Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sh/mm/cache-sh4.c
26424 views
1
/*
2
* arch/sh/mm/cache-sh4.c
3
*
4
* Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5
* Copyright (C) 2001 - 2009 Paul Mundt
6
* Copyright (C) 2003 Richard Curnow
7
* Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8
*
9
* This file is subject to the terms and conditions of the GNU General Public
10
* License. See the file "COPYING" in the main directory of this archive
11
* for more details.
12
*/
13
#include <linux/init.h>
14
#include <linux/mm.h>
15
#include <linux/io.h>
16
#include <linux/mutex.h>
17
#include <linux/fs.h>
18
#include <linux/highmem.h>
19
#include <linux/pagemap.h>
20
#include <asm/mmu_context.h>
21
#include <asm/cache_insns.h>
22
#include <asm/cacheflush.h>
23
24
/*
25
* The maximum number of pages we support up to when doing ranged dcache
26
* flushing. Anything exceeding this will simply flush the dcache in its
27
* entirety.
28
*/
29
#define MAX_ICACHE_PAGES 32
30
31
static void __flush_cache_one(unsigned long addr, unsigned long phys,
32
unsigned long exec_offset);
33
34
/*
35
* Write back the range of D-cache, and purge the I-cache.
36
*
37
* Called from kernel/module.c:sys_init_module and routine for a.out format,
38
* signal handler code and kprobes code
39
*/
40
static void sh4_flush_icache_range(void *args)
41
{
42
struct flusher_data *data = args;
43
unsigned long start, end;
44
unsigned long flags, v;
45
int i;
46
47
start = data->addr1;
48
end = data->addr2;
49
50
/* If there are too many pages then just blow away the caches */
51
if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
52
local_flush_cache_all(NULL);
53
return;
54
}
55
56
/*
57
* Selectively flush d-cache then invalidate the i-cache.
58
* This is inefficient, so only use this for small ranges.
59
*/
60
start &= ~(L1_CACHE_BYTES-1);
61
end += L1_CACHE_BYTES-1;
62
end &= ~(L1_CACHE_BYTES-1);
63
64
local_irq_save(flags);
65
jump_to_uncached();
66
67
for (v = start; v < end; v += L1_CACHE_BYTES) {
68
unsigned long icacheaddr;
69
int j, n;
70
71
__ocbwb(v);
72
73
icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
74
cpu_data->icache.entry_mask);
75
76
/* Clear i-cache line valid-bit */
77
n = boot_cpu_data.icache.n_aliases;
78
for (i = 0; i < cpu_data->icache.ways; i++) {
79
for (j = 0; j < n; j++)
80
__raw_writel(0, icacheaddr + (j * PAGE_SIZE));
81
icacheaddr += cpu_data->icache.way_incr;
82
}
83
}
84
85
back_to_cached();
86
local_irq_restore(flags);
87
}
88
89
static inline void flush_cache_one(unsigned long start, unsigned long phys)
90
{
91
unsigned long flags, exec_offset = 0;
92
93
/*
94
* All types of SH-4 require PC to be uncached to operate on the I-cache.
95
* Some types of SH-4 require PC to be uncached to operate on the D-cache.
96
*/
97
if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
98
(start < CACHE_OC_ADDRESS_ARRAY))
99
exec_offset = cached_to_uncached;
100
101
local_irq_save(flags);
102
__flush_cache_one(start, phys, exec_offset);
103
local_irq_restore(flags);
104
}
105
106
/*
107
* Write back & invalidate the D-cache of the page.
108
* (To avoid "alias" issues)
109
*/
110
static void sh4_flush_dcache_folio(void *arg)
111
{
112
struct folio *folio = arg;
113
#ifndef CONFIG_SMP
114
struct address_space *mapping = folio_flush_mapping(folio);
115
116
if (mapping && !mapping_mapped(mapping))
117
clear_bit(PG_dcache_clean, &folio->flags);
118
else
119
#endif
120
{
121
unsigned long pfn = folio_pfn(folio);
122
unsigned long addr = (unsigned long)folio_address(folio);
123
unsigned int i, nr = folio_nr_pages(folio);
124
125
for (i = 0; i < nr; i++) {
126
flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
127
(addr & shm_align_mask),
128
pfn * PAGE_SIZE);
129
addr += PAGE_SIZE;
130
pfn++;
131
}
132
}
133
134
wmb();
135
}
136
137
/* TODO: Selective icache invalidation through IC address array.. */
138
static void flush_icache_all(void)
139
{
140
unsigned long flags, ccr;
141
142
local_irq_save(flags);
143
jump_to_uncached();
144
145
/* Flush I-cache */
146
ccr = __raw_readl(SH_CCR);
147
ccr |= CCR_CACHE_ICI;
148
__raw_writel(ccr, SH_CCR);
149
150
/*
151
* back_to_cached() will take care of the barrier for us, don't add
152
* another one!
153
*/
154
155
back_to_cached();
156
local_irq_restore(flags);
157
}
158
159
static void flush_dcache_all(void)
160
{
161
unsigned long addr, end_addr, entry_offset;
162
163
end_addr = CACHE_OC_ADDRESS_ARRAY +
164
(current_cpu_data.dcache.sets <<
165
current_cpu_data.dcache.entry_shift) *
166
current_cpu_data.dcache.ways;
167
168
entry_offset = 1 << current_cpu_data.dcache.entry_shift;
169
170
for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
171
__raw_writel(0, addr); addr += entry_offset;
172
__raw_writel(0, addr); addr += entry_offset;
173
__raw_writel(0, addr); addr += entry_offset;
174
__raw_writel(0, addr); addr += entry_offset;
175
__raw_writel(0, addr); addr += entry_offset;
176
__raw_writel(0, addr); addr += entry_offset;
177
__raw_writel(0, addr); addr += entry_offset;
178
__raw_writel(0, addr); addr += entry_offset;
179
}
180
}
181
182
static void sh4_flush_cache_all(void *unused)
183
{
184
flush_dcache_all();
185
flush_icache_all();
186
}
187
188
/*
189
* Note : (RPC) since the caches are physically tagged, the only point
190
* of flush_cache_mm for SH-4 is to get rid of aliases from the
191
* D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
192
* lines can stay resident so long as the virtual address they were
193
* accessed with (hence cache set) is in accord with the physical
194
* address (i.e. tag). It's no different here.
195
*
196
* Caller takes mm->mmap_lock.
197
*/
198
static void sh4_flush_cache_mm(void *arg)
199
{
200
struct mm_struct *mm = arg;
201
202
if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
203
return;
204
205
flush_dcache_all();
206
}
207
208
/*
209
* Write back and invalidate I/D-caches for the page.
210
*
211
* ADDR: Virtual Address (U0 address)
212
* PFN: Physical page number
213
*/
214
static void sh4_flush_cache_page(void *args)
215
{
216
struct flusher_data *data = args;
217
struct vm_area_struct *vma;
218
struct page *page;
219
unsigned long address, pfn, phys;
220
int map_coherent = 0;
221
pmd_t *pmd;
222
pte_t *pte;
223
void *vaddr;
224
225
vma = data->vma;
226
address = data->addr1 & PAGE_MASK;
227
pfn = data->addr2;
228
phys = pfn << PAGE_SHIFT;
229
page = pfn_to_page(pfn);
230
231
if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
232
return;
233
234
pmd = pmd_off(vma->vm_mm, address);
235
pte = pte_offset_kernel(pmd, address);
236
237
/* If the page isn't present, there is nothing to do here. */
238
if (!(pte_val(*pte) & _PAGE_PRESENT))
239
return;
240
241
if ((vma->vm_mm == current->active_mm))
242
vaddr = NULL;
243
else {
244
struct folio *folio = page_folio(page);
245
/*
246
* Use kmap_coherent or kmap_atomic to do flushes for
247
* another ASID than the current one.
248
*/
249
map_coherent = (current_cpu_data.dcache.n_aliases &&
250
test_bit(PG_dcache_clean, folio_flags(folio, 0)) &&
251
page_mapped(page));
252
if (map_coherent)
253
vaddr = kmap_coherent(page, address);
254
else
255
vaddr = kmap_atomic(page);
256
257
address = (unsigned long)vaddr;
258
}
259
260
flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
261
(address & shm_align_mask), phys);
262
263
if (vma->vm_flags & VM_EXEC)
264
flush_icache_all();
265
266
if (vaddr) {
267
if (map_coherent)
268
kunmap_coherent(vaddr);
269
else
270
kunmap_atomic(vaddr);
271
}
272
}
273
274
/*
275
* Write back and invalidate D-caches.
276
*
277
* START, END: Virtual Address (U0 address)
278
*
279
* NOTE: We need to flush the _physical_ page entry.
280
* Flushing the cache lines for U0 only isn't enough.
281
* We need to flush for P1 too, which may contain aliases.
282
*/
283
static void sh4_flush_cache_range(void *args)
284
{
285
struct flusher_data *data = args;
286
struct vm_area_struct *vma;
287
unsigned long start, end;
288
289
vma = data->vma;
290
start = data->addr1;
291
end = data->addr2;
292
293
if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
294
return;
295
296
/*
297
* If cache is only 4k-per-way, there are never any 'aliases'. Since
298
* the cache is physically tagged, the data can just be left in there.
299
*/
300
if (boot_cpu_data.dcache.n_aliases == 0)
301
return;
302
303
flush_dcache_all();
304
305
if (vma->vm_flags & VM_EXEC)
306
flush_icache_all();
307
}
308
309
/**
310
* __flush_cache_one
311
*
312
* @addr: address in memory mapped cache array
313
* @phys: P1 address to flush (has to match tags if addr has 'A' bit
314
* set i.e. associative write)
315
* @exec_offset: set to 0x20000000 if flush has to be executed from P2
316
* region else 0x0
317
*
318
* The offset into the cache array implied by 'addr' selects the
319
* 'colour' of the virtual address range that will be flushed. The
320
* operation (purge/write-back) is selected by the lower 2 bits of
321
* 'phys'.
322
*/
323
static void __flush_cache_one(unsigned long addr, unsigned long phys,
324
unsigned long exec_offset)
325
{
326
int way_count;
327
unsigned long base_addr = addr;
328
struct cache_info *dcache;
329
unsigned long way_incr;
330
unsigned long a, ea, p;
331
unsigned long temp_pc;
332
333
dcache = &boot_cpu_data.dcache;
334
/* Write this way for better assembly. */
335
way_count = dcache->ways;
336
way_incr = dcache->way_incr;
337
338
/*
339
* Apply exec_offset (i.e. branch to P2 if required.).
340
*
341
* FIXME:
342
*
343
* If I write "=r" for the (temp_pc), it puts this in r6 hence
344
* trashing exec_offset before it's been added on - why? Hence
345
* "=&r" as a 'workaround'
346
*/
347
asm volatile("mov.l 1f, %0\n\t"
348
"add %1, %0\n\t"
349
"jmp @%0\n\t"
350
"nop\n\t"
351
".balign 4\n\t"
352
"1: .long 2f\n\t"
353
"2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
354
355
/*
356
* We know there will be >=1 iteration, so write as do-while to avoid
357
* pointless nead-of-loop check for 0 iterations.
358
*/
359
do {
360
ea = base_addr + PAGE_SIZE;
361
a = base_addr;
362
p = phys;
363
364
do {
365
*(volatile unsigned long *)a = p;
366
/*
367
* Next line: intentionally not p+32, saves an add, p
368
* will do since only the cache tag bits need to
369
* match.
370
*/
371
*(volatile unsigned long *)(a+32) = p;
372
a += 64;
373
p += 64;
374
} while (a < ea);
375
376
base_addr += way_incr;
377
} while (--way_count != 0);
378
}
379
380
/*
381
* SH-4 has virtually indexed and physically tagged cache.
382
*/
383
void __init sh4_cache_init(void)
384
{
385
printk("PVR=%08x CVR=%08x PRR=%08x\n",
386
__raw_readl(CCN_PVR),
387
__raw_readl(CCN_CVR),
388
__raw_readl(CCN_PRR));
389
390
local_flush_icache_range = sh4_flush_icache_range;
391
local_flush_dcache_folio = sh4_flush_dcache_folio;
392
local_flush_cache_all = sh4_flush_cache_all;
393
local_flush_cache_mm = sh4_flush_cache_mm;
394
local_flush_cache_dup_mm = sh4_flush_cache_mm;
395
local_flush_cache_page = sh4_flush_cache_page;
396
local_flush_cache_range = sh4_flush_cache_range;
397
398
sh4__flush_region_init();
399
}
400
401