Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/mm/init_64.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* arch/sparc64/mm/init.c
4
*
5
* Copyright (C) 1996-1999 David S. Miller ([email protected])
6
* Copyright (C) 1997-1999 Jakub Jelinek ([email protected])
7
*/
8
9
#include <linux/extable.h>
10
#include <linux/kernel.h>
11
#include <linux/sched.h>
12
#include <linux/string.h>
13
#include <linux/init.h>
14
#include <linux/memblock.h>
15
#include <linux/mm.h>
16
#include <linux/hugetlb.h>
17
#include <linux/initrd.h>
18
#include <linux/swap.h>
19
#include <linux/pagemap.h>
20
#include <linux/poison.h>
21
#include <linux/fs.h>
22
#include <linux/seq_file.h>
23
#include <linux/kprobes.h>
24
#include <linux/cache.h>
25
#include <linux/sort.h>
26
#include <linux/ioport.h>
27
#include <linux/percpu.h>
28
#include <linux/mmzone.h>
29
#include <linux/gfp.h>
30
#include <linux/bootmem_info.h>
31
32
#include <asm/head.h>
33
#include <asm/page.h>
34
#include <asm/pgalloc.h>
35
#include <asm/oplib.h>
36
#include <asm/iommu.h>
37
#include <asm/io.h>
38
#include <linux/uaccess.h>
39
#include <asm/mmu_context.h>
40
#include <asm/tlbflush.h>
41
#include <asm/dma.h>
42
#include <asm/starfire.h>
43
#include <asm/tlb.h>
44
#include <asm/spitfire.h>
45
#include <asm/sections.h>
46
#include <asm/tsb.h>
47
#include <asm/hypervisor.h>
48
#include <asm/prom.h>
49
#include <asm/mdesc.h>
50
#include <asm/cpudata.h>
51
#include <asm/setup.h>
52
#include <asm/irq.h>
53
54
#include "init_64.h"
55
56
unsigned long kern_linear_pte_xor[4] __read_mostly;
57
static unsigned long page_cache4v_flag;
58
59
/* A bitmap, two bits for every 256MB of physical memory. These two
60
* bits determine what page size we use for kernel linear
61
* translations. They form an index into kern_linear_pte_xor[]. The
62
* value in the indexed slot is XOR'd with the TLB miss virtual
63
* address to form the resulting TTE. The mapping is:
64
*
65
* 0 ==> 4MB
66
* 1 ==> 256MB
67
* 2 ==> 2GB
68
* 3 ==> 16GB
69
*
70
* All sun4v chips support 256MB pages. Only SPARC-T4 and later
71
* support 2GB pages, and hopefully future cpus will support the 16GB
72
* pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73
* if these larger page sizes are not supported by the cpu.
74
*
75
* It would be nice to determine this from the machine description
76
* 'cpu' properties, but we need to have this table setup before the
77
* MDESC is initialized.
78
*/
79
80
#ifndef CONFIG_DEBUG_PAGEALLOC
81
/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82
* Space is allocated for this right after the trap table in
83
* arch/sparc64/kernel/head.S
84
*/
85
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86
#endif
87
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89
static unsigned long cpu_pgsz_mask;
90
91
#define MAX_BANKS 1024
92
93
static struct linux_prom64_registers pavail[MAX_BANKS];
94
static int pavail_ents;
95
96
u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98
static int cmp_p64(const void *a, const void *b)
99
{
100
const struct linux_prom64_registers *x = a, *y = b;
101
102
if (x->phys_addr > y->phys_addr)
103
return 1;
104
if (x->phys_addr < y->phys_addr)
105
return -1;
106
return 0;
107
}
108
109
static void __init read_obp_memory(const char *property,
110
struct linux_prom64_registers *regs,
111
int *num_ents)
112
{
113
phandle node = prom_finddevice("/memory");
114
int prop_size = prom_getproplen(node, property);
115
int ents, ret, i;
116
117
ents = prop_size / sizeof(struct linux_prom64_registers);
118
if (ents > MAX_BANKS) {
119
prom_printf("The machine has more %s property entries than "
120
"this kernel can support (%d).\n",
121
property, MAX_BANKS);
122
prom_halt();
123
}
124
125
ret = prom_getproperty(node, property, (char *) regs, prop_size);
126
if (ret == -1) {
127
prom_printf("Couldn't get %s property from /memory.\n",
128
property);
129
prom_halt();
130
}
131
132
/* Sanitize what we got from the firmware, by page aligning
133
* everything.
134
*/
135
for (i = 0; i < ents; i++) {
136
unsigned long base, size;
137
138
base = regs[i].phys_addr;
139
size = regs[i].reg_size;
140
141
size &= PAGE_MASK;
142
if (base & ~PAGE_MASK) {
143
unsigned long new_base = PAGE_ALIGN(base);
144
145
size -= new_base - base;
146
if ((long) size < 0L)
147
size = 0UL;
148
base = new_base;
149
}
150
if (size == 0UL) {
151
/* If it is empty, simply get rid of it.
152
* This simplifies the logic of the other
153
* functions that process these arrays.
154
*/
155
memmove(&regs[i], &regs[i + 1],
156
(ents - i - 1) * sizeof(regs[0]));
157
i--;
158
ents--;
159
continue;
160
}
161
regs[i].phys_addr = base;
162
regs[i].reg_size = size;
163
}
164
165
*num_ents = ents;
166
167
sort(regs, ents, sizeof(struct linux_prom64_registers),
168
cmp_p64, NULL);
169
}
170
171
/* Kernel physical address base and size in bytes. */
172
unsigned long kern_base __read_mostly;
173
unsigned long kern_size __read_mostly;
174
175
/* Initial ramdisk setup */
176
extern unsigned long sparc_ramdisk_image64;
177
extern unsigned int sparc_ramdisk_image;
178
extern unsigned int sparc_ramdisk_size;
179
180
struct page *mem_map_zero __read_mostly;
181
EXPORT_SYMBOL(mem_map_zero);
182
183
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185
unsigned long sparc64_kern_pri_context __read_mostly;
186
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187
unsigned long sparc64_kern_sec_context __read_mostly;
188
189
int num_kernel_image_mappings;
190
191
#ifdef CONFIG_DEBUG_DCFLUSH
192
atomic_t dcpage_flushes = ATOMIC_INIT(0);
193
#ifdef CONFIG_SMP
194
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195
#endif
196
#endif
197
198
inline void flush_dcache_folio_impl(struct folio *folio)
199
{
200
unsigned int i, nr = folio_nr_pages(folio);
201
202
BUG_ON(tlb_type == hypervisor);
203
#ifdef CONFIG_DEBUG_DCFLUSH
204
atomic_inc(&dcpage_flushes);
205
#endif
206
207
#ifdef DCACHE_ALIASING_POSSIBLE
208
for (i = 0; i < nr; i++)
209
__flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
210
((tlb_type == spitfire) &&
211
folio_flush_mapping(folio) != NULL));
212
#else
213
if (folio_flush_mapping(folio) != NULL &&
214
tlb_type == spitfire) {
215
for (i = 0; i < nr; i++)
216
__flush_icache_page((pfn + i) * PAGE_SIZE);
217
}
218
#endif
219
}
220
221
#define PG_dcache_dirty PG_arch_1
222
#define PG_dcache_cpu_shift 32UL
223
#define PG_dcache_cpu_mask \
224
((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
225
226
#define dcache_dirty_cpu(folio) \
227
(((folio)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
228
229
static inline void set_dcache_dirty(struct folio *folio, int this_cpu)
230
{
231
unsigned long mask = this_cpu;
232
unsigned long non_cpu_bits;
233
234
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
235
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
236
237
__asm__ __volatile__("1:\n\t"
238
"ldx [%2], %%g7\n\t"
239
"and %%g7, %1, %%g1\n\t"
240
"or %%g1, %0, %%g1\n\t"
241
"casx [%2], %%g7, %%g1\n\t"
242
"cmp %%g7, %%g1\n\t"
243
"bne,pn %%xcc, 1b\n\t"
244
" nop"
245
: /* no outputs */
246
: "r" (mask), "r" (non_cpu_bits), "r" (&folio->flags)
247
: "g1", "g7");
248
}
249
250
static inline void clear_dcache_dirty_cpu(struct folio *folio, unsigned long cpu)
251
{
252
unsigned long mask = (1UL << PG_dcache_dirty);
253
254
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
255
"1:\n\t"
256
"ldx [%2], %%g7\n\t"
257
"srlx %%g7, %4, %%g1\n\t"
258
"and %%g1, %3, %%g1\n\t"
259
"cmp %%g1, %0\n\t"
260
"bne,pn %%icc, 2f\n\t"
261
" andn %%g7, %1, %%g1\n\t"
262
"casx [%2], %%g7, %%g1\n\t"
263
"cmp %%g7, %%g1\n\t"
264
"bne,pn %%xcc, 1b\n\t"
265
" nop\n"
266
"2:"
267
: /* no outputs */
268
: "r" (cpu), "r" (mask), "r" (&folio->flags),
269
"i" (PG_dcache_cpu_mask),
270
"i" (PG_dcache_cpu_shift)
271
: "g1", "g7");
272
}
273
274
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
275
{
276
unsigned long tsb_addr = (unsigned long) ent;
277
278
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
279
tsb_addr = __pa(tsb_addr);
280
281
__tsb_insert(tsb_addr, tag, pte);
282
}
283
284
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
285
286
static void flush_dcache(unsigned long pfn)
287
{
288
struct page *page;
289
290
page = pfn_to_page(pfn);
291
if (page) {
292
struct folio *folio = page_folio(page);
293
unsigned long pg_flags;
294
295
pg_flags = folio->flags;
296
if (pg_flags & (1UL << PG_dcache_dirty)) {
297
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
298
PG_dcache_cpu_mask);
299
int this_cpu = get_cpu();
300
301
/* This is just to optimize away some function calls
302
* in the SMP case.
303
*/
304
if (cpu == this_cpu)
305
flush_dcache_folio_impl(folio);
306
else
307
smp_flush_dcache_folio_impl(folio, cpu);
308
309
clear_dcache_dirty_cpu(folio, cpu);
310
311
put_cpu();
312
}
313
}
314
}
315
316
/* mm->context.lock must be held */
317
static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
318
unsigned long tsb_hash_shift, unsigned long address,
319
unsigned long tte)
320
{
321
struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
322
unsigned long tag;
323
324
if (unlikely(!tsb))
325
return;
326
327
tsb += ((address >> tsb_hash_shift) &
328
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329
tag = (address >> 22UL);
330
tsb_insert(tsb, tag, tte);
331
}
332
333
#ifdef CONFIG_HUGETLB_PAGE
334
static int __init hugetlbpage_init(void)
335
{
336
hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
337
hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
338
hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
339
hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
340
341
return 0;
342
}
343
344
arch_initcall(hugetlbpage_init);
345
346
static void __init pud_huge_patch(void)
347
{
348
struct pud_huge_patch_entry *p;
349
unsigned long addr;
350
351
p = &__pud_huge_patch;
352
addr = p->addr;
353
*(unsigned int *)addr = p->insn;
354
355
__asm__ __volatile__("flush %0" : : "r" (addr));
356
}
357
358
bool __init arch_hugetlb_valid_size(unsigned long size)
359
{
360
unsigned int hugepage_shift = ilog2(size);
361
unsigned short hv_pgsz_idx;
362
unsigned int hv_pgsz_mask;
363
364
switch (hugepage_shift) {
365
case HPAGE_16GB_SHIFT:
366
hv_pgsz_mask = HV_PGSZ_MASK_16GB;
367
hv_pgsz_idx = HV_PGSZ_IDX_16GB;
368
pud_huge_patch();
369
break;
370
case HPAGE_2GB_SHIFT:
371
hv_pgsz_mask = HV_PGSZ_MASK_2GB;
372
hv_pgsz_idx = HV_PGSZ_IDX_2GB;
373
break;
374
case HPAGE_256MB_SHIFT:
375
hv_pgsz_mask = HV_PGSZ_MASK_256MB;
376
hv_pgsz_idx = HV_PGSZ_IDX_256MB;
377
break;
378
case HPAGE_SHIFT:
379
hv_pgsz_mask = HV_PGSZ_MASK_4MB;
380
hv_pgsz_idx = HV_PGSZ_IDX_4MB;
381
break;
382
case HPAGE_64K_SHIFT:
383
hv_pgsz_mask = HV_PGSZ_MASK_64K;
384
hv_pgsz_idx = HV_PGSZ_IDX_64K;
385
break;
386
default:
387
hv_pgsz_mask = 0;
388
}
389
390
if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
391
return false;
392
393
return true;
394
}
395
#endif /* CONFIG_HUGETLB_PAGE */
396
397
void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
398
unsigned long address, pte_t *ptep, unsigned int nr)
399
{
400
struct mm_struct *mm;
401
unsigned long flags;
402
bool is_huge_tsb;
403
pte_t pte = *ptep;
404
unsigned int i;
405
406
if (tlb_type != hypervisor) {
407
unsigned long pfn = pte_pfn(pte);
408
409
if (pfn_valid(pfn))
410
flush_dcache(pfn);
411
}
412
413
mm = vma->vm_mm;
414
415
/* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
416
if (!pte_accessible(mm, pte))
417
return;
418
419
spin_lock_irqsave(&mm->context.lock, flags);
420
421
is_huge_tsb = false;
422
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
423
if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
424
unsigned long hugepage_size = PAGE_SIZE;
425
426
if (is_vm_hugetlb_page(vma))
427
hugepage_size = huge_page_size(hstate_vma(vma));
428
429
if (hugepage_size >= PUD_SIZE) {
430
unsigned long mask = 0x1ffc00000UL;
431
432
/* Transfer bits [32:22] from address to resolve
433
* at 4M granularity.
434
*/
435
pte_val(pte) &= ~mask;
436
pte_val(pte) |= (address & mask);
437
} else if (hugepage_size >= PMD_SIZE) {
438
/* We are fabricating 8MB pages using 4MB
439
* real hw pages.
440
*/
441
pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
442
}
443
444
if (hugepage_size >= PMD_SIZE) {
445
__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
446
REAL_HPAGE_SHIFT, address, pte_val(pte));
447
is_huge_tsb = true;
448
}
449
}
450
#endif
451
if (!is_huge_tsb) {
452
for (i = 0; i < nr; i++) {
453
__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
454
address, pte_val(pte));
455
address += PAGE_SIZE;
456
pte_val(pte) += PAGE_SIZE;
457
}
458
}
459
460
spin_unlock_irqrestore(&mm->context.lock, flags);
461
}
462
463
void flush_dcache_folio(struct folio *folio)
464
{
465
unsigned long pfn = folio_pfn(folio);
466
struct address_space *mapping;
467
int this_cpu;
468
469
if (tlb_type == hypervisor)
470
return;
471
472
/* Do not bother with the expensive D-cache flush if it
473
* is merely the zero page. The 'bigcore' testcase in GDB
474
* causes this case to run millions of times.
475
*/
476
if (is_zero_pfn(pfn))
477
return;
478
479
this_cpu = get_cpu();
480
481
mapping = folio_flush_mapping(folio);
482
if (mapping && !mapping_mapped(mapping)) {
483
bool dirty = test_bit(PG_dcache_dirty, &folio->flags);
484
if (dirty) {
485
int dirty_cpu = dcache_dirty_cpu(folio);
486
487
if (dirty_cpu == this_cpu)
488
goto out;
489
smp_flush_dcache_folio_impl(folio, dirty_cpu);
490
}
491
set_dcache_dirty(folio, this_cpu);
492
} else {
493
/* We could delay the flush for the !folio_mapping
494
* case too. But that case is for exec env/arg
495
* pages and those are %99 certainly going to get
496
* faulted into the tlb (and thus flushed) anyways.
497
*/
498
flush_dcache_folio_impl(folio);
499
}
500
501
out:
502
put_cpu();
503
}
504
EXPORT_SYMBOL(flush_dcache_folio);
505
506
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
507
{
508
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
509
if (tlb_type == spitfire) {
510
unsigned long kaddr;
511
512
/* This code only runs on Spitfire cpus so this is
513
* why we can assume _PAGE_PADDR_4U.
514
*/
515
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
516
unsigned long paddr, mask = _PAGE_PADDR_4U;
517
518
if (kaddr >= PAGE_OFFSET)
519
paddr = kaddr & mask;
520
else {
521
pte_t *ptep = virt_to_kpte(kaddr);
522
523
paddr = pte_val(*ptep) & mask;
524
}
525
__flush_icache_page(paddr);
526
}
527
}
528
}
529
EXPORT_SYMBOL(flush_icache_range);
530
531
void mmu_info(struct seq_file *m)
532
{
533
static const char *pgsz_strings[] = {
534
"8K", "64K", "512K", "4MB", "32MB",
535
"256MB", "2GB", "16GB",
536
};
537
int i, printed;
538
539
if (tlb_type == cheetah)
540
seq_printf(m, "MMU Type\t: Cheetah\n");
541
else if (tlb_type == cheetah_plus)
542
seq_printf(m, "MMU Type\t: Cheetah+\n");
543
else if (tlb_type == spitfire)
544
seq_printf(m, "MMU Type\t: Spitfire\n");
545
else if (tlb_type == hypervisor)
546
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
547
else
548
seq_printf(m, "MMU Type\t: ???\n");
549
550
seq_printf(m, "MMU PGSZs\t: ");
551
printed = 0;
552
for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
553
if (cpu_pgsz_mask & (1UL << i)) {
554
seq_printf(m, "%s%s",
555
printed ? "," : "", pgsz_strings[i]);
556
printed++;
557
}
558
}
559
seq_putc(m, '\n');
560
561
#ifdef CONFIG_DEBUG_DCFLUSH
562
seq_printf(m, "DCPageFlushes\t: %d\n",
563
atomic_read(&dcpage_flushes));
564
#ifdef CONFIG_SMP
565
seq_printf(m, "DCPageFlushesXC\t: %d\n",
566
atomic_read(&dcpage_flushes_xcall));
567
#endif /* CONFIG_SMP */
568
#endif /* CONFIG_DEBUG_DCFLUSH */
569
}
570
571
struct linux_prom_translation prom_trans[512] __read_mostly;
572
unsigned int prom_trans_ents __read_mostly;
573
574
unsigned long kern_locked_tte_data;
575
576
/* The obp translations are saved based on 8k pagesize, since obp can
577
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
578
* HI_OBP_ADDRESS range are handled in ktlb.S.
579
*/
580
static inline int in_obp_range(unsigned long vaddr)
581
{
582
return (vaddr >= LOW_OBP_ADDRESS &&
583
vaddr < HI_OBP_ADDRESS);
584
}
585
586
static int cmp_ptrans(const void *a, const void *b)
587
{
588
const struct linux_prom_translation *x = a, *y = b;
589
590
if (x->virt > y->virt)
591
return 1;
592
if (x->virt < y->virt)
593
return -1;
594
return 0;
595
}
596
597
/* Read OBP translations property into 'prom_trans[]'. */
598
static void __init read_obp_translations(void)
599
{
600
int n, node, ents, first, last, i;
601
602
node = prom_finddevice("/virtual-memory");
603
n = prom_getproplen(node, "translations");
604
if (unlikely(n == 0 || n == -1)) {
605
prom_printf("prom_mappings: Couldn't get size.\n");
606
prom_halt();
607
}
608
if (unlikely(n > sizeof(prom_trans))) {
609
prom_printf("prom_mappings: Size %d is too big.\n", n);
610
prom_halt();
611
}
612
613
if ((n = prom_getproperty(node, "translations",
614
(char *)&prom_trans[0],
615
sizeof(prom_trans))) == -1) {
616
prom_printf("prom_mappings: Couldn't get property.\n");
617
prom_halt();
618
}
619
620
n = n / sizeof(struct linux_prom_translation);
621
622
ents = n;
623
624
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
625
cmp_ptrans, NULL);
626
627
/* Now kick out all the non-OBP entries. */
628
for (i = 0; i < ents; i++) {
629
if (in_obp_range(prom_trans[i].virt))
630
break;
631
}
632
first = i;
633
for (; i < ents; i++) {
634
if (!in_obp_range(prom_trans[i].virt))
635
break;
636
}
637
last = i;
638
639
for (i = 0; i < (last - first); i++) {
640
struct linux_prom_translation *src = &prom_trans[i + first];
641
struct linux_prom_translation *dest = &prom_trans[i];
642
643
*dest = *src;
644
}
645
for (; i < ents; i++) {
646
struct linux_prom_translation *dest = &prom_trans[i];
647
dest->virt = dest->size = dest->data = 0x0UL;
648
}
649
650
prom_trans_ents = last - first;
651
652
if (tlb_type == spitfire) {
653
/* Clear diag TTE bits. */
654
for (i = 0; i < prom_trans_ents; i++)
655
prom_trans[i].data &= ~0x0003fe0000000000UL;
656
}
657
658
/* Force execute bit on. */
659
for (i = 0; i < prom_trans_ents; i++)
660
prom_trans[i].data |= (tlb_type == hypervisor ?
661
_PAGE_EXEC_4V : _PAGE_EXEC_4U);
662
}
663
664
static void __init hypervisor_tlb_lock(unsigned long vaddr,
665
unsigned long pte,
666
unsigned long mmu)
667
{
668
unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
669
670
if (ret != 0) {
671
prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
672
"errors with %lx\n", vaddr, 0, pte, mmu, ret);
673
prom_halt();
674
}
675
}
676
677
static unsigned long kern_large_tte(unsigned long paddr);
678
679
static void __init remap_kernel(void)
680
{
681
unsigned long phys_page, tte_vaddr, tte_data;
682
int i, tlb_ent = sparc64_highest_locked_tlbent();
683
684
tte_vaddr = (unsigned long) KERNBASE;
685
phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
686
tte_data = kern_large_tte(phys_page);
687
688
kern_locked_tte_data = tte_data;
689
690
/* Now lock us into the TLBs via Hypervisor or OBP. */
691
if (tlb_type == hypervisor) {
692
for (i = 0; i < num_kernel_image_mappings; i++) {
693
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
694
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
695
tte_vaddr += 0x400000;
696
tte_data += 0x400000;
697
}
698
} else {
699
for (i = 0; i < num_kernel_image_mappings; i++) {
700
prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
701
prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
702
tte_vaddr += 0x400000;
703
tte_data += 0x400000;
704
}
705
sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
706
}
707
if (tlb_type == cheetah_plus) {
708
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
709
CTX_CHEETAH_PLUS_NUC);
710
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
711
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
712
}
713
}
714
715
716
static void __init inherit_prom_mappings(void)
717
{
718
/* Now fixup OBP's idea about where we really are mapped. */
719
printk("Remapping the kernel... ");
720
remap_kernel();
721
printk("done.\n");
722
}
723
724
void prom_world(int enter)
725
{
726
/*
727
* No need to change the address space any more, just flush
728
* the register windows
729
*/
730
__asm__ __volatile__("flushw");
731
}
732
733
void __flush_dcache_range(unsigned long start, unsigned long end)
734
{
735
unsigned long va;
736
737
if (tlb_type == spitfire) {
738
int n = 0;
739
740
for (va = start; va < end; va += 32) {
741
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
742
if (++n >= 512)
743
break;
744
}
745
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
746
start = __pa(start);
747
end = __pa(end);
748
for (va = start; va < end; va += 32)
749
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
750
"membar #Sync"
751
: /* no outputs */
752
: "r" (va),
753
"i" (ASI_DCACHE_INVALIDATE));
754
}
755
}
756
EXPORT_SYMBOL(__flush_dcache_range);
757
758
/* get_new_mmu_context() uses "cache + 1". */
759
DEFINE_SPINLOCK(ctx_alloc_lock);
760
unsigned long tlb_context_cache = CTX_FIRST_VERSION;
761
#define MAX_CTX_NR (1UL << CTX_NR_BITS)
762
#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
763
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
764
DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
765
766
static void mmu_context_wrap(void)
767
{
768
unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
769
unsigned long new_ver, new_ctx, old_ctx;
770
struct mm_struct *mm;
771
int cpu;
772
773
bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
774
775
/* Reserve kernel context */
776
set_bit(0, mmu_context_bmap);
777
778
new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
779
if (unlikely(new_ver == 0))
780
new_ver = CTX_FIRST_VERSION;
781
tlb_context_cache = new_ver;
782
783
/*
784
* Make sure that any new mm that are added into per_cpu_secondary_mm,
785
* are going to go through get_new_mmu_context() path.
786
*/
787
mb();
788
789
/*
790
* Updated versions to current on those CPUs that had valid secondary
791
* contexts
792
*/
793
for_each_online_cpu(cpu) {
794
/*
795
* If a new mm is stored after we took this mm from the array,
796
* it will go into get_new_mmu_context() path, because we
797
* already bumped the version in tlb_context_cache.
798
*/
799
mm = per_cpu(per_cpu_secondary_mm, cpu);
800
801
if (unlikely(!mm || mm == &init_mm))
802
continue;
803
804
old_ctx = mm->context.sparc64_ctx_val;
805
if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
806
new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
807
set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
808
mm->context.sparc64_ctx_val = new_ctx;
809
}
810
}
811
}
812
813
/* Caller does TLB context flushing on local CPU if necessary.
814
* The caller also ensures that CTX_VALID(mm->context) is false.
815
*
816
* We must be careful about boundary cases so that we never
817
* let the user have CTX 0 (nucleus) or we ever use a CTX
818
* version of zero (and thus NO_CONTEXT would not be caught
819
* by version mis-match tests in mmu_context.h).
820
*
821
* Always invoked with interrupts disabled.
822
*/
823
void get_new_mmu_context(struct mm_struct *mm)
824
{
825
unsigned long ctx, new_ctx;
826
unsigned long orig_pgsz_bits;
827
828
spin_lock(&ctx_alloc_lock);
829
retry:
830
/* wrap might have happened, test again if our context became valid */
831
if (unlikely(CTX_VALID(mm->context)))
832
goto out;
833
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
834
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
835
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
836
if (new_ctx >= (1 << CTX_NR_BITS)) {
837
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
838
if (new_ctx >= ctx) {
839
mmu_context_wrap();
840
goto retry;
841
}
842
}
843
if (mm->context.sparc64_ctx_val)
844
cpumask_clear(mm_cpumask(mm));
845
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
846
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
847
tlb_context_cache = new_ctx;
848
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
849
out:
850
spin_unlock(&ctx_alloc_lock);
851
}
852
853
static int numa_enabled = 1;
854
static int numa_debug;
855
856
static int __init early_numa(char *p)
857
{
858
if (!p)
859
return 0;
860
861
if (strstr(p, "off"))
862
numa_enabled = 0;
863
864
if (strstr(p, "debug"))
865
numa_debug = 1;
866
867
return 0;
868
}
869
early_param("numa", early_numa);
870
871
#define numadbg(f, a...) \
872
do { if (numa_debug) \
873
printk(KERN_INFO f, ## a); \
874
} while (0)
875
876
static void __init find_ramdisk(unsigned long phys_base)
877
{
878
#ifdef CONFIG_BLK_DEV_INITRD
879
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
880
unsigned long ramdisk_image;
881
882
/* Older versions of the bootloader only supported a
883
* 32-bit physical address for the ramdisk image
884
* location, stored at sparc_ramdisk_image. Newer
885
* SILO versions set sparc_ramdisk_image to zero and
886
* provide a full 64-bit physical address at
887
* sparc_ramdisk_image64.
888
*/
889
ramdisk_image = sparc_ramdisk_image;
890
if (!ramdisk_image)
891
ramdisk_image = sparc_ramdisk_image64;
892
893
/* Another bootloader quirk. The bootloader normalizes
894
* the physical address to KERNBASE, so we have to
895
* factor that back out and add in the lowest valid
896
* physical page address to get the true physical address.
897
*/
898
ramdisk_image -= KERNBASE;
899
ramdisk_image += phys_base;
900
901
numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
902
ramdisk_image, sparc_ramdisk_size);
903
904
initrd_start = ramdisk_image;
905
initrd_end = ramdisk_image + sparc_ramdisk_size;
906
907
memblock_reserve(initrd_start, sparc_ramdisk_size);
908
909
initrd_start += PAGE_OFFSET;
910
initrd_end += PAGE_OFFSET;
911
}
912
#endif
913
}
914
915
struct node_mem_mask {
916
unsigned long mask;
917
unsigned long match;
918
};
919
static struct node_mem_mask node_masks[MAX_NUMNODES];
920
static int num_node_masks;
921
922
#ifdef CONFIG_NUMA
923
924
struct mdesc_mlgroup {
925
u64 node;
926
u64 latency;
927
u64 match;
928
u64 mask;
929
};
930
931
static struct mdesc_mlgroup *mlgroups;
932
static int num_mlgroups;
933
934
int numa_cpu_lookup_table[NR_CPUS];
935
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
936
937
struct mdesc_mblock {
938
u64 base;
939
u64 size;
940
u64 offset; /* RA-to-PA */
941
};
942
static struct mdesc_mblock *mblocks;
943
static int num_mblocks;
944
945
static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
946
{
947
struct mdesc_mblock *m = NULL;
948
int i;
949
950
for (i = 0; i < num_mblocks; i++) {
951
m = &mblocks[i];
952
953
if (addr >= m->base &&
954
addr < (m->base + m->size)) {
955
break;
956
}
957
}
958
959
return m;
960
}
961
962
static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
963
{
964
int prev_nid, new_nid;
965
966
prev_nid = NUMA_NO_NODE;
967
for ( ; start < end; start += PAGE_SIZE) {
968
for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
969
struct node_mem_mask *p = &node_masks[new_nid];
970
971
if ((start & p->mask) == p->match) {
972
if (prev_nid == NUMA_NO_NODE)
973
prev_nid = new_nid;
974
break;
975
}
976
}
977
978
if (new_nid == num_node_masks) {
979
prev_nid = 0;
980
WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
981
start);
982
break;
983
}
984
985
if (prev_nid != new_nid)
986
break;
987
}
988
*nid = prev_nid;
989
990
return start > end ? end : start;
991
}
992
993
static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
994
{
995
u64 ret_end, pa_start, m_mask, m_match, m_end;
996
struct mdesc_mblock *mblock;
997
int _nid, i;
998
999
if (tlb_type != hypervisor)
1000
return memblock_nid_range_sun4u(start, end, nid);
1001
1002
mblock = addr_to_mblock(start);
1003
if (!mblock) {
1004
WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1005
start);
1006
1007
_nid = 0;
1008
ret_end = end;
1009
goto done;
1010
}
1011
1012
pa_start = start + mblock->offset;
1013
m_match = 0;
1014
m_mask = 0;
1015
1016
for (_nid = 0; _nid < num_node_masks; _nid++) {
1017
struct node_mem_mask *const m = &node_masks[_nid];
1018
1019
if ((pa_start & m->mask) == m->match) {
1020
m_match = m->match;
1021
m_mask = m->mask;
1022
break;
1023
}
1024
}
1025
1026
if (num_node_masks == _nid) {
1027
/* We could not find NUMA group, so default to 0, but lets
1028
* search for latency group, so we could calculate the correct
1029
* end address that we return
1030
*/
1031
_nid = 0;
1032
1033
for (i = 0; i < num_mlgroups; i++) {
1034
struct mdesc_mlgroup *const m = &mlgroups[i];
1035
1036
if ((pa_start & m->mask) == m->match) {
1037
m_match = m->match;
1038
m_mask = m->mask;
1039
break;
1040
}
1041
}
1042
1043
if (i == num_mlgroups) {
1044
WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1045
start);
1046
1047
ret_end = end;
1048
goto done;
1049
}
1050
}
1051
1052
/*
1053
* Each latency group has match and mask, and each memory block has an
1054
* offset. An address belongs to a latency group if its address matches
1055
* the following formula: ((addr + offset) & mask) == match
1056
* It is, however, slow to check every single page if it matches a
1057
* particular latency group. As optimization we calculate end value by
1058
* using bit arithmetics.
1059
*/
1060
m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1061
m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1062
ret_end = m_end > end ? end : m_end;
1063
1064
done:
1065
*nid = _nid;
1066
return ret_end;
1067
}
1068
#endif
1069
1070
/* This must be invoked after performing all of the necessary
1071
* memblock_set_node() calls for 'nid'. We need to be able to get
1072
* correct data from get_pfn_range_for_nid().
1073
*/
1074
static void __init allocate_node_data(int nid)
1075
{
1076
struct pglist_data *p;
1077
unsigned long start_pfn, end_pfn;
1078
1079
#ifdef CONFIG_NUMA
1080
alloc_node_data(nid);
1081
1082
NODE_DATA(nid)->node_id = nid;
1083
#endif
1084
1085
p = NODE_DATA(nid);
1086
1087
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1088
p->node_start_pfn = start_pfn;
1089
p->node_spanned_pages = end_pfn - start_pfn;
1090
}
1091
1092
static void init_node_masks_nonnuma(void)
1093
{
1094
#ifdef CONFIG_NUMA
1095
int i;
1096
#endif
1097
1098
numadbg("Initializing tables for non-numa.\n");
1099
1100
node_masks[0].mask = 0;
1101
node_masks[0].match = 0;
1102
num_node_masks = 1;
1103
1104
#ifdef CONFIG_NUMA
1105
for (i = 0; i < NR_CPUS; i++)
1106
numa_cpu_lookup_table[i] = 0;
1107
1108
cpumask_setall(&numa_cpumask_lookup_table[0]);
1109
#endif
1110
}
1111
1112
#ifdef CONFIG_NUMA
1113
1114
EXPORT_SYMBOL(numa_cpu_lookup_table);
1115
EXPORT_SYMBOL(numa_cpumask_lookup_table);
1116
1117
static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1118
u32 cfg_handle)
1119
{
1120
u64 arc;
1121
1122
mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1123
u64 target = mdesc_arc_target(md, arc);
1124
const u64 *val;
1125
1126
val = mdesc_get_property(md, target,
1127
"cfg-handle", NULL);
1128
if (val && *val == cfg_handle)
1129
return 0;
1130
}
1131
return -ENODEV;
1132
}
1133
1134
static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1135
u32 cfg_handle)
1136
{
1137
u64 arc, candidate, best_latency = ~(u64)0;
1138
1139
candidate = MDESC_NODE_NULL;
1140
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1141
u64 target = mdesc_arc_target(md, arc);
1142
const char *name = mdesc_node_name(md, target);
1143
const u64 *val;
1144
1145
if (strcmp(name, "pio-latency-group"))
1146
continue;
1147
1148
val = mdesc_get_property(md, target, "latency", NULL);
1149
if (!val)
1150
continue;
1151
1152
if (*val < best_latency) {
1153
candidate = target;
1154
best_latency = *val;
1155
}
1156
}
1157
1158
if (candidate == MDESC_NODE_NULL)
1159
return -ENODEV;
1160
1161
return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1162
}
1163
1164
int of_node_to_nid(struct device_node *dp)
1165
{
1166
const struct linux_prom64_registers *regs;
1167
struct mdesc_handle *md;
1168
u32 cfg_handle;
1169
int count, nid;
1170
u64 grp;
1171
1172
/* This is the right thing to do on currently supported
1173
* SUN4U NUMA platforms as well, as the PCI controller does
1174
* not sit behind any particular memory controller.
1175
*/
1176
if (!mlgroups)
1177
return -1;
1178
1179
regs = of_get_property(dp, "reg", NULL);
1180
if (!regs)
1181
return -1;
1182
1183
cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1184
1185
md = mdesc_grab();
1186
1187
count = 0;
1188
nid = NUMA_NO_NODE;
1189
mdesc_for_each_node_by_name(md, grp, "group") {
1190
if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1191
nid = count;
1192
break;
1193
}
1194
count++;
1195
}
1196
1197
mdesc_release(md);
1198
1199
return nid;
1200
}
1201
1202
static void __init add_node_ranges(void)
1203
{
1204
phys_addr_t start, end;
1205
unsigned long prev_max;
1206
u64 i;
1207
1208
memblock_resized:
1209
prev_max = memblock.memory.max;
1210
1211
for_each_mem_range(i, &start, &end) {
1212
while (start < end) {
1213
unsigned long this_end;
1214
int nid;
1215
1216
this_end = memblock_nid_range(start, end, &nid);
1217
1218
numadbg("Setting memblock NUMA node nid[%d] "
1219
"start[%llx] end[%lx]\n",
1220
nid, start, this_end);
1221
1222
memblock_set_node(start, this_end - start,
1223
&memblock.memory, nid);
1224
if (memblock.memory.max != prev_max)
1225
goto memblock_resized;
1226
start = this_end;
1227
}
1228
}
1229
}
1230
1231
static int __init grab_mlgroups(struct mdesc_handle *md)
1232
{
1233
unsigned long paddr;
1234
int count = 0;
1235
u64 node;
1236
1237
mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1238
count++;
1239
if (!count)
1240
return -ENOENT;
1241
1242
paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1243
SMP_CACHE_BYTES);
1244
if (!paddr)
1245
return -ENOMEM;
1246
1247
mlgroups = __va(paddr);
1248
num_mlgroups = count;
1249
1250
count = 0;
1251
mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1252
struct mdesc_mlgroup *m = &mlgroups[count++];
1253
const u64 *val;
1254
1255
m->node = node;
1256
1257
val = mdesc_get_property(md, node, "latency", NULL);
1258
m->latency = *val;
1259
val = mdesc_get_property(md, node, "address-match", NULL);
1260
m->match = *val;
1261
val = mdesc_get_property(md, node, "address-mask", NULL);
1262
m->mask = *val;
1263
1264
numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1265
"match[%llx] mask[%llx]\n",
1266
count - 1, m->node, m->latency, m->match, m->mask);
1267
}
1268
1269
return 0;
1270
}
1271
1272
static int __init grab_mblocks(struct mdesc_handle *md)
1273
{
1274
unsigned long paddr;
1275
int count = 0;
1276
u64 node;
1277
1278
mdesc_for_each_node_by_name(md, node, "mblock")
1279
count++;
1280
if (!count)
1281
return -ENOENT;
1282
1283
paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1284
SMP_CACHE_BYTES);
1285
if (!paddr)
1286
return -ENOMEM;
1287
1288
mblocks = __va(paddr);
1289
num_mblocks = count;
1290
1291
count = 0;
1292
mdesc_for_each_node_by_name(md, node, "mblock") {
1293
struct mdesc_mblock *m = &mblocks[count++];
1294
const u64 *val;
1295
1296
val = mdesc_get_property(md, node, "base", NULL);
1297
m->base = *val;
1298
val = mdesc_get_property(md, node, "size", NULL);
1299
m->size = *val;
1300
val = mdesc_get_property(md, node,
1301
"address-congruence-offset", NULL);
1302
1303
/* The address-congruence-offset property is optional.
1304
* Explicity zero it be identifty this.
1305
*/
1306
if (val)
1307
m->offset = *val;
1308
else
1309
m->offset = 0UL;
1310
1311
numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1312
count - 1, m->base, m->size, m->offset);
1313
}
1314
1315
return 0;
1316
}
1317
1318
static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1319
u64 grp, cpumask_t *mask)
1320
{
1321
u64 arc;
1322
1323
cpumask_clear(mask);
1324
1325
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1326
u64 target = mdesc_arc_target(md, arc);
1327
const char *name = mdesc_node_name(md, target);
1328
const u64 *id;
1329
1330
if (strcmp(name, "cpu"))
1331
continue;
1332
id = mdesc_get_property(md, target, "id", NULL);
1333
if (*id < nr_cpu_ids)
1334
cpumask_set_cpu(*id, mask);
1335
}
1336
}
1337
1338
static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1339
{
1340
int i;
1341
1342
for (i = 0; i < num_mlgroups; i++) {
1343
struct mdesc_mlgroup *m = &mlgroups[i];
1344
if (m->node == node)
1345
return m;
1346
}
1347
return NULL;
1348
}
1349
1350
int __node_distance(int from, int to)
1351
{
1352
if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1353
pr_warn("Returning default NUMA distance value for %d->%d\n",
1354
from, to);
1355
return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1356
}
1357
return numa_latency[from][to];
1358
}
1359
EXPORT_SYMBOL(__node_distance);
1360
1361
static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1362
{
1363
int i;
1364
1365
for (i = 0; i < MAX_NUMNODES; i++) {
1366
struct node_mem_mask *n = &node_masks[i];
1367
1368
if ((grp->mask == n->mask) && (grp->match == n->match))
1369
break;
1370
}
1371
return i;
1372
}
1373
1374
static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1375
u64 grp, int index)
1376
{
1377
u64 arc;
1378
1379
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1380
int tnode;
1381
u64 target = mdesc_arc_target(md, arc);
1382
struct mdesc_mlgroup *m = find_mlgroup(target);
1383
1384
if (!m)
1385
continue;
1386
tnode = find_best_numa_node_for_mlgroup(m);
1387
if (tnode == MAX_NUMNODES)
1388
continue;
1389
numa_latency[index][tnode] = m->latency;
1390
}
1391
}
1392
1393
static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1394
int index)
1395
{
1396
struct mdesc_mlgroup *candidate = NULL;
1397
u64 arc, best_latency = ~(u64)0;
1398
struct node_mem_mask *n;
1399
1400
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1401
u64 target = mdesc_arc_target(md, arc);
1402
struct mdesc_mlgroup *m = find_mlgroup(target);
1403
if (!m)
1404
continue;
1405
if (m->latency < best_latency) {
1406
candidate = m;
1407
best_latency = m->latency;
1408
}
1409
}
1410
if (!candidate)
1411
return -ENOENT;
1412
1413
if (num_node_masks != index) {
1414
printk(KERN_ERR "Inconsistent NUMA state, "
1415
"index[%d] != num_node_masks[%d]\n",
1416
index, num_node_masks);
1417
return -EINVAL;
1418
}
1419
1420
n = &node_masks[num_node_masks++];
1421
1422
n->mask = candidate->mask;
1423
n->match = candidate->match;
1424
1425
numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1426
index, n->mask, n->match, candidate->latency);
1427
1428
return 0;
1429
}
1430
1431
static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1432
int index)
1433
{
1434
cpumask_t mask;
1435
int cpu;
1436
1437
numa_parse_mdesc_group_cpus(md, grp, &mask);
1438
1439
for_each_cpu(cpu, &mask)
1440
numa_cpu_lookup_table[cpu] = index;
1441
cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1442
1443
if (numa_debug) {
1444
printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1445
for_each_cpu(cpu, &mask)
1446
printk("%d ", cpu);
1447
printk("]\n");
1448
}
1449
1450
return numa_attach_mlgroup(md, grp, index);
1451
}
1452
1453
static int __init numa_parse_mdesc(void)
1454
{
1455
struct mdesc_handle *md = mdesc_grab();
1456
int i, j, err, count;
1457
u64 node;
1458
1459
node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1460
if (node == MDESC_NODE_NULL) {
1461
mdesc_release(md);
1462
return -ENOENT;
1463
}
1464
1465
err = grab_mblocks(md);
1466
if (err < 0)
1467
goto out;
1468
1469
err = grab_mlgroups(md);
1470
if (err < 0)
1471
goto out;
1472
1473
count = 0;
1474
mdesc_for_each_node_by_name(md, node, "group") {
1475
err = numa_parse_mdesc_group(md, node, count);
1476
if (err < 0)
1477
break;
1478
count++;
1479
}
1480
1481
count = 0;
1482
mdesc_for_each_node_by_name(md, node, "group") {
1483
find_numa_latencies_for_group(md, node, count);
1484
count++;
1485
}
1486
1487
/* Normalize numa latency matrix according to ACPI SLIT spec. */
1488
for (i = 0; i < MAX_NUMNODES; i++) {
1489
u64 self_latency = numa_latency[i][i];
1490
1491
for (j = 0; j < MAX_NUMNODES; j++) {
1492
numa_latency[i][j] =
1493
(numa_latency[i][j] * LOCAL_DISTANCE) /
1494
self_latency;
1495
}
1496
}
1497
1498
add_node_ranges();
1499
1500
for (i = 0; i < num_node_masks; i++) {
1501
allocate_node_data(i);
1502
node_set_online(i);
1503
}
1504
1505
err = 0;
1506
out:
1507
mdesc_release(md);
1508
return err;
1509
}
1510
1511
static int __init numa_parse_jbus(void)
1512
{
1513
unsigned long cpu, index;
1514
1515
/* NUMA node id is encoded in bits 36 and higher, and there is
1516
* a 1-to-1 mapping from CPU ID to NUMA node ID.
1517
*/
1518
index = 0;
1519
for_each_present_cpu(cpu) {
1520
numa_cpu_lookup_table[cpu] = index;
1521
cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1522
node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1523
node_masks[index].match = cpu << 36UL;
1524
1525
index++;
1526
}
1527
num_node_masks = index;
1528
1529
add_node_ranges();
1530
1531
for (index = 0; index < num_node_masks; index++) {
1532
allocate_node_data(index);
1533
node_set_online(index);
1534
}
1535
1536
return 0;
1537
}
1538
1539
static int __init numa_parse_sun4u(void)
1540
{
1541
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1542
unsigned long ver;
1543
1544
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1545
if ((ver >> 32UL) == __JALAPENO_ID ||
1546
(ver >> 32UL) == __SERRANO_ID)
1547
return numa_parse_jbus();
1548
}
1549
return -1;
1550
}
1551
1552
static int __init bootmem_init_numa(void)
1553
{
1554
int i, j;
1555
int err = -1;
1556
1557
numadbg("bootmem_init_numa()\n");
1558
1559
/* Some sane defaults for numa latency values */
1560
for (i = 0; i < MAX_NUMNODES; i++) {
1561
for (j = 0; j < MAX_NUMNODES; j++)
1562
numa_latency[i][j] = (i == j) ?
1563
LOCAL_DISTANCE : REMOTE_DISTANCE;
1564
}
1565
1566
if (numa_enabled) {
1567
if (tlb_type == hypervisor)
1568
err = numa_parse_mdesc();
1569
else
1570
err = numa_parse_sun4u();
1571
}
1572
return err;
1573
}
1574
1575
#else
1576
1577
static int bootmem_init_numa(void)
1578
{
1579
return -1;
1580
}
1581
1582
#endif
1583
1584
static void __init bootmem_init_nonnuma(void)
1585
{
1586
unsigned long top_of_ram = memblock_end_of_DRAM();
1587
unsigned long total_ram = memblock_phys_mem_size();
1588
1589
numadbg("bootmem_init_nonnuma()\n");
1590
1591
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1592
top_of_ram, total_ram);
1593
printk(KERN_INFO "Memory hole size: %ldMB\n",
1594
(top_of_ram - total_ram) >> 20);
1595
1596
init_node_masks_nonnuma();
1597
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1598
allocate_node_data(0);
1599
node_set_online(0);
1600
}
1601
1602
static unsigned long __init bootmem_init(unsigned long phys_base)
1603
{
1604
unsigned long end_pfn;
1605
1606
end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1607
max_pfn = max_low_pfn = end_pfn;
1608
min_low_pfn = (phys_base >> PAGE_SHIFT);
1609
1610
if (bootmem_init_numa() < 0)
1611
bootmem_init_nonnuma();
1612
1613
/* Dump memblock with node info. */
1614
memblock_dump_all();
1615
1616
/* XXX cpu notifier XXX */
1617
1618
sparse_init();
1619
1620
return end_pfn;
1621
}
1622
1623
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1624
static int pall_ents __initdata;
1625
1626
static unsigned long max_phys_bits = 40;
1627
1628
bool kern_addr_valid(unsigned long addr)
1629
{
1630
pgd_t *pgd;
1631
p4d_t *p4d;
1632
pud_t *pud;
1633
pmd_t *pmd;
1634
pte_t *pte;
1635
1636
if ((long)addr < 0L) {
1637
unsigned long pa = __pa(addr);
1638
1639
if ((pa >> max_phys_bits) != 0UL)
1640
return false;
1641
1642
return pfn_valid(pa >> PAGE_SHIFT);
1643
}
1644
1645
if (addr >= (unsigned long) KERNBASE &&
1646
addr < (unsigned long)&_end)
1647
return true;
1648
1649
pgd = pgd_offset_k(addr);
1650
if (pgd_none(*pgd))
1651
return false;
1652
1653
p4d = p4d_offset(pgd, addr);
1654
if (p4d_none(*p4d))
1655
return false;
1656
1657
pud = pud_offset(p4d, addr);
1658
if (pud_none(*pud))
1659
return false;
1660
1661
if (pud_leaf(*pud))
1662
return pfn_valid(pud_pfn(*pud));
1663
1664
pmd = pmd_offset(pud, addr);
1665
if (pmd_none(*pmd))
1666
return false;
1667
1668
if (pmd_leaf(*pmd))
1669
return pfn_valid(pmd_pfn(*pmd));
1670
1671
pte = pte_offset_kernel(pmd, addr);
1672
if (pte_none(*pte))
1673
return false;
1674
1675
return pfn_valid(pte_pfn(*pte));
1676
}
1677
1678
static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1679
unsigned long vend,
1680
pud_t *pud)
1681
{
1682
const unsigned long mask16gb = (1UL << 34) - 1UL;
1683
u64 pte_val = vstart;
1684
1685
/* Each PUD is 8GB */
1686
if ((vstart & mask16gb) ||
1687
(vend - vstart <= mask16gb)) {
1688
pte_val ^= kern_linear_pte_xor[2];
1689
pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1690
1691
return vstart + PUD_SIZE;
1692
}
1693
1694
pte_val ^= kern_linear_pte_xor[3];
1695
pte_val |= _PAGE_PUD_HUGE;
1696
1697
vend = vstart + mask16gb + 1UL;
1698
while (vstart < vend) {
1699
pud_val(*pud) = pte_val;
1700
1701
pte_val += PUD_SIZE;
1702
vstart += PUD_SIZE;
1703
pud++;
1704
}
1705
return vstart;
1706
}
1707
1708
static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1709
bool guard)
1710
{
1711
if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1712
return true;
1713
1714
return false;
1715
}
1716
1717
static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1718
unsigned long vend,
1719
pmd_t *pmd)
1720
{
1721
const unsigned long mask256mb = (1UL << 28) - 1UL;
1722
const unsigned long mask2gb = (1UL << 31) - 1UL;
1723
u64 pte_val = vstart;
1724
1725
/* Each PMD is 8MB */
1726
if ((vstart & mask256mb) ||
1727
(vend - vstart <= mask256mb)) {
1728
pte_val ^= kern_linear_pte_xor[0];
1729
pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1730
1731
return vstart + PMD_SIZE;
1732
}
1733
1734
if ((vstart & mask2gb) ||
1735
(vend - vstart <= mask2gb)) {
1736
pte_val ^= kern_linear_pte_xor[1];
1737
pte_val |= _PAGE_PMD_HUGE;
1738
vend = vstart + mask256mb + 1UL;
1739
} else {
1740
pte_val ^= kern_linear_pte_xor[2];
1741
pte_val |= _PAGE_PMD_HUGE;
1742
vend = vstart + mask2gb + 1UL;
1743
}
1744
1745
while (vstart < vend) {
1746
pmd_val(*pmd) = pte_val;
1747
1748
pte_val += PMD_SIZE;
1749
vstart += PMD_SIZE;
1750
pmd++;
1751
}
1752
1753
return vstart;
1754
}
1755
1756
static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1757
bool guard)
1758
{
1759
if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1760
return true;
1761
1762
return false;
1763
}
1764
1765
static unsigned long __ref kernel_map_range(unsigned long pstart,
1766
unsigned long pend, pgprot_t prot,
1767
bool use_huge)
1768
{
1769
unsigned long vstart = PAGE_OFFSET + pstart;
1770
unsigned long vend = PAGE_OFFSET + pend;
1771
unsigned long alloc_bytes = 0UL;
1772
1773
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1774
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1775
vstart, vend);
1776
prom_halt();
1777
}
1778
1779
while (vstart < vend) {
1780
unsigned long this_end, paddr = __pa(vstart);
1781
pgd_t *pgd = pgd_offset_k(vstart);
1782
p4d_t *p4d;
1783
pud_t *pud;
1784
pmd_t *pmd;
1785
pte_t *pte;
1786
1787
if (pgd_none(*pgd)) {
1788
pud_t *new;
1789
1790
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1791
PAGE_SIZE);
1792
if (!new)
1793
goto err_alloc;
1794
alloc_bytes += PAGE_SIZE;
1795
pgd_populate(&init_mm, pgd, new);
1796
}
1797
1798
p4d = p4d_offset(pgd, vstart);
1799
if (p4d_none(*p4d)) {
1800
pud_t *new;
1801
1802
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1803
PAGE_SIZE);
1804
if (!new)
1805
goto err_alloc;
1806
alloc_bytes += PAGE_SIZE;
1807
p4d_populate(&init_mm, p4d, new);
1808
}
1809
1810
pud = pud_offset(p4d, vstart);
1811
if (pud_none(*pud)) {
1812
pmd_t *new;
1813
1814
if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1815
vstart = kernel_map_hugepud(vstart, vend, pud);
1816
continue;
1817
}
1818
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1819
PAGE_SIZE);
1820
if (!new)
1821
goto err_alloc;
1822
alloc_bytes += PAGE_SIZE;
1823
pud_populate(&init_mm, pud, new);
1824
}
1825
1826
pmd = pmd_offset(pud, vstart);
1827
if (pmd_none(*pmd)) {
1828
pte_t *new;
1829
1830
if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1831
vstart = kernel_map_hugepmd(vstart, vend, pmd);
1832
continue;
1833
}
1834
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1835
PAGE_SIZE);
1836
if (!new)
1837
goto err_alloc;
1838
alloc_bytes += PAGE_SIZE;
1839
pmd_populate_kernel(&init_mm, pmd, new);
1840
}
1841
1842
pte = pte_offset_kernel(pmd, vstart);
1843
this_end = (vstart + PMD_SIZE) & PMD_MASK;
1844
if (this_end > vend)
1845
this_end = vend;
1846
1847
while (vstart < this_end) {
1848
pte_val(*pte) = (paddr | pgprot_val(prot));
1849
1850
vstart += PAGE_SIZE;
1851
paddr += PAGE_SIZE;
1852
pte++;
1853
}
1854
}
1855
1856
return alloc_bytes;
1857
1858
err_alloc:
1859
panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1860
__func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1861
return -ENOMEM;
1862
}
1863
1864
static void __init flush_all_kernel_tsbs(void)
1865
{
1866
int i;
1867
1868
for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1869
struct tsb *ent = &swapper_tsb[i];
1870
1871
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1872
}
1873
#ifndef CONFIG_DEBUG_PAGEALLOC
1874
for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1875
struct tsb *ent = &swapper_4m_tsb[i];
1876
1877
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1878
}
1879
#endif
1880
}
1881
1882
extern unsigned int kvmap_linear_patch[1];
1883
1884
static void __init kernel_physical_mapping_init(void)
1885
{
1886
unsigned long i, mem_alloced = 0UL;
1887
bool use_huge = true;
1888
1889
#ifdef CONFIG_DEBUG_PAGEALLOC
1890
use_huge = false;
1891
#endif
1892
for (i = 0; i < pall_ents; i++) {
1893
unsigned long phys_start, phys_end;
1894
1895
phys_start = pall[i].phys_addr;
1896
phys_end = phys_start + pall[i].reg_size;
1897
1898
mem_alloced += kernel_map_range(phys_start, phys_end,
1899
PAGE_KERNEL, use_huge);
1900
}
1901
1902
printk("Allocated %ld bytes for kernel page tables.\n",
1903
mem_alloced);
1904
1905
kvmap_linear_patch[0] = 0x01000000; /* nop */
1906
flushi(&kvmap_linear_patch[0]);
1907
1908
flush_all_kernel_tsbs();
1909
1910
__flush_tlb_all();
1911
}
1912
1913
#ifdef CONFIG_DEBUG_PAGEALLOC
1914
void __kernel_map_pages(struct page *page, int numpages, int enable)
1915
{
1916
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1917
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1918
1919
kernel_map_range(phys_start, phys_end,
1920
(enable ? PAGE_KERNEL : __pgprot(0)), false);
1921
1922
flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1923
PAGE_OFFSET + phys_end);
1924
1925
/* we should perform an IPI and flush all tlbs,
1926
* but that can deadlock->flush only current cpu.
1927
*/
1928
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1929
PAGE_OFFSET + phys_end);
1930
}
1931
#endif
1932
1933
unsigned long __init find_ecache_flush_span(unsigned long size)
1934
{
1935
int i;
1936
1937
for (i = 0; i < pavail_ents; i++) {
1938
if (pavail[i].reg_size >= size)
1939
return pavail[i].phys_addr;
1940
}
1941
1942
return ~0UL;
1943
}
1944
1945
unsigned long PAGE_OFFSET;
1946
EXPORT_SYMBOL(PAGE_OFFSET);
1947
1948
unsigned long VMALLOC_END = 0x0000010000000000UL;
1949
EXPORT_SYMBOL(VMALLOC_END);
1950
1951
unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1952
unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1953
1954
static void __init setup_page_offset(void)
1955
{
1956
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1957
/* Cheetah/Panther support a full 64-bit virtual
1958
* address, so we can use all that our page tables
1959
* support.
1960
*/
1961
sparc64_va_hole_top = 0xfff0000000000000UL;
1962
sparc64_va_hole_bottom = 0x0010000000000000UL;
1963
1964
max_phys_bits = 42;
1965
} else if (tlb_type == hypervisor) {
1966
switch (sun4v_chip_type) {
1967
case SUN4V_CHIP_NIAGARA1:
1968
case SUN4V_CHIP_NIAGARA2:
1969
/* T1 and T2 support 48-bit virtual addresses. */
1970
sparc64_va_hole_top = 0xffff800000000000UL;
1971
sparc64_va_hole_bottom = 0x0000800000000000UL;
1972
1973
max_phys_bits = 39;
1974
break;
1975
case SUN4V_CHIP_NIAGARA3:
1976
/* T3 supports 48-bit virtual addresses. */
1977
sparc64_va_hole_top = 0xffff800000000000UL;
1978
sparc64_va_hole_bottom = 0x0000800000000000UL;
1979
1980
max_phys_bits = 43;
1981
break;
1982
case SUN4V_CHIP_NIAGARA4:
1983
case SUN4V_CHIP_NIAGARA5:
1984
case SUN4V_CHIP_SPARC64X:
1985
case SUN4V_CHIP_SPARC_M6:
1986
/* T4 and later support 52-bit virtual addresses. */
1987
sparc64_va_hole_top = 0xfff8000000000000UL;
1988
sparc64_va_hole_bottom = 0x0008000000000000UL;
1989
max_phys_bits = 47;
1990
break;
1991
case SUN4V_CHIP_SPARC_M7:
1992
case SUN4V_CHIP_SPARC_SN:
1993
/* M7 and later support 52-bit virtual addresses. */
1994
sparc64_va_hole_top = 0xfff8000000000000UL;
1995
sparc64_va_hole_bottom = 0x0008000000000000UL;
1996
max_phys_bits = 49;
1997
break;
1998
case SUN4V_CHIP_SPARC_M8:
1999
default:
2000
/* M8 and later support 54-bit virtual addresses.
2001
* However, restricting M8 and above VA bits to 53
2002
* as 4-level page table cannot support more than
2003
* 53 VA bits.
2004
*/
2005
sparc64_va_hole_top = 0xfff0000000000000UL;
2006
sparc64_va_hole_bottom = 0x0010000000000000UL;
2007
max_phys_bits = 51;
2008
break;
2009
}
2010
}
2011
2012
if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2013
prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2014
max_phys_bits);
2015
prom_halt();
2016
}
2017
2018
PAGE_OFFSET = sparc64_va_hole_top;
2019
VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2020
(sparc64_va_hole_bottom >> 2));
2021
2022
pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2023
PAGE_OFFSET, max_phys_bits);
2024
pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2025
VMALLOC_START, VMALLOC_END);
2026
pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2027
VMEMMAP_BASE, VMEMMAP_BASE << 1);
2028
}
2029
2030
static void __init tsb_phys_patch(void)
2031
{
2032
struct tsb_ldquad_phys_patch_entry *pquad;
2033
struct tsb_phys_patch_entry *p;
2034
2035
pquad = &__tsb_ldquad_phys_patch;
2036
while (pquad < &__tsb_ldquad_phys_patch_end) {
2037
unsigned long addr = pquad->addr;
2038
2039
if (tlb_type == hypervisor)
2040
*(unsigned int *) addr = pquad->sun4v_insn;
2041
else
2042
*(unsigned int *) addr = pquad->sun4u_insn;
2043
wmb();
2044
__asm__ __volatile__("flush %0"
2045
: /* no outputs */
2046
: "r" (addr));
2047
2048
pquad++;
2049
}
2050
2051
p = &__tsb_phys_patch;
2052
while (p < &__tsb_phys_patch_end) {
2053
unsigned long addr = p->addr;
2054
2055
*(unsigned int *) addr = p->insn;
2056
wmb();
2057
__asm__ __volatile__("flush %0"
2058
: /* no outputs */
2059
: "r" (addr));
2060
2061
p++;
2062
}
2063
}
2064
2065
/* Don't mark as init, we give this to the Hypervisor. */
2066
#ifndef CONFIG_DEBUG_PAGEALLOC
2067
#define NUM_KTSB_DESCR 2
2068
#else
2069
#define NUM_KTSB_DESCR 1
2070
#endif
2071
static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2072
2073
/* The swapper TSBs are loaded with a base sequence of:
2074
*
2075
* sethi %uhi(SYMBOL), REG1
2076
* sethi %hi(SYMBOL), REG2
2077
* or REG1, %ulo(SYMBOL), REG1
2078
* or REG2, %lo(SYMBOL), REG2
2079
* sllx REG1, 32, REG1
2080
* or REG1, REG2, REG1
2081
*
2082
* When we use physical addressing for the TSB accesses, we patch the
2083
* first four instructions in the above sequence.
2084
*/
2085
2086
static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2087
{
2088
unsigned long high_bits, low_bits;
2089
2090
high_bits = (pa >> 32) & 0xffffffff;
2091
low_bits = (pa >> 0) & 0xffffffff;
2092
2093
while (start < end) {
2094
unsigned int *ia = (unsigned int *)(unsigned long)*start;
2095
2096
ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2097
__asm__ __volatile__("flush %0" : : "r" (ia));
2098
2099
ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2100
__asm__ __volatile__("flush %0" : : "r" (ia + 1));
2101
2102
ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2103
__asm__ __volatile__("flush %0" : : "r" (ia + 2));
2104
2105
ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2106
__asm__ __volatile__("flush %0" : : "r" (ia + 3));
2107
2108
start++;
2109
}
2110
}
2111
2112
static void ktsb_phys_patch(void)
2113
{
2114
extern unsigned int __swapper_tsb_phys_patch;
2115
extern unsigned int __swapper_tsb_phys_patch_end;
2116
unsigned long ktsb_pa;
2117
2118
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2119
patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2120
&__swapper_tsb_phys_patch_end, ktsb_pa);
2121
#ifndef CONFIG_DEBUG_PAGEALLOC
2122
{
2123
extern unsigned int __swapper_4m_tsb_phys_patch;
2124
extern unsigned int __swapper_4m_tsb_phys_patch_end;
2125
ktsb_pa = (kern_base +
2126
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2127
patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2128
&__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2129
}
2130
#endif
2131
}
2132
2133
static void __init sun4v_ktsb_init(void)
2134
{
2135
unsigned long ktsb_pa;
2136
2137
/* First KTSB for PAGE_SIZE mappings. */
2138
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2139
2140
switch (PAGE_SIZE) {
2141
case 8 * 1024:
2142
default:
2143
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2144
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2145
break;
2146
2147
case 64 * 1024:
2148
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2149
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2150
break;
2151
2152
case 512 * 1024:
2153
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2154
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2155
break;
2156
2157
case 4 * 1024 * 1024:
2158
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2159
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2160
break;
2161
}
2162
2163
ktsb_descr[0].assoc = 1;
2164
ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2165
ktsb_descr[0].ctx_idx = 0;
2166
ktsb_descr[0].tsb_base = ktsb_pa;
2167
ktsb_descr[0].resv = 0;
2168
2169
#ifndef CONFIG_DEBUG_PAGEALLOC
2170
/* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2171
ktsb_pa = (kern_base +
2172
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2173
2174
ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2175
ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2176
HV_PGSZ_MASK_256MB |
2177
HV_PGSZ_MASK_2GB |
2178
HV_PGSZ_MASK_16GB) &
2179
cpu_pgsz_mask);
2180
ktsb_descr[1].assoc = 1;
2181
ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2182
ktsb_descr[1].ctx_idx = 0;
2183
ktsb_descr[1].tsb_base = ktsb_pa;
2184
ktsb_descr[1].resv = 0;
2185
#endif
2186
}
2187
2188
void sun4v_ktsb_register(void)
2189
{
2190
unsigned long pa, ret;
2191
2192
pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2193
2194
ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2195
if (ret != 0) {
2196
prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2197
"errors with %lx\n", pa, ret);
2198
prom_halt();
2199
}
2200
}
2201
2202
static void __init sun4u_linear_pte_xor_finalize(void)
2203
{
2204
#ifndef CONFIG_DEBUG_PAGEALLOC
2205
/* This is where we would add Panther support for
2206
* 32MB and 256MB pages.
2207
*/
2208
#endif
2209
}
2210
2211
static void __init sun4v_linear_pte_xor_finalize(void)
2212
{
2213
unsigned long pagecv_flag;
2214
2215
/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2216
* enables MCD error. Do not set bit 9 on M7 processor.
2217
*/
2218
switch (sun4v_chip_type) {
2219
case SUN4V_CHIP_SPARC_M7:
2220
case SUN4V_CHIP_SPARC_M8:
2221
case SUN4V_CHIP_SPARC_SN:
2222
pagecv_flag = 0x00;
2223
break;
2224
default:
2225
pagecv_flag = _PAGE_CV_4V;
2226
break;
2227
}
2228
#ifndef CONFIG_DEBUG_PAGEALLOC
2229
if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2230
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2231
PAGE_OFFSET;
2232
kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2233
_PAGE_P_4V | _PAGE_W_4V);
2234
} else {
2235
kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2236
}
2237
2238
if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2239
kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2240
PAGE_OFFSET;
2241
kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2242
_PAGE_P_4V | _PAGE_W_4V);
2243
} else {
2244
kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2245
}
2246
2247
if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2248
kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2249
PAGE_OFFSET;
2250
kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2251
_PAGE_P_4V | _PAGE_W_4V);
2252
} else {
2253
kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2254
}
2255
#endif
2256
}
2257
2258
/* paging_init() sets up the page tables */
2259
2260
static unsigned long last_valid_pfn;
2261
2262
static void sun4u_pgprot_init(void);
2263
static void sun4v_pgprot_init(void);
2264
2265
#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2266
#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2267
#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2268
#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2269
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2270
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2271
2272
/* We need to exclude reserved regions. This exclusion will include
2273
* vmlinux and initrd. To be more precise the initrd size could be used to
2274
* compute a new lower limit because it is freed later during initialization.
2275
*/
2276
static void __init reduce_memory(phys_addr_t limit_ram)
2277
{
2278
limit_ram += memblock_reserved_size();
2279
memblock_enforce_memory_limit(limit_ram);
2280
}
2281
2282
void __init paging_init(void)
2283
{
2284
unsigned long end_pfn, shift, phys_base;
2285
unsigned long real_end, i;
2286
2287
setup_page_offset();
2288
2289
/* These build time checkes make sure that the dcache_dirty_cpu()
2290
* folio->flags usage will work.
2291
*
2292
* When a page gets marked as dcache-dirty, we store the
2293
* cpu number starting at bit 32 in the folio->flags. Also,
2294
* functions like clear_dcache_dirty_cpu use the cpu mask
2295
* in 13-bit signed-immediate instruction fields.
2296
*/
2297
2298
/*
2299
* Page flags must not reach into upper 32 bits that are used
2300
* for the cpu number
2301
*/
2302
BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2303
2304
/*
2305
* The bit fields placed in the high range must not reach below
2306
* the 32 bit boundary. Otherwise we cannot place the cpu field
2307
* at the 32 bit boundary.
2308
*/
2309
BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2310
ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2311
2312
BUILD_BUG_ON(NR_CPUS > 4096);
2313
2314
kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2315
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2316
2317
/* Invalidate both kernel TSBs. */
2318
memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2319
#ifndef CONFIG_DEBUG_PAGEALLOC
2320
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2321
#endif
2322
2323
/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2324
* bit on M7 processor. This is a conflicting usage of the same
2325
* bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2326
* Detection error on all pages and this will lead to problems
2327
* later. Kernel does not run with MCD enabled and hence rest
2328
* of the required steps to fully configure memory corruption
2329
* detection are not taken. We need to ensure TTE.mcde is not
2330
* set on M7 processor. Compute the value of cacheability
2331
* flag for use later taking this into consideration.
2332
*/
2333
switch (sun4v_chip_type) {
2334
case SUN4V_CHIP_SPARC_M7:
2335
case SUN4V_CHIP_SPARC_M8:
2336
case SUN4V_CHIP_SPARC_SN:
2337
page_cache4v_flag = _PAGE_CP_4V;
2338
break;
2339
default:
2340
page_cache4v_flag = _PAGE_CACHE_4V;
2341
break;
2342
}
2343
2344
if (tlb_type == hypervisor)
2345
sun4v_pgprot_init();
2346
else
2347
sun4u_pgprot_init();
2348
2349
if (tlb_type == cheetah_plus ||
2350
tlb_type == hypervisor) {
2351
tsb_phys_patch();
2352
ktsb_phys_patch();
2353
}
2354
2355
if (tlb_type == hypervisor)
2356
sun4v_patch_tlb_handlers();
2357
2358
/* Find available physical memory...
2359
*
2360
* Read it twice in order to work around a bug in openfirmware.
2361
* The call to grab this table itself can cause openfirmware to
2362
* allocate memory, which in turn can take away some space from
2363
* the list of available memory. Reading it twice makes sure
2364
* we really do get the final value.
2365
*/
2366
read_obp_translations();
2367
read_obp_memory("reg", &pall[0], &pall_ents);
2368
read_obp_memory("available", &pavail[0], &pavail_ents);
2369
read_obp_memory("available", &pavail[0], &pavail_ents);
2370
2371
phys_base = 0xffffffffffffffffUL;
2372
for (i = 0; i < pavail_ents; i++) {
2373
phys_base = min(phys_base, pavail[i].phys_addr);
2374
memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2375
}
2376
2377
memblock_reserve(kern_base, kern_size);
2378
2379
find_ramdisk(phys_base);
2380
2381
if (cmdline_memory_size)
2382
reduce_memory(cmdline_memory_size);
2383
2384
memblock_allow_resize();
2385
memblock_dump_all();
2386
2387
set_bit(0, mmu_context_bmap);
2388
2389
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2390
2391
real_end = (unsigned long)_end;
2392
num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2393
printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2394
num_kernel_image_mappings);
2395
2396
/* Set kernel pgd to upper alias so physical page computations
2397
* work.
2398
*/
2399
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2400
2401
memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2402
2403
inherit_prom_mappings();
2404
2405
/* Ok, we can use our TLB miss and window trap handlers safely. */
2406
setup_tba();
2407
2408
__flush_tlb_all();
2409
2410
prom_build_devicetree();
2411
of_populate_present_mask();
2412
#ifndef CONFIG_SMP
2413
of_fill_in_cpu_data();
2414
#endif
2415
2416
if (tlb_type == hypervisor) {
2417
sun4v_mdesc_init();
2418
mdesc_populate_present_mask(cpu_all_mask);
2419
#ifndef CONFIG_SMP
2420
mdesc_fill_in_cpu_data(cpu_all_mask);
2421
#endif
2422
mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2423
2424
sun4v_linear_pte_xor_finalize();
2425
2426
sun4v_ktsb_init();
2427
sun4v_ktsb_register();
2428
} else {
2429
unsigned long impl, ver;
2430
2431
cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2432
HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2433
2434
__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2435
impl = ((ver >> 32) & 0xffff);
2436
if (impl == PANTHER_IMPL)
2437
cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2438
HV_PGSZ_MASK_256MB);
2439
2440
sun4u_linear_pte_xor_finalize();
2441
}
2442
2443
/* Flush the TLBs and the 4M TSB so that the updated linear
2444
* pte XOR settings are realized for all mappings.
2445
*/
2446
__flush_tlb_all();
2447
#ifndef CONFIG_DEBUG_PAGEALLOC
2448
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2449
#endif
2450
__flush_tlb_all();
2451
2452
/* Setup bootmem... */
2453
last_valid_pfn = end_pfn = bootmem_init(phys_base);
2454
2455
kernel_physical_mapping_init();
2456
2457
{
2458
unsigned long max_zone_pfns[MAX_NR_ZONES];
2459
2460
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2461
2462
max_zone_pfns[ZONE_NORMAL] = end_pfn;
2463
2464
free_area_init(max_zone_pfns);
2465
}
2466
2467
printk("Booting Linux...\n");
2468
}
2469
2470
int page_in_phys_avail(unsigned long paddr)
2471
{
2472
int i;
2473
2474
paddr &= PAGE_MASK;
2475
2476
for (i = 0; i < pavail_ents; i++) {
2477
unsigned long start, end;
2478
2479
start = pavail[i].phys_addr;
2480
end = start + pavail[i].reg_size;
2481
2482
if (paddr >= start && paddr < end)
2483
return 1;
2484
}
2485
if (paddr >= kern_base && paddr < (kern_base + kern_size))
2486
return 1;
2487
#ifdef CONFIG_BLK_DEV_INITRD
2488
if (paddr >= __pa(initrd_start) &&
2489
paddr < __pa(PAGE_ALIGN(initrd_end)))
2490
return 1;
2491
#endif
2492
2493
return 0;
2494
}
2495
2496
static void __init register_page_bootmem_info(void)
2497
{
2498
#ifdef CONFIG_NUMA
2499
int i;
2500
2501
for_each_online_node(i)
2502
if (NODE_DATA(i)->node_spanned_pages)
2503
register_page_bootmem_info_node(NODE_DATA(i));
2504
#endif
2505
}
2506
void __init mem_init(void)
2507
{
2508
/*
2509
* Must be done after boot memory is put on freelist, because here we
2510
* might set fields in deferred struct pages that have not yet been
2511
* initialized, and memblock_free_all() initializes all the reserved
2512
* deferred pages for us.
2513
*/
2514
register_page_bootmem_info();
2515
2516
/*
2517
* Set up the zero page, mark it reserved, so that page count
2518
* is not manipulated when freeing the page from user ptes.
2519
*/
2520
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2521
if (mem_map_zero == NULL) {
2522
prom_printf("paging_init: Cannot alloc zero page.\n");
2523
prom_halt();
2524
}
2525
mark_page_reserved(mem_map_zero);
2526
2527
2528
if (tlb_type == cheetah || tlb_type == cheetah_plus)
2529
cheetah_ecache_flush_init();
2530
}
2531
2532
void free_initmem(void)
2533
{
2534
unsigned long addr, initend;
2535
int do_free = 1;
2536
2537
/* If the physical memory maps were trimmed by kernel command
2538
* line options, don't even try freeing this initmem stuff up.
2539
* The kernel image could have been in the trimmed out region
2540
* and if so the freeing below will free invalid page structs.
2541
*/
2542
if (cmdline_memory_size)
2543
do_free = 0;
2544
2545
/*
2546
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2547
*/
2548
addr = PAGE_ALIGN((unsigned long)(__init_begin));
2549
initend = (unsigned long)(__init_end) & PAGE_MASK;
2550
for (; addr < initend; addr += PAGE_SIZE) {
2551
unsigned long page;
2552
2553
page = (addr +
2554
((unsigned long) __va(kern_base)) -
2555
((unsigned long) KERNBASE));
2556
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2557
2558
if (do_free)
2559
free_reserved_page(virt_to_page(page));
2560
}
2561
}
2562
2563
pgprot_t PAGE_KERNEL __read_mostly;
2564
EXPORT_SYMBOL(PAGE_KERNEL);
2565
2566
pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2567
pgprot_t PAGE_COPY __read_mostly;
2568
2569
pgprot_t PAGE_SHARED __read_mostly;
2570
EXPORT_SYMBOL(PAGE_SHARED);
2571
2572
unsigned long pg_iobits __read_mostly;
2573
2574
unsigned long _PAGE_IE __read_mostly;
2575
EXPORT_SYMBOL(_PAGE_IE);
2576
2577
unsigned long _PAGE_E __read_mostly;
2578
EXPORT_SYMBOL(_PAGE_E);
2579
2580
unsigned long _PAGE_CACHE __read_mostly;
2581
EXPORT_SYMBOL(_PAGE_CACHE);
2582
2583
#ifdef CONFIG_SPARSEMEM_VMEMMAP
2584
int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2585
int node, struct vmem_altmap *altmap)
2586
{
2587
unsigned long pte_base;
2588
2589
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2590
_PAGE_CP_4U | _PAGE_CV_4U |
2591
_PAGE_P_4U | _PAGE_W_4U);
2592
if (tlb_type == hypervisor)
2593
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2594
page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2595
2596
pte_base |= _PAGE_PMD_HUGE;
2597
2598
vstart = vstart & PMD_MASK;
2599
vend = ALIGN(vend, PMD_SIZE);
2600
for (; vstart < vend; vstart += PMD_SIZE) {
2601
pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2602
unsigned long pte;
2603
p4d_t *p4d;
2604
pud_t *pud;
2605
pmd_t *pmd;
2606
2607
if (!pgd)
2608
return -ENOMEM;
2609
2610
p4d = vmemmap_p4d_populate(pgd, vstart, node);
2611
if (!p4d)
2612
return -ENOMEM;
2613
2614
pud = vmemmap_pud_populate(p4d, vstart, node);
2615
if (!pud)
2616
return -ENOMEM;
2617
2618
pmd = pmd_offset(pud, vstart);
2619
pte = pmd_val(*pmd);
2620
if (!(pte & _PAGE_VALID)) {
2621
void *block = vmemmap_alloc_block(PMD_SIZE, node);
2622
2623
if (!block)
2624
return -ENOMEM;
2625
2626
pmd_val(*pmd) = pte_base | __pa(block);
2627
}
2628
}
2629
2630
return 0;
2631
}
2632
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2633
2634
/* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2635
static pgprot_t protection_map[16] __ro_after_init;
2636
2637
static void prot_init_common(unsigned long page_none,
2638
unsigned long page_shared,
2639
unsigned long page_copy,
2640
unsigned long page_readonly,
2641
unsigned long page_exec_bit)
2642
{
2643
PAGE_COPY = __pgprot(page_copy);
2644
PAGE_SHARED = __pgprot(page_shared);
2645
2646
protection_map[0x0] = __pgprot(page_none);
2647
protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2648
protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2649
protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2650
protection_map[0x4] = __pgprot(page_readonly);
2651
protection_map[0x5] = __pgprot(page_readonly);
2652
protection_map[0x6] = __pgprot(page_copy);
2653
protection_map[0x7] = __pgprot(page_copy);
2654
protection_map[0x8] = __pgprot(page_none);
2655
protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2656
protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2657
protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2658
protection_map[0xc] = __pgprot(page_readonly);
2659
protection_map[0xd] = __pgprot(page_readonly);
2660
protection_map[0xe] = __pgprot(page_shared);
2661
protection_map[0xf] = __pgprot(page_shared);
2662
}
2663
2664
static void __init sun4u_pgprot_init(void)
2665
{
2666
unsigned long page_none, page_shared, page_copy, page_readonly;
2667
unsigned long page_exec_bit;
2668
int i;
2669
2670
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2671
_PAGE_CACHE_4U | _PAGE_P_4U |
2672
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2673
_PAGE_EXEC_4U);
2674
PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2675
_PAGE_CACHE_4U | _PAGE_P_4U |
2676
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2677
_PAGE_EXEC_4U | _PAGE_L_4U);
2678
2679
_PAGE_IE = _PAGE_IE_4U;
2680
_PAGE_E = _PAGE_E_4U;
2681
_PAGE_CACHE = _PAGE_CACHE_4U;
2682
2683
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2684
__ACCESS_BITS_4U | _PAGE_E_4U);
2685
2686
#ifdef CONFIG_DEBUG_PAGEALLOC
2687
kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2688
#else
2689
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2690
PAGE_OFFSET;
2691
#endif
2692
kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2693
_PAGE_P_4U | _PAGE_W_4U);
2694
2695
for (i = 1; i < 4; i++)
2696
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2697
2698
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2699
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2700
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2701
2702
2703
page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2704
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2705
__ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2706
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2707
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
2708
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2709
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
2710
2711
page_exec_bit = _PAGE_EXEC_4U;
2712
2713
prot_init_common(page_none, page_shared, page_copy, page_readonly,
2714
page_exec_bit);
2715
}
2716
2717
static void __init sun4v_pgprot_init(void)
2718
{
2719
unsigned long page_none, page_shared, page_copy, page_readonly;
2720
unsigned long page_exec_bit;
2721
int i;
2722
2723
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2724
page_cache4v_flag | _PAGE_P_4V |
2725
__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2726
_PAGE_EXEC_4V);
2727
PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2728
2729
_PAGE_IE = _PAGE_IE_4V;
2730
_PAGE_E = _PAGE_E_4V;
2731
_PAGE_CACHE = page_cache4v_flag;
2732
2733
#ifdef CONFIG_DEBUG_PAGEALLOC
2734
kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2735
#else
2736
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2737
PAGE_OFFSET;
2738
#endif
2739
kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2740
_PAGE_W_4V);
2741
2742
for (i = 1; i < 4; i++)
2743
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2744
2745
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2746
__ACCESS_BITS_4V | _PAGE_E_4V);
2747
2748
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2749
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2750
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2751
_PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2752
2753
page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2754
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2755
__ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2756
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2757
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
2758
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2759
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
2760
2761
page_exec_bit = _PAGE_EXEC_4V;
2762
2763
prot_init_common(page_none, page_shared, page_copy, page_readonly,
2764
page_exec_bit);
2765
}
2766
2767
unsigned long pte_sz_bits(unsigned long sz)
2768
{
2769
if (tlb_type == hypervisor) {
2770
switch (sz) {
2771
case 8 * 1024:
2772
default:
2773
return _PAGE_SZ8K_4V;
2774
case 64 * 1024:
2775
return _PAGE_SZ64K_4V;
2776
case 512 * 1024:
2777
return _PAGE_SZ512K_4V;
2778
case 4 * 1024 * 1024:
2779
return _PAGE_SZ4MB_4V;
2780
}
2781
} else {
2782
switch (sz) {
2783
case 8 * 1024:
2784
default:
2785
return _PAGE_SZ8K_4U;
2786
case 64 * 1024:
2787
return _PAGE_SZ64K_4U;
2788
case 512 * 1024:
2789
return _PAGE_SZ512K_4U;
2790
case 4 * 1024 * 1024:
2791
return _PAGE_SZ4MB_4U;
2792
}
2793
}
2794
}
2795
2796
pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2797
{
2798
pte_t pte;
2799
2800
pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2801
pte_val(pte) |= (((unsigned long)space) << 32);
2802
pte_val(pte) |= pte_sz_bits(page_size);
2803
2804
return pte;
2805
}
2806
2807
static unsigned long kern_large_tte(unsigned long paddr)
2808
{
2809
unsigned long val;
2810
2811
val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2812
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2813
_PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2814
if (tlb_type == hypervisor)
2815
val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2816
page_cache4v_flag | _PAGE_P_4V |
2817
_PAGE_EXEC_4V | _PAGE_W_4V);
2818
2819
return val | paddr;
2820
}
2821
2822
/* If not locked, zap it. */
2823
void __flush_tlb_all(void)
2824
{
2825
unsigned long pstate;
2826
int i;
2827
2828
__asm__ __volatile__("flushw\n\t"
2829
"rdpr %%pstate, %0\n\t"
2830
"wrpr %0, %1, %%pstate"
2831
: "=r" (pstate)
2832
: "i" (PSTATE_IE));
2833
if (tlb_type == hypervisor) {
2834
sun4v_mmu_demap_all();
2835
} else if (tlb_type == spitfire) {
2836
for (i = 0; i < 64; i++) {
2837
/* Spitfire Errata #32 workaround */
2838
/* NOTE: Always runs on spitfire, so no
2839
* cheetah+ page size encodings.
2840
*/
2841
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
2842
"flush %%g6"
2843
: /* No outputs */
2844
: "r" (0),
2845
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2846
2847
if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2848
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2849
"membar #Sync"
2850
: /* no outputs */
2851
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2852
spitfire_put_dtlb_data(i, 0x0UL);
2853
}
2854
2855
/* Spitfire Errata #32 workaround */
2856
/* NOTE: Always runs on spitfire, so no
2857
* cheetah+ page size encodings.
2858
*/
2859
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
2860
"flush %%g6"
2861
: /* No outputs */
2862
: "r" (0),
2863
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2864
2865
if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2866
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2867
"membar #Sync"
2868
: /* no outputs */
2869
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2870
spitfire_put_itlb_data(i, 0x0UL);
2871
}
2872
}
2873
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2874
cheetah_flush_dtlb_all();
2875
cheetah_flush_itlb_all();
2876
}
2877
__asm__ __volatile__("wrpr %0, 0, %%pstate"
2878
: : "r" (pstate));
2879
}
2880
2881
static pte_t *__pte_alloc_one(struct mm_struct *mm)
2882
{
2883
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL | __GFP_ZERO, 0);
2884
2885
if (!ptdesc)
2886
return NULL;
2887
if (!pagetable_pte_ctor(mm, ptdesc)) {
2888
pagetable_free(ptdesc);
2889
return NULL;
2890
}
2891
return ptdesc_address(ptdesc);
2892
}
2893
2894
pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2895
{
2896
return __pte_alloc_one(mm);
2897
}
2898
2899
pgtable_t pte_alloc_one(struct mm_struct *mm)
2900
{
2901
return __pte_alloc_one(mm);
2902
}
2903
2904
static void __pte_free(pgtable_t pte)
2905
{
2906
struct ptdesc *ptdesc = virt_to_ptdesc(pte);
2907
2908
pagetable_dtor(ptdesc);
2909
pagetable_free(ptdesc);
2910
}
2911
2912
void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2913
{
2914
__pte_free(pte);
2915
}
2916
2917
void pte_free(struct mm_struct *mm, pgtable_t pte)
2918
{
2919
__pte_free(pte);
2920
}
2921
2922
void pgtable_free(void *table, bool is_page)
2923
{
2924
if (is_page)
2925
__pte_free(table);
2926
else
2927
kmem_cache_free(pgtable_cache, table);
2928
}
2929
2930
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2931
static void pte_free_now(struct rcu_head *head)
2932
{
2933
struct page *page;
2934
2935
page = container_of(head, struct page, rcu_head);
2936
__pte_free((pgtable_t)page_address(page));
2937
}
2938
2939
void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
2940
{
2941
struct page *page;
2942
2943
page = virt_to_page(pgtable);
2944
call_rcu(&page->rcu_head, pte_free_now);
2945
}
2946
2947
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2948
pmd_t *pmd)
2949
{
2950
unsigned long pte, flags;
2951
struct mm_struct *mm;
2952
pmd_t entry = *pmd;
2953
2954
if (!pmd_leaf(entry) || !pmd_young(entry))
2955
return;
2956
2957
pte = pmd_val(entry);
2958
2959
/* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2960
if (!(pte & _PAGE_VALID))
2961
return;
2962
2963
/* We are fabricating 8MB pages using 4MB real hw pages. */
2964
pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2965
2966
mm = vma->vm_mm;
2967
2968
spin_lock_irqsave(&mm->context.lock, flags);
2969
2970
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2971
__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2972
addr, pte);
2973
2974
spin_unlock_irqrestore(&mm->context.lock, flags);
2975
}
2976
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2977
2978
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2979
static void context_reload(void *__data)
2980
{
2981
struct mm_struct *mm = __data;
2982
2983
if (mm == current->mm)
2984
load_secondary_context(mm);
2985
}
2986
2987
void hugetlb_setup(struct pt_regs *regs)
2988
{
2989
struct mm_struct *mm = current->mm;
2990
struct tsb_config *tp;
2991
2992
if (faulthandler_disabled() || !mm) {
2993
const struct exception_table_entry *entry;
2994
2995
entry = search_exception_tables(regs->tpc);
2996
if (entry) {
2997
regs->tpc = entry->fixup;
2998
regs->tnpc = regs->tpc + 4;
2999
return;
3000
}
3001
pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3002
die_if_kernel("HugeTSB in atomic", regs);
3003
}
3004
3005
tp = &mm->context.tsb_block[MM_TSB_HUGE];
3006
if (likely(tp->tsb == NULL))
3007
tsb_grow(mm, MM_TSB_HUGE, 0);
3008
3009
tsb_context_switch(mm);
3010
smp_tsb_sync(mm);
3011
3012
/* On UltraSPARC-III+ and later, configure the second half of
3013
* the Data-TLB for huge pages.
3014
*/
3015
if (tlb_type == cheetah_plus) {
3016
bool need_context_reload = false;
3017
unsigned long ctx;
3018
3019
spin_lock_irq(&ctx_alloc_lock);
3020
ctx = mm->context.sparc64_ctx_val;
3021
ctx &= ~CTX_PGSZ_MASK;
3022
ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3023
ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3024
3025
if (ctx != mm->context.sparc64_ctx_val) {
3026
/* When changing the page size fields, we
3027
* must perform a context flush so that no
3028
* stale entries match. This flush must
3029
* occur with the original context register
3030
* settings.
3031
*/
3032
do_flush_tlb_mm(mm);
3033
3034
/* Reload the context register of all processors
3035
* also executing in this address space.
3036
*/
3037
mm->context.sparc64_ctx_val = ctx;
3038
need_context_reload = true;
3039
}
3040
spin_unlock_irq(&ctx_alloc_lock);
3041
3042
if (need_context_reload)
3043
on_each_cpu(context_reload, mm, 0);
3044
}
3045
}
3046
#endif
3047
3048
static struct resource code_resource = {
3049
.name = "Kernel code",
3050
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3051
};
3052
3053
static struct resource data_resource = {
3054
.name = "Kernel data",
3055
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3056
};
3057
3058
static struct resource bss_resource = {
3059
.name = "Kernel bss",
3060
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3061
};
3062
3063
static inline resource_size_t compute_kern_paddr(void *addr)
3064
{
3065
return (resource_size_t) (addr - KERNBASE + kern_base);
3066
}
3067
3068
static void __init kernel_lds_init(void)
3069
{
3070
code_resource.start = compute_kern_paddr(_text);
3071
code_resource.end = compute_kern_paddr(_etext - 1);
3072
data_resource.start = compute_kern_paddr(_etext);
3073
data_resource.end = compute_kern_paddr(_edata - 1);
3074
bss_resource.start = compute_kern_paddr(__bss_start);
3075
bss_resource.end = compute_kern_paddr(_end - 1);
3076
}
3077
3078
static int __init report_memory(void)
3079
{
3080
int i;
3081
struct resource *res;
3082
3083
kernel_lds_init();
3084
3085
for (i = 0; i < pavail_ents; i++) {
3086
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3087
3088
if (!res) {
3089
pr_warn("Failed to allocate source.\n");
3090
break;
3091
}
3092
3093
res->name = "System RAM";
3094
res->start = pavail[i].phys_addr;
3095
res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3096
res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3097
3098
if (insert_resource(&iomem_resource, res) < 0) {
3099
pr_warn("Resource insertion failed.\n");
3100
break;
3101
}
3102
3103
insert_resource(res, &code_resource);
3104
insert_resource(res, &data_resource);
3105
insert_resource(res, &bss_resource);
3106
}
3107
3108
return 0;
3109
}
3110
arch_initcall(report_memory);
3111
3112
#ifdef CONFIG_SMP
3113
#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3114
#else
3115
#define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3116
#endif
3117
3118
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3119
{
3120
if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3121
if (start < LOW_OBP_ADDRESS) {
3122
flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3123
do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3124
}
3125
if (end > HI_OBP_ADDRESS) {
3126
flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3127
do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3128
}
3129
} else {
3130
flush_tsb_kernel_range(start, end);
3131
do_flush_tlb_kernel_range(start, end);
3132
}
3133
}
3134
3135
void copy_user_highpage(struct page *to, struct page *from,
3136
unsigned long vaddr, struct vm_area_struct *vma)
3137
{
3138
char *vfrom, *vto;
3139
3140
vfrom = kmap_atomic(from);
3141
vto = kmap_atomic(to);
3142
copy_user_page(vto, vfrom, vaddr, to);
3143
kunmap_atomic(vto);
3144
kunmap_atomic(vfrom);
3145
3146
/* If this page has ADI enabled, copy over any ADI tags
3147
* as well
3148
*/
3149
if (vma->vm_flags & VM_SPARC_ADI) {
3150
unsigned long pfrom, pto, i, adi_tag;
3151
3152
pfrom = page_to_phys(from);
3153
pto = page_to_phys(to);
3154
3155
for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3156
asm volatile("ldxa [%1] %2, %0\n\t"
3157
: "=r" (adi_tag)
3158
: "r" (i), "i" (ASI_MCD_REAL));
3159
asm volatile("stxa %0, [%1] %2\n\t"
3160
:
3161
: "r" (adi_tag), "r" (pto),
3162
"i" (ASI_MCD_REAL));
3163
pto += adi_blksize();
3164
}
3165
asm volatile("membar #Sync\n\t");
3166
}
3167
}
3168
EXPORT_SYMBOL(copy_user_highpage);
3169
3170
void copy_highpage(struct page *to, struct page *from)
3171
{
3172
char *vfrom, *vto;
3173
3174
vfrom = kmap_atomic(from);
3175
vto = kmap_atomic(to);
3176
copy_page(vto, vfrom);
3177
kunmap_atomic(vto);
3178
kunmap_atomic(vfrom);
3179
3180
/* If this platform is ADI enabled, copy any ADI tags
3181
* as well
3182
*/
3183
if (adi_capable()) {
3184
unsigned long pfrom, pto, i, adi_tag;
3185
3186
pfrom = page_to_phys(from);
3187
pto = page_to_phys(to);
3188
3189
for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3190
asm volatile("ldxa [%1] %2, %0\n\t"
3191
: "=r" (adi_tag)
3192
: "r" (i), "i" (ASI_MCD_REAL));
3193
asm volatile("stxa %0, [%1] %2\n\t"
3194
:
3195
: "r" (adi_tag), "r" (pto),
3196
"i" (ASI_MCD_REAL));
3197
pto += adi_blksize();
3198
}
3199
asm volatile("membar #Sync\n\t");
3200
}
3201
}
3202
EXPORT_SYMBOL(copy_highpage);
3203
3204
pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3205
{
3206
unsigned long prot = pgprot_val(protection_map[vm_flags &
3207
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3208
3209
if (vm_flags & VM_SPARC_ADI)
3210
prot |= _PAGE_MCD_4V;
3211
3212
return __pgprot(prot);
3213
}
3214
EXPORT_SYMBOL(vm_get_page_prot);
3215
3216