Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/kernel/irq_32.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Interrupt request handling routines. On the
4
* Sparc the IRQs are basically 'cast in stone'
5
* and you are supposed to probe the prom's device
6
* node trees to find out who's got which IRQ.
7
*
8
* Copyright (C) 1995 David S. Miller ([email protected])
9
* Copyright (C) 1995 Miguel de Icaza ([email protected])
10
* Copyright (C) 1995,2002 Pete A. Zaitcev ([email protected])
11
* Copyright (C) 1996 Dave Redman ([email protected])
12
* Copyright (C) 1998-2000 Anton Blanchard ([email protected])
13
*/
14
15
#include <linux/kernel_stat.h>
16
#include <linux/seq_file.h>
17
#include <linux/export.h>
18
19
#include <asm/cacheflush.h>
20
#include <asm/cpudata.h>
21
#include <asm/setup.h>
22
#include <asm/pcic.h>
23
#include <asm/leon.h>
24
25
#include "kernel.h"
26
#include "irq.h"
27
28
/* platform specific irq setup */
29
struct sparc_config sparc_config;
30
31
unsigned long arch_local_irq_save(void)
32
{
33
unsigned long retval;
34
unsigned long tmp;
35
36
__asm__ __volatile__(
37
"rd %%psr, %0\n\t"
38
"or %0, %2, %1\n\t"
39
"wr %1, 0, %%psr\n\t"
40
"nop; nop; nop\n"
41
: "=&r" (retval), "=r" (tmp)
42
: "i" (PSR_PIL)
43
: "memory");
44
45
return retval;
46
}
47
EXPORT_SYMBOL(arch_local_irq_save);
48
49
void arch_local_irq_enable(void)
50
{
51
unsigned long tmp;
52
53
__asm__ __volatile__(
54
"rd %%psr, %0\n\t"
55
"andn %0, %1, %0\n\t"
56
"wr %0, 0, %%psr\n\t"
57
"nop; nop; nop\n"
58
: "=&r" (tmp)
59
: "i" (PSR_PIL)
60
: "memory");
61
}
62
EXPORT_SYMBOL(arch_local_irq_enable);
63
64
void arch_local_irq_restore(unsigned long old_psr)
65
{
66
unsigned long tmp;
67
68
__asm__ __volatile__(
69
"rd %%psr, %0\n\t"
70
"and %2, %1, %2\n\t"
71
"andn %0, %1, %0\n\t"
72
"wr %0, %2, %%psr\n\t"
73
"nop; nop; nop\n"
74
: "=&r" (tmp)
75
: "i" (PSR_PIL), "r" (old_psr)
76
: "memory");
77
}
78
EXPORT_SYMBOL(arch_local_irq_restore);
79
80
/*
81
* Dave Redman ([email protected])
82
*
83
* IRQ numbers.. These are no longer restricted to 15..
84
*
85
* this is done to enable SBUS cards and onboard IO to be masked
86
* correctly. using the interrupt level isn't good enough.
87
*
88
* For example:
89
* A device interrupting at sbus level6 and the Floppy both come in
90
* at IRQ11, but enabling and disabling them requires writing to
91
* different bits in the SLAVIO/SEC.
92
*
93
* As a result of these changes sun4m machines could now support
94
* directed CPU interrupts using the existing enable/disable irq code
95
* with tweaks.
96
*
97
* Sun4d complicates things even further. IRQ numbers are arbitrary
98
* 32-bit values in that case. Since this is similar to sparc64,
99
* we adopt a virtual IRQ numbering scheme as is done there.
100
* Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
101
* just becomes a limit of how many interrupt sources we can handle in
102
* a single system. Even fully loaded SS2000 machines top off at
103
* about 32 interrupt sources or so, therefore a NR_IRQS value of 64
104
* is more than enough.
105
*
106
* We keep a map of per-PIL enable interrupts. These get wired
107
* up via the irq_chip->startup() method which gets invoked by
108
* the generic IRQ layer during request_irq().
109
*/
110
111
112
/* Table of allocated irqs. Unused entries has irq == 0 */
113
static struct irq_bucket irq_table[NR_IRQS];
114
/* Protect access to irq_table */
115
static DEFINE_SPINLOCK(irq_table_lock);
116
117
/* Map between the irq identifier used in hw to the irq_bucket. */
118
struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
119
/* Protect access to irq_map */
120
static DEFINE_SPINLOCK(irq_map_lock);
121
122
/* Allocate a new irq from the irq_table */
123
unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
124
{
125
unsigned long flags;
126
unsigned int i;
127
128
spin_lock_irqsave(&irq_table_lock, flags);
129
for (i = 1; i < NR_IRQS; i++) {
130
if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
131
goto found;
132
}
133
134
for (i = 1; i < NR_IRQS; i++) {
135
if (!irq_table[i].irq)
136
break;
137
}
138
139
if (i < NR_IRQS) {
140
irq_table[i].real_irq = real_irq;
141
irq_table[i].irq = i;
142
irq_table[i].pil = pil;
143
} else {
144
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
145
i = 0;
146
}
147
found:
148
spin_unlock_irqrestore(&irq_table_lock, flags);
149
150
return i;
151
}
152
153
/* Based on a single pil handler_irq may need to call several
154
* interrupt handlers. Use irq_map as entry to irq_table,
155
* and let each entry in irq_table point to the next entry.
156
*/
157
void irq_link(unsigned int irq)
158
{
159
struct irq_bucket *p;
160
unsigned long flags;
161
unsigned int pil;
162
163
BUG_ON(irq >= NR_IRQS);
164
165
spin_lock_irqsave(&irq_map_lock, flags);
166
167
p = &irq_table[irq];
168
pil = p->pil;
169
BUG_ON(pil >= SUN4D_MAX_IRQ);
170
p->next = irq_map[pil];
171
irq_map[pil] = p;
172
173
spin_unlock_irqrestore(&irq_map_lock, flags);
174
}
175
176
void irq_unlink(unsigned int irq)
177
{
178
struct irq_bucket *p, **pnext;
179
unsigned long flags;
180
181
BUG_ON(irq >= NR_IRQS);
182
183
spin_lock_irqsave(&irq_map_lock, flags);
184
185
p = &irq_table[irq];
186
BUG_ON(p->pil >= SUN4D_MAX_IRQ);
187
pnext = &irq_map[p->pil];
188
while (*pnext != p)
189
pnext = &(*pnext)->next;
190
*pnext = p->next;
191
192
spin_unlock_irqrestore(&irq_map_lock, flags);
193
}
194
195
196
/* /proc/interrupts printing */
197
int arch_show_interrupts(struct seq_file *p, int prec)
198
{
199
int j;
200
201
#ifdef CONFIG_SMP
202
seq_printf(p, "RES:");
203
for_each_online_cpu(j)
204
seq_put_decimal_ull_width(p, " ", cpu_data(j).irq_resched_count, 10);
205
seq_printf(p, " IPI rescheduling interrupts\n");
206
seq_printf(p, "CAL:");
207
for_each_online_cpu(j)
208
seq_put_decimal_ull_width(p, " ", cpu_data(j).irq_call_count, 10);
209
seq_printf(p, " IPI function call interrupts\n");
210
#endif
211
seq_printf(p, "NMI:");
212
for_each_online_cpu(j)
213
seq_put_decimal_ull_width(p, " ", cpu_data(j).counter, 10);
214
seq_printf(p, " Non-maskable interrupts\n");
215
return 0;
216
}
217
218
void handler_irq(unsigned int pil, struct pt_regs *regs)
219
{
220
struct pt_regs *old_regs;
221
struct irq_bucket *p;
222
223
BUG_ON(pil > 15);
224
old_regs = set_irq_regs(regs);
225
irq_enter();
226
227
p = irq_map[pil];
228
while (p) {
229
struct irq_bucket *next = p->next;
230
231
generic_handle_irq(p->irq);
232
p = next;
233
}
234
irq_exit();
235
set_irq_regs(old_regs);
236
}
237
238
#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
239
static unsigned int floppy_irq;
240
241
int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
242
{
243
unsigned int cpu_irq;
244
int err;
245
246
247
err = request_irq(irq, irq_handler, 0, "floppy", NULL);
248
if (err)
249
return -1;
250
251
/* Save for later use in floppy interrupt handler */
252
floppy_irq = irq;
253
254
cpu_irq = (irq & (NR_IRQS - 1));
255
256
/* Dork with trap table if we get this far. */
257
#define INSTANTIATE(table) \
258
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
259
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
260
SPARC_BRANCH((unsigned long) floppy_hardint, \
261
(unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
262
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
263
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
264
265
INSTANTIATE(sparc_ttable)
266
267
#if defined CONFIG_SMP
268
if (sparc_cpu_model != sparc_leon) {
269
struct tt_entry *trap_table;
270
271
trap_table = &trapbase_cpu1[0];
272
INSTANTIATE(trap_table)
273
trap_table = &trapbase_cpu2[0];
274
INSTANTIATE(trap_table)
275
trap_table = &trapbase_cpu3[0];
276
INSTANTIATE(trap_table)
277
}
278
#endif
279
#undef INSTANTIATE
280
/*
281
* XXX Correct thing whould be to flush only I- and D-cache lines
282
* which contain the handler in question. But as of time of the
283
* writing we have no CPU-neutral interface to fine-grained flushes.
284
*/
285
flush_cache_all();
286
return 0;
287
}
288
EXPORT_SYMBOL(sparc_floppy_request_irq);
289
290
/*
291
* These variables are used to access state from the assembler
292
* interrupt handler, floppy_hardint, so we cannot put these in
293
* the floppy driver image because that would not work in the
294
* modular case.
295
*/
296
volatile unsigned char *fdc_status;
297
EXPORT_SYMBOL(fdc_status);
298
299
char *pdma_vaddr;
300
EXPORT_SYMBOL(pdma_vaddr);
301
302
unsigned long pdma_size;
303
EXPORT_SYMBOL(pdma_size);
304
305
volatile int doing_pdma;
306
EXPORT_SYMBOL(doing_pdma);
307
308
char *pdma_base;
309
EXPORT_SYMBOL(pdma_base);
310
311
unsigned long pdma_areasize;
312
EXPORT_SYMBOL(pdma_areasize);
313
314
/* Use the generic irq support to call floppy_interrupt
315
* which was setup using request_irq() in sparc_floppy_request_irq().
316
* We only have one floppy interrupt so we do not need to check
317
* for additional handlers being wired up by irq_link()
318
*/
319
void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
320
{
321
struct pt_regs *old_regs;
322
323
old_regs = set_irq_regs(regs);
324
irq_enter();
325
generic_handle_irq(floppy_irq);
326
irq_exit();
327
set_irq_regs(old_regs);
328
}
329
#endif
330
331
/* djhr
332
* This could probably be made indirect too and assigned in the CPU
333
* bits of the code. That would be much nicer I think and would also
334
* fit in with the idea of being able to tune your kernel for your machine
335
* by removing unrequired machine and device support.
336
*
337
*/
338
339
void __init init_IRQ(void)
340
{
341
switch (sparc_cpu_model) {
342
case sun4m:
343
pcic_probe();
344
if (pcic_present())
345
sun4m_pci_init_IRQ();
346
else
347
sun4m_init_IRQ();
348
break;
349
350
case sun4d:
351
sun4d_init_IRQ();
352
break;
353
354
case sparc_leon:
355
leon_init_IRQ();
356
break;
357
358
default:
359
prom_printf("Cannot initialize IRQs on this Sun machine...");
360
break;
361
}
362
}
363
364
365