Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/s390/pci/pci_irq.c
53055 views
1
// SPDX-License-Identifier: GPL-2.0
2
#define pr_fmt(fmt) "zpci: " fmt
3
4
#include <linux/kernel.h>
5
#include <linux/irq.h>
6
#include <linux/kernel_stat.h>
7
#include <linux/pci.h>
8
#include <linux/msi.h>
9
#include <linux/irqchip/irq-msi-lib.h>
10
#include <linux/smp.h>
11
12
#include <asm/isc.h>
13
#include <asm/airq.h>
14
#include <asm/tpi.h>
15
16
static enum {FLOATING, DIRECTED} irq_delivery;
17
18
/*
19
* summary bit vector
20
* FLOATING - summary bit per function
21
* DIRECTED - summary bit per cpu (only used in fallback path)
22
*/
23
static struct airq_iv *zpci_sbv;
24
25
/*
26
* interrupt bit vectors
27
* FLOATING - interrupt bit vector per function
28
* DIRECTED - interrupt bit vector per cpu
29
*/
30
static struct airq_iv **zpci_ibv;
31
32
/* Modify PCI: Register floating adapter interruptions */
33
static int zpci_set_airq(struct zpci_dev *zdev)
34
{
35
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
36
struct zpci_fib fib = {0};
37
u8 status;
38
39
fib.fmt0.isc = PCI_ISC;
40
fib.fmt0.sum = 1; /* enable summary notifications */
41
fib.fmt0.noi = airq_iv_end(zdev->aibv);
42
fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector);
43
fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */
44
fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8;
45
fib.fmt0.aisbo = zdev->aisb & 63;
46
fib.gd = zdev->gisa;
47
48
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
49
}
50
51
/* Modify PCI: Unregister floating adapter interruptions */
52
static int zpci_clear_airq(struct zpci_dev *zdev)
53
{
54
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
55
struct zpci_fib fib = {0};
56
u8 cc, status;
57
58
fib.gd = zdev->gisa;
59
60
cc = zpci_mod_fc(req, &fib, &status);
61
if (cc == 3 || (cc == 1 && status == 24))
62
/* Function already gone or IRQs already deregistered. */
63
cc = 0;
64
65
return cc ? -EIO : 0;
66
}
67
68
/* Modify PCI: Register CPU directed interruptions */
69
static int zpci_set_directed_irq(struct zpci_dev *zdev)
70
{
71
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
72
struct zpci_fib fib = {0};
73
u8 status;
74
75
fib.fmt = 1;
76
fib.fmt1.noi = zdev->msi_nr_irqs;
77
fib.fmt1.dibvo = zdev->msi_first_bit;
78
fib.gd = zdev->gisa;
79
80
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
81
}
82
83
/* Modify PCI: Unregister CPU directed interruptions */
84
static int zpci_clear_directed_irq(struct zpci_dev *zdev)
85
{
86
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
87
struct zpci_fib fib = {0};
88
u8 cc, status;
89
90
fib.fmt = 1;
91
fib.gd = zdev->gisa;
92
cc = zpci_mod_fc(req, &fib, &status);
93
if (cc == 3 || (cc == 1 && status == 24))
94
/* Function already gone or IRQs already deregistered. */
95
cc = 0;
96
97
return cc ? -EIO : 0;
98
}
99
100
/* Register adapter interruptions */
101
int zpci_set_irq(struct zpci_dev *zdev)
102
{
103
int rc;
104
105
if (irq_delivery == DIRECTED)
106
rc = zpci_set_directed_irq(zdev);
107
else
108
rc = zpci_set_airq(zdev);
109
110
return rc;
111
}
112
113
/* Clear adapter interruptions */
114
static int zpci_clear_irq(struct zpci_dev *zdev)
115
{
116
int rc;
117
118
if (irq_delivery == DIRECTED)
119
rc = zpci_clear_directed_irq(zdev);
120
else
121
rc = zpci_clear_airq(zdev);
122
123
return rc;
124
}
125
126
static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
127
bool force)
128
{
129
irq_data_update_affinity(data, dest);
130
return IRQ_SET_MASK_OK;
131
}
132
133
/*
134
* Encode the hwirq number for the parent domain. The encoding must be unique
135
* for each IRQ of each device in the parent domain, so it uses the devfn to
136
* identify the device and the msi_index to identify the IRQ within that device.
137
*/
138
static inline u32 zpci_encode_hwirq(u8 devfn, u16 msi_index)
139
{
140
return (devfn << 16) | msi_index;
141
}
142
143
static inline u16 zpci_decode_hwirq_msi_index(irq_hw_number_t hwirq)
144
{
145
return hwirq & 0xffff;
146
}
147
148
static void zpci_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
149
{
150
struct msi_desc *desc = irq_data_get_msi_desc(data);
151
struct zpci_dev *zdev = to_zpci_dev(desc->dev);
152
153
if (irq_delivery == DIRECTED) {
154
int cpu = cpumask_first(irq_data_get_affinity_mask(data));
155
156
msg->address_lo = zdev->msi_addr & 0xff0000ff;
157
msg->address_lo |= (smp_cpu_get_cpu_address(cpu) << 8);
158
} else {
159
msg->address_lo = zdev->msi_addr & 0xffffffff;
160
}
161
msg->address_hi = zdev->msi_addr >> 32;
162
msg->data = zpci_decode_hwirq_msi_index(data->hwirq);
163
}
164
165
static struct irq_chip zpci_irq_chip = {
166
.name = "PCI-MSI",
167
.irq_compose_msi_msg = zpci_compose_msi_msg,
168
};
169
170
static void zpci_handle_cpu_local_irq(bool rescan)
171
{
172
struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
173
union zpci_sic_iib iib = {{0}};
174
struct irq_domain *msi_domain;
175
irq_hw_number_t hwirq;
176
unsigned long bit;
177
int irqs_on = 0;
178
179
for (bit = 0;;) {
180
/* Scan the directed IRQ bit vector */
181
bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
182
if (bit == -1UL) {
183
if (!rescan || irqs_on++)
184
/* End of second scan with interrupts on. */
185
break;
186
/* First scan complete, re-enable interrupts. */
187
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib))
188
break;
189
bit = 0;
190
continue;
191
}
192
inc_irq_stat(IRQIO_MSI);
193
hwirq = airq_iv_get_data(dibv, bit);
194
msi_domain = (struct irq_domain *)airq_iv_get_ptr(dibv, bit);
195
generic_handle_domain_irq(msi_domain, hwirq);
196
}
197
}
198
199
struct cpu_irq_data {
200
call_single_data_t csd;
201
atomic_t scheduled;
202
};
203
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
204
205
static void zpci_handle_remote_irq(void *data)
206
{
207
atomic_t *scheduled = data;
208
209
do {
210
zpci_handle_cpu_local_irq(false);
211
} while (atomic_dec_return(scheduled));
212
}
213
214
static void zpci_handle_fallback_irq(void)
215
{
216
struct cpu_irq_data *cpu_data;
217
union zpci_sic_iib iib = {{0}};
218
unsigned long cpu;
219
int irqs_on = 0;
220
221
for (cpu = 0;;) {
222
cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
223
if (cpu == -1UL) {
224
if (irqs_on++)
225
/* End of second scan with interrupts on. */
226
break;
227
/* First scan complete, re-enable interrupts. */
228
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
229
break;
230
cpu = 0;
231
continue;
232
}
233
cpu_data = &per_cpu(irq_data, cpu);
234
if (atomic_inc_return(&cpu_data->scheduled) > 1)
235
continue;
236
237
INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
238
smp_call_function_single_async(cpu, &cpu_data->csd);
239
}
240
}
241
242
static void zpci_directed_irq_handler(struct airq_struct *airq,
243
struct tpi_info *tpi_info)
244
{
245
bool floating = !tpi_info->directed_irq;
246
247
if (floating) {
248
inc_irq_stat(IRQIO_PCF);
249
zpci_handle_fallback_irq();
250
} else {
251
inc_irq_stat(IRQIO_PCD);
252
zpci_handle_cpu_local_irq(true);
253
}
254
}
255
256
static void zpci_floating_irq_handler(struct airq_struct *airq,
257
struct tpi_info *tpi_info)
258
{
259
union zpci_sic_iib iib = {{0}};
260
struct irq_domain *msi_domain;
261
irq_hw_number_t hwirq;
262
unsigned long si, ai;
263
struct airq_iv *aibv;
264
int irqs_on = 0;
265
266
inc_irq_stat(IRQIO_PCF);
267
for (si = 0;;) {
268
/* Scan adapter summary indicator bit vector */
269
si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
270
if (si == -1UL) {
271
if (irqs_on++)
272
/* End of second scan with interrupts on. */
273
break;
274
/* First scan complete, re-enable interrupts. */
275
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
276
break;
277
si = 0;
278
continue;
279
}
280
281
/* Scan the adapter interrupt vector for this device. */
282
aibv = zpci_ibv[si];
283
for (ai = 0;;) {
284
ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
285
if (ai == -1UL)
286
break;
287
inc_irq_stat(IRQIO_MSI);
288
airq_iv_lock(aibv, ai);
289
hwirq = airq_iv_get_data(aibv, ai);
290
msi_domain = (struct irq_domain *)airq_iv_get_ptr(aibv, ai);
291
generic_handle_domain_irq(msi_domain, hwirq);
292
airq_iv_unlock(aibv, ai);
293
}
294
}
295
}
296
297
static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs,
298
unsigned long *bit)
299
{
300
if (irq_delivery == DIRECTED) {
301
/* Allocate cpu vector bits */
302
*bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
303
if (*bit == -1UL)
304
return -EIO;
305
} else {
306
/* Allocate adapter summary indicator bit */
307
*bit = airq_iv_alloc_bit(zpci_sbv);
308
if (*bit == -1UL)
309
return -EIO;
310
zdev->aisb = *bit;
311
312
/* Create adapter interrupt vector */
313
zdev->aibv = airq_iv_create(msi_vecs,
314
AIRQ_IV_PTR | AIRQ_IV_DATA | AIRQ_IV_BITLOCK,
315
NULL);
316
if (!zdev->aibv)
317
return -ENOMEM;
318
319
/* Wire up shortcut pointer */
320
zpci_ibv[*bit] = zdev->aibv;
321
/* Each function has its own interrupt vector */
322
*bit = 0;
323
}
324
return 0;
325
}
326
327
bool arch_restore_msi_irqs(struct pci_dev *pdev)
328
{
329
struct zpci_dev *zdev = to_zpci(pdev);
330
331
zpci_set_irq(zdev);
332
return true;
333
}
334
335
static struct airq_struct zpci_airq = {
336
.handler = zpci_floating_irq_handler,
337
.isc = PCI_ISC,
338
};
339
340
static void zpci_msi_teardown_directed(struct zpci_dev *zdev)
341
{
342
airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->max_msi);
343
zdev->msi_first_bit = -1U;
344
zdev->msi_nr_irqs = 0;
345
}
346
347
static void zpci_msi_teardown_floating(struct zpci_dev *zdev)
348
{
349
airq_iv_release(zdev->aibv);
350
zdev->aibv = NULL;
351
airq_iv_free_bit(zpci_sbv, zdev->aisb);
352
zdev->aisb = -1UL;
353
zdev->msi_first_bit = -1U;
354
zdev->msi_nr_irqs = 0;
355
}
356
357
static void zpci_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *arg)
358
{
359
struct zpci_dev *zdev = to_zpci_dev(domain->dev);
360
361
zpci_clear_irq(zdev);
362
if (irq_delivery == DIRECTED)
363
zpci_msi_teardown_directed(zdev);
364
else
365
zpci_msi_teardown_floating(zdev);
366
}
367
368
static int zpci_msi_prepare(struct irq_domain *domain,
369
struct device *dev, int nvec,
370
msi_alloc_info_t *info)
371
{
372
struct zpci_dev *zdev = to_zpci_dev(dev);
373
struct pci_dev *pdev = to_pci_dev(dev);
374
unsigned long bit;
375
int msi_vecs, rc;
376
377
msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
378
if (msi_vecs < nvec) {
379
pr_info("%s requested %d IRQs, allocate system limit of %d\n",
380
pci_name(pdev), nvec, zdev->max_msi);
381
}
382
383
rc = __alloc_airq(zdev, msi_vecs, &bit);
384
if (rc) {
385
pr_err("Allocating adapter IRQs for %s failed\n", pci_name(pdev));
386
return rc;
387
}
388
389
zdev->msi_first_bit = bit;
390
zdev->msi_nr_irqs = msi_vecs;
391
rc = zpci_set_irq(zdev);
392
if (rc) {
393
pr_err("Registering adapter IRQs for %s failed\n",
394
pci_name(pdev));
395
396
if (irq_delivery == DIRECTED)
397
zpci_msi_teardown_directed(zdev);
398
else
399
zpci_msi_teardown_floating(zdev);
400
return rc;
401
}
402
return 0;
403
}
404
405
static int zpci_msi_domain_alloc(struct irq_domain *domain, unsigned int virq,
406
unsigned int nr_irqs, void *args)
407
{
408
struct msi_desc *desc = ((msi_alloc_info_t *)args)->desc;
409
struct zpci_dev *zdev = to_zpci_dev(desc->dev);
410
struct zpci_bus *zbus = zdev->zbus;
411
unsigned int cpu, hwirq;
412
unsigned long bit;
413
int i;
414
415
bit = zdev->msi_first_bit + desc->msi_index;
416
hwirq = zpci_encode_hwirq(zdev->devfn, desc->msi_index);
417
418
if (desc->msi_index + nr_irqs > zdev->max_msi)
419
return -EINVAL;
420
421
for (i = 0; i < nr_irqs; i++) {
422
irq_domain_set_info(domain, virq + i, hwirq + i,
423
&zpci_irq_chip, zdev,
424
handle_percpu_irq, NULL, NULL);
425
426
if (irq_delivery == DIRECTED) {
427
for_each_possible_cpu(cpu) {
428
airq_iv_set_ptr(zpci_ibv[cpu], bit + i,
429
(unsigned long)zbus->msi_parent_domain);
430
airq_iv_set_data(zpci_ibv[cpu], bit + i, hwirq + i);
431
}
432
} else {
433
airq_iv_set_ptr(zdev->aibv, bit + i,
434
(unsigned long)zbus->msi_parent_domain);
435
airq_iv_set_data(zdev->aibv, bit + i, hwirq + i);
436
}
437
}
438
439
return 0;
440
}
441
442
static void zpci_msi_clear_airq(struct irq_data *d, int i)
443
{
444
struct msi_desc *desc = irq_data_get_msi_desc(d);
445
struct zpci_dev *zdev = to_zpci_dev(desc->dev);
446
unsigned long bit;
447
unsigned int cpu;
448
u16 msi_index;
449
450
msi_index = zpci_decode_hwirq_msi_index(d->hwirq);
451
bit = zdev->msi_first_bit + msi_index;
452
453
if (irq_delivery == DIRECTED) {
454
for_each_possible_cpu(cpu) {
455
airq_iv_set_ptr(zpci_ibv[cpu], bit + i, 0);
456
airq_iv_set_data(zpci_ibv[cpu], bit + i, 0);
457
}
458
} else {
459
airq_iv_set_ptr(zdev->aibv, bit + i, 0);
460
airq_iv_set_data(zdev->aibv, bit + i, 0);
461
}
462
}
463
464
static void zpci_msi_domain_free(struct irq_domain *domain, unsigned int virq,
465
unsigned int nr_irqs)
466
{
467
struct irq_data *d;
468
int i;
469
470
for (i = 0; i < nr_irqs; i++) {
471
d = irq_domain_get_irq_data(domain, virq + i);
472
zpci_msi_clear_airq(d, i);
473
irq_domain_reset_irq_data(d);
474
}
475
}
476
477
static const struct irq_domain_ops zpci_msi_domain_ops = {
478
.alloc = zpci_msi_domain_alloc,
479
.free = zpci_msi_domain_free,
480
};
481
482
static bool zpci_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
483
struct irq_domain *real_parent,
484
struct msi_domain_info *info)
485
{
486
if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
487
return false;
488
489
info->ops->msi_prepare = zpci_msi_prepare;
490
info->ops->msi_teardown = zpci_msi_teardown;
491
492
return true;
493
}
494
495
static struct msi_parent_ops zpci_msi_parent_ops = {
496
.supported_flags = MSI_GENERIC_FLAGS_MASK |
497
MSI_FLAG_PCI_MSIX |
498
MSI_FLAG_MULTI_PCI_MSI,
499
.required_flags = MSI_FLAG_USE_DEF_DOM_OPS |
500
MSI_FLAG_USE_DEF_CHIP_OPS,
501
.init_dev_msi_info = zpci_init_dev_msi_info,
502
};
503
504
int zpci_create_parent_msi_domain(struct zpci_bus *zbus)
505
{
506
char fwnode_name[18];
507
508
snprintf(fwnode_name, sizeof(fwnode_name), "ZPCI_MSI_DOM_%04x", zbus->domain_nr);
509
struct irq_domain_info info = {
510
.fwnode = irq_domain_alloc_named_fwnode(fwnode_name),
511
.ops = &zpci_msi_domain_ops,
512
};
513
514
if (!info.fwnode) {
515
pr_err("Failed to allocate fwnode for MSI IRQ domain\n");
516
return -ENOMEM;
517
}
518
519
if (irq_delivery == FLOATING)
520
zpci_msi_parent_ops.required_flags |= MSI_FLAG_NO_AFFINITY;
521
522
zbus->msi_parent_domain = msi_create_parent_irq_domain(&info, &zpci_msi_parent_ops);
523
if (!zbus->msi_parent_domain) {
524
irq_domain_free_fwnode(info.fwnode);
525
pr_err("Failed to create MSI IRQ domain\n");
526
return -ENOMEM;
527
}
528
529
return 0;
530
}
531
532
void zpci_remove_parent_msi_domain(struct zpci_bus *zbus)
533
{
534
struct fwnode_handle *fn;
535
536
fn = zbus->msi_parent_domain->fwnode;
537
irq_domain_remove(zbus->msi_parent_domain);
538
irq_domain_free_fwnode(fn);
539
}
540
541
static void __init cpu_enable_directed_irq(void *unused)
542
{
543
union zpci_sic_iib iib = {{0}};
544
union zpci_sic_iib ziib = {{0}};
545
546
iib.cdiib.dibv_addr = virt_to_phys(zpci_ibv[smp_processor_id()]->vector);
547
548
zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
549
zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib);
550
}
551
552
static int __init zpci_directed_irq_init(void)
553
{
554
union zpci_sic_iib iib = {{0}};
555
unsigned int cpu;
556
557
zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL);
558
if (!zpci_sbv)
559
return -ENOMEM;
560
561
iib.diib.isc = PCI_ISC;
562
iib.diib.nr_cpus = num_possible_cpus();
563
iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector);
564
zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
565
566
zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
567
GFP_KERNEL);
568
if (!zpci_ibv)
569
return -ENOMEM;
570
571
for_each_possible_cpu(cpu) {
572
/*
573
* Per CPU IRQ vectors look the same but bit-allocation
574
* is only done on the first vector.
575
*/
576
zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
577
AIRQ_IV_PTR |
578
AIRQ_IV_DATA |
579
AIRQ_IV_CACHELINE |
580
(!cpu ? AIRQ_IV_ALLOC : 0), NULL);
581
if (!zpci_ibv[cpu])
582
return -ENOMEM;
583
}
584
on_each_cpu(cpu_enable_directed_irq, NULL, 1);
585
586
zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
587
588
return 0;
589
}
590
591
static int __init zpci_floating_irq_init(void)
592
{
593
zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
594
if (!zpci_ibv)
595
return -ENOMEM;
596
597
zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL);
598
if (!zpci_sbv)
599
goto out_free;
600
601
return 0;
602
603
out_free:
604
kfree(zpci_ibv);
605
return -ENOMEM;
606
}
607
608
int __init zpci_irq_init(void)
609
{
610
union zpci_sic_iib iib = {{0}};
611
int rc;
612
613
irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
614
if (s390_pci_force_floating)
615
irq_delivery = FLOATING;
616
617
if (irq_delivery == DIRECTED)
618
zpci_airq.handler = zpci_directed_irq_handler;
619
620
rc = register_adapter_interrupt(&zpci_airq);
621
if (rc)
622
goto out;
623
/* Set summary to 1 to be called every time for the ISC. */
624
*zpci_airq.lsi_ptr = 1;
625
626
switch (irq_delivery) {
627
case FLOATING:
628
rc = zpci_floating_irq_init();
629
break;
630
case DIRECTED:
631
rc = zpci_directed_irq_init();
632
break;
633
}
634
635
if (rc)
636
goto out_airq;
637
638
/*
639
* Enable floating IRQs (with suppression after one IRQ). When using
640
* directed IRQs this enables the fallback path.
641
*/
642
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib);
643
644
return 0;
645
out_airq:
646
unregister_adapter_interrupt(&zpci_airq);
647
out:
648
return rc;
649
}
650
651
void __init zpci_irq_exit(void)
652
{
653
unsigned int cpu;
654
655
if (irq_delivery == DIRECTED) {
656
for_each_possible_cpu(cpu) {
657
airq_iv_release(zpci_ibv[cpu]);
658
}
659
}
660
kfree(zpci_ibv);
661
if (zpci_sbv)
662
airq_iv_release(zpci_sbv);
663
unregister_adapter_interrupt(&zpci_airq);
664
}
665
666