Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/pci/pci_irq.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0
2
#define KMSG_COMPONENT "zpci"
3
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4
5
#include <linux/kernel.h>
6
#include <linux/irq.h>
7
#include <linux/kernel_stat.h>
8
#include <linux/pci.h>
9
#include <linux/msi.h>
10
#include <linux/smp.h>
11
12
#include <asm/isc.h>
13
#include <asm/airq.h>
14
#include <asm/tpi.h>
15
16
static enum {FLOATING, DIRECTED} irq_delivery;
17
18
/*
19
* summary bit vector
20
* FLOATING - summary bit per function
21
* DIRECTED - summary bit per cpu (only used in fallback path)
22
*/
23
static struct airq_iv *zpci_sbv;
24
25
/*
26
* interrupt bit vectors
27
* FLOATING - interrupt bit vector per function
28
* DIRECTED - interrupt bit vector per cpu
29
*/
30
static struct airq_iv **zpci_ibv;
31
32
/* Modify PCI: Register floating adapter interruptions */
33
static int zpci_set_airq(struct zpci_dev *zdev)
34
{
35
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
36
struct zpci_fib fib = {0};
37
u8 status;
38
39
fib.fmt0.isc = PCI_ISC;
40
fib.fmt0.sum = 1; /* enable summary notifications */
41
fib.fmt0.noi = airq_iv_end(zdev->aibv);
42
fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector);
43
fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */
44
fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8;
45
fib.fmt0.aisbo = zdev->aisb & 63;
46
fib.gd = zdev->gisa;
47
48
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
49
}
50
51
/* Modify PCI: Unregister floating adapter interruptions */
52
static int zpci_clear_airq(struct zpci_dev *zdev)
53
{
54
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
55
struct zpci_fib fib = {0};
56
u8 cc, status;
57
58
fib.gd = zdev->gisa;
59
60
cc = zpci_mod_fc(req, &fib, &status);
61
if (cc == 3 || (cc == 1 && status == 24))
62
/* Function already gone or IRQs already deregistered. */
63
cc = 0;
64
65
return cc ? -EIO : 0;
66
}
67
68
/* Modify PCI: Register CPU directed interruptions */
69
static int zpci_set_directed_irq(struct zpci_dev *zdev)
70
{
71
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
72
struct zpci_fib fib = {0};
73
u8 status;
74
75
fib.fmt = 1;
76
fib.fmt1.noi = zdev->msi_nr_irqs;
77
fib.fmt1.dibvo = zdev->msi_first_bit;
78
fib.gd = zdev->gisa;
79
80
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
81
}
82
83
/* Modify PCI: Unregister CPU directed interruptions */
84
static int zpci_clear_directed_irq(struct zpci_dev *zdev)
85
{
86
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
87
struct zpci_fib fib = {0};
88
u8 cc, status;
89
90
fib.fmt = 1;
91
fib.gd = zdev->gisa;
92
cc = zpci_mod_fc(req, &fib, &status);
93
if (cc == 3 || (cc == 1 && status == 24))
94
/* Function already gone or IRQs already deregistered. */
95
cc = 0;
96
97
return cc ? -EIO : 0;
98
}
99
100
/* Register adapter interruptions */
101
static int zpci_set_irq(struct zpci_dev *zdev)
102
{
103
int rc;
104
105
if (irq_delivery == DIRECTED)
106
rc = zpci_set_directed_irq(zdev);
107
else
108
rc = zpci_set_airq(zdev);
109
110
if (!rc)
111
zdev->irqs_registered = 1;
112
113
return rc;
114
}
115
116
/* Clear adapter interruptions */
117
static int zpci_clear_irq(struct zpci_dev *zdev)
118
{
119
int rc;
120
121
if (irq_delivery == DIRECTED)
122
rc = zpci_clear_directed_irq(zdev);
123
else
124
rc = zpci_clear_airq(zdev);
125
126
if (!rc)
127
zdev->irqs_registered = 0;
128
129
return rc;
130
}
131
132
static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
133
bool force)
134
{
135
struct msi_desc *entry = irq_data_get_msi_desc(data);
136
struct msi_msg msg = entry->msg;
137
int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
138
139
msg.address_lo &= 0xff0000ff;
140
msg.address_lo |= (cpu_addr << 8);
141
pci_write_msi_msg(data->irq, &msg);
142
143
return IRQ_SET_MASK_OK;
144
}
145
146
static struct irq_chip zpci_irq_chip = {
147
.name = "PCI-MSI",
148
.irq_unmask = pci_msi_unmask_irq,
149
.irq_mask = pci_msi_mask_irq,
150
};
151
152
static void zpci_handle_cpu_local_irq(bool rescan)
153
{
154
struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
155
union zpci_sic_iib iib = {{0}};
156
unsigned long bit;
157
int irqs_on = 0;
158
159
for (bit = 0;;) {
160
/* Scan the directed IRQ bit vector */
161
bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
162
if (bit == -1UL) {
163
if (!rescan || irqs_on++)
164
/* End of second scan with interrupts on. */
165
break;
166
/* First scan complete, re-enable interrupts. */
167
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib))
168
break;
169
bit = 0;
170
continue;
171
}
172
inc_irq_stat(IRQIO_MSI);
173
generic_handle_irq(airq_iv_get_data(dibv, bit));
174
}
175
}
176
177
struct cpu_irq_data {
178
call_single_data_t csd;
179
atomic_t scheduled;
180
};
181
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
182
183
static void zpci_handle_remote_irq(void *data)
184
{
185
atomic_t *scheduled = data;
186
187
do {
188
zpci_handle_cpu_local_irq(false);
189
} while (atomic_dec_return(scheduled));
190
}
191
192
static void zpci_handle_fallback_irq(void)
193
{
194
struct cpu_irq_data *cpu_data;
195
union zpci_sic_iib iib = {{0}};
196
unsigned long cpu;
197
int irqs_on = 0;
198
199
for (cpu = 0;;) {
200
cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
201
if (cpu == -1UL) {
202
if (irqs_on++)
203
/* End of second scan with interrupts on. */
204
break;
205
/* First scan complete, re-enable interrupts. */
206
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
207
break;
208
cpu = 0;
209
continue;
210
}
211
cpu_data = &per_cpu(irq_data, cpu);
212
if (atomic_inc_return(&cpu_data->scheduled) > 1)
213
continue;
214
215
INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
216
smp_call_function_single_async(cpu, &cpu_data->csd);
217
}
218
}
219
220
static void zpci_directed_irq_handler(struct airq_struct *airq,
221
struct tpi_info *tpi_info)
222
{
223
bool floating = !tpi_info->directed_irq;
224
225
if (floating) {
226
inc_irq_stat(IRQIO_PCF);
227
zpci_handle_fallback_irq();
228
} else {
229
inc_irq_stat(IRQIO_PCD);
230
zpci_handle_cpu_local_irq(true);
231
}
232
}
233
234
static void zpci_floating_irq_handler(struct airq_struct *airq,
235
struct tpi_info *tpi_info)
236
{
237
union zpci_sic_iib iib = {{0}};
238
unsigned long si, ai;
239
struct airq_iv *aibv;
240
int irqs_on = 0;
241
242
inc_irq_stat(IRQIO_PCF);
243
for (si = 0;;) {
244
/* Scan adapter summary indicator bit vector */
245
si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
246
if (si == -1UL) {
247
if (irqs_on++)
248
/* End of second scan with interrupts on. */
249
break;
250
/* First scan complete, re-enable interrupts. */
251
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
252
break;
253
si = 0;
254
continue;
255
}
256
257
/* Scan the adapter interrupt vector for this device. */
258
aibv = zpci_ibv[si];
259
for (ai = 0;;) {
260
ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
261
if (ai == -1UL)
262
break;
263
inc_irq_stat(IRQIO_MSI);
264
airq_iv_lock(aibv, ai);
265
generic_handle_irq(airq_iv_get_data(aibv, ai));
266
airq_iv_unlock(aibv, ai);
267
}
268
}
269
}
270
271
static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs,
272
unsigned long *bit)
273
{
274
if (irq_delivery == DIRECTED) {
275
/* Allocate cpu vector bits */
276
*bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
277
if (*bit == -1UL)
278
return -EIO;
279
} else {
280
/* Allocate adapter summary indicator bit */
281
*bit = airq_iv_alloc_bit(zpci_sbv);
282
if (*bit == -1UL)
283
return -EIO;
284
zdev->aisb = *bit;
285
286
/* Create adapter interrupt vector */
287
zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL);
288
if (!zdev->aibv)
289
return -ENOMEM;
290
291
/* Wire up shortcut pointer */
292
zpci_ibv[*bit] = zdev->aibv;
293
/* Each function has its own interrupt vector */
294
*bit = 0;
295
}
296
return 0;
297
}
298
299
int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
300
{
301
unsigned int hwirq, msi_vecs, irqs_per_msi, i, cpu;
302
struct zpci_dev *zdev = to_zpci(pdev);
303
struct msi_desc *msi;
304
struct msi_msg msg;
305
unsigned long bit;
306
int cpu_addr;
307
int rc, irq;
308
309
zdev->aisb = -1UL;
310
zdev->msi_first_bit = -1U;
311
312
msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
313
if (msi_vecs < nvec) {
314
pr_info("%s requested %d irqs, allocate system limit of %d",
315
pci_name(pdev), nvec, zdev->max_msi);
316
}
317
318
rc = __alloc_airq(zdev, msi_vecs, &bit);
319
if (rc < 0)
320
return rc;
321
322
/*
323
* Request MSI interrupts:
324
* When using MSI, nvec_used interrupt sources and their irq
325
* descriptors are controlled through one msi descriptor.
326
* Thus the outer loop over msi descriptors shall run only once,
327
* while two inner loops iterate over the interrupt vectors.
328
* When using MSI-X, each interrupt vector/irq descriptor
329
* is bound to exactly one msi descriptor (nvec_used is one).
330
* So the inner loops are executed once, while the outer iterates
331
* over the MSI-X descriptors.
332
*/
333
hwirq = bit;
334
msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) {
335
if (hwirq - bit >= msi_vecs)
336
break;
337
irqs_per_msi = min_t(unsigned int, msi_vecs, msi->nvec_used);
338
irq = __irq_alloc_descs(-1, 0, irqs_per_msi, 0, THIS_MODULE,
339
(irq_delivery == DIRECTED) ?
340
msi->affinity : NULL);
341
if (irq < 0)
342
return -ENOMEM;
343
344
for (i = 0; i < irqs_per_msi; i++) {
345
rc = irq_set_msi_desc_off(irq, i, msi);
346
if (rc)
347
return rc;
348
irq_set_chip_and_handler(irq + i, &zpci_irq_chip,
349
handle_percpu_irq);
350
}
351
352
msg.data = hwirq - bit;
353
if (irq_delivery == DIRECTED) {
354
if (msi->affinity)
355
cpu = cpumask_first(&msi->affinity->mask);
356
else
357
cpu = 0;
358
cpu_addr = smp_cpu_get_cpu_address(cpu);
359
360
msg.address_lo = zdev->msi_addr & 0xff0000ff;
361
msg.address_lo |= (cpu_addr << 8);
362
363
for_each_possible_cpu(cpu) {
364
for (i = 0; i < irqs_per_msi; i++)
365
airq_iv_set_data(zpci_ibv[cpu],
366
hwirq + i, irq + i);
367
}
368
} else {
369
msg.address_lo = zdev->msi_addr & 0xffffffff;
370
for (i = 0; i < irqs_per_msi; i++)
371
airq_iv_set_data(zdev->aibv, hwirq + i, irq + i);
372
}
373
msg.address_hi = zdev->msi_addr >> 32;
374
pci_write_msi_msg(irq, &msg);
375
hwirq += irqs_per_msi;
376
}
377
378
zdev->msi_first_bit = bit;
379
zdev->msi_nr_irqs = hwirq - bit;
380
381
rc = zpci_set_irq(zdev);
382
if (rc)
383
return rc;
384
385
return (zdev->msi_nr_irqs == nvec) ? 0 : zdev->msi_nr_irqs;
386
}
387
388
void arch_teardown_msi_irqs(struct pci_dev *pdev)
389
{
390
struct zpci_dev *zdev = to_zpci(pdev);
391
struct msi_desc *msi;
392
unsigned int i;
393
int rc;
394
395
/* Disable interrupts */
396
rc = zpci_clear_irq(zdev);
397
if (rc)
398
return;
399
400
/* Release MSI interrupts */
401
msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) {
402
for (i = 0; i < msi->nvec_used; i++) {
403
irq_set_msi_desc(msi->irq + i, NULL);
404
irq_free_desc(msi->irq + i);
405
}
406
msi->msg.address_lo = 0;
407
msi->msg.address_hi = 0;
408
msi->msg.data = 0;
409
msi->irq = 0;
410
}
411
412
if (zdev->aisb != -1UL) {
413
zpci_ibv[zdev->aisb] = NULL;
414
airq_iv_free_bit(zpci_sbv, zdev->aisb);
415
zdev->aisb = -1UL;
416
}
417
if (zdev->aibv) {
418
airq_iv_release(zdev->aibv);
419
zdev->aibv = NULL;
420
}
421
422
if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
423
airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
424
}
425
426
bool arch_restore_msi_irqs(struct pci_dev *pdev)
427
{
428
struct zpci_dev *zdev = to_zpci(pdev);
429
430
if (!zdev->irqs_registered)
431
zpci_set_irq(zdev);
432
return true;
433
}
434
435
static struct airq_struct zpci_airq = {
436
.handler = zpci_floating_irq_handler,
437
.isc = PCI_ISC,
438
};
439
440
static void __init cpu_enable_directed_irq(void *unused)
441
{
442
union zpci_sic_iib iib = {{0}};
443
union zpci_sic_iib ziib = {{0}};
444
445
iib.cdiib.dibv_addr = virt_to_phys(zpci_ibv[smp_processor_id()]->vector);
446
447
zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
448
zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib);
449
}
450
451
static int __init zpci_directed_irq_init(void)
452
{
453
union zpci_sic_iib iib = {{0}};
454
unsigned int cpu;
455
456
zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL);
457
if (!zpci_sbv)
458
return -ENOMEM;
459
460
iib.diib.isc = PCI_ISC;
461
iib.diib.nr_cpus = num_possible_cpus();
462
iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector);
463
zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
464
465
zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
466
GFP_KERNEL);
467
if (!zpci_ibv)
468
return -ENOMEM;
469
470
for_each_possible_cpu(cpu) {
471
/*
472
* Per CPU IRQ vectors look the same but bit-allocation
473
* is only done on the first vector.
474
*/
475
zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
476
AIRQ_IV_DATA |
477
AIRQ_IV_CACHELINE |
478
(!cpu ? AIRQ_IV_ALLOC : 0), NULL);
479
if (!zpci_ibv[cpu])
480
return -ENOMEM;
481
}
482
on_each_cpu(cpu_enable_directed_irq, NULL, 1);
483
484
zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
485
486
return 0;
487
}
488
489
static int __init zpci_floating_irq_init(void)
490
{
491
zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
492
if (!zpci_ibv)
493
return -ENOMEM;
494
495
zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL);
496
if (!zpci_sbv)
497
goto out_free;
498
499
return 0;
500
501
out_free:
502
kfree(zpci_ibv);
503
return -ENOMEM;
504
}
505
506
int __init zpci_irq_init(void)
507
{
508
union zpci_sic_iib iib = {{0}};
509
int rc;
510
511
irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
512
if (s390_pci_force_floating)
513
irq_delivery = FLOATING;
514
515
if (irq_delivery == DIRECTED)
516
zpci_airq.handler = zpci_directed_irq_handler;
517
518
rc = register_adapter_interrupt(&zpci_airq);
519
if (rc)
520
goto out;
521
/* Set summary to 1 to be called every time for the ISC. */
522
*zpci_airq.lsi_ptr = 1;
523
524
switch (irq_delivery) {
525
case FLOATING:
526
rc = zpci_floating_irq_init();
527
break;
528
case DIRECTED:
529
rc = zpci_directed_irq_init();
530
break;
531
}
532
533
if (rc)
534
goto out_airq;
535
536
/*
537
* Enable floating IRQs (with suppression after one IRQ). When using
538
* directed IRQs this enables the fallback path.
539
*/
540
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib);
541
542
return 0;
543
out_airq:
544
unregister_adapter_interrupt(&zpci_airq);
545
out:
546
return rc;
547
}
548
549
void __init zpci_irq_exit(void)
550
{
551
unsigned int cpu;
552
553
if (irq_delivery == DIRECTED) {
554
for_each_possible_cpu(cpu) {
555
airq_iv_release(zpci_ibv[cpu]);
556
}
557
}
558
kfree(zpci_ibv);
559
if (zpci_sbv)
560
airq_iv_release(zpci_sbv);
561
unregister_adapter_interrupt(&zpci_airq);
562
}
563
564