Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sh/kernel/kgdb.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* SuperH KGDB support
4
*
5
* Copyright (C) 2008 - 2012 Paul Mundt
6
*
7
* Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
8
*/
9
#include <linux/kgdb.h>
10
#include <linux/kdebug.h>
11
#include <linux/irq.h>
12
#include <linux/io.h>
13
#include <linux/sched.h>
14
#include <linux/sched/task_stack.h>
15
16
#include <asm/cacheflush.h>
17
#include <asm/traps.h>
18
19
/* Macros for single step instruction identification */
20
#define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
21
#define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
22
#define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
23
(((op) & 0x7f ) << 1))
24
#define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
25
#define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
26
#define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
27
#define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
28
(((op) & 0x7ff) << 1))
29
#define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
30
#define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
31
#define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
32
#define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
33
(((op) & 0x7ff) << 1))
34
#define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
35
#define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
36
#define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
37
#define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
38
#define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
39
#define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
40
#define OPCODE_RTS(op) ((op) == 0xb)
41
#define OPCODE_RTE(op) ((op) == 0x2b)
42
43
#define SR_T_BIT_MASK 0x1
44
#define STEP_OPCODE 0xc33d
45
46
/* Calculate the new address for after a step */
47
static short *get_step_address(struct pt_regs *linux_regs)
48
{
49
insn_size_t op = __raw_readw(linux_regs->pc);
50
long addr;
51
52
/* BT */
53
if (OPCODE_BT(op)) {
54
if (linux_regs->sr & SR_T_BIT_MASK)
55
addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
56
else
57
addr = linux_regs->pc + 2;
58
}
59
60
/* BTS */
61
else if (OPCODE_BTS(op)) {
62
if (linux_regs->sr & SR_T_BIT_MASK)
63
addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
64
else
65
addr = linux_regs->pc + 4; /* Not in delay slot */
66
}
67
68
/* BF */
69
else if (OPCODE_BF(op)) {
70
if (!(linux_regs->sr & SR_T_BIT_MASK))
71
addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
72
else
73
addr = linux_regs->pc + 2;
74
}
75
76
/* BFS */
77
else if (OPCODE_BFS(op)) {
78
if (!(linux_regs->sr & SR_T_BIT_MASK))
79
addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
80
else
81
addr = linux_regs->pc + 4; /* Not in delay slot */
82
}
83
84
/* BRA */
85
else if (OPCODE_BRA(op))
86
addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
87
88
/* BRAF */
89
else if (OPCODE_BRAF(op))
90
addr = linux_regs->pc + 4
91
+ linux_regs->regs[OPCODE_BRAF_REG(op)];
92
93
/* BSR */
94
else if (OPCODE_BSR(op))
95
addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
96
97
/* BSRF */
98
else if (OPCODE_BSRF(op))
99
addr = linux_regs->pc + 4
100
+ linux_regs->regs[OPCODE_BSRF_REG(op)];
101
102
/* JMP */
103
else if (OPCODE_JMP(op))
104
addr = linux_regs->regs[OPCODE_JMP_REG(op)];
105
106
/* JSR */
107
else if (OPCODE_JSR(op))
108
addr = linux_regs->regs[OPCODE_JSR_REG(op)];
109
110
/* RTS */
111
else if (OPCODE_RTS(op))
112
addr = linux_regs->pr;
113
114
/* RTE */
115
else if (OPCODE_RTE(op))
116
addr = linux_regs->regs[15];
117
118
/* Other */
119
else
120
addr = linux_regs->pc + instruction_size(op);
121
122
flush_icache_range(addr, addr + instruction_size(op));
123
return (short *)addr;
124
}
125
126
/*
127
* Replace the instruction immediately after the current instruction
128
* (i.e. next in the expected flow of control) with a trap instruction,
129
* so that returning will cause only a single instruction to be executed.
130
* Note that this model is slightly broken for instructions with delay
131
* slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
132
* instruction in the delay slot will be executed.
133
*/
134
135
static unsigned long stepped_address;
136
static insn_size_t stepped_opcode;
137
138
static void do_single_step(struct pt_regs *linux_regs)
139
{
140
/* Determine where the target instruction will send us to */
141
unsigned short *addr = get_step_address(linux_regs);
142
143
stepped_address = (int)addr;
144
145
/* Replace it */
146
stepped_opcode = __raw_readw((long)addr);
147
*addr = STEP_OPCODE;
148
149
/* Flush and return */
150
flush_icache_range((long)addr, (long)addr +
151
instruction_size(stepped_opcode));
152
}
153
154
/* Undo a single step */
155
static void undo_single_step(struct pt_regs *linux_regs)
156
{
157
/* If we have stepped, put back the old instruction */
158
/* Use stepped_address in case we stopped elsewhere */
159
if (stepped_opcode != 0) {
160
__raw_writew(stepped_opcode, stepped_address);
161
flush_icache_range(stepped_address, stepped_address + 2);
162
}
163
164
stepped_opcode = 0;
165
}
166
167
struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
168
{ "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
169
{ "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
170
{ "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
171
{ "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
172
{ "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
173
{ "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
174
{ "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
175
{ "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
176
{ "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
177
{ "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
178
{ "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
179
{ "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
180
{ "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
181
{ "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
182
{ "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
183
{ "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
184
{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
185
{ "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
186
{ "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
187
{ "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
188
{ "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
189
{ "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
190
{ "vbr", GDB_SIZEOF_REG, -1 },
191
};
192
193
int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
194
{
195
if (regno < 0 || regno >= DBG_MAX_REG_NUM)
196
return -EINVAL;
197
198
if (dbg_reg_def[regno].offset != -1)
199
memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
200
dbg_reg_def[regno].size);
201
202
return 0;
203
}
204
205
char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
206
{
207
if (regno >= DBG_MAX_REG_NUM || regno < 0)
208
return NULL;
209
210
if (dbg_reg_def[regno].size != -1)
211
memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
212
dbg_reg_def[regno].size);
213
214
switch (regno) {
215
case GDB_VBR:
216
__asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
217
break;
218
}
219
220
return dbg_reg_def[regno].name;
221
}
222
223
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
224
{
225
struct pt_regs *thread_regs = task_pt_regs(p);
226
int reg;
227
228
/* Initialize to zero */
229
for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
230
gdb_regs[reg] = 0;
231
232
/*
233
* Copy out GP regs 8 to 14.
234
*
235
* switch_to() relies on SR.RB toggling, so regs 0->7 are banked
236
* and need privileged instructions to get to. The r15 value we
237
* fetch from the thread info directly.
238
*/
239
for (reg = GDB_R8; reg < GDB_R15; reg++)
240
gdb_regs[reg] = thread_regs->regs[reg];
241
242
gdb_regs[GDB_R15] = p->thread.sp;
243
gdb_regs[GDB_PC] = p->thread.pc;
244
245
/*
246
* Additional registers we have context for
247
*/
248
gdb_regs[GDB_PR] = thread_regs->pr;
249
gdb_regs[GDB_GBR] = thread_regs->gbr;
250
}
251
252
int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
253
char *remcomInBuffer, char *remcomOutBuffer,
254
struct pt_regs *linux_regs)
255
{
256
unsigned long addr;
257
char *ptr;
258
259
/* Undo any stepping we may have done */
260
undo_single_step(linux_regs);
261
262
switch (remcomInBuffer[0]) {
263
case 'c':
264
case 's':
265
/* try to read optional parameter, pc unchanged if no parm */
266
ptr = &remcomInBuffer[1];
267
if (kgdb_hex2long(&ptr, &addr))
268
linux_regs->pc = addr;
269
fallthrough;
270
case 'D':
271
case 'k':
272
atomic_set(&kgdb_cpu_doing_single_step, -1);
273
274
if (remcomInBuffer[0] == 's') {
275
do_single_step(linux_regs);
276
kgdb_single_step = 1;
277
278
atomic_set(&kgdb_cpu_doing_single_step,
279
raw_smp_processor_id());
280
}
281
282
return 0;
283
}
284
285
/* this means that we do not want to exit from the handler: */
286
return -1;
287
}
288
289
unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
290
{
291
if (exception == 60)
292
return instruction_pointer(regs) - 2;
293
return instruction_pointer(regs);
294
}
295
296
void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
297
{
298
regs->pc = ip;
299
}
300
301
/*
302
* The primary entry points for the kgdb debug trap table entries.
303
*/
304
BUILD_TRAP_HANDLER(singlestep)
305
{
306
unsigned long flags;
307
TRAP_HANDLER_DECL;
308
309
local_irq_save(flags);
310
regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311
kgdb_handle_exception(0, SIGTRAP, 0, regs);
312
local_irq_restore(flags);
313
}
314
315
static int __kgdb_notify(struct die_args *args, unsigned long cmd)
316
{
317
int ret;
318
319
switch (cmd) {
320
case DIE_BREAKPOINT:
321
/*
322
* This means a user thread is single stepping
323
* a system call which should be ignored
324
*/
325
if (test_thread_flag(TIF_SINGLESTEP))
326
return NOTIFY_DONE;
327
328
ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
329
args->err, args->regs);
330
if (ret)
331
return NOTIFY_DONE;
332
333
break;
334
}
335
336
return NOTIFY_STOP;
337
}
338
339
static int
340
kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
341
{
342
unsigned long flags;
343
int ret;
344
345
local_irq_save(flags);
346
ret = __kgdb_notify(ptr, cmd);
347
local_irq_restore(flags);
348
349
return ret;
350
}
351
352
static struct notifier_block kgdb_notifier = {
353
.notifier_call = kgdb_notify,
354
355
/*
356
* Lowest-prio notifier priority, we want to be notified last:
357
*/
358
.priority = -INT_MAX,
359
};
360
361
int kgdb_arch_init(void)
362
{
363
return register_die_notifier(&kgdb_notifier);
364
}
365
366
void kgdb_arch_exit(void)
367
{
368
unregister_die_notifier(&kgdb_notifier);
369
}
370
371
const struct kgdb_arch arch_kgdb_ops = {
372
/* Breakpoint instruction: trapa #0x3c */
373
#ifdef CONFIG_CPU_LITTLE_ENDIAN
374
.gdb_bpt_instr = { 0x3c, 0xc3 },
375
#else
376
.gdb_bpt_instr = { 0xc3, 0x3c },
377
#endif
378
};
379
380