Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/kernel/irq_64.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* irq.c: UltraSparc IRQ handling/init/registry.
3
*
4
* Copyright (C) 1997, 2007, 2008 David S. Miller ([email protected])
5
* Copyright (C) 1998 Eddie C. Dost ([email protected])
6
* Copyright (C) 1998 Jakub Jelinek ([email protected])
7
*/
8
9
#include <linux/sched.h>
10
#include <linux/linkage.h>
11
#include <linux/ptrace.h>
12
#include <linux/errno.h>
13
#include <linux/kernel_stat.h>
14
#include <linux/signal.h>
15
#include <linux/mm.h>
16
#include <linux/interrupt.h>
17
#include <linux/slab.h>
18
#include <linux/random.h>
19
#include <linux/init.h>
20
#include <linux/delay.h>
21
#include <linux/proc_fs.h>
22
#include <linux/seq_file.h>
23
#include <linux/ftrace.h>
24
#include <linux/irq.h>
25
#include <linux/string_choices.h>
26
27
#include <asm/ptrace.h>
28
#include <asm/processor.h>
29
#include <linux/atomic.h>
30
#include <asm/irq.h>
31
#include <asm/io.h>
32
#include <asm/iommu.h>
33
#include <asm/upa.h>
34
#include <asm/oplib.h>
35
#include <asm/prom.h>
36
#include <asm/timer.h>
37
#include <asm/smp.h>
38
#include <asm/starfire.h>
39
#include <linux/uaccess.h>
40
#include <asm/cache.h>
41
#include <asm/cpudata.h>
42
#include <asm/auxio.h>
43
#include <asm/head.h>
44
#include <asm/hypervisor.h>
45
#include <asm/cacheflush.h>
46
#include <asm/softirq_stack.h>
47
48
#include "entry.h"
49
#include "cpumap.h"
50
#include "kstack.h"
51
52
struct ino_bucket *ivector_table;
53
unsigned long ivector_table_pa;
54
55
/* On several sun4u processors, it is illegal to mix bypass and
56
* non-bypass accesses. Therefore we access all INO buckets
57
* using bypass accesses only.
58
*/
59
static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
60
{
61
unsigned long ret;
62
63
__asm__ __volatile__("ldxa [%1] %2, %0"
64
: "=&r" (ret)
65
: "r" (bucket_pa +
66
offsetof(struct ino_bucket,
67
__irq_chain_pa)),
68
"i" (ASI_PHYS_USE_EC));
69
70
return ret;
71
}
72
73
static void bucket_clear_chain_pa(unsigned long bucket_pa)
74
{
75
__asm__ __volatile__("stxa %%g0, [%0] %1"
76
: /* no outputs */
77
: "r" (bucket_pa +
78
offsetof(struct ino_bucket,
79
__irq_chain_pa)),
80
"i" (ASI_PHYS_USE_EC));
81
}
82
83
static unsigned int bucket_get_irq(unsigned long bucket_pa)
84
{
85
unsigned int ret;
86
87
__asm__ __volatile__("lduwa [%1] %2, %0"
88
: "=&r" (ret)
89
: "r" (bucket_pa +
90
offsetof(struct ino_bucket,
91
__irq)),
92
"i" (ASI_PHYS_USE_EC));
93
94
return ret;
95
}
96
97
static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
98
{
99
__asm__ __volatile__("stwa %0, [%1] %2"
100
: /* no outputs */
101
: "r" (irq),
102
"r" (bucket_pa +
103
offsetof(struct ino_bucket,
104
__irq)),
105
"i" (ASI_PHYS_USE_EC));
106
}
107
108
#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
109
110
static unsigned long hvirq_major __initdata;
111
static int __init early_hvirq_major(char *p)
112
{
113
int rc = kstrtoul(p, 10, &hvirq_major);
114
115
return rc;
116
}
117
early_param("hvirq", early_hvirq_major);
118
119
static int hv_irq_version;
120
121
/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
122
* based interfaces, but:
123
*
124
* 1) Several OSs, Solaris and Linux included, use them even when only
125
* negotiating version 1.0 (or failing to negotiate at all). So the
126
* hypervisor has a workaround that provides the VIRQ interfaces even
127
* when only verion 1.0 of the API is in use.
128
*
129
* 2) Second, and more importantly, with major version 2.0 these VIRQ
130
* interfaces only were actually hooked up for LDC interrupts, even
131
* though the Hypervisor specification clearly stated:
132
*
133
* The new interrupt API functions will be available to a guest
134
* when it negotiates version 2.0 in the interrupt API group 0x2. When
135
* a guest negotiates version 2.0, all interrupt sources will only
136
* support using the cookie interface, and any attempt to use the
137
* version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
138
* ENOTSUPPORTED error being returned.
139
*
140
* with an emphasis on "all interrupt sources".
141
*
142
* To correct this, major version 3.0 was created which does actually
143
* support VIRQs for all interrupt sources (not just LDC devices). So
144
* if we want to move completely over the cookie based VIRQs we must
145
* negotiate major version 3.0 or later of HV_GRP_INTR.
146
*/
147
static bool sun4v_cookie_only_virqs(void)
148
{
149
return hv_irq_version >= 3;
150
}
151
152
static void __init irq_init_hv(void)
153
{
154
unsigned long hv_error, major, minor = 0;
155
156
if (tlb_type != hypervisor)
157
return;
158
159
if (hvirq_major)
160
major = hvirq_major;
161
else
162
major = 3;
163
164
hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165
if (!hv_error)
166
hv_irq_version = major;
167
else
168
hv_irq_version = 1;
169
170
pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171
hv_irq_version,
172
str_enabled_disabled(sun4v_cookie_only_virqs()));
173
}
174
175
/* This function is for the timer interrupt.*/
176
int __init arch_probe_nr_irqs(void)
177
{
178
return 1;
179
}
180
181
#define DEFAULT_NUM_IVECS (0xfffU)
182
static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183
#define NUM_IVECS (nr_ivec)
184
185
static unsigned int __init size_nr_ivec(void)
186
{
187
if (tlb_type == hypervisor) {
188
switch (sun4v_chip_type) {
189
/* Athena's devhandle|devino is large.*/
190
case SUN4V_CHIP_SPARC64X:
191
nr_ivec = 0xffff;
192
break;
193
}
194
}
195
return nr_ivec;
196
}
197
198
struct irq_handler_data {
199
union {
200
struct {
201
unsigned int dev_handle;
202
unsigned int dev_ino;
203
};
204
unsigned long sysino;
205
};
206
struct ino_bucket bucket;
207
unsigned long iclr;
208
unsigned long imap;
209
};
210
211
static inline unsigned int irq_data_to_handle(struct irq_data *data)
212
{
213
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
214
215
return ihd->dev_handle;
216
}
217
218
static inline unsigned int irq_data_to_ino(struct irq_data *data)
219
{
220
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
221
222
return ihd->dev_ino;
223
}
224
225
static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226
{
227
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
228
229
return ihd->sysino;
230
}
231
232
void irq_free(unsigned int irq)
233
{
234
void *data = irq_get_handler_data(irq);
235
236
kfree(data);
237
irq_set_handler_data(irq, NULL);
238
irq_free_descs(irq, 1);
239
}
240
241
unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242
{
243
int irq;
244
245
irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
246
if (irq <= 0)
247
goto out;
248
249
return irq;
250
out:
251
return 0;
252
}
253
254
static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255
{
256
unsigned long hv_err, cookie;
257
struct ino_bucket *bucket;
258
unsigned int irq = 0U;
259
260
hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261
if (hv_err) {
262
pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263
goto out;
264
}
265
266
if (cookie & ((1UL << 63UL))) {
267
cookie = ~cookie;
268
bucket = (struct ino_bucket *) __va(cookie);
269
irq = bucket->__irq;
270
}
271
out:
272
return irq;
273
}
274
275
static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276
{
277
unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278
struct ino_bucket *bucket;
279
unsigned int irq;
280
281
bucket = &ivector_table[sysino];
282
irq = bucket_get_irq(__pa(bucket));
283
284
return irq;
285
}
286
287
void ack_bad_irq(unsigned int irq)
288
{
289
pr_crit("BAD IRQ ack %d\n", irq);
290
}
291
292
void irq_install_pre_handler(int irq,
293
void (*func)(unsigned int, void *, void *),
294
void *arg1, void *arg2)
295
{
296
pr_warn("IRQ pre handler NOT supported.\n");
297
}
298
299
/*
300
* /proc/interrupts printing:
301
*/
302
int arch_show_interrupts(struct seq_file *p, int prec)
303
{
304
int j;
305
306
seq_printf(p, "NMI:");
307
for_each_online_cpu(j)
308
seq_put_decimal_ull_width(p, " ", cpu_data(j).__nmi_count, 10);
309
seq_printf(p, " Non-maskable interrupts\n");
310
return 0;
311
}
312
313
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314
{
315
unsigned int tid;
316
317
if (this_is_starfire) {
318
tid = starfire_translate(imap, cpuid);
319
tid <<= IMAP_TID_SHIFT;
320
tid &= IMAP_TID_UPA;
321
} else {
322
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323
unsigned long ver;
324
325
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
326
if ((ver >> 32UL) == __JALAPENO_ID ||
327
(ver >> 32UL) == __SERRANO_ID) {
328
tid = cpuid << IMAP_TID_SHIFT;
329
tid &= IMAP_TID_JBUS;
330
} else {
331
unsigned int a = cpuid & 0x1f;
332
unsigned int n = (cpuid >> 5) & 0x1f;
333
334
tid = ((a << IMAP_AID_SHIFT) |
335
(n << IMAP_NID_SHIFT));
336
tid &= (IMAP_AID_SAFARI |
337
IMAP_NID_SAFARI);
338
}
339
} else {
340
tid = cpuid << IMAP_TID_SHIFT;
341
tid &= IMAP_TID_UPA;
342
}
343
}
344
345
return tid;
346
}
347
348
#ifdef CONFIG_SMP
349
static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350
{
351
int cpuid;
352
353
if (cpumask_equal(affinity, cpu_online_mask)) {
354
cpuid = map_to_cpu(irq);
355
} else {
356
cpuid = cpumask_first_and(affinity, cpu_online_mask);
357
cpuid = cpuid < nr_cpu_ids ? cpuid : map_to_cpu(irq);
358
}
359
360
return cpuid;
361
}
362
#else
363
#define irq_choose_cpu(irq, affinity) \
364
real_hard_smp_processor_id()
365
#endif
366
367
static void sun4u_irq_enable(struct irq_data *data)
368
{
369
struct irq_handler_data *handler_data;
370
371
handler_data = irq_data_get_irq_handler_data(data);
372
if (likely(handler_data)) {
373
unsigned long cpuid, imap, val;
374
unsigned int tid;
375
376
cpuid = irq_choose_cpu(data->irq,
377
irq_data_get_affinity_mask(data));
378
imap = handler_data->imap;
379
380
tid = sun4u_compute_tid(imap, cpuid);
381
382
val = upa_readq(imap);
383
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
384
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
385
val |= tid | IMAP_VALID;
386
upa_writeq(val, imap);
387
upa_writeq(ICLR_IDLE, handler_data->iclr);
388
}
389
}
390
391
static int sun4u_set_affinity(struct irq_data *data,
392
const struct cpumask *mask, bool force)
393
{
394
struct irq_handler_data *handler_data;
395
396
handler_data = irq_data_get_irq_handler_data(data);
397
if (likely(handler_data)) {
398
unsigned long cpuid, imap, val;
399
unsigned int tid;
400
401
cpuid = irq_choose_cpu(data->irq, mask);
402
imap = handler_data->imap;
403
404
tid = sun4u_compute_tid(imap, cpuid);
405
406
val = upa_readq(imap);
407
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
408
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
409
val |= tid | IMAP_VALID;
410
upa_writeq(val, imap);
411
upa_writeq(ICLR_IDLE, handler_data->iclr);
412
}
413
414
return 0;
415
}
416
417
/* Don't do anything. The desc->status check for IRQ_DISABLED in
418
* handler_irq() will skip the handler call and that will leave the
419
* interrupt in the sent state. The next ->enable() call will hit the
420
* ICLR register to reset the state machine.
421
*
422
* This scheme is necessary, instead of clearing the Valid bit in the
423
* IMAP register, to handle the case of IMAP registers being shared by
424
* multiple INOs (and thus ICLR registers). Since we use a different
425
* virtual IRQ for each shared IMAP instance, the generic code thinks
426
* there is only one user so it prematurely calls ->disable() on
427
* free_irq().
428
*
429
* We have to provide an explicit ->disable() method instead of using
430
* NULL to get the default. The reason is that if the generic code
431
* sees that, it also hooks up a default ->shutdown method which
432
* invokes ->mask() which we do not want. See irq_chip_set_defaults().
433
*/
434
static void sun4u_irq_disable(struct irq_data *data)
435
{
436
}
437
438
static void sun4u_irq_eoi(struct irq_data *data)
439
{
440
struct irq_handler_data *handler_data;
441
442
handler_data = irq_data_get_irq_handler_data(data);
443
if (likely(handler_data))
444
upa_writeq(ICLR_IDLE, handler_data->iclr);
445
}
446
447
static void sun4v_irq_enable(struct irq_data *data)
448
{
449
unsigned long cpuid = irq_choose_cpu(data->irq,
450
irq_data_get_affinity_mask(data));
451
unsigned int ino = irq_data_to_sysino(data);
452
int err;
453
454
err = sun4v_intr_settarget(ino, cpuid);
455
if (err != HV_EOK)
456
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
457
"err(%d)\n", ino, cpuid, err);
458
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
459
if (err != HV_EOK)
460
printk(KERN_ERR "sun4v_intr_setstate(%x): "
461
"err(%d)\n", ino, err);
462
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
463
if (err != HV_EOK)
464
printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
465
ino, err);
466
}
467
468
static int sun4v_set_affinity(struct irq_data *data,
469
const struct cpumask *mask, bool force)
470
{
471
unsigned long cpuid = irq_choose_cpu(data->irq, mask);
472
unsigned int ino = irq_data_to_sysino(data);
473
int err;
474
475
err = sun4v_intr_settarget(ino, cpuid);
476
if (err != HV_EOK)
477
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
478
"err(%d)\n", ino, cpuid, err);
479
480
return 0;
481
}
482
483
static void sun4v_irq_disable(struct irq_data *data)
484
{
485
unsigned int ino = irq_data_to_sysino(data);
486
int err;
487
488
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
489
if (err != HV_EOK)
490
printk(KERN_ERR "sun4v_intr_setenabled(%x): "
491
"err(%d)\n", ino, err);
492
}
493
494
static void sun4v_irq_eoi(struct irq_data *data)
495
{
496
unsigned int ino = irq_data_to_sysino(data);
497
int err;
498
499
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
500
if (err != HV_EOK)
501
printk(KERN_ERR "sun4v_intr_setstate(%x): "
502
"err(%d)\n", ino, err);
503
}
504
505
static void sun4v_virq_enable(struct irq_data *data)
506
{
507
unsigned long dev_handle = irq_data_to_handle(data);
508
unsigned long dev_ino = irq_data_to_ino(data);
509
unsigned long cpuid;
510
int err;
511
512
cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
513
514
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
515
if (err != HV_EOK)
516
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
517
"err(%d)\n",
518
dev_handle, dev_ino, cpuid, err);
519
err = sun4v_vintr_set_state(dev_handle, dev_ino,
520
HV_INTR_STATE_IDLE);
521
if (err != HV_EOK)
522
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
523
"HV_INTR_STATE_IDLE): err(%d)\n",
524
dev_handle, dev_ino, err);
525
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
526
HV_INTR_ENABLED);
527
if (err != HV_EOK)
528
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
529
"HV_INTR_ENABLED): err(%d)\n",
530
dev_handle, dev_ino, err);
531
}
532
533
static int sun4v_virt_set_affinity(struct irq_data *data,
534
const struct cpumask *mask, bool force)
535
{
536
unsigned long dev_handle = irq_data_to_handle(data);
537
unsigned long dev_ino = irq_data_to_ino(data);
538
unsigned long cpuid;
539
int err;
540
541
cpuid = irq_choose_cpu(data->irq, mask);
542
543
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
544
if (err != HV_EOK)
545
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
546
"err(%d)\n",
547
dev_handle, dev_ino, cpuid, err);
548
549
return 0;
550
}
551
552
static void sun4v_virq_disable(struct irq_data *data)
553
{
554
unsigned long dev_handle = irq_data_to_handle(data);
555
unsigned long dev_ino = irq_data_to_ino(data);
556
int err;
557
558
559
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
560
HV_INTR_DISABLED);
561
if (err != HV_EOK)
562
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
563
"HV_INTR_DISABLED): err(%d)\n",
564
dev_handle, dev_ino, err);
565
}
566
567
static void sun4v_virq_eoi(struct irq_data *data)
568
{
569
unsigned long dev_handle = irq_data_to_handle(data);
570
unsigned long dev_ino = irq_data_to_ino(data);
571
int err;
572
573
err = sun4v_vintr_set_state(dev_handle, dev_ino,
574
HV_INTR_STATE_IDLE);
575
if (err != HV_EOK)
576
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
577
"HV_INTR_STATE_IDLE): err(%d)\n",
578
dev_handle, dev_ino, err);
579
}
580
581
static struct irq_chip sun4u_irq = {
582
.name = "sun4u",
583
.irq_enable = sun4u_irq_enable,
584
.irq_disable = sun4u_irq_disable,
585
.irq_eoi = sun4u_irq_eoi,
586
.irq_set_affinity = sun4u_set_affinity,
587
.flags = IRQCHIP_EOI_IF_HANDLED,
588
};
589
590
static struct irq_chip sun4v_irq = {
591
.name = "sun4v",
592
.irq_enable = sun4v_irq_enable,
593
.irq_disable = sun4v_irq_disable,
594
.irq_eoi = sun4v_irq_eoi,
595
.irq_set_affinity = sun4v_set_affinity,
596
.flags = IRQCHIP_EOI_IF_HANDLED,
597
};
598
599
static struct irq_chip sun4v_virq = {
600
.name = "vsun4v",
601
.irq_enable = sun4v_virq_enable,
602
.irq_disable = sun4v_virq_disable,
603
.irq_eoi = sun4v_virq_eoi,
604
.irq_set_affinity = sun4v_virt_set_affinity,
605
.flags = IRQCHIP_EOI_IF_HANDLED,
606
};
607
608
unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
609
{
610
struct irq_handler_data *handler_data;
611
struct ino_bucket *bucket;
612
unsigned int irq;
613
int ino;
614
615
BUG_ON(tlb_type == hypervisor);
616
617
ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
618
bucket = &ivector_table[ino];
619
irq = bucket_get_irq(__pa(bucket));
620
if (!irq) {
621
irq = irq_alloc(0, ino);
622
bucket_set_irq(__pa(bucket), irq);
623
irq_set_chip_and_handler_name(irq, &sun4u_irq,
624
handle_fasteoi_irq, "IVEC");
625
}
626
627
handler_data = irq_get_handler_data(irq);
628
if (unlikely(handler_data))
629
goto out;
630
631
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
632
if (unlikely(!handler_data)) {
633
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
634
prom_halt();
635
}
636
irq_set_handler_data(irq, handler_data);
637
638
handler_data->imap = imap;
639
handler_data->iclr = iclr;
640
641
out:
642
return irq;
643
}
644
645
static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
646
void (*handler_data_init)(struct irq_handler_data *data,
647
u32 devhandle, unsigned int devino),
648
struct irq_chip *chip)
649
{
650
struct irq_handler_data *data;
651
unsigned int irq;
652
653
irq = irq_alloc(devhandle, devino);
654
if (!irq)
655
goto out;
656
657
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
658
if (unlikely(!data)) {
659
pr_err("IRQ handler data allocation failed.\n");
660
irq_free(irq);
661
irq = 0;
662
goto out;
663
}
664
665
irq_set_handler_data(irq, data);
666
handler_data_init(data, devhandle, devino);
667
irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
668
data->imap = ~0UL;
669
data->iclr = ~0UL;
670
out:
671
return irq;
672
}
673
674
static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
675
unsigned int devino)
676
{
677
struct irq_handler_data *ihd = irq_get_handler_data(irq);
678
unsigned long hv_error, cookie;
679
680
/* handler_irq needs to find the irq. cookie is seen signed in
681
* sun4v_dev_mondo and treated as a non ivector_table delivery.
682
*/
683
ihd->bucket.__irq = irq;
684
cookie = ~__pa(&ihd->bucket);
685
686
hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
687
if (hv_error)
688
pr_err("HV vintr set cookie failed = %ld\n", hv_error);
689
690
return hv_error;
691
}
692
693
static void cookie_handler_data(struct irq_handler_data *data,
694
u32 devhandle, unsigned int devino)
695
{
696
data->dev_handle = devhandle;
697
data->dev_ino = devino;
698
}
699
700
static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
701
struct irq_chip *chip)
702
{
703
unsigned long hv_error;
704
unsigned int irq;
705
706
irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
707
708
hv_error = cookie_assign(irq, devhandle, devino);
709
if (hv_error) {
710
irq_free(irq);
711
irq = 0;
712
}
713
714
return irq;
715
}
716
717
static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
718
{
719
unsigned int irq;
720
721
irq = cookie_exists(devhandle, devino);
722
if (irq)
723
goto out;
724
725
irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
726
727
out:
728
return irq;
729
}
730
731
static void sysino_set_bucket(unsigned int irq)
732
{
733
struct irq_handler_data *ihd = irq_get_handler_data(irq);
734
struct ino_bucket *bucket;
735
unsigned long sysino;
736
737
sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
738
BUG_ON(sysino >= nr_ivec);
739
bucket = &ivector_table[sysino];
740
bucket_set_irq(__pa(bucket), irq);
741
}
742
743
static void sysino_handler_data(struct irq_handler_data *data,
744
u32 devhandle, unsigned int devino)
745
{
746
unsigned long sysino;
747
748
sysino = sun4v_devino_to_sysino(devhandle, devino);
749
data->sysino = sysino;
750
}
751
752
static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
753
struct irq_chip *chip)
754
{
755
unsigned int irq;
756
757
irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
758
if (!irq)
759
goto out;
760
761
sysino_set_bucket(irq);
762
out:
763
return irq;
764
}
765
766
static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
767
{
768
int irq;
769
770
irq = sysino_exists(devhandle, devino);
771
if (irq)
772
goto out;
773
774
irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
775
out:
776
return irq;
777
}
778
779
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
780
{
781
unsigned int irq;
782
783
if (sun4v_cookie_only_virqs())
784
irq = sun4v_build_cookie(devhandle, devino);
785
else
786
irq = sun4v_build_sysino(devhandle, devino);
787
788
return irq;
789
}
790
791
unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
792
{
793
int irq;
794
795
irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
796
if (!irq)
797
goto out;
798
799
/* This is borrowed from the original function.
800
*/
801
irq_set_status_flags(irq, IRQ_NOAUTOEN);
802
803
out:
804
return irq;
805
}
806
807
void *hardirq_stack[NR_CPUS];
808
void *softirq_stack[NR_CPUS];
809
810
void __irq_entry handler_irq(int pil, struct pt_regs *regs)
811
{
812
unsigned long pstate, bucket_pa;
813
struct pt_regs *old_regs;
814
void *orig_sp;
815
816
clear_softint(1 << pil);
817
818
old_regs = set_irq_regs(regs);
819
irq_enter();
820
821
/* Grab an atomic snapshot of the pending IVECs. */
822
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
823
"wrpr %0, %3, %%pstate\n\t"
824
"ldx [%2], %1\n\t"
825
"stx %%g0, [%2]\n\t"
826
"wrpr %0, 0x0, %%pstate\n\t"
827
: "=&r" (pstate), "=&r" (bucket_pa)
828
: "r" (irq_work_pa(smp_processor_id())),
829
"i" (PSTATE_IE)
830
: "memory");
831
832
orig_sp = set_hardirq_stack();
833
834
while (bucket_pa) {
835
unsigned long next_pa;
836
unsigned int irq;
837
838
next_pa = bucket_get_chain_pa(bucket_pa);
839
irq = bucket_get_irq(bucket_pa);
840
bucket_clear_chain_pa(bucket_pa);
841
842
generic_handle_irq(irq);
843
844
bucket_pa = next_pa;
845
}
846
847
restore_hardirq_stack(orig_sp);
848
849
irq_exit();
850
set_irq_regs(old_regs);
851
}
852
853
#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
854
void do_softirq_own_stack(void)
855
{
856
void *orig_sp, *sp = softirq_stack[smp_processor_id()];
857
858
sp += THREAD_SIZE - 192 - STACK_BIAS;
859
860
__asm__ __volatile__("mov %%sp, %0\n\t"
861
"mov %1, %%sp"
862
: "=&r" (orig_sp)
863
: "r" (sp));
864
__do_softirq();
865
__asm__ __volatile__("mov %0, %%sp"
866
: : "r" (orig_sp));
867
}
868
#endif
869
870
#ifdef CONFIG_HOTPLUG_CPU
871
void fixup_irqs(void)
872
{
873
unsigned int irq;
874
875
for (irq = 0; irq < NR_IRQS; irq++) {
876
struct irq_desc *desc = irq_to_desc(irq);
877
struct irq_data *data;
878
unsigned long flags;
879
880
if (!desc)
881
continue;
882
data = irq_desc_get_irq_data(desc);
883
raw_spin_lock_irqsave(&desc->lock, flags);
884
if (desc->action && !irqd_is_per_cpu(data)) {
885
if (data->chip->irq_set_affinity)
886
data->chip->irq_set_affinity(data,
887
irq_data_get_affinity_mask(data),
888
false);
889
}
890
raw_spin_unlock_irqrestore(&desc->lock, flags);
891
}
892
893
tick_ops->disable_irq();
894
}
895
#endif
896
897
struct sun5_timer {
898
u64 count0;
899
u64 limit0;
900
u64 count1;
901
u64 limit1;
902
};
903
904
static struct sun5_timer *prom_timers;
905
static u64 prom_limit0, prom_limit1;
906
907
static void map_prom_timers(void)
908
{
909
struct device_node *dp;
910
const unsigned int *addr;
911
912
/* PROM timer node hangs out in the top level of device siblings... */
913
dp = of_find_node_by_path("/");
914
dp = dp->child;
915
while (dp) {
916
if (of_node_name_eq(dp, "counter-timer"))
917
break;
918
dp = dp->sibling;
919
}
920
921
/* Assume if node is not present, PROM uses different tick mechanism
922
* which we should not care about.
923
*/
924
if (!dp) {
925
prom_timers = (struct sun5_timer *) 0;
926
return;
927
}
928
929
/* If PROM is really using this, it must be mapped by him. */
930
addr = of_get_property(dp, "address", NULL);
931
if (!addr) {
932
prom_printf("PROM does not have timer mapped, trying to continue.\n");
933
prom_timers = (struct sun5_timer *) 0;
934
return;
935
}
936
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
937
}
938
939
static void kill_prom_timer(void)
940
{
941
if (!prom_timers)
942
return;
943
944
/* Save them away for later. */
945
prom_limit0 = prom_timers->limit0;
946
prom_limit1 = prom_timers->limit1;
947
948
/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
949
* We turn both off here just to be paranoid.
950
*/
951
prom_timers->limit0 = 0;
952
prom_timers->limit1 = 0;
953
954
/* Wheee, eat the interrupt packet too... */
955
__asm__ __volatile__(
956
" mov 0x40, %%g2\n"
957
" ldxa [%%g0] %0, %%g1\n"
958
" ldxa [%%g2] %1, %%g1\n"
959
" stxa %%g0, [%%g0] %0\n"
960
" membar #Sync\n"
961
: /* no outputs */
962
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
963
: "g1", "g2");
964
}
965
966
void notrace init_irqwork_curcpu(void)
967
{
968
int cpu = hard_smp_processor_id();
969
970
trap_block[cpu].irq_worklist_pa = 0UL;
971
}
972
973
/* Please be very careful with register_one_mondo() and
974
* sun4v_register_mondo_queues().
975
*
976
* On SMP this gets invoked from the CPU trampoline before
977
* the cpu has fully taken over the trap table from OBP,
978
* and its kernel stack + %g6 thread register state is
979
* not fully cooked yet.
980
*
981
* Therefore you cannot make any OBP calls, not even prom_printf,
982
* from these two routines.
983
*/
984
static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
985
unsigned long qmask)
986
{
987
unsigned long num_entries = (qmask + 1) / 64;
988
unsigned long status;
989
990
status = sun4v_cpu_qconf(type, paddr, num_entries);
991
if (status != HV_EOK) {
992
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
993
"err %lu\n", type, paddr, num_entries, status);
994
prom_halt();
995
}
996
}
997
998
void notrace sun4v_register_mondo_queues(int this_cpu)
999
{
1000
struct trap_per_cpu *tb = &trap_block[this_cpu];
1001
1002
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1003
tb->cpu_mondo_qmask);
1004
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1005
tb->dev_mondo_qmask);
1006
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1007
tb->resum_qmask);
1008
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1009
tb->nonresum_qmask);
1010
}
1011
1012
/* Each queue region must be a power of 2 multiple of 64 bytes in
1013
* size. The base real address must be aligned to the size of the
1014
* region. Thus, an 8KB queue must be 8KB aligned, for example.
1015
*/
1016
static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1017
{
1018
unsigned long size = PAGE_ALIGN(qmask + 1);
1019
unsigned long order = get_order(size);
1020
unsigned long p;
1021
1022
p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1023
if (!p) {
1024
prom_printf("SUN4V: Error, cannot allocate queue.\n");
1025
prom_halt();
1026
}
1027
1028
*pa_ptr = __pa(p);
1029
}
1030
1031
static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1032
{
1033
#ifdef CONFIG_SMP
1034
unsigned long page;
1035
void *mondo, *p;
1036
1037
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1038
1039
/* Make sure mondo block is 64byte aligned */
1040
p = kzalloc(127, GFP_KERNEL);
1041
if (!p) {
1042
prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1043
prom_halt();
1044
}
1045
mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1046
tb->cpu_mondo_block_pa = __pa(mondo);
1047
1048
page = get_zeroed_page(GFP_KERNEL);
1049
if (!page) {
1050
prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1051
prom_halt();
1052
}
1053
1054
tb->cpu_list_pa = __pa(page);
1055
#endif
1056
}
1057
1058
/* Allocate mondo and error queues for all possible cpus. */
1059
static void __init sun4v_init_mondo_queues(void)
1060
{
1061
int cpu;
1062
1063
for_each_possible_cpu(cpu) {
1064
struct trap_per_cpu *tb = &trap_block[cpu];
1065
1066
alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1067
alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1068
alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1069
alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1070
alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1071
alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1072
tb->nonresum_qmask);
1073
}
1074
}
1075
1076
static void __init init_send_mondo_info(void)
1077
{
1078
int cpu;
1079
1080
for_each_possible_cpu(cpu) {
1081
struct trap_per_cpu *tb = &trap_block[cpu];
1082
1083
init_cpu_send_mondo_info(tb);
1084
}
1085
}
1086
1087
static struct irqaction timer_irq_action = {
1088
.name = "timer",
1089
};
1090
1091
static void __init irq_ivector_init(void)
1092
{
1093
unsigned long size, order;
1094
unsigned int ivecs;
1095
1096
/* If we are doing cookie only VIRQs then we do not need the ivector
1097
* table to process interrupts.
1098
*/
1099
if (sun4v_cookie_only_virqs())
1100
return;
1101
1102
ivecs = size_nr_ivec();
1103
size = sizeof(struct ino_bucket) * ivecs;
1104
order = get_order(size);
1105
ivector_table = (struct ino_bucket *)
1106
__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1107
if (!ivector_table) {
1108
prom_printf("Fatal error, cannot allocate ivector_table\n");
1109
prom_halt();
1110
}
1111
__flush_dcache_range((unsigned long) ivector_table,
1112
((unsigned long) ivector_table) + size);
1113
1114
ivector_table_pa = __pa(ivector_table);
1115
}
1116
1117
/* Only invoked on boot processor.*/
1118
void __init init_IRQ(void)
1119
{
1120
irq_init_hv();
1121
irq_ivector_init();
1122
map_prom_timers();
1123
kill_prom_timer();
1124
1125
if (tlb_type == hypervisor)
1126
sun4v_init_mondo_queues();
1127
1128
init_send_mondo_info();
1129
1130
if (tlb_type == hypervisor) {
1131
/* Load up the boot cpu's entries. */
1132
sun4v_register_mondo_queues(hard_smp_processor_id());
1133
}
1134
1135
/* We need to clear any IRQ's pending in the soft interrupt
1136
* registers, a spurious one could be left around from the
1137
* PROM timer which we just disabled.
1138
*/
1139
clear_softint(get_softint());
1140
1141
/* Now that ivector table is initialized, it is safe
1142
* to receive IRQ vector traps. We will normally take
1143
* one or two right now, in case some device PROM used
1144
* to boot us wants to speak to us. We just ignore them.
1145
*/
1146
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1147
"or %%g1, %0, %%g1\n\t"
1148
"wrpr %%g1, 0x0, %%pstate"
1149
: /* No outputs */
1150
: "i" (PSTATE_IE)
1151
: "g1");
1152
1153
irq_to_desc(0)->action = &timer_irq_action;
1154
}
1155
1156