670
* backchain, and the rest we can use.
2671
*/
2672
tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2673
tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2674
2675
/* lgr %r1,%r15 */
2676
EMIT4(0xb9040000, REG_1, REG_15);
2677
/* aghi %r15,-stack_size */
2678
EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2679
/* stg %r1,backchain_off(%r15) */
2680
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2681
tjit->backchain_off);
2682
/* mvc tccnt_off(4,%r15),stack_size+tail_call_cnt(%r15) */
2683
_EMIT6(0xd203f000 | tjit->tccnt_off,
2684
0xf000 | (tjit->stack_size +
2685
offsetof(struct prog_frame, tail_call_cnt)));
2686
/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2687
if (nr_reg_args)
2688
EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2689
REG_2 + (nr_reg_args - 1), REG_15,
2690
tjit->reg_args_off);
2691
for (i = 0, j = 0; i < m->nr_args; i++) {
2692
if (i < MAX_NR_REG_ARGS)
2693
arg = REG_2 + i;
2694
else
2695
arg = tjit->orig_stack_args_off +
2696
(i - MAX_NR_REG_ARGS) * sizeof(u64);
2697
bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2698
if (m->arg_size[i] <= 8) {
2699
if (i < MAX_NR_REG_ARGS)
2700
/* stg %arg,bpf_arg_off(%r15) */
2701
EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2702
REG_0, REG_15, bpf_arg_off);
2703
else
2704
/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2705
_EMIT6(0xd207f000 | bpf_arg_off,
2706
0xf000 | arg);
2707
j += 1;
2708
} else {
2709
if (i < MAX_NR_REG_ARGS) {
2710
/* mvc bpf_arg_off(16,%r15),0(%arg) */
2711
_EMIT6(0xd20ff000 | bpf_arg_off,
2712
reg2hex[arg] << 12);
2713
} else {
2714
/* lg %r1,arg(%r15) */
2715
EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2716
REG_15, arg);
2717
/* mvc bpf_arg_off(16,%r15),0(%r1) */
2718
_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2719
}
2720
j += 2;
2721
}
2722
}
2723
/* stmg %r7,%r8,r7_r8_off(%r15) */
2724
EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2725
tjit->r7_r8_off);
2726
/* stg %r14,r14_off(%r15) */
2727
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2728
2729
if (flags & BPF_TRAMP_F_ORIG_STACK) {
2730
/*
2731
* The ftrace trampoline puts the return address (which is the
2732
* address of the original function + S390X_PATCH_SIZE) into
2733
* %r0; see ftrace_shared_hotpatch_trampoline_br and
2734
* ftrace_init_nop() for details.
2735
*/
2736
2737
/* lgr %r8,%r0 */
2738
EMIT4(0xb9040000, REG_8, REG_0);
2739
}
2740
2741
/*
2742
* ip = func_addr;
2743
* arg_cnt = m->nr_args;
2744
*/
2745
2746
if (flags & BPF_TRAMP_F_IP_ARG) {
2747
/* %r0 = func_addr */
2748
load_imm64(jit, REG_0, (u64)func_addr);
2749
/* stg %r0,ip_off(%r15) */
2750
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2751
tjit->ip_off);
2752
}
2753
/* lghi %r0,nr_bpf_args */
2754
EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2755
/* stg %r0,arg_cnt_off(%r15) */
2756
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2757
tjit->arg_cnt_off);
2758
2759
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2760
/*
2761
* __bpf_tramp_enter(im);
2762
*/
2763
2764
/* %r2 = im */
2765
load_imm64(jit, REG_2, (u64)im);
2766
/* brasl %r14,__bpf_tramp_enter */
2767
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14, __bpf_tramp_enter);
2768
}
2769
2770
for (i = 0; i < fentry->nr_links; i++)
2771
if (invoke_bpf_prog(tjit, m, fentry->links[i],
2772
flags & BPF_TRAMP_F_RET_FENTRY_RET))
2773
return -EINVAL;
2774
2775
if (fmod_ret->nr_links) {
2776
/*
2777
* retval = 0;
2778
*/
2779
2780
/* xc retval_off(8,%r15),retval_off(%r15) */
2781
_EMIT6(0xd707f000 | tjit->retval_off,
2782
0xf000 | tjit->retval_off);
2783
2784
for (i = 0; i < fmod_ret->nr_links; i++) {
2785
if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2786
return -EINVAL;
2787
2788
/*
2789
* if (retval)
2790
* goto do_fexit;
2791
*/
2792
2793
/* ltg %r0,retval_off(%r15) */
2794
EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2795
tjit->retval_off);
2796
/* brcl 7,do_fexit */
2797
EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2798
}
2799
}
2800
2801
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2802
/*
2803
* retval = func_addr(args);
2804
*/
2805
2806
/* lmg %r2,%rN,reg_args_off(%r15) */
2807
if (nr_reg_args)
2808
EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2809
REG_2 + (nr_reg_args - 1), REG_15,
2810
tjit->reg_args_off);
2811
/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2812
if (nr_stack_args)
2813
_EMIT6(0xd200f000 |
2814
(nr_stack_args * sizeof(u64) - 1) << 16 |
2815
tjit->stack_args_off,
2816
0xf000 | tjit->orig_stack_args_off);
2817
/* mvc tail_call_cnt(4,%r15),tccnt_off(%r15) */
2818
_EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
2819
0xf000 | tjit->tccnt_off);
2820
if (flags & BPF_TRAMP_F_ORIG_STACK) {
2821
if (nospec_uses_trampoline())
2822
/* brasl %r14,__s390_indirect_jump_r8 */
2823
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14,
2824
__s390_indirect_jump_r8);
2825
else
2826
/* basr %r14,%r8 */
2827
EMIT2(0x0d00, REG_14, REG_8);
2828
} else {
2829
/* brasl %r14,func_addr+S390X_PATCH_SIZE */
2830
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14,
2831
func_addr + S390X_PATCH_SIZE);
2832
}
2833
/* stg %r2,retval_off(%r15) */
2834
EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2835
tjit->retval_off);
2836
/* mvc tccnt_off(%r15),tail_call_cnt(4,%r15) */
2837
_EMIT6(0xd203f000 | tjit->tccnt_off,
2838
0xf000 | offsetof(struct prog_frame, tail_call_cnt));
2839
2840
im->ip_after_call = jit->prg_buf + jit->prg;
2841
2842
/*
2843
* The following nop will be patched by bpf_tramp_image_put().
2844
*/
2845
2846
/* brcl 0,im->ip_epilogue */
2847
EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2848
}
2849
2850
/* do_fexit: */
2851
tjit->do_fexit = jit->prg;
2852
for (i = 0; i < fexit->nr_links; i++)
2853
if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2854
return -EINVAL;
2855
2856
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2857
im->ip_epilogue = jit->prg_buf + jit->prg;
2858
2859
/*
2860
* __bpf_tramp_exit(im);
2861
*/
2862
2863
/* %r2 = im */
2864
load_imm64(jit, REG_2, (u64)im);
2865
/* brasl %r14,__bpf_tramp_exit */
2866
EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14, __bpf_tramp_exit);
2867
}
2868
2869
/* lmg %r2,%rN,reg_args_off(%r15) */
2870
if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2871
EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2872
REG_2 + (nr_reg_args - 1), REG_15,
2873
tjit->reg_args_off);
2874
/* lgr %r1,%r8 */
2875
if (!(flags & BPF_TRAMP_F_SKIP_FRAME) &&
2876
(flags & BPF_TRAMP_F_ORIG_STACK))
2877
EMIT4(0xb9040000, REG_1, REG_8);
2878
/* lmg %r7,%r8,r7_r8_off(%r15) */
2879
EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2880
tjit->r7_r8_off);
2881
/* lg %r14,r14_off(%r15) */
2882
EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2883
/* lg %r2,retval_off(%r15) */
2884
if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2885
EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2886
tjit->retval_off);
2887
/* mvc stack_size+tail_call_cnt(4,%r15),tccnt_off(%r15) */
2888
_EMIT6(0xd203f000 | (tjit->stack_size +
2889
offsetof(struct prog_frame, tail_call_cnt)),
2890
0xf000 | tjit->tccnt_off);
2891
/* aghi %r15,stack_size */
2892
EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2893
if (flags & BPF_TRAMP_F_SKIP_FRAME)
2894
EMIT_JUMP_REG(14);
2895
else if (flags & BPF_TRAMP_F_ORIG_STACK)
2896
EMIT_JUMP_REG(1);
2897
else
2898
/* brcl 0xf,func_addr+S390X_PATCH_SIZE */
2899
EMIT6_PCREL_RILC_PTR(0xc0040000, 0xf,
2900
func_addr + S390X_PATCH_SIZE);
2901
return 0;
2902
}
2903
2904
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2905
struct bpf_tramp_links *tlinks, void *orig_call)
2906
{
2907
struct bpf_tramp_image im;
2908
struct bpf_tramp_jit tjit;
2909
int ret;
2910
2911
memset(&tjit, 0, sizeof(tjit));
2912
2913
ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2914
tlinks, orig_call);
2915
2916
return ret < 0 ? ret : tjit.common.prg;
2917
}
2918
2919
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2920
void *image_end, const struct btf_func_model *m,
2921
u32 flags, struct bpf_tramp_links *tlinks,
2922
void *func_addr)
2923
{
2924
struct bpf_tramp_jit tjit;
2925
int ret;
2926
2927
/* Compute offsets, check whether the code fits. */
2928
memset(&tjit, 0, sizeof(tjit));
2929
ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2930
tlinks, func_addr);
2931
2932
if (ret < 0)
2933
return ret;
2934
if (tjit.common.prg > (char *)image_end - (char *)image)
2935
/*
2936
* Use the same error code as for exceeding
2937
* BPF_MAX_TRAMP_LINKS.
2938
*/
2939
return -E2BIG;
2940
2941
tjit.common.prg = 0;
2942
tjit.common.prg_buf = image;
2943
ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2944
tlinks, func_addr);
2945
2946
return ret < 0 ? ret : tjit.common.prg;
2947
}
2948
2949
bool bpf_jit_supports_subprog_tailcalls(void)
2950
{
2951
return true;
2952
}
2953
2954
bool bpf_jit_supports_arena(void)
2955
{
2956
return true;
2957
}
2958
2959
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2960
{
2961
if (!in_arena)
2962
return true;
2963
switch (insn->code) {
2964
case BPF_STX | BPF_ATOMIC | BPF_B:
2965
case BPF_STX | BPF_ATOMIC | BPF_H:
2966
case BPF_STX | BPF_ATOMIC | BPF_W:
2967
case BPF_STX | BPF_ATOMIC | BPF_DW:
2968
if (bpf_atomic_is_load_store(insn))
2969
return false;
2970
break;
2971
case BPF_LDX | BPF_MEMSX | BPF_B:
2972
case BPF_LDX | BPF_MEMSX | BPF_H:
2973
case BPF_LDX | BPF_MEMSX | BPF_W:
2974
return false;
2975
}
2976
return true;
2977
}
2978
2979
bool bpf_jit_supports_exceptions(void)
2980
{
2981
/*
2982
* Exceptions require unwinding support, which is always available,
2983
* because the kernel is always built with backchain.
2984
*/
2985
return true;
2986
}
2987
2988
void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2989
void *cookie)
2990
{
2991
unsigned long addr, prev_addr = 0;
2992
struct unwind_state state;
2993
2994
unwind_for_each_frame(&state, NULL, NULL, 0) {
2995
addr = unwind_get_return_address(&state);
2996
if (!addr)
2997
break;
2998
/*
2999
* addr is a return address and state.sp is the value of %r15
3000
* at this address. exception_cb needs %r15 at entry to the
3001
* function containing addr, so take the next state.sp.
3002
*
3003
* There is no bp, and the exception_cb prog does not need one
3004
* to perform a quasi-longjmp. The common code requires a
3005
* non-zero bp, so pass sp there as well.
3006
*/
3007
if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
3008
state.sp))
3009
break;
3010
prev_addr = addr;
3011
}
3012
}
3013
3014
bool bpf_jit_supports_timed_may_goto(void)
3015
{
3016
return true;
3017
}
3018
3019