Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/math-emu/math_64.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* arch/sparc64/math-emu/math.c
4
*
5
* Copyright (C) 1997,1999 Jakub Jelinek ([email protected])
6
* Copyright (C) 1999 David S. Miller ([email protected])
7
*
8
* Emulation routines originate from soft-fp package, which is part
9
* of glibc and has appropriate copyrights in it.
10
*/
11
12
#include <linux/types.h>
13
#include <linux/sched.h>
14
#include <linux/errno.h>
15
#include <linux/perf_event.h>
16
17
#include <asm/fpumacro.h>
18
#include <asm/ptrace.h>
19
#include <linux/uaccess.h>
20
#include <asm/cacheflush.h>
21
22
#include "sfp-util_64.h"
23
#include <math-emu/soft-fp.h>
24
#include <math-emu/single.h>
25
#include <math-emu/double.h>
26
#include <math-emu/quad.h>
27
28
/* QUAD - ftt == 3 */
29
#define FMOVQ 0x003
30
#define FNEGQ 0x007
31
#define FABSQ 0x00b
32
#define FSQRTQ 0x02b
33
#define FADDQ 0x043
34
#define FSUBQ 0x047
35
#define FMULQ 0x04b
36
#define FDIVQ 0x04f
37
#define FDMULQ 0x06e
38
#define FQTOX 0x083
39
#define FXTOQ 0x08c
40
#define FQTOS 0x0c7
41
#define FQTOD 0x0cb
42
#define FITOQ 0x0cc
43
#define FSTOQ 0x0cd
44
#define FDTOQ 0x0ce
45
#define FQTOI 0x0d3
46
/* SUBNORMAL - ftt == 2 */
47
#define FSQRTS 0x029
48
#define FSQRTD 0x02a
49
#define FADDS 0x041
50
#define FADDD 0x042
51
#define FSUBS 0x045
52
#define FSUBD 0x046
53
#define FMULS 0x049
54
#define FMULD 0x04a
55
#define FDIVS 0x04d
56
#define FDIVD 0x04e
57
#define FSMULD 0x069
58
#define FSTOX 0x081
59
#define FDTOX 0x082
60
#define FDTOS 0x0c6
61
#define FSTOD 0x0c9
62
#define FSTOI 0x0d1
63
#define FDTOI 0x0d2
64
#define FXTOS 0x084 /* Only Ultra-III generates this. */
65
#define FXTOD 0x088 /* Only Ultra-III generates this. */
66
#if 0 /* Optimized inline in sparc64/kernel/entry.S */
67
#define FITOS 0x0c4 /* Only Ultra-III generates this. */
68
#endif
69
#define FITOD 0x0c8 /* Only Ultra-III generates this. */
70
/* FPOP2 */
71
#define FCMPQ 0x053
72
#define FCMPEQ 0x057
73
#define FMOVQ0 0x003
74
#define FMOVQ1 0x043
75
#define FMOVQ2 0x083
76
#define FMOVQ3 0x0c3
77
#define FMOVQI 0x103
78
#define FMOVQX 0x183
79
#define FMOVQZ 0x027
80
#define FMOVQLE 0x047
81
#define FMOVQLZ 0x067
82
#define FMOVQNZ 0x0a7
83
#define FMOVQGZ 0x0c7
84
#define FMOVQGE 0x0e7
85
86
#define FSR_TEM_SHIFT 23UL
87
#define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT)
88
#define FSR_AEXC_SHIFT 5UL
89
#define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT)
90
#define FSR_CEXC_SHIFT 0UL
91
#define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
92
93
/* All routines returning an exception to raise should detect
94
* such exceptions _before_ rounding to be consistent with
95
* the behavior of the hardware in the implemented cases
96
* (and thus with the recommendations in the V9 architecture
97
* manual).
98
*
99
* We return 0 if a SIGFPE should be sent, 1 otherwise.
100
*/
101
static inline int record_exception(struct pt_regs *regs, int eflag)
102
{
103
u64 fsr = current_thread_info()->xfsr[0];
104
int would_trap;
105
106
/* Determine if this exception would have generated a trap. */
107
would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
108
109
/* If trapping, we only want to signal one bit. */
110
if(would_trap != 0) {
111
eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
112
if((eflag & (eflag - 1)) != 0) {
113
if(eflag & FP_EX_INVALID)
114
eflag = FP_EX_INVALID;
115
else if(eflag & FP_EX_OVERFLOW)
116
eflag = FP_EX_OVERFLOW;
117
else if(eflag & FP_EX_UNDERFLOW)
118
eflag = FP_EX_UNDERFLOW;
119
else if(eflag & FP_EX_DIVZERO)
120
eflag = FP_EX_DIVZERO;
121
else if(eflag & FP_EX_INEXACT)
122
eflag = FP_EX_INEXACT;
123
}
124
}
125
126
/* Set CEXC, here is the rule:
127
*
128
* In general all FPU ops will set one and only one
129
* bit in the CEXC field, this is always the case
130
* when the IEEE exception trap is enabled in TEM.
131
*/
132
fsr &= ~(FSR_CEXC_MASK);
133
fsr |= ((long)eflag << FSR_CEXC_SHIFT);
134
135
/* Set the AEXC field, rule is:
136
*
137
* If a trap would not be generated, the
138
* CEXC just generated is OR'd into the
139
* existing value of AEXC.
140
*/
141
if(would_trap == 0)
142
fsr |= ((long)eflag << FSR_AEXC_SHIFT);
143
144
/* If trapping, indicate fault trap type IEEE. */
145
if(would_trap != 0)
146
fsr |= (1UL << 14);
147
148
current_thread_info()->xfsr[0] = fsr;
149
150
/* If we will not trap, advance the program counter over
151
* the instruction being handled.
152
*/
153
if(would_trap == 0) {
154
regs->tpc = regs->tnpc;
155
regs->tnpc += 4;
156
}
157
158
return (would_trap ? 0 : 1);
159
}
160
161
typedef union {
162
u32 s;
163
u64 d;
164
u64 q[2];
165
} *argp;
166
167
int do_mathemu(struct pt_regs *regs, struct fpustate *f, bool illegal_insn_trap)
168
{
169
unsigned long pc = regs->tpc;
170
unsigned long tstate = regs->tstate;
171
u32 insn = 0;
172
int type = 0;
173
/* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
174
whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
175
non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
176
#define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
177
int freg;
178
static u64 zero[2] = { 0L, 0L };
179
int flags;
180
FP_DECL_EX;
181
FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
182
FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
183
FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
184
int IR;
185
long XR, xfsr;
186
187
if (tstate & TSTATE_PRIV)
188
die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
189
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
190
if (test_thread_flag(TIF_32BIT))
191
pc = (u32)pc;
192
if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
193
if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
194
switch ((insn >> 5) & 0x1ff) {
195
/* QUAD - ftt == 3 */
196
case FMOVQ:
197
case FNEGQ:
198
case FABSQ: TYPE(3,3,0,3,0,0,0); break;
199
case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
200
case FADDQ:
201
case FSUBQ:
202
case FMULQ:
203
case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
204
case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
205
case FQTOX: TYPE(3,2,0,3,1,0,0); break;
206
case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
207
case FQTOS: TYPE(3,1,1,3,1,0,0); break;
208
case FQTOD: TYPE(3,2,1,3,1,0,0); break;
209
case FITOQ: TYPE(3,3,1,1,0,0,0); break;
210
case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
211
case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
212
case FQTOI: TYPE(3,1,0,3,1,0,0); break;
213
214
/* We can get either unimplemented or unfinished
215
* for these cases. Pre-Niagara systems generate
216
* unfinished fpop for SUBNORMAL cases, and Niagara
217
* always gives unimplemented fpop for fsqrt{s,d}.
218
*/
219
case FSQRTS: {
220
unsigned long x = current_thread_info()->xfsr[0];
221
222
x = (x >> 14) & 0x7;
223
TYPE(x,1,1,1,1,0,0);
224
break;
225
}
226
227
case FSQRTD: {
228
unsigned long x = current_thread_info()->xfsr[0];
229
230
x = (x >> 14) & 0x7;
231
TYPE(x,2,1,2,1,0,0);
232
break;
233
}
234
235
/* SUBNORMAL - ftt == 2 */
236
case FADDD:
237
case FSUBD:
238
case FMULD:
239
case FDIVD: TYPE(2,2,1,2,1,2,1); break;
240
case FADDS:
241
case FSUBS:
242
case FMULS:
243
case FDIVS: TYPE(2,1,1,1,1,1,1); break;
244
case FSMULD: TYPE(2,2,1,1,1,1,1); break;
245
case FSTOX: TYPE(2,2,0,1,1,0,0); break;
246
case FDTOX: TYPE(2,2,0,2,1,0,0); break;
247
case FDTOS: TYPE(2,1,1,2,1,0,0); break;
248
case FSTOD: TYPE(2,2,1,1,1,0,0); break;
249
case FSTOI: TYPE(2,1,0,1,1,0,0); break;
250
case FDTOI: TYPE(2,1,0,2,1,0,0); break;
251
252
/* Only Ultra-III generates these */
253
case FXTOS: TYPE(2,1,1,2,0,0,0); break;
254
case FXTOD: TYPE(2,2,1,2,0,0,0); break;
255
#if 0 /* Optimized inline in sparc64/kernel/entry.S */
256
case FITOS: TYPE(2,1,1,1,0,0,0); break;
257
#endif
258
case FITOD: TYPE(2,2,1,1,0,0,0); break;
259
}
260
}
261
else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
262
IR = 2;
263
switch ((insn >> 5) & 0x1ff) {
264
case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
265
case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
266
/* Now the conditional fmovq support */
267
case FMOVQ0:
268
case FMOVQ1:
269
case FMOVQ2:
270
case FMOVQ3:
271
/* fmovq %fccX, %fY, %fZ */
272
if (!((insn >> 11) & 3))
273
XR = current_thread_info()->xfsr[0] >> 10;
274
else
275
XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
276
XR &= 3;
277
IR = 0;
278
switch ((insn >> 14) & 0x7) {
279
/* case 0: IR = 0; break; */ /* Never */
280
case 1: if (XR) IR = 1; break; /* Not Equal */
281
case 2: if (XR == 1 || XR == 2) IR = 1; break; /* Less or Greater */
282
case 3: if (XR & 1) IR = 1; break; /* Unordered or Less */
283
case 4: if (XR == 1) IR = 1; break; /* Less */
284
case 5: if (XR & 2) IR = 1; break; /* Unordered or Greater */
285
case 6: if (XR == 2) IR = 1; break; /* Greater */
286
case 7: if (XR == 3) IR = 1; break; /* Unordered */
287
}
288
if ((insn >> 14) & 8)
289
IR ^= 1;
290
break;
291
case FMOVQI:
292
case FMOVQX:
293
/* fmovq %[ix]cc, %fY, %fZ */
294
XR = regs->tstate >> 32;
295
if ((insn >> 5) & 0x80)
296
XR >>= 4;
297
XR &= 0xf;
298
IR = 0;
299
freg = ((XR >> 2) ^ XR) & 2;
300
switch ((insn >> 14) & 0x7) {
301
/* case 0: IR = 0; break; */ /* Never */
302
case 1: if (XR & 4) IR = 1; break; /* Equal */
303
case 2: if ((XR & 4) || freg) IR = 1; break; /* Less or Equal */
304
case 3: if (freg) IR = 1; break; /* Less */
305
case 4: if (XR & 5) IR = 1; break; /* Less or Equal Unsigned */
306
case 5: if (XR & 1) IR = 1; break; /* Carry Set */
307
case 6: if (XR & 8) IR = 1; break; /* Negative */
308
case 7: if (XR & 2) IR = 1; break; /* Overflow Set */
309
}
310
if ((insn >> 14) & 8)
311
IR ^= 1;
312
break;
313
case FMOVQZ:
314
case FMOVQLE:
315
case FMOVQLZ:
316
case FMOVQNZ:
317
case FMOVQGZ:
318
case FMOVQGE:
319
freg = (insn >> 14) & 0x1f;
320
if (!freg)
321
XR = 0;
322
else if (freg < 16)
323
XR = regs->u_regs[freg];
324
else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
325
struct reg_window32 __user *win32;
326
flushw_user ();
327
win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
328
get_user(XR, &win32->locals[freg - 16]);
329
} else {
330
struct reg_window __user *win;
331
flushw_user ();
332
win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
333
get_user(XR, &win->locals[freg - 16]);
334
}
335
IR = 0;
336
switch ((insn >> 10) & 3) {
337
case 1: if (!XR) IR = 1; break; /* Register Zero */
338
case 2: if (XR <= 0) IR = 1; break; /* Register Less Than or Equal to Zero */
339
case 3: if (XR < 0) IR = 1; break; /* Register Less Than Zero */
340
}
341
if ((insn >> 10) & 4)
342
IR ^= 1;
343
break;
344
}
345
if (IR == 0) {
346
/* The fmov test was false. Do a nop instead */
347
current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
348
regs->tpc = regs->tnpc;
349
regs->tnpc += 4;
350
return 1;
351
} else if (IR == 1) {
352
/* Change the instruction into plain fmovq */
353
insn = (insn & 0x3e00001f) | 0x81a00060;
354
TYPE(3,3,0,3,0,0,0);
355
}
356
}
357
}
358
if (type) {
359
argp rs1 = NULL, rs2 = NULL, rd = NULL;
360
361
/* Starting with UltraSPARC-T2, the cpu does not set the FP Trap
362
* Type field in the %fsr to unimplemented_FPop. Nor does it
363
* use the fp_exception_other trap. Instead it signals an
364
* illegal instruction and leaves the FP trap type field of
365
* the %fsr unchanged.
366
*/
367
if (!illegal_insn_trap) {
368
int ftt = (current_thread_info()->xfsr[0] >> 14) & 0x7;
369
if (ftt != (type >> 9))
370
goto err;
371
}
372
current_thread_info()->xfsr[0] &= ~0x1c000;
373
freg = ((insn >> 14) & 0x1f);
374
switch (type & 0x3) {
375
case 3: if (freg & 2) {
376
current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
377
goto err;
378
}
379
case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
380
case 1: rs1 = (argp)&f->regs[freg];
381
flags = (freg < 32) ? FPRS_DL : FPRS_DU;
382
if (!(current_thread_info()->fpsaved[0] & flags))
383
rs1 = (argp)&zero;
384
break;
385
}
386
switch (type & 0x7) {
387
case 7: FP_UNPACK_QP (QA, rs1); break;
388
case 6: FP_UNPACK_DP (DA, rs1); break;
389
case 5: FP_UNPACK_SP (SA, rs1); break;
390
}
391
freg = (insn & 0x1f);
392
switch ((type >> 3) & 0x3) {
393
case 3: if (freg & 2) {
394
current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
395
goto err;
396
}
397
case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
398
case 1: rs2 = (argp)&f->regs[freg];
399
flags = (freg < 32) ? FPRS_DL : FPRS_DU;
400
if (!(current_thread_info()->fpsaved[0] & flags))
401
rs2 = (argp)&zero;
402
break;
403
}
404
switch ((type >> 3) & 0x7) {
405
case 7: FP_UNPACK_QP (QB, rs2); break;
406
case 6: FP_UNPACK_DP (DB, rs2); break;
407
case 5: FP_UNPACK_SP (SB, rs2); break;
408
}
409
freg = ((insn >> 25) & 0x1f);
410
switch ((type >> 6) & 0x3) {
411
case 3: if (freg & 2) {
412
current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
413
goto err;
414
}
415
case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
416
case 1: rd = (argp)&f->regs[freg];
417
flags = (freg < 32) ? FPRS_DL : FPRS_DU;
418
if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
419
current_thread_info()->fpsaved[0] = FPRS_FEF;
420
current_thread_info()->gsr[0] = 0;
421
}
422
if (!(current_thread_info()->fpsaved[0] & flags)) {
423
if (freg < 32)
424
memset(f->regs, 0, 32*sizeof(u32));
425
else
426
memset(f->regs+32, 0, 32*sizeof(u32));
427
}
428
current_thread_info()->fpsaved[0] |= flags;
429
break;
430
}
431
switch ((insn >> 5) & 0x1ff) {
432
/* + */
433
case FADDS: FP_ADD_S (SR, SA, SB); break;
434
case FADDD: FP_ADD_D (DR, DA, DB); break;
435
case FADDQ: FP_ADD_Q (QR, QA, QB); break;
436
/* - */
437
case FSUBS: FP_SUB_S (SR, SA, SB); break;
438
case FSUBD: FP_SUB_D (DR, DA, DB); break;
439
case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
440
/* * */
441
case FMULS: FP_MUL_S (SR, SA, SB); break;
442
case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
443
FP_CONV (D, S, 1, 1, DB, SB);
444
case FMULD: FP_MUL_D (DR, DA, DB); break;
445
case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
446
FP_CONV (Q, D, 2, 1, QB, DB);
447
case FMULQ: FP_MUL_Q (QR, QA, QB); break;
448
/* / */
449
case FDIVS: FP_DIV_S (SR, SA, SB); break;
450
case FDIVD: FP_DIV_D (DR, DA, DB); break;
451
case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
452
/* sqrt */
453
case FSQRTS: FP_SQRT_S (SR, SB); break;
454
case FSQRTD: FP_SQRT_D (DR, DB); break;
455
case FSQRTQ: FP_SQRT_Q (QR, QB); break;
456
/* mov */
457
case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
458
case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
459
case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
460
/* float to int */
461
case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
462
case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
463
case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
464
case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
465
case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
466
case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
467
/* int to float */
468
case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
469
case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
470
/* Only Ultra-III generates these */
471
case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
472
case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
473
#if 0 /* Optimized inline in sparc64/kernel/entry.S */
474
case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
475
#endif
476
case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
477
/* float to float */
478
case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
479
case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
480
case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
481
case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
482
case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
483
case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
484
/* comparison */
485
case FCMPQ:
486
case FCMPEQ:
487
FP_CMP_Q(XR, QB, QA, 3);
488
if (XR == 3 &&
489
(((insn >> 5) & 0x1ff) == FCMPEQ ||
490
FP_ISSIGNAN_Q(QA) ||
491
FP_ISSIGNAN_Q(QB)))
492
FP_SET_EXCEPTION (FP_EX_INVALID);
493
}
494
if (!FP_INHIBIT_RESULTS) {
495
switch ((type >> 6) & 0x7) {
496
case 0: xfsr = current_thread_info()->xfsr[0];
497
if (XR == -1) XR = 2;
498
switch (freg & 3) {
499
/* fcc0, 1, 2, 3 */
500
case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
501
case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
502
case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
503
case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
504
}
505
current_thread_info()->xfsr[0] = xfsr;
506
break;
507
case 1: rd->s = IR; break;
508
case 2: rd->d = XR; break;
509
case 5: FP_PACK_SP (rd, SR); break;
510
case 6: FP_PACK_DP (rd, DR); break;
511
case 7: FP_PACK_QP (rd, QR); break;
512
}
513
}
514
515
if(_fex != 0)
516
return record_exception(regs, _fex);
517
518
/* Success and no exceptions detected. */
519
current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
520
regs->tpc = regs->tnpc;
521
regs->tnpc += 4;
522
return 1;
523
}
524
err: return 0;
525
}
526
527