Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/kernel/kprobes.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* arch/sparc64/kernel/kprobes.c
3
*
4
* Copyright (C) 2004 David S. Miller <[email protected]>
5
*/
6
7
#include <linux/kernel.h>
8
#include <linux/kprobes.h>
9
#include <linux/extable.h>
10
#include <linux/kdebug.h>
11
#include <linux/slab.h>
12
#include <linux/context_tracking.h>
13
#include <asm/signal.h>
14
#include <asm/cacheflush.h>
15
#include <linux/uaccess.h>
16
17
/* We do not have hardware single-stepping on sparc64.
18
* So we implement software single-stepping with breakpoint
19
* traps. The top-level scheme is similar to that used
20
* in the x86 kprobes implementation.
21
*
22
* In the kprobe->ainsn.insn[] array we store the original
23
* instruction at index zero and a break instruction at
24
* index one.
25
*
26
* When we hit a kprobe we:
27
* - Run the pre-handler
28
* - Remember "regs->tnpc" and interrupt level stored in
29
* "regs->tstate" so we can restore them later
30
* - Disable PIL interrupts
31
* - Set regs->tpc to point to kprobe->ainsn.insn[0]
32
* - Set regs->tnpc to point to kprobe->ainsn.insn[1]
33
* - Mark that we are actively in a kprobe
34
*
35
* At this point we wait for the second breakpoint at
36
* kprobe->ainsn.insn[1] to hit. When it does we:
37
* - Run the post-handler
38
* - Set regs->tpc to "remembered" regs->tnpc stored above,
39
* restore the PIL interrupt level in "regs->tstate" as well
40
* - Make any adjustments necessary to regs->tnpc in order
41
* to handle relative branches correctly. See below.
42
* - Mark that we are no longer actively in a kprobe.
43
*/
44
45
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47
48
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
49
50
int __kprobes arch_prepare_kprobe(struct kprobe *p)
51
{
52
if ((unsigned long) p->addr & 0x3UL)
53
return -EILSEQ;
54
55
p->ainsn.insn[0] = *p->addr;
56
flushi(&p->ainsn.insn[0]);
57
58
p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
59
flushi(&p->ainsn.insn[1]);
60
61
p->opcode = *p->addr;
62
return 0;
63
}
64
65
void __kprobes arch_arm_kprobe(struct kprobe *p)
66
{
67
*p->addr = BREAKPOINT_INSTRUCTION;
68
flushi(p->addr);
69
}
70
71
void __kprobes arch_disarm_kprobe(struct kprobe *p)
72
{
73
*p->addr = p->opcode;
74
flushi(p->addr);
75
}
76
77
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
78
{
79
kcb->prev_kprobe.kp = kprobe_running();
80
kcb->prev_kprobe.status = kcb->kprobe_status;
81
kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
82
kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
83
}
84
85
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86
{
87
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88
kcb->kprobe_status = kcb->prev_kprobe.status;
89
kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
90
kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
91
}
92
93
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
94
struct kprobe_ctlblk *kcb)
95
{
96
__this_cpu_write(current_kprobe, p);
97
kcb->kprobe_orig_tnpc = regs->tnpc;
98
kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
99
}
100
101
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
102
struct kprobe_ctlblk *kcb)
103
{
104
regs->tstate |= TSTATE_PIL;
105
106
/*single step inline, if it a breakpoint instruction*/
107
if (p->opcode == BREAKPOINT_INSTRUCTION) {
108
regs->tpc = (unsigned long) p->addr;
109
regs->tnpc = kcb->kprobe_orig_tnpc;
110
} else {
111
regs->tpc = (unsigned long) &p->ainsn.insn[0];
112
regs->tnpc = (unsigned long) &p->ainsn.insn[1];
113
}
114
}
115
116
static int __kprobes kprobe_handler(struct pt_regs *regs)
117
{
118
struct kprobe *p;
119
void *addr = (void *) regs->tpc;
120
int ret = 0;
121
struct kprobe_ctlblk *kcb;
122
123
/*
124
* We don't want to be preempted for the entire
125
* duration of kprobe processing
126
*/
127
preempt_disable();
128
kcb = get_kprobe_ctlblk();
129
130
if (kprobe_running()) {
131
p = get_kprobe(addr);
132
if (p) {
133
if (kcb->kprobe_status == KPROBE_HIT_SS) {
134
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
135
kcb->kprobe_orig_tstate_pil);
136
goto no_kprobe;
137
}
138
/* We have reentered the kprobe_handler(), since
139
* another probe was hit while within the handler.
140
* We here save the original kprobes variables and
141
* just single step on the instruction of the new probe
142
* without calling any user handlers.
143
*/
144
save_previous_kprobe(kcb);
145
set_current_kprobe(p, regs, kcb);
146
kprobes_inc_nmissed_count(p);
147
kcb->kprobe_status = KPROBE_REENTER;
148
prepare_singlestep(p, regs, kcb);
149
return 1;
150
} else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
151
/* The breakpoint instruction was removed by
152
* another cpu right after we hit, no further
153
* handling of this interrupt is appropriate
154
*/
155
ret = 1;
156
}
157
goto no_kprobe;
158
}
159
160
p = get_kprobe(addr);
161
if (!p) {
162
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
163
/*
164
* The breakpoint instruction was removed right
165
* after we hit it. Another cpu has removed
166
* either a probepoint or a debugger breakpoint
167
* at this address. In either case, no further
168
* handling of this interrupt is appropriate.
169
*/
170
ret = 1;
171
}
172
/* Not one of ours: let kernel handle it */
173
goto no_kprobe;
174
}
175
176
set_current_kprobe(p, regs, kcb);
177
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
178
if (p->pre_handler && p->pre_handler(p, regs)) {
179
reset_current_kprobe();
180
preempt_enable_no_resched();
181
return 1;
182
}
183
184
prepare_singlestep(p, regs, kcb);
185
kcb->kprobe_status = KPROBE_HIT_SS;
186
return 1;
187
188
no_kprobe:
189
preempt_enable_no_resched();
190
return ret;
191
}
192
193
/* If INSN is a relative control transfer instruction,
194
* return the corrected branch destination value.
195
*
196
* regs->tpc and regs->tnpc still hold the values of the
197
* program counters at the time of trap due to the execution
198
* of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
199
*
200
*/
201
static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
202
struct pt_regs *regs)
203
{
204
unsigned long real_pc = (unsigned long) p->addr;
205
206
/* Branch not taken, no mods necessary. */
207
if (regs->tnpc == regs->tpc + 0x4UL)
208
return real_pc + 0x8UL;
209
210
/* The three cases are call, branch w/prediction,
211
* and traditional branch.
212
*/
213
if ((insn & 0xc0000000) == 0x40000000 ||
214
(insn & 0xc1c00000) == 0x00400000 ||
215
(insn & 0xc1c00000) == 0x00800000) {
216
unsigned long ainsn_addr;
217
218
ainsn_addr = (unsigned long) &p->ainsn.insn[0];
219
220
/* The instruction did all the work for us
221
* already, just apply the offset to the correct
222
* instruction location.
223
*/
224
return (real_pc + (regs->tnpc - ainsn_addr));
225
}
226
227
/* It is jmpl or some other absolute PC modification instruction,
228
* leave NPC as-is.
229
*/
230
return regs->tnpc;
231
}
232
233
/* If INSN is an instruction which writes its PC location
234
* into a destination register, fix that up.
235
*/
236
static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
237
unsigned long real_pc)
238
{
239
unsigned long *slot = NULL;
240
241
/* Simplest case is 'call', which always uses %o7 */
242
if ((insn & 0xc0000000) == 0x40000000) {
243
slot = &regs->u_regs[UREG_I7];
244
}
245
246
/* 'jmpl' encodes the register inside of the opcode */
247
if ((insn & 0xc1f80000) == 0x81c00000) {
248
unsigned long rd = ((insn >> 25) & 0x1f);
249
250
if (rd <= 15) {
251
slot = &regs->u_regs[rd];
252
} else {
253
/* Hard case, it goes onto the stack. */
254
flushw_all();
255
256
rd -= 16;
257
slot = (unsigned long *)
258
(regs->u_regs[UREG_FP] + STACK_BIAS);
259
slot += rd;
260
}
261
}
262
if (slot != NULL)
263
*slot = real_pc;
264
}
265
266
/*
267
* Called after single-stepping. p->addr is the address of the
268
* instruction which has been replaced by the breakpoint
269
* instruction. To avoid the SMP problems that can occur when we
270
* temporarily put back the original opcode to single-step, we
271
* single-stepped a copy of the instruction. The address of this
272
* copy is &p->ainsn.insn[0].
273
*
274
* This function prepares to return from the post-single-step
275
* breakpoint trap.
276
*/
277
static void __kprobes resume_execution(struct kprobe *p,
278
struct pt_regs *regs, struct kprobe_ctlblk *kcb)
279
{
280
u32 insn = p->ainsn.insn[0];
281
282
regs->tnpc = relbranch_fixup(insn, p, regs);
283
284
/* This assignment must occur after relbranch_fixup() */
285
regs->tpc = kcb->kprobe_orig_tnpc;
286
287
retpc_fixup(regs, insn, (unsigned long) p->addr);
288
289
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
290
kcb->kprobe_orig_tstate_pil);
291
}
292
293
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
294
{
295
struct kprobe *cur = kprobe_running();
296
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
297
298
if (!cur)
299
return 0;
300
301
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
302
kcb->kprobe_status = KPROBE_HIT_SSDONE;
303
cur->post_handler(cur, regs, 0);
304
}
305
306
resume_execution(cur, regs, kcb);
307
308
/*Restore back the original saved kprobes variables and continue. */
309
if (kcb->kprobe_status == KPROBE_REENTER) {
310
restore_previous_kprobe(kcb);
311
goto out;
312
}
313
reset_current_kprobe();
314
out:
315
preempt_enable_no_resched();
316
317
return 1;
318
}
319
320
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
321
{
322
struct kprobe *cur = kprobe_running();
323
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
324
const struct exception_table_entry *entry;
325
326
switch(kcb->kprobe_status) {
327
case KPROBE_HIT_SS:
328
case KPROBE_REENTER:
329
/*
330
* We are here because the instruction being single
331
* stepped caused a page fault. We reset the current
332
* kprobe and the tpc points back to the probe address
333
* and allow the page fault handler to continue as a
334
* normal page fault.
335
*/
336
regs->tpc = (unsigned long)cur->addr;
337
regs->tnpc = kcb->kprobe_orig_tnpc;
338
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
339
kcb->kprobe_orig_tstate_pil);
340
if (kcb->kprobe_status == KPROBE_REENTER)
341
restore_previous_kprobe(kcb);
342
else
343
reset_current_kprobe();
344
preempt_enable_no_resched();
345
break;
346
case KPROBE_HIT_ACTIVE:
347
case KPROBE_HIT_SSDONE:
348
/*
349
* In case the user-specified fault handler returned
350
* zero, try to fix up.
351
*/
352
353
entry = search_exception_tables(regs->tpc);
354
if (entry) {
355
regs->tpc = entry->fixup;
356
regs->tnpc = regs->tpc + 4;
357
return 1;
358
}
359
360
/*
361
* fixup_exception() could not handle it,
362
* Let do_page_fault() fix it.
363
*/
364
break;
365
default:
366
break;
367
}
368
369
return 0;
370
}
371
372
/*
373
* Wrapper routine to for handling exceptions.
374
*/
375
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
376
unsigned long val, void *data)
377
{
378
struct die_args *args = (struct die_args *)data;
379
int ret = NOTIFY_DONE;
380
381
if (args->regs && user_mode(args->regs))
382
return ret;
383
384
switch (val) {
385
case DIE_DEBUG:
386
if (kprobe_handler(args->regs))
387
ret = NOTIFY_STOP;
388
break;
389
case DIE_DEBUG_2:
390
if (post_kprobe_handler(args->regs))
391
ret = NOTIFY_STOP;
392
break;
393
default:
394
break;
395
}
396
return ret;
397
}
398
399
asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
400
struct pt_regs *regs)
401
{
402
enum ctx_state prev_state = exception_enter();
403
404
BUG_ON(trap_level != 0x170 && trap_level != 0x171);
405
406
if (user_mode(regs)) {
407
local_irq_enable();
408
bad_trap(regs, trap_level);
409
goto out;
410
}
411
412
/* trap_level == 0x170 --> ta 0x70
413
* trap_level == 0x171 --> ta 0x71
414
*/
415
if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
416
(trap_level == 0x170) ? "debug" : "debug_2",
417
regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
418
bad_trap(regs, trap_level);
419
out:
420
exception_exit(prev_state);
421
}
422
423
/* The value stored in the return address register is actually 2
424
* instructions before where the callee will return to.
425
* Sequences usually look something like this
426
*
427
* call some_function <--- return register points here
428
* nop <--- call delay slot
429
* whatever <--- where callee returns to
430
*
431
* To keep trampoline_probe_handler logic simpler, we normalize the
432
* value kept in ri->ret_addr so we don't need to keep adjusting it
433
* back and forth.
434
*/
435
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
436
struct pt_regs *regs)
437
{
438
ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
439
ri->fp = NULL;
440
441
/* Replace the return addr with trampoline addr */
442
regs->u_regs[UREG_RETPC] =
443
((unsigned long)__kretprobe_trampoline) - 8;
444
}
445
446
/*
447
* Called when the probe at kretprobe trampoline is hit
448
*/
449
static int __kprobes trampoline_probe_handler(struct kprobe *p,
450
struct pt_regs *regs)
451
{
452
unsigned long orig_ret_address = 0;
453
454
orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
455
regs->tpc = orig_ret_address;
456
regs->tnpc = orig_ret_address + 4;
457
458
/*
459
* By returning a non-zero value, we are telling
460
* kprobe_handler() that we don't want the post_handler
461
* to run (and have re-enabled preemption)
462
*/
463
return 1;
464
}
465
466
static void __used kretprobe_trampoline_holder(void)
467
{
468
asm volatile(".global __kretprobe_trampoline\n"
469
"__kretprobe_trampoline:\n"
470
"\tnop\n"
471
"\tnop\n");
472
}
473
static struct kprobe trampoline_p = {
474
.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
475
.pre_handler = trampoline_probe_handler
476
};
477
478
int __init arch_init_kprobes(void)
479
{
480
return register_kprobe(&trampoline_p);
481
}
482
483
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
484
{
485
if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
486
return 1;
487
488
return 0;
489
}
490
491