Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/math-emu/math_32.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* arch/sparc/math-emu/math.c
4
*
5
* Copyright (C) 1998 Peter Maydell ([email protected])
6
* Copyright (C) 1997, 1999 Jakub Jelinek ([email protected])
7
* Copyright (C) 1999 David S. Miller ([email protected])
8
*
9
* This is a good place to start if you're trying to understand the
10
* emulation code, because it's pretty simple. What we do is
11
* essentially analyse the instruction to work out what the operation
12
* is and which registers are involved. We then execute the appropriate
13
* FXXXX function. [The floating point queue introduces a minor wrinkle;
14
* see below...]
15
* The fxxxxx.c files each emulate a single insn. They look relatively
16
* simple because the complexity is hidden away in an unholy tangle
17
* of preprocessor macros.
18
*
19
* The first layer of macros is single.h, double.h, quad.h. Generally
20
* these files define macros for working with floating point numbers
21
* of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
22
* for instance. These macros are usually defined as calls to more
23
* generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
24
* of machine words required to store the given IEEE format is passed
25
* as a parameter. [double.h and co check the number of bits in a word
26
* and define FP_ADD_D & co appropriately].
27
* The generic macros are defined in op-common.h. This is where all
28
* the grotty stuff like handling NaNs is coded. To handle the possible
29
* word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
30
* where wc is the 'number of machine words' parameter (here 2).
31
* These are defined in the third layer of macros: op-1.h, op-2.h
32
* and op-4.h. These handle operations on floating point numbers composed
33
* of 1,2 and 4 machine words respectively. [For example, on sparc64
34
* doubles are one machine word so macros in double.h eventually use
35
* constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
36
* soft-fp.h is on the same level as op-common.h, and defines some
37
* macros which are independent of both word size and FP format.
38
* Finally, sfp-machine.h is the machine dependent part of the
39
* code: it defines the word size and what type a word is. It also
40
* defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
41
* provide several possible flavours of multiply algorithm, most
42
* of which require that you supply some form of asm or C primitive to
43
* do the actual multiply. (such asm primitives should be defined
44
* in sfp-machine.h too). udivmodti4.c is the same sort of thing.
45
*
46
* There may be some errors here because I'm working from a
47
* SPARC architecture manual V9, and what I really want is V8...
48
* Also, the insns which can generate exceptions seem to be a
49
* greater subset of the FPops than for V9 (for example, FCMPED
50
* has to be emulated on V8). So I think I'm going to have
51
* to emulate them all just to be on the safe side...
52
*
53
* Emulation routines originate from soft-fp package, which is
54
* part of glibc and has appropriate copyrights in it (allegedly).
55
*
56
* NB: on sparc int == long == 4 bytes, long long == 8 bytes.
57
* Most bits of the kernel seem to go for long rather than int,
58
* so we follow that practice...
59
*/
60
61
/* TODO:
62
* fpsave() saves the FP queue but fpload() doesn't reload it.
63
* Therefore when we context switch or change FPU ownership
64
* we have to check to see if the queue had anything in it and
65
* emulate it if it did. This is going to be a pain.
66
*/
67
68
#include <linux/types.h>
69
#include <linux/sched.h>
70
#include <linux/mm.h>
71
#include <linux/perf_event.h>
72
#include <linux/uaccess.h>
73
74
#include "sfp-util_32.h"
75
#include <math-emu/soft-fp.h>
76
#include <math-emu/single.h>
77
#include <math-emu/double.h>
78
#include <math-emu/quad.h>
79
80
#define FLOATFUNC(x) extern int x(void *,void *,void *)
81
82
/* The Vn labels indicate what version of the SPARC architecture gas thinks
83
* each insn is. This is from the binutils source :->
84
*/
85
/* quadword instructions */
86
#define FSQRTQ 0x02b /* v8 */
87
#define FADDQ 0x043 /* v8 */
88
#define FSUBQ 0x047 /* v8 */
89
#define FMULQ 0x04b /* v8 */
90
#define FDIVQ 0x04f /* v8 */
91
#define FDMULQ 0x06e /* v8 */
92
#define FQTOS 0x0c7 /* v8 */
93
#define FQTOD 0x0cb /* v8 */
94
#define FITOQ 0x0cc /* v8 */
95
#define FSTOQ 0x0cd /* v8 */
96
#define FDTOQ 0x0ce /* v8 */
97
#define FQTOI 0x0d3 /* v8 */
98
#define FCMPQ 0x053 /* v8 */
99
#define FCMPEQ 0x057 /* v8 */
100
/* single/double instructions (subnormal): should all work */
101
#define FSQRTS 0x029 /* v7 */
102
#define FSQRTD 0x02a /* v7 */
103
#define FADDS 0x041 /* v6 */
104
#define FADDD 0x042 /* v6 */
105
#define FSUBS 0x045 /* v6 */
106
#define FSUBD 0x046 /* v6 */
107
#define FMULS 0x049 /* v6 */
108
#define FMULD 0x04a /* v6 */
109
#define FDIVS 0x04d /* v6 */
110
#define FDIVD 0x04e /* v6 */
111
#define FSMULD 0x069 /* v6 */
112
#define FDTOS 0x0c6 /* v6 */
113
#define FSTOD 0x0c9 /* v6 */
114
#define FSTOI 0x0d1 /* v6 */
115
#define FDTOI 0x0d2 /* v6 */
116
#define FABSS 0x009 /* v6 */
117
#define FCMPS 0x051 /* v6 */
118
#define FCMPES 0x055 /* v6 */
119
#define FCMPD 0x052 /* v6 */
120
#define FCMPED 0x056 /* v6 */
121
#define FMOVS 0x001 /* v6 */
122
#define FNEGS 0x005 /* v6 */
123
#define FITOS 0x0c4 /* v6 */
124
#define FITOD 0x0c8 /* v6 */
125
126
#define FSR_TEM_SHIFT 23UL
127
#define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT)
128
#define FSR_AEXC_SHIFT 5UL
129
#define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT)
130
#define FSR_CEXC_SHIFT 0UL
131
#define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
132
133
static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
134
135
/* Unlike the Sparc64 version (which has a struct fpustate), we
136
* pass the taskstruct corresponding to the task which currently owns the
137
* FPU. This is partly because we don't have the fpustate struct and
138
* partly because the task owning the FPU isn't always current (as is
139
* the case for the Sparc64 port). This is probably SMP-related...
140
* This function returns 1 if all queued insns were emulated successfully.
141
* The test for unimplemented FPop in kernel mode has been moved into
142
* kernel/traps.c for simplicity.
143
*/
144
int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
145
{
146
/* regs->pc isn't necessarily the PC at which the offending insn is sitting.
147
* The FPU maintains a queue of FPops which cause traps.
148
* When it hits an instruction that requires that the trapped op succeeded
149
* (usually because it reads a reg. that the trapped op wrote) then it
150
* causes this exception. We need to emulate all the insns on the queue
151
* and then allow the op to proceed.
152
* This code should also handle the case where the trap was precise,
153
* in which case the queue length is zero and regs->pc points at the
154
* single FPop to be emulated. (this case is untested, though :->)
155
* You'll need this case if you want to be able to emulate all FPops
156
* because the FPU either doesn't exist or has been software-disabled.
157
* [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
158
* might sound because the Ultra does funky things with a superscalar
159
* architecture.]
160
*/
161
162
/* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
163
164
int i;
165
int retcode = 0; /* assume all succeed */
166
unsigned long insn;
167
168
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
169
170
#ifdef DEBUG_MATHEMU
171
printk("In do_mathemu()... pc is %08lx\n", regs->pc);
172
printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
173
for (i = 0; i < fpt->thread.fpqdepth; i++)
174
printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
175
(unsigned long)fpt->thread.fpqueue[i].insn_addr);
176
#endif
177
178
if (fpt->thread.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */
179
#ifdef DEBUG_MATHEMU
180
printk("precise trap at %08lx\n", regs->pc);
181
#endif
182
if (!get_user(insn, (u32 __user *) regs->pc)) {
183
retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
184
if (retcode) {
185
/* in this case we need to fix up PC & nPC */
186
regs->pc = regs->npc;
187
regs->npc += 4;
188
}
189
}
190
return retcode;
191
}
192
193
/* Normal case: need to empty the queue... */
194
for (i = 0; i < fpt->thread.fpqdepth; i++) {
195
retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
196
if (!retcode) /* insn failed, no point doing any more */
197
break;
198
}
199
/* Now empty the queue and clear the queue_not_empty flag */
200
if (retcode)
201
fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
202
else
203
fpt->thread.fsr &= ~0x3000;
204
fpt->thread.fpqdepth = 0;
205
206
return retcode;
207
}
208
209
/* All routines returning an exception to raise should detect
210
* such exceptions _before_ rounding to be consistent with
211
* the behavior of the hardware in the implemented cases
212
* (and thus with the recommendations in the V9 architecture
213
* manual).
214
*
215
* We return 0 if a SIGFPE should be sent, 1 otherwise.
216
*/
217
static inline int record_exception(unsigned long *pfsr, int eflag)
218
{
219
unsigned long fsr = *pfsr;
220
int would_trap;
221
222
/* Determine if this exception would have generated a trap. */
223
would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
224
225
/* If trapping, we only want to signal one bit. */
226
if (would_trap != 0) {
227
eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
228
if ((eflag & (eflag - 1)) != 0) {
229
if (eflag & FP_EX_INVALID)
230
eflag = FP_EX_INVALID;
231
else if (eflag & FP_EX_OVERFLOW)
232
eflag = FP_EX_OVERFLOW;
233
else if (eflag & FP_EX_UNDERFLOW)
234
eflag = FP_EX_UNDERFLOW;
235
else if (eflag & FP_EX_DIVZERO)
236
eflag = FP_EX_DIVZERO;
237
else if (eflag & FP_EX_INEXACT)
238
eflag = FP_EX_INEXACT;
239
}
240
}
241
242
/* Set CEXC, here is the rule:
243
*
244
* In general all FPU ops will set one and only one
245
* bit in the CEXC field, this is always the case
246
* when the IEEE exception trap is enabled in TEM.
247
*/
248
fsr &= ~(FSR_CEXC_MASK);
249
fsr |= ((long)eflag << FSR_CEXC_SHIFT);
250
251
/* Set the AEXC field, rule is:
252
*
253
* If a trap would not be generated, the
254
* CEXC just generated is OR'd into the
255
* existing value of AEXC.
256
*/
257
if (would_trap == 0)
258
fsr |= ((long)eflag << FSR_AEXC_SHIFT);
259
260
/* If trapping, indicate fault trap type IEEE. */
261
if (would_trap != 0)
262
fsr |= (1UL << 14);
263
264
*pfsr = fsr;
265
266
return (would_trap ? 0 : 1);
267
}
268
269
typedef union {
270
u32 s;
271
u64 d;
272
u64 q[2];
273
} *argp;
274
275
static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
276
{
277
/* Emulate the given insn, updating fsr and fregs appropriately. */
278
int type = 0;
279
/* r is rd, b is rs2 and a is rs1. The *u arg tells
280
whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
281
non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
282
#define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
283
int freg;
284
argp rs1 = NULL, rs2 = NULL, rd = NULL;
285
FP_DECL_EX;
286
FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
287
FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
288
FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
289
int IR;
290
long fsr;
291
292
#ifdef DEBUG_MATHEMU
293
printk("In do_mathemu(), emulating %08lx\n", insn);
294
#endif
295
296
if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
297
switch ((insn >> 5) & 0x1ff) {
298
case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
299
case FADDQ:
300
case FSUBQ:
301
case FMULQ:
302
case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
303
case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
304
case FQTOS: TYPE(3,1,1,3,1,0,0); break;
305
case FQTOD: TYPE(3,2,1,3,1,0,0); break;
306
case FITOQ: TYPE(3,3,1,1,0,0,0); break;
307
case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
308
case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
309
case FQTOI: TYPE(3,1,0,3,1,0,0); break;
310
case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
311
case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
312
case FADDD:
313
case FSUBD:
314
case FMULD:
315
case FDIVD: TYPE(2,2,1,2,1,2,1); break;
316
case FADDS:
317
case FSUBS:
318
case FMULS:
319
case FDIVS: TYPE(2,1,1,1,1,1,1); break;
320
case FSMULD: TYPE(2,2,1,1,1,1,1); break;
321
case FDTOS: TYPE(2,1,1,2,1,0,0); break;
322
case FSTOD: TYPE(2,2,1,1,1,0,0); break;
323
case FSTOI: TYPE(2,1,0,1,1,0,0); break;
324
case FDTOI: TYPE(2,1,0,2,1,0,0); break;
325
case FITOS: TYPE(2,1,1,1,0,0,0); break;
326
case FITOD: TYPE(2,2,1,1,0,0,0); break;
327
case FMOVS:
328
case FABSS:
329
case FNEGS: TYPE(2,1,0,1,0,0,0); break;
330
}
331
} else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
332
switch ((insn >> 5) & 0x1ff) {
333
case FCMPS: TYPE(3,0,0,1,1,1,1); break;
334
case FCMPES: TYPE(3,0,0,1,1,1,1); break;
335
case FCMPD: TYPE(3,0,0,2,1,2,1); break;
336
case FCMPED: TYPE(3,0,0,2,1,2,1); break;
337
case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
338
case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
339
}
340
}
341
342
if (!type) { /* oops, didn't recognise that FPop */
343
#ifdef DEBUG_MATHEMU
344
printk("attempt to emulate unrecognised FPop!\n");
345
#endif
346
return 0;
347
}
348
349
/* Decode the registers to be used */
350
freg = (*pfsr >> 14) & 0xf;
351
352
*pfsr &= ~0x1c000; /* clear the traptype bits */
353
354
freg = ((insn >> 14) & 0x1f);
355
switch (type & 0x3) { /* is rs1 single, double or quad? */
356
case 3:
357
if (freg & 3) { /* quadwords must have bits 4&5 of the */
358
/* encoded reg. number set to zero. */
359
*pfsr |= (6 << 14);
360
return 0; /* simulate invalid_fp_register exception */
361
}
362
fallthrough;
363
case 2:
364
if (freg & 1) { /* doublewords must have bit 5 zeroed */
365
*pfsr |= (6 << 14);
366
return 0;
367
}
368
}
369
rs1 = (argp)&fregs[freg];
370
switch (type & 0x7) {
371
case 7: FP_UNPACK_QP (QA, rs1); break;
372
case 6: FP_UNPACK_DP (DA, rs1); break;
373
case 5: FP_UNPACK_SP (SA, rs1); break;
374
}
375
freg = (insn & 0x1f);
376
switch ((type >> 3) & 0x3) { /* same again for rs2 */
377
case 3:
378
if (freg & 3) { /* quadwords must have bits 4&5 of the */
379
/* encoded reg. number set to zero. */
380
*pfsr |= (6 << 14);
381
return 0; /* simulate invalid_fp_register exception */
382
}
383
fallthrough;
384
case 2:
385
if (freg & 1) { /* doublewords must have bit 5 zeroed */
386
*pfsr |= (6 << 14);
387
return 0;
388
}
389
}
390
rs2 = (argp)&fregs[freg];
391
switch ((type >> 3) & 0x7) {
392
case 7: FP_UNPACK_QP (QB, rs2); break;
393
case 6: FP_UNPACK_DP (DB, rs2); break;
394
case 5: FP_UNPACK_SP (SB, rs2); break;
395
}
396
freg = ((insn >> 25) & 0x1f);
397
switch ((type >> 6) & 0x3) { /* and finally rd. This one's a bit different */
398
case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */
399
if (freg) { /* V8 has only one set of condition codes, so */
400
/* anything but 0 in the rd field is an error */
401
*pfsr |= (6 << 14); /* (should probably flag as invalid opcode */
402
return 0; /* but SIGFPE will do :-> ) */
403
}
404
break;
405
case 3:
406
if (freg & 3) { /* quadwords must have bits 4&5 of the */
407
/* encoded reg. number set to zero. */
408
*pfsr |= (6 << 14);
409
return 0; /* simulate invalid_fp_register exception */
410
}
411
fallthrough;
412
case 2:
413
if (freg & 1) { /* doublewords must have bit 5 zeroed */
414
*pfsr |= (6 << 14);
415
return 0;
416
}
417
fallthrough;
418
case 1:
419
rd = (void *)&fregs[freg];
420
break;
421
}
422
#ifdef DEBUG_MATHEMU
423
printk("executing insn...\n");
424
#endif
425
/* do the Right Thing */
426
switch ((insn >> 5) & 0x1ff) {
427
/* + */
428
case FADDS: FP_ADD_S (SR, SA, SB); break;
429
case FADDD: FP_ADD_D (DR, DA, DB); break;
430
case FADDQ: FP_ADD_Q (QR, QA, QB); break;
431
/* - */
432
case FSUBS: FP_SUB_S (SR, SA, SB); break;
433
case FSUBD: FP_SUB_D (DR, DA, DB); break;
434
case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
435
/* * */
436
case FMULS: FP_MUL_S (SR, SA, SB); break;
437
case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
438
FP_CONV (D, S, 2, 1, DB, SB);
439
case FMULD: FP_MUL_D (DR, DA, DB); break;
440
case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
441
FP_CONV (Q, D, 4, 2, QB, DB);
442
case FMULQ: FP_MUL_Q (QR, QA, QB); break;
443
/* / */
444
case FDIVS: FP_DIV_S (SR, SA, SB); break;
445
case FDIVD: FP_DIV_D (DR, DA, DB); break;
446
case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
447
/* sqrt */
448
case FSQRTS: FP_SQRT_S (SR, SB); break;
449
case FSQRTD: FP_SQRT_D (DR, DB); break;
450
case FSQRTQ: FP_SQRT_Q (QR, QB); break;
451
/* mov */
452
case FMOVS: rd->s = rs2->s; break;
453
case FABSS: rd->s = rs2->s & 0x7fffffff; break;
454
case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
455
/* float to int */
456
case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
457
case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
458
case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
459
/* int to float */
460
case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
461
case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
462
case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
463
/* float to float */
464
case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
465
case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
466
case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
467
case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
468
case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
469
case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
470
/* comparison */
471
case FCMPS:
472
case FCMPES:
473
FP_CMP_S(IR, SB, SA, 3);
474
if (IR == 3 &&
475
(((insn >> 5) & 0x1ff) == FCMPES ||
476
FP_ISSIGNAN_S(SA) ||
477
FP_ISSIGNAN_S(SB)))
478
FP_SET_EXCEPTION (FP_EX_INVALID);
479
break;
480
case FCMPD:
481
case FCMPED:
482
FP_CMP_D(IR, DB, DA, 3);
483
if (IR == 3 &&
484
(((insn >> 5) & 0x1ff) == FCMPED ||
485
FP_ISSIGNAN_D(DA) ||
486
FP_ISSIGNAN_D(DB)))
487
FP_SET_EXCEPTION (FP_EX_INVALID);
488
break;
489
case FCMPQ:
490
case FCMPEQ:
491
FP_CMP_Q(IR, QB, QA, 3);
492
if (IR == 3 &&
493
(((insn >> 5) & 0x1ff) == FCMPEQ ||
494
FP_ISSIGNAN_Q(QA) ||
495
FP_ISSIGNAN_Q(QB)))
496
FP_SET_EXCEPTION (FP_EX_INVALID);
497
}
498
if (!FP_INHIBIT_RESULTS) {
499
switch ((type >> 6) & 0x7) {
500
case 0: fsr = *pfsr;
501
if (IR == -1) IR = 2;
502
/* fcc is always fcc0 */
503
fsr &= ~0xc00; fsr |= (IR << 10);
504
*pfsr = fsr;
505
break;
506
case 1: rd->s = IR; break;
507
case 5: FP_PACK_SP (rd, SR); break;
508
case 6: FP_PACK_DP (rd, DR); break;
509
case 7: FP_PACK_QP (rd, QR); break;
510
}
511
}
512
if (_fex == 0)
513
return 1; /* success! */
514
return record_exception(pfsr, _fex);
515
}
516
517