Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/mm/init_64.c
50756 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* arch/sparc64/mm/init.c
4
*
5
* Copyright (C) 1996-1999 David S. Miller ([email protected])
6
* Copyright (C) 1997-1999 Jakub Jelinek ([email protected])
7
*/
8
9
#include <linux/extable.h>
10
#include <linux/kernel.h>
11
#include <linux/sched.h>
12
#include <linux/string.h>
13
#include <linux/init.h>
14
#include <linux/memblock.h>
15
#include <linux/mm.h>
16
#include <linux/hugetlb.h>
17
#include <linux/initrd.h>
18
#include <linux/swap.h>
19
#include <linux/pagemap.h>
20
#include <linux/poison.h>
21
#include <linux/fs.h>
22
#include <linux/seq_file.h>
23
#include <linux/kprobes.h>
24
#include <linux/cache.h>
25
#include <linux/sort.h>
26
#include <linux/ioport.h>
27
#include <linux/percpu.h>
28
#include <linux/mmzone.h>
29
#include <linux/gfp.h>
30
#include <linux/bootmem_info.h>
31
32
#include <asm/head.h>
33
#include <asm/page.h>
34
#include <asm/pgalloc.h>
35
#include <asm/oplib.h>
36
#include <asm/iommu.h>
37
#include <asm/io.h>
38
#include <linux/uaccess.h>
39
#include <asm/mmu_context.h>
40
#include <asm/tlbflush.h>
41
#include <asm/dma.h>
42
#include <asm/starfire.h>
43
#include <asm/tlb.h>
44
#include <asm/spitfire.h>
45
#include <asm/sections.h>
46
#include <asm/tsb.h>
47
#include <asm/hypervisor.h>
48
#include <asm/prom.h>
49
#include <asm/mdesc.h>
50
#include <asm/cpudata.h>
51
#include <asm/setup.h>
52
#include <asm/irq.h>
53
54
#include "init_64.h"
55
56
unsigned long kern_linear_pte_xor[4] __read_mostly;
57
static unsigned long page_cache4v_flag;
58
59
/* A bitmap, two bits for every 256MB of physical memory. These two
60
* bits determine what page size we use for kernel linear
61
* translations. They form an index into kern_linear_pte_xor[]. The
62
* value in the indexed slot is XOR'd with the TLB miss virtual
63
* address to form the resulting TTE. The mapping is:
64
*
65
* 0 ==> 4MB
66
* 1 ==> 256MB
67
* 2 ==> 2GB
68
* 3 ==> 16GB
69
*
70
* All sun4v chips support 256MB pages. Only SPARC-T4 and later
71
* support 2GB pages, and hopefully future cpus will support the 16GB
72
* pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73
* if these larger page sizes are not supported by the cpu.
74
*
75
* It would be nice to determine this from the machine description
76
* 'cpu' properties, but we need to have this table setup before the
77
* MDESC is initialized.
78
*/
79
80
#ifndef CONFIG_DEBUG_PAGEALLOC
81
/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82
* Space is allocated for this right after the trap table in
83
* arch/sparc64/kernel/head.S
84
*/
85
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86
#endif
87
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89
static unsigned long cpu_pgsz_mask;
90
91
#define MAX_BANKS 1024
92
93
static struct linux_prom64_registers pavail[MAX_BANKS];
94
static int pavail_ents;
95
96
u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98
static int cmp_p64(const void *a, const void *b)
99
{
100
const struct linux_prom64_registers *x = a, *y = b;
101
102
if (x->phys_addr > y->phys_addr)
103
return 1;
104
if (x->phys_addr < y->phys_addr)
105
return -1;
106
return 0;
107
}
108
109
static void __init read_obp_memory(const char *property,
110
struct linux_prom64_registers *regs,
111
int *num_ents)
112
{
113
phandle node = prom_finddevice("/memory");
114
int prop_size = prom_getproplen(node, property);
115
int ents, ret, i;
116
117
ents = prop_size / sizeof(struct linux_prom64_registers);
118
if (ents > MAX_BANKS) {
119
prom_printf("The machine has more %s property entries than "
120
"this kernel can support (%d).\n",
121
property, MAX_BANKS);
122
prom_halt();
123
}
124
125
ret = prom_getproperty(node, property, (char *) regs, prop_size);
126
if (ret == -1) {
127
prom_printf("Couldn't get %s property from /memory.\n",
128
property);
129
prom_halt();
130
}
131
132
/* Sanitize what we got from the firmware, by page aligning
133
* everything.
134
*/
135
for (i = 0; i < ents; i++) {
136
unsigned long base, size;
137
138
base = regs[i].phys_addr;
139
size = regs[i].reg_size;
140
141
size &= PAGE_MASK;
142
if (base & ~PAGE_MASK) {
143
unsigned long new_base = PAGE_ALIGN(base);
144
145
size -= new_base - base;
146
if ((long) size < 0L)
147
size = 0UL;
148
base = new_base;
149
}
150
if (size == 0UL) {
151
/* If it is empty, simply get rid of it.
152
* This simplifies the logic of the other
153
* functions that process these arrays.
154
*/
155
memmove(&regs[i], &regs[i + 1],
156
(ents - i - 1) * sizeof(regs[0]));
157
i--;
158
ents--;
159
continue;
160
}
161
regs[i].phys_addr = base;
162
regs[i].reg_size = size;
163
}
164
165
*num_ents = ents;
166
167
sort(regs, ents, sizeof(struct linux_prom64_registers),
168
cmp_p64, NULL);
169
}
170
171
/* Kernel physical address base and size in bytes. */
172
unsigned long kern_base __read_mostly;
173
unsigned long kern_size __read_mostly;
174
175
/* Initial ramdisk setup */
176
extern unsigned long sparc_ramdisk_image64;
177
extern unsigned int sparc_ramdisk_image;
178
extern unsigned int sparc_ramdisk_size;
179
180
struct page *mem_map_zero __read_mostly;
181
EXPORT_SYMBOL(mem_map_zero);
182
183
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185
unsigned long sparc64_kern_pri_context __read_mostly;
186
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187
unsigned long sparc64_kern_sec_context __read_mostly;
188
189
int num_kernel_image_mappings;
190
191
#ifdef CONFIG_DEBUG_DCFLUSH
192
atomic_t dcpage_flushes = ATOMIC_INIT(0);
193
#ifdef CONFIG_SMP
194
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195
#endif
196
#endif
197
198
inline void flush_dcache_folio_impl(struct folio *folio)
199
{
200
unsigned int i, nr = folio_nr_pages(folio);
201
202
BUG_ON(tlb_type == hypervisor);
203
#ifdef CONFIG_DEBUG_DCFLUSH
204
atomic_inc(&dcpage_flushes);
205
#endif
206
207
#ifdef DCACHE_ALIASING_POSSIBLE
208
for (i = 0; i < nr; i++)
209
__flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
210
((tlb_type == spitfire) &&
211
folio_flush_mapping(folio) != NULL));
212
#else
213
if (folio_flush_mapping(folio) != NULL &&
214
tlb_type == spitfire) {
215
for (i = 0; i < nr; i++)
216
__flush_icache_page((pfn + i) * PAGE_SIZE);
217
}
218
#endif
219
}
220
221
#define PG_dcache_dirty PG_arch_1
222
#define PG_dcache_cpu_shift 32UL
223
#define PG_dcache_cpu_mask \
224
((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
225
226
#define dcache_dirty_cpu(folio) \
227
(((folio)->flags.f >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
228
229
static inline void set_dcache_dirty(struct folio *folio, int this_cpu)
230
{
231
unsigned long mask = this_cpu;
232
unsigned long non_cpu_bits;
233
234
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
235
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
236
237
__asm__ __volatile__("1:\n\t"
238
"ldx [%2], %%g7\n\t"
239
"and %%g7, %1, %%g1\n\t"
240
"or %%g1, %0, %%g1\n\t"
241
"casx [%2], %%g7, %%g1\n\t"
242
"cmp %%g7, %%g1\n\t"
243
"bne,pn %%xcc, 1b\n\t"
244
" nop"
245
: /* no outputs */
246
: "r" (mask), "r" (non_cpu_bits), "r" (&folio->flags.f)
247
: "g1", "g7");
248
}
249
250
static inline void clear_dcache_dirty_cpu(struct folio *folio, unsigned long cpu)
251
{
252
unsigned long mask = (1UL << PG_dcache_dirty);
253
254
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
255
"1:\n\t"
256
"ldx [%2], %%g7\n\t"
257
"srlx %%g7, %4, %%g1\n\t"
258
"and %%g1, %3, %%g1\n\t"
259
"cmp %%g1, %0\n\t"
260
"bne,pn %%icc, 2f\n\t"
261
" andn %%g7, %1, %%g1\n\t"
262
"casx [%2], %%g7, %%g1\n\t"
263
"cmp %%g7, %%g1\n\t"
264
"bne,pn %%xcc, 1b\n\t"
265
" nop\n"
266
"2:"
267
: /* no outputs */
268
: "r" (cpu), "r" (mask), "r" (&folio->flags.f),
269
"i" (PG_dcache_cpu_mask),
270
"i" (PG_dcache_cpu_shift)
271
: "g1", "g7");
272
}
273
274
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
275
{
276
unsigned long tsb_addr = (unsigned long) ent;
277
278
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
279
tsb_addr = __pa(tsb_addr);
280
281
__tsb_insert(tsb_addr, tag, pte);
282
}
283
284
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
285
286
static void flush_dcache(unsigned long pfn)
287
{
288
struct page *page;
289
290
page = pfn_to_page(pfn);
291
if (page) {
292
struct folio *folio = page_folio(page);
293
unsigned long pg_flags;
294
295
pg_flags = folio->flags.f;
296
if (pg_flags & (1UL << PG_dcache_dirty)) {
297
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
298
PG_dcache_cpu_mask);
299
int this_cpu = get_cpu();
300
301
/* This is just to optimize away some function calls
302
* in the SMP case.
303
*/
304
if (cpu == this_cpu)
305
flush_dcache_folio_impl(folio);
306
else
307
smp_flush_dcache_folio_impl(folio, cpu);
308
309
clear_dcache_dirty_cpu(folio, cpu);
310
311
put_cpu();
312
}
313
}
314
}
315
316
/* mm->context.lock must be held */
317
static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
318
unsigned long tsb_hash_shift, unsigned long address,
319
unsigned long tte)
320
{
321
struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
322
unsigned long tag;
323
324
if (unlikely(!tsb))
325
return;
326
327
tsb += ((address >> tsb_hash_shift) &
328
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329
tag = (address >> 22UL);
330
tsb_insert(tsb, tag, tte);
331
}
332
333
#ifdef CONFIG_HUGETLB_PAGE
334
static int __init hugetlbpage_init(void)
335
{
336
hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
337
hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
338
hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
339
hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
340
341
return 0;
342
}
343
344
arch_initcall(hugetlbpage_init);
345
346
static void __init pud_huge_patch(void)
347
{
348
struct pud_huge_patch_entry *p;
349
unsigned long addr;
350
351
p = &__pud_huge_patch;
352
addr = p->addr;
353
*(unsigned int *)addr = p->insn;
354
355
__asm__ __volatile__("flush %0" : : "r" (addr));
356
}
357
358
bool __init arch_hugetlb_valid_size(unsigned long size)
359
{
360
unsigned int hugepage_shift = ilog2(size);
361
unsigned int hv_pgsz_mask;
362
363
switch (hugepage_shift) {
364
case HPAGE_16GB_SHIFT:
365
hv_pgsz_mask = HV_PGSZ_MASK_16GB;
366
pud_huge_patch();
367
break;
368
case HPAGE_2GB_SHIFT:
369
hv_pgsz_mask = HV_PGSZ_MASK_2GB;
370
break;
371
case HPAGE_256MB_SHIFT:
372
hv_pgsz_mask = HV_PGSZ_MASK_256MB;
373
break;
374
case HPAGE_SHIFT:
375
hv_pgsz_mask = HV_PGSZ_MASK_4MB;
376
break;
377
case HPAGE_64K_SHIFT:
378
hv_pgsz_mask = HV_PGSZ_MASK_64K;
379
break;
380
default:
381
hv_pgsz_mask = 0;
382
}
383
384
if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
385
return false;
386
387
return true;
388
}
389
#endif /* CONFIG_HUGETLB_PAGE */
390
391
void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
392
unsigned long address, pte_t *ptep, unsigned int nr)
393
{
394
struct mm_struct *mm;
395
unsigned long flags;
396
bool is_huge_tsb;
397
pte_t pte = *ptep;
398
unsigned int i;
399
400
if (tlb_type != hypervisor) {
401
unsigned long pfn = pte_pfn(pte);
402
403
if (pfn_valid(pfn))
404
flush_dcache(pfn);
405
}
406
407
mm = vma->vm_mm;
408
409
/* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
410
if (!pte_accessible(mm, pte))
411
return;
412
413
spin_lock_irqsave(&mm->context.lock, flags);
414
415
is_huge_tsb = false;
416
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
417
if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
418
unsigned long hugepage_size = PAGE_SIZE;
419
420
if (is_vm_hugetlb_page(vma))
421
hugepage_size = huge_page_size(hstate_vma(vma));
422
423
if (hugepage_size >= PUD_SIZE) {
424
unsigned long mask = 0x1ffc00000UL;
425
426
/* Transfer bits [32:22] from address to resolve
427
* at 4M granularity.
428
*/
429
pte_val(pte) &= ~mask;
430
pte_val(pte) |= (address & mask);
431
} else if (hugepage_size >= PMD_SIZE) {
432
/* We are fabricating 8MB pages using 4MB
433
* real hw pages.
434
*/
435
pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
436
}
437
438
if (hugepage_size >= PMD_SIZE) {
439
__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
440
REAL_HPAGE_SHIFT, address, pte_val(pte));
441
is_huge_tsb = true;
442
}
443
}
444
#endif
445
if (!is_huge_tsb) {
446
for (i = 0; i < nr; i++) {
447
__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
448
address, pte_val(pte));
449
address += PAGE_SIZE;
450
pte_val(pte) += PAGE_SIZE;
451
}
452
}
453
454
spin_unlock_irqrestore(&mm->context.lock, flags);
455
}
456
457
void flush_dcache_folio(struct folio *folio)
458
{
459
unsigned long pfn = folio_pfn(folio);
460
struct address_space *mapping;
461
int this_cpu;
462
463
if (tlb_type == hypervisor)
464
return;
465
466
/* Do not bother with the expensive D-cache flush if it
467
* is merely the zero page. The 'bigcore' testcase in GDB
468
* causes this case to run millions of times.
469
*/
470
if (is_zero_pfn(pfn))
471
return;
472
473
this_cpu = get_cpu();
474
475
mapping = folio_flush_mapping(folio);
476
if (mapping && !mapping_mapped(mapping)) {
477
bool dirty = test_bit(PG_dcache_dirty, &folio->flags.f);
478
if (dirty) {
479
int dirty_cpu = dcache_dirty_cpu(folio);
480
481
if (dirty_cpu == this_cpu)
482
goto out;
483
smp_flush_dcache_folio_impl(folio, dirty_cpu);
484
}
485
set_dcache_dirty(folio, this_cpu);
486
} else {
487
/* We could delay the flush for the !folio_mapping
488
* case too. But that case is for exec env/arg
489
* pages and those are %99 certainly going to get
490
* faulted into the tlb (and thus flushed) anyways.
491
*/
492
flush_dcache_folio_impl(folio);
493
}
494
495
out:
496
put_cpu();
497
}
498
EXPORT_SYMBOL(flush_dcache_folio);
499
500
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
501
{
502
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
503
if (tlb_type == spitfire) {
504
unsigned long kaddr;
505
506
/* This code only runs on Spitfire cpus so this is
507
* why we can assume _PAGE_PADDR_4U.
508
*/
509
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
510
unsigned long paddr, mask = _PAGE_PADDR_4U;
511
512
if (kaddr >= PAGE_OFFSET)
513
paddr = kaddr & mask;
514
else {
515
pte_t *ptep = virt_to_kpte(kaddr);
516
517
paddr = pte_val(*ptep) & mask;
518
}
519
__flush_icache_page(paddr);
520
}
521
}
522
}
523
EXPORT_SYMBOL(flush_icache_range);
524
525
void mmu_info(struct seq_file *m)
526
{
527
static const char *pgsz_strings[] = {
528
"8K", "64K", "512K", "4MB", "32MB",
529
"256MB", "2GB", "16GB",
530
};
531
int i, printed;
532
533
if (tlb_type == cheetah)
534
seq_printf(m, "MMU Type\t: Cheetah\n");
535
else if (tlb_type == cheetah_plus)
536
seq_printf(m, "MMU Type\t: Cheetah+\n");
537
else if (tlb_type == spitfire)
538
seq_printf(m, "MMU Type\t: Spitfire\n");
539
else if (tlb_type == hypervisor)
540
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
541
else
542
seq_printf(m, "MMU Type\t: ???\n");
543
544
seq_printf(m, "MMU PGSZs\t: ");
545
printed = 0;
546
for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
547
if (cpu_pgsz_mask & (1UL << i)) {
548
seq_printf(m, "%s%s",
549
printed ? "," : "", pgsz_strings[i]);
550
printed++;
551
}
552
}
553
seq_putc(m, '\n');
554
555
#ifdef CONFIG_DEBUG_DCFLUSH
556
seq_printf(m, "DCPageFlushes\t: %d\n",
557
atomic_read(&dcpage_flushes));
558
#ifdef CONFIG_SMP
559
seq_printf(m, "DCPageFlushesXC\t: %d\n",
560
atomic_read(&dcpage_flushes_xcall));
561
#endif /* CONFIG_SMP */
562
#endif /* CONFIG_DEBUG_DCFLUSH */
563
}
564
565
struct linux_prom_translation prom_trans[512] __read_mostly;
566
unsigned int prom_trans_ents __read_mostly;
567
568
unsigned long kern_locked_tte_data;
569
570
/* The obp translations are saved based on 8k pagesize, since obp can
571
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
572
* HI_OBP_ADDRESS range are handled in ktlb.S.
573
*/
574
static inline int in_obp_range(unsigned long vaddr)
575
{
576
return (vaddr >= LOW_OBP_ADDRESS &&
577
vaddr < HI_OBP_ADDRESS);
578
}
579
580
static int cmp_ptrans(const void *a, const void *b)
581
{
582
const struct linux_prom_translation *x = a, *y = b;
583
584
if (x->virt > y->virt)
585
return 1;
586
if (x->virt < y->virt)
587
return -1;
588
return 0;
589
}
590
591
/* Read OBP translations property into 'prom_trans[]'. */
592
static void __init read_obp_translations(void)
593
{
594
int n, node, ents, first, last, i;
595
596
node = prom_finddevice("/virtual-memory");
597
n = prom_getproplen(node, "translations");
598
if (unlikely(n == 0 || n == -1)) {
599
prom_printf("prom_mappings: Couldn't get size.\n");
600
prom_halt();
601
}
602
if (unlikely(n > sizeof(prom_trans))) {
603
prom_printf("prom_mappings: Size %d is too big.\n", n);
604
prom_halt();
605
}
606
607
if ((n = prom_getproperty(node, "translations",
608
(char *)&prom_trans[0],
609
sizeof(prom_trans))) == -1) {
610
prom_printf("prom_mappings: Couldn't get property.\n");
611
prom_halt();
612
}
613
614
n = n / sizeof(struct linux_prom_translation);
615
616
ents = n;
617
618
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
619
cmp_ptrans, NULL);
620
621
/* Now kick out all the non-OBP entries. */
622
for (i = 0; i < ents; i++) {
623
if (in_obp_range(prom_trans[i].virt))
624
break;
625
}
626
first = i;
627
for (; i < ents; i++) {
628
if (!in_obp_range(prom_trans[i].virt))
629
break;
630
}
631
last = i;
632
633
for (i = 0; i < (last - first); i++) {
634
struct linux_prom_translation *src = &prom_trans[i + first];
635
struct linux_prom_translation *dest = &prom_trans[i];
636
637
*dest = *src;
638
}
639
for (; i < ents; i++) {
640
struct linux_prom_translation *dest = &prom_trans[i];
641
dest->virt = dest->size = dest->data = 0x0UL;
642
}
643
644
prom_trans_ents = last - first;
645
646
if (tlb_type == spitfire) {
647
/* Clear diag TTE bits. */
648
for (i = 0; i < prom_trans_ents; i++)
649
prom_trans[i].data &= ~0x0003fe0000000000UL;
650
}
651
652
/* Force execute bit on. */
653
for (i = 0; i < prom_trans_ents; i++)
654
prom_trans[i].data |= (tlb_type == hypervisor ?
655
_PAGE_EXEC_4V : _PAGE_EXEC_4U);
656
}
657
658
static void __init hypervisor_tlb_lock(unsigned long vaddr,
659
unsigned long pte,
660
unsigned long mmu)
661
{
662
unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
663
664
if (ret != 0) {
665
prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
666
"errors with %lx\n", vaddr, 0, pte, mmu, ret);
667
prom_halt();
668
}
669
}
670
671
static unsigned long kern_large_tte(unsigned long paddr);
672
673
static void __init remap_kernel(void)
674
{
675
unsigned long phys_page, tte_vaddr, tte_data;
676
int i, tlb_ent = sparc64_highest_locked_tlbent();
677
678
tte_vaddr = (unsigned long) KERNBASE;
679
phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
680
tte_data = kern_large_tte(phys_page);
681
682
kern_locked_tte_data = tte_data;
683
684
/* Now lock us into the TLBs via Hypervisor or OBP. */
685
if (tlb_type == hypervisor) {
686
for (i = 0; i < num_kernel_image_mappings; i++) {
687
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
688
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
689
tte_vaddr += 0x400000;
690
tte_data += 0x400000;
691
}
692
} else {
693
for (i = 0; i < num_kernel_image_mappings; i++) {
694
prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
695
prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
696
tte_vaddr += 0x400000;
697
tte_data += 0x400000;
698
}
699
sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
700
}
701
if (tlb_type == cheetah_plus) {
702
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
703
CTX_CHEETAH_PLUS_NUC);
704
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
705
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
706
}
707
}
708
709
710
static void __init inherit_prom_mappings(void)
711
{
712
/* Now fixup OBP's idea about where we really are mapped. */
713
printk("Remapping the kernel... ");
714
remap_kernel();
715
printk("done.\n");
716
}
717
718
void prom_world(int enter)
719
{
720
/*
721
* No need to change the address space any more, just flush
722
* the register windows
723
*/
724
__asm__ __volatile__("flushw");
725
}
726
727
void __flush_dcache_range(unsigned long start, unsigned long end)
728
{
729
unsigned long va;
730
731
if (tlb_type == spitfire) {
732
int n = 0;
733
734
for (va = start; va < end; va += 32) {
735
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
736
if (++n >= 512)
737
break;
738
}
739
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
740
start = __pa(start);
741
end = __pa(end);
742
for (va = start; va < end; va += 32)
743
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
744
"membar #Sync"
745
: /* no outputs */
746
: "r" (va),
747
"i" (ASI_DCACHE_INVALIDATE));
748
}
749
}
750
EXPORT_SYMBOL(__flush_dcache_range);
751
752
/* get_new_mmu_context() uses "cache + 1". */
753
DEFINE_SPINLOCK(ctx_alloc_lock);
754
unsigned long tlb_context_cache = CTX_FIRST_VERSION;
755
#define MAX_CTX_NR (1UL << CTX_NR_BITS)
756
#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
757
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
758
DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
759
760
static void mmu_context_wrap(void)
761
{
762
unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
763
unsigned long new_ver, new_ctx, old_ctx;
764
struct mm_struct *mm;
765
int cpu;
766
767
bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
768
769
/* Reserve kernel context */
770
set_bit(0, mmu_context_bmap);
771
772
new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
773
if (unlikely(new_ver == 0))
774
new_ver = CTX_FIRST_VERSION;
775
tlb_context_cache = new_ver;
776
777
/*
778
* Make sure that any new mm that are added into per_cpu_secondary_mm,
779
* are going to go through get_new_mmu_context() path.
780
*/
781
mb();
782
783
/*
784
* Updated versions to current on those CPUs that had valid secondary
785
* contexts
786
*/
787
for_each_online_cpu(cpu) {
788
/*
789
* If a new mm is stored after we took this mm from the array,
790
* it will go into get_new_mmu_context() path, because we
791
* already bumped the version in tlb_context_cache.
792
*/
793
mm = per_cpu(per_cpu_secondary_mm, cpu);
794
795
if (unlikely(!mm || mm == &init_mm))
796
continue;
797
798
old_ctx = mm->context.sparc64_ctx_val;
799
if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
800
new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
801
set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
802
mm->context.sparc64_ctx_val = new_ctx;
803
}
804
}
805
}
806
807
/* Caller does TLB context flushing on local CPU if necessary.
808
* The caller also ensures that CTX_VALID(mm->context) is false.
809
*
810
* We must be careful about boundary cases so that we never
811
* let the user have CTX 0 (nucleus) or we ever use a CTX
812
* version of zero (and thus NO_CONTEXT would not be caught
813
* by version mis-match tests in mmu_context.h).
814
*
815
* Always invoked with interrupts disabled.
816
*/
817
void get_new_mmu_context(struct mm_struct *mm)
818
{
819
unsigned long ctx, new_ctx;
820
unsigned long orig_pgsz_bits;
821
822
spin_lock(&ctx_alloc_lock);
823
retry:
824
/* wrap might have happened, test again if our context became valid */
825
if (unlikely(CTX_VALID(mm->context)))
826
goto out;
827
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
828
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
829
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
830
if (new_ctx >= (1 << CTX_NR_BITS)) {
831
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
832
if (new_ctx >= ctx) {
833
mmu_context_wrap();
834
goto retry;
835
}
836
}
837
if (mm->context.sparc64_ctx_val)
838
cpumask_clear(mm_cpumask(mm));
839
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
840
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
841
tlb_context_cache = new_ctx;
842
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
843
out:
844
spin_unlock(&ctx_alloc_lock);
845
}
846
847
static int numa_enabled = 1;
848
static int numa_debug;
849
850
static int __init early_numa(char *p)
851
{
852
if (!p)
853
return 0;
854
855
if (strstr(p, "off"))
856
numa_enabled = 0;
857
858
if (strstr(p, "debug"))
859
numa_debug = 1;
860
861
return 0;
862
}
863
early_param("numa", early_numa);
864
865
#define numadbg(f, a...) \
866
do { if (numa_debug) \
867
printk(KERN_INFO f, ## a); \
868
} while (0)
869
870
static void __init find_ramdisk(unsigned long phys_base)
871
{
872
#ifdef CONFIG_BLK_DEV_INITRD
873
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
874
unsigned long ramdisk_image;
875
876
/* Older versions of the bootloader only supported a
877
* 32-bit physical address for the ramdisk image
878
* location, stored at sparc_ramdisk_image. Newer
879
* SILO versions set sparc_ramdisk_image to zero and
880
* provide a full 64-bit physical address at
881
* sparc_ramdisk_image64.
882
*/
883
ramdisk_image = sparc_ramdisk_image;
884
if (!ramdisk_image)
885
ramdisk_image = sparc_ramdisk_image64;
886
887
/* Another bootloader quirk. The bootloader normalizes
888
* the physical address to KERNBASE, so we have to
889
* factor that back out and add in the lowest valid
890
* physical page address to get the true physical address.
891
*/
892
ramdisk_image -= KERNBASE;
893
ramdisk_image += phys_base;
894
895
numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
896
ramdisk_image, sparc_ramdisk_size);
897
898
initrd_start = ramdisk_image;
899
initrd_end = ramdisk_image + sparc_ramdisk_size;
900
901
memblock_reserve(initrd_start, sparc_ramdisk_size);
902
903
initrd_start += PAGE_OFFSET;
904
initrd_end += PAGE_OFFSET;
905
}
906
#endif
907
}
908
909
struct node_mem_mask {
910
unsigned long mask;
911
unsigned long match;
912
};
913
static struct node_mem_mask node_masks[MAX_NUMNODES];
914
static int num_node_masks;
915
916
#ifdef CONFIG_NUMA
917
918
struct mdesc_mlgroup {
919
u64 node;
920
u64 latency;
921
u64 match;
922
u64 mask;
923
};
924
925
static struct mdesc_mlgroup *mlgroups;
926
static int num_mlgroups;
927
928
int numa_cpu_lookup_table[NR_CPUS];
929
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
930
931
struct mdesc_mblock {
932
u64 base;
933
u64 size;
934
u64 offset; /* RA-to-PA */
935
};
936
static struct mdesc_mblock *mblocks;
937
static int num_mblocks;
938
939
static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
940
{
941
struct mdesc_mblock *m = NULL;
942
int i;
943
944
for (i = 0; i < num_mblocks; i++) {
945
m = &mblocks[i];
946
947
if (addr >= m->base &&
948
addr < (m->base + m->size)) {
949
break;
950
}
951
}
952
953
return m;
954
}
955
956
static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
957
{
958
int prev_nid, new_nid;
959
960
prev_nid = NUMA_NO_NODE;
961
for ( ; start < end; start += PAGE_SIZE) {
962
for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
963
struct node_mem_mask *p = &node_masks[new_nid];
964
965
if ((start & p->mask) == p->match) {
966
if (prev_nid == NUMA_NO_NODE)
967
prev_nid = new_nid;
968
break;
969
}
970
}
971
972
if (new_nid == num_node_masks) {
973
prev_nid = 0;
974
WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
975
start);
976
break;
977
}
978
979
if (prev_nid != new_nid)
980
break;
981
}
982
*nid = prev_nid;
983
984
return start > end ? end : start;
985
}
986
987
static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
988
{
989
u64 ret_end, pa_start, m_mask, m_match, m_end;
990
struct mdesc_mblock *mblock;
991
int _nid, i;
992
993
if (tlb_type != hypervisor)
994
return memblock_nid_range_sun4u(start, end, nid);
995
996
mblock = addr_to_mblock(start);
997
if (!mblock) {
998
WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
999
start);
1000
1001
_nid = 0;
1002
ret_end = end;
1003
goto done;
1004
}
1005
1006
pa_start = start + mblock->offset;
1007
m_match = 0;
1008
m_mask = 0;
1009
1010
for (_nid = 0; _nid < num_node_masks; _nid++) {
1011
struct node_mem_mask *const m = &node_masks[_nid];
1012
1013
if ((pa_start & m->mask) == m->match) {
1014
m_match = m->match;
1015
m_mask = m->mask;
1016
break;
1017
}
1018
}
1019
1020
if (num_node_masks == _nid) {
1021
/* We could not find NUMA group, so default to 0, but lets
1022
* search for latency group, so we could calculate the correct
1023
* end address that we return
1024
*/
1025
_nid = 0;
1026
1027
for (i = 0; i < num_mlgroups; i++) {
1028
struct mdesc_mlgroup *const m = &mlgroups[i];
1029
1030
if ((pa_start & m->mask) == m->match) {
1031
m_match = m->match;
1032
m_mask = m->mask;
1033
break;
1034
}
1035
}
1036
1037
if (i == num_mlgroups) {
1038
WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1039
start);
1040
1041
ret_end = end;
1042
goto done;
1043
}
1044
}
1045
1046
/*
1047
* Each latency group has match and mask, and each memory block has an
1048
* offset. An address belongs to a latency group if its address matches
1049
* the following formula: ((addr + offset) & mask) == match
1050
* It is, however, slow to check every single page if it matches a
1051
* particular latency group. As optimization we calculate end value by
1052
* using bit arithmetics.
1053
*/
1054
m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1055
m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1056
ret_end = m_end > end ? end : m_end;
1057
1058
done:
1059
*nid = _nid;
1060
return ret_end;
1061
}
1062
#endif
1063
1064
/* This must be invoked after performing all of the necessary
1065
* memblock_set_node() calls for 'nid'. We need to be able to get
1066
* correct data from get_pfn_range_for_nid().
1067
*/
1068
static void __init allocate_node_data(int nid)
1069
{
1070
struct pglist_data *p;
1071
unsigned long start_pfn, end_pfn;
1072
1073
#ifdef CONFIG_NUMA
1074
alloc_node_data(nid);
1075
1076
NODE_DATA(nid)->node_id = nid;
1077
#endif
1078
1079
p = NODE_DATA(nid);
1080
1081
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1082
p->node_start_pfn = start_pfn;
1083
p->node_spanned_pages = end_pfn - start_pfn;
1084
}
1085
1086
static void init_node_masks_nonnuma(void)
1087
{
1088
#ifdef CONFIG_NUMA
1089
int i;
1090
#endif
1091
1092
numadbg("Initializing tables for non-numa.\n");
1093
1094
node_masks[0].mask = 0;
1095
node_masks[0].match = 0;
1096
num_node_masks = 1;
1097
1098
#ifdef CONFIG_NUMA
1099
for (i = 0; i < NR_CPUS; i++)
1100
numa_cpu_lookup_table[i] = 0;
1101
1102
cpumask_setall(&numa_cpumask_lookup_table[0]);
1103
#endif
1104
}
1105
1106
#ifdef CONFIG_NUMA
1107
1108
EXPORT_SYMBOL(numa_cpu_lookup_table);
1109
EXPORT_SYMBOL(numa_cpumask_lookup_table);
1110
1111
static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1112
u32 cfg_handle)
1113
{
1114
u64 arc;
1115
1116
mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1117
u64 target = mdesc_arc_target(md, arc);
1118
const u64 *val;
1119
1120
val = mdesc_get_property(md, target,
1121
"cfg-handle", NULL);
1122
if (val && *val == cfg_handle)
1123
return 0;
1124
}
1125
return -ENODEV;
1126
}
1127
1128
static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1129
u32 cfg_handle)
1130
{
1131
u64 arc, candidate, best_latency = ~(u64)0;
1132
1133
candidate = MDESC_NODE_NULL;
1134
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1135
u64 target = mdesc_arc_target(md, arc);
1136
const char *name = mdesc_node_name(md, target);
1137
const u64 *val;
1138
1139
if (strcmp(name, "pio-latency-group"))
1140
continue;
1141
1142
val = mdesc_get_property(md, target, "latency", NULL);
1143
if (!val)
1144
continue;
1145
1146
if (*val < best_latency) {
1147
candidate = target;
1148
best_latency = *val;
1149
}
1150
}
1151
1152
if (candidate == MDESC_NODE_NULL)
1153
return -ENODEV;
1154
1155
return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1156
}
1157
1158
int of_node_to_nid(struct device_node *dp)
1159
{
1160
const struct linux_prom64_registers *regs;
1161
struct mdesc_handle *md;
1162
u32 cfg_handle;
1163
int count, nid;
1164
u64 grp;
1165
1166
/* This is the right thing to do on currently supported
1167
* SUN4U NUMA platforms as well, as the PCI controller does
1168
* not sit behind any particular memory controller.
1169
*/
1170
if (!mlgroups)
1171
return -1;
1172
1173
regs = of_get_property(dp, "reg", NULL);
1174
if (!regs)
1175
return -1;
1176
1177
cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1178
1179
md = mdesc_grab();
1180
1181
count = 0;
1182
nid = NUMA_NO_NODE;
1183
mdesc_for_each_node_by_name(md, grp, "group") {
1184
if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1185
nid = count;
1186
break;
1187
}
1188
count++;
1189
}
1190
1191
mdesc_release(md);
1192
1193
return nid;
1194
}
1195
1196
static void __init add_node_ranges(void)
1197
{
1198
phys_addr_t start, end;
1199
unsigned long prev_max;
1200
u64 i;
1201
1202
memblock_resized:
1203
prev_max = memblock.memory.max;
1204
1205
for_each_mem_range(i, &start, &end) {
1206
while (start < end) {
1207
unsigned long this_end;
1208
int nid;
1209
1210
this_end = memblock_nid_range(start, end, &nid);
1211
1212
numadbg("Setting memblock NUMA node nid[%d] "
1213
"start[%llx] end[%lx]\n",
1214
nid, start, this_end);
1215
1216
memblock_set_node(start, this_end - start,
1217
&memblock.memory, nid);
1218
if (memblock.memory.max != prev_max)
1219
goto memblock_resized;
1220
start = this_end;
1221
}
1222
}
1223
}
1224
1225
static int __init grab_mlgroups(struct mdesc_handle *md)
1226
{
1227
unsigned long paddr;
1228
int count = 0;
1229
u64 node;
1230
1231
mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1232
count++;
1233
if (!count)
1234
return -ENOENT;
1235
1236
paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1237
SMP_CACHE_BYTES);
1238
if (!paddr)
1239
return -ENOMEM;
1240
1241
mlgroups = __va(paddr);
1242
num_mlgroups = count;
1243
1244
count = 0;
1245
mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1246
struct mdesc_mlgroup *m = &mlgroups[count++];
1247
const u64 *val;
1248
1249
m->node = node;
1250
1251
val = mdesc_get_property(md, node, "latency", NULL);
1252
m->latency = *val;
1253
val = mdesc_get_property(md, node, "address-match", NULL);
1254
m->match = *val;
1255
val = mdesc_get_property(md, node, "address-mask", NULL);
1256
m->mask = *val;
1257
1258
numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1259
"match[%llx] mask[%llx]\n",
1260
count - 1, m->node, m->latency, m->match, m->mask);
1261
}
1262
1263
return 0;
1264
}
1265
1266
static int __init grab_mblocks(struct mdesc_handle *md)
1267
{
1268
unsigned long paddr;
1269
int count = 0;
1270
u64 node;
1271
1272
mdesc_for_each_node_by_name(md, node, "mblock")
1273
count++;
1274
if (!count)
1275
return -ENOENT;
1276
1277
paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1278
SMP_CACHE_BYTES);
1279
if (!paddr)
1280
return -ENOMEM;
1281
1282
mblocks = __va(paddr);
1283
num_mblocks = count;
1284
1285
count = 0;
1286
mdesc_for_each_node_by_name(md, node, "mblock") {
1287
struct mdesc_mblock *m = &mblocks[count++];
1288
const u64 *val;
1289
1290
val = mdesc_get_property(md, node, "base", NULL);
1291
m->base = *val;
1292
val = mdesc_get_property(md, node, "size", NULL);
1293
m->size = *val;
1294
val = mdesc_get_property(md, node,
1295
"address-congruence-offset", NULL);
1296
1297
/* The address-congruence-offset property is optional.
1298
* Explicity zero it be identifty this.
1299
*/
1300
if (val)
1301
m->offset = *val;
1302
else
1303
m->offset = 0UL;
1304
1305
numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1306
count - 1, m->base, m->size, m->offset);
1307
}
1308
1309
return 0;
1310
}
1311
1312
static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1313
u64 grp, cpumask_t *mask)
1314
{
1315
u64 arc;
1316
1317
cpumask_clear(mask);
1318
1319
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1320
u64 target = mdesc_arc_target(md, arc);
1321
const char *name = mdesc_node_name(md, target);
1322
const u64 *id;
1323
1324
if (strcmp(name, "cpu"))
1325
continue;
1326
id = mdesc_get_property(md, target, "id", NULL);
1327
if (*id < nr_cpu_ids)
1328
cpumask_set_cpu(*id, mask);
1329
}
1330
}
1331
1332
static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1333
{
1334
int i;
1335
1336
for (i = 0; i < num_mlgroups; i++) {
1337
struct mdesc_mlgroup *m = &mlgroups[i];
1338
if (m->node == node)
1339
return m;
1340
}
1341
return NULL;
1342
}
1343
1344
int __node_distance(int from, int to)
1345
{
1346
if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1347
pr_warn("Returning default NUMA distance value for %d->%d\n",
1348
from, to);
1349
return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1350
}
1351
return numa_latency[from][to];
1352
}
1353
EXPORT_SYMBOL(__node_distance);
1354
1355
static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1356
{
1357
int i;
1358
1359
for (i = 0; i < MAX_NUMNODES; i++) {
1360
struct node_mem_mask *n = &node_masks[i];
1361
1362
if ((grp->mask == n->mask) && (grp->match == n->match))
1363
break;
1364
}
1365
return i;
1366
}
1367
1368
static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1369
u64 grp, int index)
1370
{
1371
u64 arc;
1372
1373
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1374
int tnode;
1375
u64 target = mdesc_arc_target(md, arc);
1376
struct mdesc_mlgroup *m = find_mlgroup(target);
1377
1378
if (!m)
1379
continue;
1380
tnode = find_best_numa_node_for_mlgroup(m);
1381
if (tnode == MAX_NUMNODES)
1382
continue;
1383
numa_latency[index][tnode] = m->latency;
1384
}
1385
}
1386
1387
static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1388
int index)
1389
{
1390
struct mdesc_mlgroup *candidate = NULL;
1391
u64 arc, best_latency = ~(u64)0;
1392
struct node_mem_mask *n;
1393
1394
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1395
u64 target = mdesc_arc_target(md, arc);
1396
struct mdesc_mlgroup *m = find_mlgroup(target);
1397
if (!m)
1398
continue;
1399
if (m->latency < best_latency) {
1400
candidate = m;
1401
best_latency = m->latency;
1402
}
1403
}
1404
if (!candidate)
1405
return -ENOENT;
1406
1407
if (num_node_masks != index) {
1408
printk(KERN_ERR "Inconsistent NUMA state, "
1409
"index[%d] != num_node_masks[%d]\n",
1410
index, num_node_masks);
1411
return -EINVAL;
1412
}
1413
1414
n = &node_masks[num_node_masks++];
1415
1416
n->mask = candidate->mask;
1417
n->match = candidate->match;
1418
1419
numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1420
index, n->mask, n->match, candidate->latency);
1421
1422
return 0;
1423
}
1424
1425
static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1426
int index)
1427
{
1428
cpumask_t mask;
1429
int cpu;
1430
1431
numa_parse_mdesc_group_cpus(md, grp, &mask);
1432
1433
for_each_cpu(cpu, &mask)
1434
numa_cpu_lookup_table[cpu] = index;
1435
cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1436
1437
if (numa_debug) {
1438
printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1439
for_each_cpu(cpu, &mask)
1440
printk("%d ", cpu);
1441
printk("]\n");
1442
}
1443
1444
return numa_attach_mlgroup(md, grp, index);
1445
}
1446
1447
static int __init numa_parse_mdesc(void)
1448
{
1449
struct mdesc_handle *md = mdesc_grab();
1450
int i, j, err, count;
1451
u64 node;
1452
1453
node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1454
if (node == MDESC_NODE_NULL) {
1455
mdesc_release(md);
1456
return -ENOENT;
1457
}
1458
1459
err = grab_mblocks(md);
1460
if (err < 0)
1461
goto out;
1462
1463
err = grab_mlgroups(md);
1464
if (err < 0)
1465
goto out;
1466
1467
count = 0;
1468
mdesc_for_each_node_by_name(md, node, "group") {
1469
err = numa_parse_mdesc_group(md, node, count);
1470
if (err < 0)
1471
break;
1472
count++;
1473
}
1474
1475
count = 0;
1476
mdesc_for_each_node_by_name(md, node, "group") {
1477
find_numa_latencies_for_group(md, node, count);
1478
count++;
1479
}
1480
1481
/* Normalize numa latency matrix according to ACPI SLIT spec. */
1482
for (i = 0; i < MAX_NUMNODES; i++) {
1483
u64 self_latency = numa_latency[i][i];
1484
1485
for (j = 0; j < MAX_NUMNODES; j++) {
1486
numa_latency[i][j] =
1487
(numa_latency[i][j] * LOCAL_DISTANCE) /
1488
self_latency;
1489
}
1490
}
1491
1492
add_node_ranges();
1493
1494
for (i = 0; i < num_node_masks; i++) {
1495
allocate_node_data(i);
1496
node_set_online(i);
1497
}
1498
1499
err = 0;
1500
out:
1501
mdesc_release(md);
1502
return err;
1503
}
1504
1505
static int __init numa_parse_jbus(void)
1506
{
1507
unsigned long cpu, index;
1508
1509
/* NUMA node id is encoded in bits 36 and higher, and there is
1510
* a 1-to-1 mapping from CPU ID to NUMA node ID.
1511
*/
1512
index = 0;
1513
for_each_present_cpu(cpu) {
1514
numa_cpu_lookup_table[cpu] = index;
1515
cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1516
node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1517
node_masks[index].match = cpu << 36UL;
1518
1519
index++;
1520
}
1521
num_node_masks = index;
1522
1523
add_node_ranges();
1524
1525
for (index = 0; index < num_node_masks; index++) {
1526
allocate_node_data(index);
1527
node_set_online(index);
1528
}
1529
1530
return 0;
1531
}
1532
1533
static int __init numa_parse_sun4u(void)
1534
{
1535
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1536
unsigned long ver;
1537
1538
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1539
if ((ver >> 32UL) == __JALAPENO_ID ||
1540
(ver >> 32UL) == __SERRANO_ID)
1541
return numa_parse_jbus();
1542
}
1543
return -1;
1544
}
1545
1546
static int __init bootmem_init_numa(void)
1547
{
1548
int i, j;
1549
int err = -1;
1550
1551
numadbg("bootmem_init_numa()\n");
1552
1553
/* Some sane defaults for numa latency values */
1554
for (i = 0; i < MAX_NUMNODES; i++) {
1555
for (j = 0; j < MAX_NUMNODES; j++)
1556
numa_latency[i][j] = (i == j) ?
1557
LOCAL_DISTANCE : REMOTE_DISTANCE;
1558
}
1559
1560
if (numa_enabled) {
1561
if (tlb_type == hypervisor)
1562
err = numa_parse_mdesc();
1563
else
1564
err = numa_parse_sun4u();
1565
}
1566
return err;
1567
}
1568
1569
#else
1570
1571
static int bootmem_init_numa(void)
1572
{
1573
return -1;
1574
}
1575
1576
#endif
1577
1578
static void __init bootmem_init_nonnuma(void)
1579
{
1580
unsigned long top_of_ram = memblock_end_of_DRAM();
1581
unsigned long total_ram = memblock_phys_mem_size();
1582
1583
numadbg("bootmem_init_nonnuma()\n");
1584
1585
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1586
top_of_ram, total_ram);
1587
printk(KERN_INFO "Memory hole size: %ldMB\n",
1588
(top_of_ram - total_ram) >> 20);
1589
1590
init_node_masks_nonnuma();
1591
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1592
allocate_node_data(0);
1593
node_set_online(0);
1594
}
1595
1596
static unsigned long __init bootmem_init(unsigned long phys_base)
1597
{
1598
unsigned long end_pfn;
1599
1600
end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1601
max_pfn = max_low_pfn = end_pfn;
1602
min_low_pfn = (phys_base >> PAGE_SHIFT);
1603
1604
if (bootmem_init_numa() < 0)
1605
bootmem_init_nonnuma();
1606
1607
/* Dump memblock with node info. */
1608
memblock_dump_all();
1609
1610
/* XXX cpu notifier XXX */
1611
1612
sparse_init();
1613
1614
return end_pfn;
1615
}
1616
1617
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1618
static int pall_ents __initdata;
1619
1620
static unsigned long max_phys_bits = 40;
1621
1622
bool kern_addr_valid(unsigned long addr)
1623
{
1624
pgd_t *pgd;
1625
p4d_t *p4d;
1626
pud_t *pud;
1627
pmd_t *pmd;
1628
pte_t *pte;
1629
1630
if ((long)addr < 0L) {
1631
unsigned long pa = __pa(addr);
1632
1633
if ((pa >> max_phys_bits) != 0UL)
1634
return false;
1635
1636
return pfn_valid(pa >> PAGE_SHIFT);
1637
}
1638
1639
if (addr >= (unsigned long) KERNBASE &&
1640
addr < (unsigned long)&_end)
1641
return true;
1642
1643
pgd = pgd_offset_k(addr);
1644
if (pgd_none(*pgd))
1645
return false;
1646
1647
p4d = p4d_offset(pgd, addr);
1648
if (p4d_none(*p4d))
1649
return false;
1650
1651
pud = pud_offset(p4d, addr);
1652
if (pud_none(*pud))
1653
return false;
1654
1655
if (pud_leaf(*pud))
1656
return pfn_valid(pud_pfn(*pud));
1657
1658
pmd = pmd_offset(pud, addr);
1659
if (pmd_none(*pmd))
1660
return false;
1661
1662
if (pmd_leaf(*pmd))
1663
return pfn_valid(pmd_pfn(*pmd));
1664
1665
pte = pte_offset_kernel(pmd, addr);
1666
if (pte_none(*pte))
1667
return false;
1668
1669
return pfn_valid(pte_pfn(*pte));
1670
}
1671
1672
static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1673
unsigned long vend,
1674
pud_t *pud)
1675
{
1676
const unsigned long mask16gb = (1UL << 34) - 1UL;
1677
u64 pte_val = vstart;
1678
1679
/* Each PUD is 8GB */
1680
if ((vstart & mask16gb) ||
1681
(vend - vstart <= mask16gb)) {
1682
pte_val ^= kern_linear_pte_xor[2];
1683
pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1684
1685
return vstart + PUD_SIZE;
1686
}
1687
1688
pte_val ^= kern_linear_pte_xor[3];
1689
pte_val |= _PAGE_PUD_HUGE;
1690
1691
vend = vstart + mask16gb + 1UL;
1692
while (vstart < vend) {
1693
pud_val(*pud) = pte_val;
1694
1695
pte_val += PUD_SIZE;
1696
vstart += PUD_SIZE;
1697
pud++;
1698
}
1699
return vstart;
1700
}
1701
1702
static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1703
bool guard)
1704
{
1705
if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1706
return true;
1707
1708
return false;
1709
}
1710
1711
static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1712
unsigned long vend,
1713
pmd_t *pmd)
1714
{
1715
const unsigned long mask256mb = (1UL << 28) - 1UL;
1716
const unsigned long mask2gb = (1UL << 31) - 1UL;
1717
u64 pte_val = vstart;
1718
1719
/* Each PMD is 8MB */
1720
if ((vstart & mask256mb) ||
1721
(vend - vstart <= mask256mb)) {
1722
pte_val ^= kern_linear_pte_xor[0];
1723
pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1724
1725
return vstart + PMD_SIZE;
1726
}
1727
1728
if ((vstart & mask2gb) ||
1729
(vend - vstart <= mask2gb)) {
1730
pte_val ^= kern_linear_pte_xor[1];
1731
pte_val |= _PAGE_PMD_HUGE;
1732
vend = vstart + mask256mb + 1UL;
1733
} else {
1734
pte_val ^= kern_linear_pte_xor[2];
1735
pte_val |= _PAGE_PMD_HUGE;
1736
vend = vstart + mask2gb + 1UL;
1737
}
1738
1739
while (vstart < vend) {
1740
pmd_val(*pmd) = pte_val;
1741
1742
pte_val += PMD_SIZE;
1743
vstart += PMD_SIZE;
1744
pmd++;
1745
}
1746
1747
return vstart;
1748
}
1749
1750
static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1751
bool guard)
1752
{
1753
if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1754
return true;
1755
1756
return false;
1757
}
1758
1759
static unsigned long __ref kernel_map_range(unsigned long pstart,
1760
unsigned long pend, pgprot_t prot,
1761
bool use_huge)
1762
{
1763
unsigned long vstart = PAGE_OFFSET + pstart;
1764
unsigned long vend = PAGE_OFFSET + pend;
1765
unsigned long alloc_bytes = 0UL;
1766
1767
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1768
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1769
vstart, vend);
1770
prom_halt();
1771
}
1772
1773
while (vstart < vend) {
1774
unsigned long this_end, paddr = __pa(vstart);
1775
pgd_t *pgd = pgd_offset_k(vstart);
1776
p4d_t *p4d;
1777
pud_t *pud;
1778
pmd_t *pmd;
1779
pte_t *pte;
1780
1781
if (pgd_none(*pgd)) {
1782
pud_t *new;
1783
1784
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1785
PAGE_SIZE);
1786
if (!new)
1787
goto err_alloc;
1788
alloc_bytes += PAGE_SIZE;
1789
pgd_populate(&init_mm, pgd, new);
1790
}
1791
1792
p4d = p4d_offset(pgd, vstart);
1793
if (p4d_none(*p4d)) {
1794
pud_t *new;
1795
1796
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1797
PAGE_SIZE);
1798
if (!new)
1799
goto err_alloc;
1800
alloc_bytes += PAGE_SIZE;
1801
p4d_populate(&init_mm, p4d, new);
1802
}
1803
1804
pud = pud_offset(p4d, vstart);
1805
if (pud_none(*pud)) {
1806
pmd_t *new;
1807
1808
if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1809
vstart = kernel_map_hugepud(vstart, vend, pud);
1810
continue;
1811
}
1812
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1813
PAGE_SIZE);
1814
if (!new)
1815
goto err_alloc;
1816
alloc_bytes += PAGE_SIZE;
1817
pud_populate(&init_mm, pud, new);
1818
}
1819
1820
pmd = pmd_offset(pud, vstart);
1821
if (pmd_none(*pmd)) {
1822
pte_t *new;
1823
1824
if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1825
vstart = kernel_map_hugepmd(vstart, vend, pmd);
1826
continue;
1827
}
1828
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1829
PAGE_SIZE);
1830
if (!new)
1831
goto err_alloc;
1832
alloc_bytes += PAGE_SIZE;
1833
pmd_populate_kernel(&init_mm, pmd, new);
1834
}
1835
1836
pte = pte_offset_kernel(pmd, vstart);
1837
this_end = (vstart + PMD_SIZE) & PMD_MASK;
1838
if (this_end > vend)
1839
this_end = vend;
1840
1841
while (vstart < this_end) {
1842
pte_val(*pte) = (paddr | pgprot_val(prot));
1843
1844
vstart += PAGE_SIZE;
1845
paddr += PAGE_SIZE;
1846
pte++;
1847
}
1848
}
1849
1850
return alloc_bytes;
1851
1852
err_alloc:
1853
panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1854
__func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1855
return -ENOMEM;
1856
}
1857
1858
static void __init flush_all_kernel_tsbs(void)
1859
{
1860
int i;
1861
1862
for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1863
struct tsb *ent = &swapper_tsb[i];
1864
1865
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1866
}
1867
#ifndef CONFIG_DEBUG_PAGEALLOC
1868
for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1869
struct tsb *ent = &swapper_4m_tsb[i];
1870
1871
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1872
}
1873
#endif
1874
}
1875
1876
extern unsigned int kvmap_linear_patch[1];
1877
1878
static void __init kernel_physical_mapping_init(void)
1879
{
1880
unsigned long i, mem_alloced = 0UL;
1881
bool use_huge = true;
1882
1883
#ifdef CONFIG_DEBUG_PAGEALLOC
1884
use_huge = false;
1885
#endif
1886
for (i = 0; i < pall_ents; i++) {
1887
unsigned long phys_start, phys_end;
1888
1889
phys_start = pall[i].phys_addr;
1890
phys_end = phys_start + pall[i].reg_size;
1891
1892
mem_alloced += kernel_map_range(phys_start, phys_end,
1893
PAGE_KERNEL, use_huge);
1894
}
1895
1896
printk("Allocated %ld bytes for kernel page tables.\n",
1897
mem_alloced);
1898
1899
kvmap_linear_patch[0] = 0x01000000; /* nop */
1900
flushi(&kvmap_linear_patch[0]);
1901
1902
flush_all_kernel_tsbs();
1903
1904
__flush_tlb_all();
1905
}
1906
1907
#ifdef CONFIG_DEBUG_PAGEALLOC
1908
void __kernel_map_pages(struct page *page, int numpages, int enable)
1909
{
1910
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1911
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1912
1913
kernel_map_range(phys_start, phys_end,
1914
(enable ? PAGE_KERNEL : __pgprot(0)), false);
1915
1916
flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1917
PAGE_OFFSET + phys_end);
1918
1919
/* we should perform an IPI and flush all tlbs,
1920
* but that can deadlock->flush only current cpu.
1921
*/
1922
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1923
PAGE_OFFSET + phys_end);
1924
}
1925
#endif
1926
1927
unsigned long __init find_ecache_flush_span(unsigned long size)
1928
{
1929
int i;
1930
1931
for (i = 0; i < pavail_ents; i++) {
1932
if (pavail[i].reg_size >= size)
1933
return pavail[i].phys_addr;
1934
}
1935
1936
return ~0UL;
1937
}
1938
1939
unsigned long PAGE_OFFSET;
1940
EXPORT_SYMBOL(PAGE_OFFSET);
1941
1942
unsigned long VMALLOC_END = 0x0000010000000000UL;
1943
EXPORT_SYMBOL(VMALLOC_END);
1944
1945
unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1946
unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1947
1948
static void __init setup_page_offset(void)
1949
{
1950
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1951
/* Cheetah/Panther support a full 64-bit virtual
1952
* address, so we can use all that our page tables
1953
* support.
1954
*/
1955
sparc64_va_hole_top = 0xfff0000000000000UL;
1956
sparc64_va_hole_bottom = 0x0010000000000000UL;
1957
1958
max_phys_bits = 42;
1959
} else if (tlb_type == hypervisor) {
1960
switch (sun4v_chip_type) {
1961
case SUN4V_CHIP_NIAGARA1:
1962
case SUN4V_CHIP_NIAGARA2:
1963
/* T1 and T2 support 48-bit virtual addresses. */
1964
sparc64_va_hole_top = 0xffff800000000000UL;
1965
sparc64_va_hole_bottom = 0x0000800000000000UL;
1966
1967
max_phys_bits = 39;
1968
break;
1969
case SUN4V_CHIP_NIAGARA3:
1970
/* T3 supports 48-bit virtual addresses. */
1971
sparc64_va_hole_top = 0xffff800000000000UL;
1972
sparc64_va_hole_bottom = 0x0000800000000000UL;
1973
1974
max_phys_bits = 43;
1975
break;
1976
case SUN4V_CHIP_NIAGARA4:
1977
case SUN4V_CHIP_NIAGARA5:
1978
case SUN4V_CHIP_SPARC64X:
1979
case SUN4V_CHIP_SPARC_M6:
1980
/* T4 and later support 52-bit virtual addresses. */
1981
sparc64_va_hole_top = 0xfff8000000000000UL;
1982
sparc64_va_hole_bottom = 0x0008000000000000UL;
1983
max_phys_bits = 47;
1984
break;
1985
case SUN4V_CHIP_SPARC_M7:
1986
case SUN4V_CHIP_SPARC_SN:
1987
/* M7 and later support 52-bit virtual addresses. */
1988
sparc64_va_hole_top = 0xfff8000000000000UL;
1989
sparc64_va_hole_bottom = 0x0008000000000000UL;
1990
max_phys_bits = 49;
1991
break;
1992
case SUN4V_CHIP_SPARC_M8:
1993
default:
1994
/* M8 and later support 54-bit virtual addresses.
1995
* However, restricting M8 and above VA bits to 53
1996
* as 4-level page table cannot support more than
1997
* 53 VA bits.
1998
*/
1999
sparc64_va_hole_top = 0xfff0000000000000UL;
2000
sparc64_va_hole_bottom = 0x0010000000000000UL;
2001
max_phys_bits = 51;
2002
break;
2003
}
2004
}
2005
2006
if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2007
prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2008
max_phys_bits);
2009
prom_halt();
2010
}
2011
2012
PAGE_OFFSET = sparc64_va_hole_top;
2013
VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2014
(sparc64_va_hole_bottom >> 2));
2015
2016
pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2017
PAGE_OFFSET, max_phys_bits);
2018
pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2019
VMALLOC_START, VMALLOC_END);
2020
pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2021
VMEMMAP_BASE, VMEMMAP_BASE << 1);
2022
}
2023
2024
static void __init tsb_phys_patch(void)
2025
{
2026
struct tsb_ldquad_phys_patch_entry *pquad;
2027
struct tsb_phys_patch_entry *p;
2028
2029
pquad = &__tsb_ldquad_phys_patch;
2030
while (pquad < &__tsb_ldquad_phys_patch_end) {
2031
unsigned long addr = pquad->addr;
2032
2033
if (tlb_type == hypervisor)
2034
*(unsigned int *) addr = pquad->sun4v_insn;
2035
else
2036
*(unsigned int *) addr = pquad->sun4u_insn;
2037
wmb();
2038
__asm__ __volatile__("flush %0"
2039
: /* no outputs */
2040
: "r" (addr));
2041
2042
pquad++;
2043
}
2044
2045
p = &__tsb_phys_patch;
2046
while (p < &__tsb_phys_patch_end) {
2047
unsigned long addr = p->addr;
2048
2049
*(unsigned int *) addr = p->insn;
2050
wmb();
2051
__asm__ __volatile__("flush %0"
2052
: /* no outputs */
2053
: "r" (addr));
2054
2055
p++;
2056
}
2057
}
2058
2059
/* Don't mark as init, we give this to the Hypervisor. */
2060
#ifndef CONFIG_DEBUG_PAGEALLOC
2061
#define NUM_KTSB_DESCR 2
2062
#else
2063
#define NUM_KTSB_DESCR 1
2064
#endif
2065
static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2066
2067
/* The swapper TSBs are loaded with a base sequence of:
2068
*
2069
* sethi %uhi(SYMBOL), REG1
2070
* sethi %hi(SYMBOL), REG2
2071
* or REG1, %ulo(SYMBOL), REG1
2072
* or REG2, %lo(SYMBOL), REG2
2073
* sllx REG1, 32, REG1
2074
* or REG1, REG2, REG1
2075
*
2076
* When we use physical addressing for the TSB accesses, we patch the
2077
* first four instructions in the above sequence.
2078
*/
2079
2080
static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2081
{
2082
unsigned long high_bits, low_bits;
2083
2084
high_bits = (pa >> 32) & 0xffffffff;
2085
low_bits = (pa >> 0) & 0xffffffff;
2086
2087
while (start < end) {
2088
unsigned int *ia = (unsigned int *)(unsigned long)*start;
2089
2090
ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2091
__asm__ __volatile__("flush %0" : : "r" (ia));
2092
2093
ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2094
__asm__ __volatile__("flush %0" : : "r" (ia + 1));
2095
2096
ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2097
__asm__ __volatile__("flush %0" : : "r" (ia + 2));
2098
2099
ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2100
__asm__ __volatile__("flush %0" : : "r" (ia + 3));
2101
2102
start++;
2103
}
2104
}
2105
2106
static void ktsb_phys_patch(void)
2107
{
2108
extern unsigned int __swapper_tsb_phys_patch;
2109
extern unsigned int __swapper_tsb_phys_patch_end;
2110
unsigned long ktsb_pa;
2111
2112
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2113
patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2114
&__swapper_tsb_phys_patch_end, ktsb_pa);
2115
#ifndef CONFIG_DEBUG_PAGEALLOC
2116
{
2117
extern unsigned int __swapper_4m_tsb_phys_patch;
2118
extern unsigned int __swapper_4m_tsb_phys_patch_end;
2119
ktsb_pa = (kern_base +
2120
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2121
patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2122
&__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2123
}
2124
#endif
2125
}
2126
2127
static void __init sun4v_ktsb_init(void)
2128
{
2129
unsigned long ktsb_pa;
2130
2131
/* First KTSB for PAGE_SIZE mappings. */
2132
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2133
2134
switch (PAGE_SIZE) {
2135
case 8 * 1024:
2136
default:
2137
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2138
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2139
break;
2140
2141
case 64 * 1024:
2142
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2143
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2144
break;
2145
2146
case 512 * 1024:
2147
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2148
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2149
break;
2150
2151
case 4 * 1024 * 1024:
2152
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2153
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2154
break;
2155
}
2156
2157
ktsb_descr[0].assoc = 1;
2158
ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2159
ktsb_descr[0].ctx_idx = 0;
2160
ktsb_descr[0].tsb_base = ktsb_pa;
2161
ktsb_descr[0].resv = 0;
2162
2163
#ifndef CONFIG_DEBUG_PAGEALLOC
2164
/* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2165
ktsb_pa = (kern_base +
2166
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2167
2168
ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2169
ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2170
HV_PGSZ_MASK_256MB |
2171
HV_PGSZ_MASK_2GB |
2172
HV_PGSZ_MASK_16GB) &
2173
cpu_pgsz_mask);
2174
ktsb_descr[1].assoc = 1;
2175
ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2176
ktsb_descr[1].ctx_idx = 0;
2177
ktsb_descr[1].tsb_base = ktsb_pa;
2178
ktsb_descr[1].resv = 0;
2179
#endif
2180
}
2181
2182
void sun4v_ktsb_register(void)
2183
{
2184
unsigned long pa, ret;
2185
2186
pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2187
2188
ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2189
if (ret != 0) {
2190
prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2191
"errors with %lx\n", pa, ret);
2192
prom_halt();
2193
}
2194
}
2195
2196
static void __init sun4u_linear_pte_xor_finalize(void)
2197
{
2198
#ifndef CONFIG_DEBUG_PAGEALLOC
2199
/* This is where we would add Panther support for
2200
* 32MB and 256MB pages.
2201
*/
2202
#endif
2203
}
2204
2205
static void __init sun4v_linear_pte_xor_finalize(void)
2206
{
2207
unsigned long pagecv_flag;
2208
2209
/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2210
* enables MCD error. Do not set bit 9 on M7 processor.
2211
*/
2212
switch (sun4v_chip_type) {
2213
case SUN4V_CHIP_SPARC_M7:
2214
case SUN4V_CHIP_SPARC_M8:
2215
case SUN4V_CHIP_SPARC_SN:
2216
pagecv_flag = 0x00;
2217
break;
2218
default:
2219
pagecv_flag = _PAGE_CV_4V;
2220
break;
2221
}
2222
#ifndef CONFIG_DEBUG_PAGEALLOC
2223
if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2224
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2225
PAGE_OFFSET;
2226
kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2227
_PAGE_P_4V | _PAGE_W_4V);
2228
} else {
2229
kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2230
}
2231
2232
if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2233
kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2234
PAGE_OFFSET;
2235
kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2236
_PAGE_P_4V | _PAGE_W_4V);
2237
} else {
2238
kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2239
}
2240
2241
if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2242
kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2243
PAGE_OFFSET;
2244
kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2245
_PAGE_P_4V | _PAGE_W_4V);
2246
} else {
2247
kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2248
}
2249
#endif
2250
}
2251
2252
/* paging_init() sets up the page tables */
2253
2254
static unsigned long last_valid_pfn;
2255
2256
static void sun4u_pgprot_init(void);
2257
static void sun4v_pgprot_init(void);
2258
2259
#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2260
#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2261
#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2262
#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2263
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2264
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2265
2266
/* We need to exclude reserved regions. This exclusion will include
2267
* vmlinux and initrd. To be more precise the initrd size could be used to
2268
* compute a new lower limit because it is freed later during initialization.
2269
*/
2270
static void __init reduce_memory(phys_addr_t limit_ram)
2271
{
2272
limit_ram += memblock_reserved_size();
2273
memblock_enforce_memory_limit(limit_ram);
2274
}
2275
2276
void __init paging_init(void)
2277
{
2278
unsigned long end_pfn, shift, phys_base;
2279
unsigned long real_end, i;
2280
2281
setup_page_offset();
2282
2283
/* These build time checkes make sure that the dcache_dirty_cpu()
2284
* folio->flags usage will work.
2285
*
2286
* When a page gets marked as dcache-dirty, we store the
2287
* cpu number starting at bit 32 in the folio->flags. Also,
2288
* functions like clear_dcache_dirty_cpu use the cpu mask
2289
* in 13-bit signed-immediate instruction fields.
2290
*/
2291
2292
/*
2293
* Page flags must not reach into upper 32 bits that are used
2294
* for the cpu number
2295
*/
2296
BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2297
2298
/*
2299
* The bit fields placed in the high range must not reach below
2300
* the 32 bit boundary. Otherwise we cannot place the cpu field
2301
* at the 32 bit boundary.
2302
*/
2303
BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2304
ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2305
2306
BUILD_BUG_ON(NR_CPUS > 4096);
2307
2308
kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2309
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2310
2311
/* Invalidate both kernel TSBs. */
2312
memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2313
#ifndef CONFIG_DEBUG_PAGEALLOC
2314
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2315
#endif
2316
2317
/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2318
* bit on M7 processor. This is a conflicting usage of the same
2319
* bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2320
* Detection error on all pages and this will lead to problems
2321
* later. Kernel does not run with MCD enabled and hence rest
2322
* of the required steps to fully configure memory corruption
2323
* detection are not taken. We need to ensure TTE.mcde is not
2324
* set on M7 processor. Compute the value of cacheability
2325
* flag for use later taking this into consideration.
2326
*/
2327
switch (sun4v_chip_type) {
2328
case SUN4V_CHIP_SPARC_M7:
2329
case SUN4V_CHIP_SPARC_M8:
2330
case SUN4V_CHIP_SPARC_SN:
2331
page_cache4v_flag = _PAGE_CP_4V;
2332
break;
2333
default:
2334
page_cache4v_flag = _PAGE_CACHE_4V;
2335
break;
2336
}
2337
2338
if (tlb_type == hypervisor)
2339
sun4v_pgprot_init();
2340
else
2341
sun4u_pgprot_init();
2342
2343
if (tlb_type == cheetah_plus ||
2344
tlb_type == hypervisor) {
2345
tsb_phys_patch();
2346
ktsb_phys_patch();
2347
}
2348
2349
if (tlb_type == hypervisor)
2350
sun4v_patch_tlb_handlers();
2351
2352
/* Find available physical memory...
2353
*
2354
* Read it twice in order to work around a bug in openfirmware.
2355
* The call to grab this table itself can cause openfirmware to
2356
* allocate memory, which in turn can take away some space from
2357
* the list of available memory. Reading it twice makes sure
2358
* we really do get the final value.
2359
*/
2360
read_obp_translations();
2361
read_obp_memory("reg", &pall[0], &pall_ents);
2362
read_obp_memory("available", &pavail[0], &pavail_ents);
2363
read_obp_memory("available", &pavail[0], &pavail_ents);
2364
2365
phys_base = 0xffffffffffffffffUL;
2366
for (i = 0; i < pavail_ents; i++) {
2367
phys_base = min(phys_base, pavail[i].phys_addr);
2368
memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2369
}
2370
2371
memblock_reserve(kern_base, kern_size);
2372
2373
find_ramdisk(phys_base);
2374
2375
if (cmdline_memory_size)
2376
reduce_memory(cmdline_memory_size);
2377
2378
memblock_allow_resize();
2379
memblock_dump_all();
2380
2381
set_bit(0, mmu_context_bmap);
2382
2383
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2384
2385
real_end = (unsigned long)_end;
2386
num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2387
printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2388
num_kernel_image_mappings);
2389
2390
/* Set kernel pgd to upper alias so physical page computations
2391
* work.
2392
*/
2393
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2394
2395
memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2396
2397
inherit_prom_mappings();
2398
2399
/* Ok, we can use our TLB miss and window trap handlers safely. */
2400
setup_tba();
2401
2402
__flush_tlb_all();
2403
2404
prom_build_devicetree();
2405
of_populate_present_mask();
2406
#ifndef CONFIG_SMP
2407
of_fill_in_cpu_data();
2408
#endif
2409
2410
if (tlb_type == hypervisor) {
2411
sun4v_mdesc_init();
2412
mdesc_populate_present_mask(cpu_all_mask);
2413
#ifndef CONFIG_SMP
2414
mdesc_fill_in_cpu_data(cpu_all_mask);
2415
#endif
2416
mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2417
2418
sun4v_linear_pte_xor_finalize();
2419
2420
sun4v_ktsb_init();
2421
sun4v_ktsb_register();
2422
} else {
2423
unsigned long impl, ver;
2424
2425
cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2426
HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2427
2428
__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2429
impl = ((ver >> 32) & 0xffff);
2430
if (impl == PANTHER_IMPL)
2431
cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2432
HV_PGSZ_MASK_256MB);
2433
2434
sun4u_linear_pte_xor_finalize();
2435
}
2436
2437
/* Flush the TLBs and the 4M TSB so that the updated linear
2438
* pte XOR settings are realized for all mappings.
2439
*/
2440
__flush_tlb_all();
2441
#ifndef CONFIG_DEBUG_PAGEALLOC
2442
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2443
#endif
2444
__flush_tlb_all();
2445
2446
/* Setup bootmem... */
2447
last_valid_pfn = end_pfn = bootmem_init(phys_base);
2448
2449
kernel_physical_mapping_init();
2450
2451
{
2452
unsigned long max_zone_pfns[MAX_NR_ZONES];
2453
2454
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2455
2456
max_zone_pfns[ZONE_NORMAL] = end_pfn;
2457
2458
free_area_init(max_zone_pfns);
2459
}
2460
2461
printk("Booting Linux...\n");
2462
}
2463
2464
int page_in_phys_avail(unsigned long paddr)
2465
{
2466
int i;
2467
2468
paddr &= PAGE_MASK;
2469
2470
for (i = 0; i < pavail_ents; i++) {
2471
unsigned long start, end;
2472
2473
start = pavail[i].phys_addr;
2474
end = start + pavail[i].reg_size;
2475
2476
if (paddr >= start && paddr < end)
2477
return 1;
2478
}
2479
if (paddr >= kern_base && paddr < (kern_base + kern_size))
2480
return 1;
2481
#ifdef CONFIG_BLK_DEV_INITRD
2482
if (paddr >= __pa(initrd_start) &&
2483
paddr < __pa(PAGE_ALIGN(initrd_end)))
2484
return 1;
2485
#endif
2486
2487
return 0;
2488
}
2489
2490
static void __init register_page_bootmem_info(void)
2491
{
2492
#ifdef CONFIG_NUMA
2493
int i;
2494
2495
for_each_online_node(i)
2496
if (NODE_DATA(i)->node_spanned_pages)
2497
register_page_bootmem_info_node(NODE_DATA(i));
2498
#endif
2499
}
2500
void __init mem_init(void)
2501
{
2502
/*
2503
* Must be done after boot memory is put on freelist, because here we
2504
* might set fields in deferred struct pages that have not yet been
2505
* initialized, and memblock_free_all() initializes all the reserved
2506
* deferred pages for us.
2507
*/
2508
register_page_bootmem_info();
2509
2510
/*
2511
* Set up the zero page, mark it reserved, so that page count
2512
* is not manipulated when freeing the page from user ptes.
2513
*/
2514
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2515
if (mem_map_zero == NULL) {
2516
prom_printf("paging_init: Cannot alloc zero page.\n");
2517
prom_halt();
2518
}
2519
mark_page_reserved(mem_map_zero);
2520
2521
2522
if (tlb_type == cheetah || tlb_type == cheetah_plus)
2523
cheetah_ecache_flush_init();
2524
}
2525
2526
void free_initmem(void)
2527
{
2528
unsigned long addr, initend;
2529
int do_free = 1;
2530
2531
/* If the physical memory maps were trimmed by kernel command
2532
* line options, don't even try freeing this initmem stuff up.
2533
* The kernel image could have been in the trimmed out region
2534
* and if so the freeing below will free invalid page structs.
2535
*/
2536
if (cmdline_memory_size)
2537
do_free = 0;
2538
2539
/*
2540
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2541
*/
2542
addr = PAGE_ALIGN((unsigned long)(__init_begin));
2543
initend = (unsigned long)(__init_end) & PAGE_MASK;
2544
for (; addr < initend; addr += PAGE_SIZE) {
2545
unsigned long page;
2546
2547
page = (addr +
2548
((unsigned long) __va(kern_base)) -
2549
((unsigned long) KERNBASE));
2550
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2551
2552
if (do_free)
2553
free_reserved_page(virt_to_page(page));
2554
}
2555
}
2556
2557
pgprot_t PAGE_KERNEL __read_mostly;
2558
EXPORT_SYMBOL(PAGE_KERNEL);
2559
2560
pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2561
pgprot_t PAGE_COPY __read_mostly;
2562
2563
pgprot_t PAGE_SHARED __read_mostly;
2564
EXPORT_SYMBOL(PAGE_SHARED);
2565
2566
unsigned long pg_iobits __read_mostly;
2567
2568
unsigned long _PAGE_IE __read_mostly;
2569
EXPORT_SYMBOL(_PAGE_IE);
2570
2571
unsigned long _PAGE_E __read_mostly;
2572
EXPORT_SYMBOL(_PAGE_E);
2573
2574
unsigned long _PAGE_CACHE __read_mostly;
2575
EXPORT_SYMBOL(_PAGE_CACHE);
2576
2577
#ifdef CONFIG_SPARSEMEM_VMEMMAP
2578
int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2579
int node, struct vmem_altmap *altmap)
2580
{
2581
unsigned long pte_base;
2582
2583
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2584
_PAGE_CP_4U | _PAGE_CV_4U |
2585
_PAGE_P_4U | _PAGE_W_4U);
2586
if (tlb_type == hypervisor)
2587
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2588
page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2589
2590
pte_base |= _PAGE_PMD_HUGE;
2591
2592
vstart = vstart & PMD_MASK;
2593
vend = ALIGN(vend, PMD_SIZE);
2594
for (; vstart < vend; vstart += PMD_SIZE) {
2595
pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2596
unsigned long pte;
2597
p4d_t *p4d;
2598
pud_t *pud;
2599
pmd_t *pmd;
2600
2601
if (!pgd)
2602
return -ENOMEM;
2603
2604
p4d = vmemmap_p4d_populate(pgd, vstart, node);
2605
if (!p4d)
2606
return -ENOMEM;
2607
2608
pud = vmemmap_pud_populate(p4d, vstart, node);
2609
if (!pud)
2610
return -ENOMEM;
2611
2612
pmd = pmd_offset(pud, vstart);
2613
pte = pmd_val(*pmd);
2614
if (!(pte & _PAGE_VALID)) {
2615
void *block = vmemmap_alloc_block(PMD_SIZE, node);
2616
2617
if (!block)
2618
return -ENOMEM;
2619
2620
pmd_val(*pmd) = pte_base | __pa(block);
2621
}
2622
}
2623
2624
return 0;
2625
}
2626
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2627
2628
/* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2629
static pgprot_t protection_map[16] __ro_after_init;
2630
2631
static void prot_init_common(unsigned long page_none,
2632
unsigned long page_shared,
2633
unsigned long page_copy,
2634
unsigned long page_readonly,
2635
unsigned long page_exec_bit)
2636
{
2637
PAGE_COPY = __pgprot(page_copy);
2638
PAGE_SHARED = __pgprot(page_shared);
2639
2640
protection_map[0x0] = __pgprot(page_none);
2641
protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2642
protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2643
protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2644
protection_map[0x4] = __pgprot(page_readonly);
2645
protection_map[0x5] = __pgprot(page_readonly);
2646
protection_map[0x6] = __pgprot(page_copy);
2647
protection_map[0x7] = __pgprot(page_copy);
2648
protection_map[0x8] = __pgprot(page_none);
2649
protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2650
protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2651
protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2652
protection_map[0xc] = __pgprot(page_readonly);
2653
protection_map[0xd] = __pgprot(page_readonly);
2654
protection_map[0xe] = __pgprot(page_shared);
2655
protection_map[0xf] = __pgprot(page_shared);
2656
}
2657
2658
static void __init sun4u_pgprot_init(void)
2659
{
2660
unsigned long page_none, page_shared, page_copy, page_readonly;
2661
unsigned long page_exec_bit;
2662
int i;
2663
2664
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2665
_PAGE_CACHE_4U | _PAGE_P_4U |
2666
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2667
_PAGE_EXEC_4U);
2668
PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2669
_PAGE_CACHE_4U | _PAGE_P_4U |
2670
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2671
_PAGE_EXEC_4U | _PAGE_L_4U);
2672
2673
_PAGE_IE = _PAGE_IE_4U;
2674
_PAGE_E = _PAGE_E_4U;
2675
_PAGE_CACHE = _PAGE_CACHE_4U;
2676
2677
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2678
__ACCESS_BITS_4U | _PAGE_E_4U);
2679
2680
#ifdef CONFIG_DEBUG_PAGEALLOC
2681
kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2682
#else
2683
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2684
PAGE_OFFSET;
2685
#endif
2686
kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2687
_PAGE_P_4U | _PAGE_W_4U);
2688
2689
for (i = 1; i < 4; i++)
2690
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2691
2692
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2693
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2694
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2695
2696
2697
page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2698
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2699
__ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2700
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2701
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
2702
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2703
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
2704
2705
page_exec_bit = _PAGE_EXEC_4U;
2706
2707
prot_init_common(page_none, page_shared, page_copy, page_readonly,
2708
page_exec_bit);
2709
}
2710
2711
static void __init sun4v_pgprot_init(void)
2712
{
2713
unsigned long page_none, page_shared, page_copy, page_readonly;
2714
unsigned long page_exec_bit;
2715
int i;
2716
2717
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2718
page_cache4v_flag | _PAGE_P_4V |
2719
__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2720
_PAGE_EXEC_4V);
2721
PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2722
2723
_PAGE_IE = _PAGE_IE_4V;
2724
_PAGE_E = _PAGE_E_4V;
2725
_PAGE_CACHE = page_cache4v_flag;
2726
2727
#ifdef CONFIG_DEBUG_PAGEALLOC
2728
kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2729
#else
2730
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2731
PAGE_OFFSET;
2732
#endif
2733
kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2734
_PAGE_W_4V);
2735
2736
for (i = 1; i < 4; i++)
2737
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2738
2739
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2740
__ACCESS_BITS_4V | _PAGE_E_4V);
2741
2742
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2743
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2744
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2745
_PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2746
2747
page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2748
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2749
__ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2750
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2751
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
2752
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2753
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
2754
2755
page_exec_bit = _PAGE_EXEC_4V;
2756
2757
prot_init_common(page_none, page_shared, page_copy, page_readonly,
2758
page_exec_bit);
2759
}
2760
2761
unsigned long pte_sz_bits(unsigned long sz)
2762
{
2763
if (tlb_type == hypervisor) {
2764
switch (sz) {
2765
case 8 * 1024:
2766
default:
2767
return _PAGE_SZ8K_4V;
2768
case 64 * 1024:
2769
return _PAGE_SZ64K_4V;
2770
case 512 * 1024:
2771
return _PAGE_SZ512K_4V;
2772
case 4 * 1024 * 1024:
2773
return _PAGE_SZ4MB_4V;
2774
}
2775
} else {
2776
switch (sz) {
2777
case 8 * 1024:
2778
default:
2779
return _PAGE_SZ8K_4U;
2780
case 64 * 1024:
2781
return _PAGE_SZ64K_4U;
2782
case 512 * 1024:
2783
return _PAGE_SZ512K_4U;
2784
case 4 * 1024 * 1024:
2785
return _PAGE_SZ4MB_4U;
2786
}
2787
}
2788
}
2789
2790
pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2791
{
2792
pte_t pte;
2793
2794
pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2795
pte_val(pte) |= (((unsigned long)space) << 32);
2796
pte_val(pte) |= pte_sz_bits(page_size);
2797
2798
return pte;
2799
}
2800
2801
static unsigned long kern_large_tte(unsigned long paddr)
2802
{
2803
unsigned long val;
2804
2805
val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2806
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2807
_PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2808
if (tlb_type == hypervisor)
2809
val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2810
page_cache4v_flag | _PAGE_P_4V |
2811
_PAGE_EXEC_4V | _PAGE_W_4V);
2812
2813
return val | paddr;
2814
}
2815
2816
/* If not locked, zap it. */
2817
void __flush_tlb_all(void)
2818
{
2819
unsigned long pstate;
2820
int i;
2821
2822
__asm__ __volatile__("flushw\n\t"
2823
"rdpr %%pstate, %0\n\t"
2824
"wrpr %0, %1, %%pstate"
2825
: "=r" (pstate)
2826
: "i" (PSTATE_IE));
2827
if (tlb_type == hypervisor) {
2828
sun4v_mmu_demap_all();
2829
} else if (tlb_type == spitfire) {
2830
for (i = 0; i < 64; i++) {
2831
/* Spitfire Errata #32 workaround */
2832
/* NOTE: Always runs on spitfire, so no
2833
* cheetah+ page size encodings.
2834
*/
2835
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
2836
"flush %%g6"
2837
: /* No outputs */
2838
: "r" (0),
2839
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2840
2841
if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2842
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2843
"membar #Sync"
2844
: /* no outputs */
2845
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2846
spitfire_put_dtlb_data(i, 0x0UL);
2847
}
2848
2849
/* Spitfire Errata #32 workaround */
2850
/* NOTE: Always runs on spitfire, so no
2851
* cheetah+ page size encodings.
2852
*/
2853
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
2854
"flush %%g6"
2855
: /* No outputs */
2856
: "r" (0),
2857
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2858
2859
if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2860
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2861
"membar #Sync"
2862
: /* no outputs */
2863
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2864
spitfire_put_itlb_data(i, 0x0UL);
2865
}
2866
}
2867
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2868
cheetah_flush_dtlb_all();
2869
cheetah_flush_itlb_all();
2870
}
2871
__asm__ __volatile__("wrpr %0, 0, %%pstate"
2872
: : "r" (pstate));
2873
}
2874
2875
static pte_t *__pte_alloc_one(struct mm_struct *mm)
2876
{
2877
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL | __GFP_ZERO, 0);
2878
2879
if (!ptdesc)
2880
return NULL;
2881
if (!pagetable_pte_ctor(mm, ptdesc)) {
2882
pagetable_free(ptdesc);
2883
return NULL;
2884
}
2885
return ptdesc_address(ptdesc);
2886
}
2887
2888
pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2889
{
2890
return __pte_alloc_one(mm);
2891
}
2892
2893
pgtable_t pte_alloc_one(struct mm_struct *mm)
2894
{
2895
return __pte_alloc_one(mm);
2896
}
2897
2898
static void __pte_free(pgtable_t pte)
2899
{
2900
struct ptdesc *ptdesc = virt_to_ptdesc(pte);
2901
2902
pagetable_dtor(ptdesc);
2903
pagetable_free(ptdesc);
2904
}
2905
2906
void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2907
{
2908
__pte_free(pte);
2909
}
2910
2911
void pte_free(struct mm_struct *mm, pgtable_t pte)
2912
{
2913
__pte_free(pte);
2914
}
2915
2916
void pgtable_free(void *table, bool is_page)
2917
{
2918
if (is_page)
2919
__pte_free(table);
2920
else
2921
kmem_cache_free(pgtable_cache, table);
2922
}
2923
2924
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2925
static void pte_free_now(struct rcu_head *head)
2926
{
2927
struct page *page;
2928
2929
page = container_of(head, struct page, rcu_head);
2930
__pte_free((pgtable_t)page_address(page));
2931
}
2932
2933
void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
2934
{
2935
struct page *page;
2936
2937
page = virt_to_page(pgtable);
2938
call_rcu(&page->rcu_head, pte_free_now);
2939
}
2940
2941
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2942
pmd_t *pmd)
2943
{
2944
unsigned long pte, flags;
2945
struct mm_struct *mm;
2946
pmd_t entry = *pmd;
2947
2948
if (!pmd_leaf(entry) || !pmd_young(entry))
2949
return;
2950
2951
pte = pmd_val(entry);
2952
2953
/* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2954
if (!(pte & _PAGE_VALID))
2955
return;
2956
2957
/* We are fabricating 8MB pages using 4MB real hw pages. */
2958
pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2959
2960
mm = vma->vm_mm;
2961
2962
spin_lock_irqsave(&mm->context.lock, flags);
2963
2964
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2965
__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2966
addr, pte);
2967
2968
spin_unlock_irqrestore(&mm->context.lock, flags);
2969
}
2970
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2971
2972
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2973
static void context_reload(void *__data)
2974
{
2975
struct mm_struct *mm = __data;
2976
2977
if (mm == current->mm)
2978
load_secondary_context(mm);
2979
}
2980
2981
void hugetlb_setup(struct pt_regs *regs)
2982
{
2983
struct mm_struct *mm = current->mm;
2984
struct tsb_config *tp;
2985
2986
if (faulthandler_disabled() || !mm) {
2987
const struct exception_table_entry *entry;
2988
2989
entry = search_exception_tables(regs->tpc);
2990
if (entry) {
2991
regs->tpc = entry->fixup;
2992
regs->tnpc = regs->tpc + 4;
2993
return;
2994
}
2995
pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2996
die_if_kernel("HugeTSB in atomic", regs);
2997
}
2998
2999
tp = &mm->context.tsb_block[MM_TSB_HUGE];
3000
if (likely(tp->tsb == NULL))
3001
tsb_grow(mm, MM_TSB_HUGE, 0);
3002
3003
tsb_context_switch(mm);
3004
smp_tsb_sync(mm);
3005
3006
/* On UltraSPARC-III+ and later, configure the second half of
3007
* the Data-TLB for huge pages.
3008
*/
3009
if (tlb_type == cheetah_plus) {
3010
bool need_context_reload = false;
3011
unsigned long ctx;
3012
3013
spin_lock_irq(&ctx_alloc_lock);
3014
ctx = mm->context.sparc64_ctx_val;
3015
ctx &= ~CTX_PGSZ_MASK;
3016
ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3017
ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3018
3019
if (ctx != mm->context.sparc64_ctx_val) {
3020
/* When changing the page size fields, we
3021
* must perform a context flush so that no
3022
* stale entries match. This flush must
3023
* occur with the original context register
3024
* settings.
3025
*/
3026
do_flush_tlb_mm(mm);
3027
3028
/* Reload the context register of all processors
3029
* also executing in this address space.
3030
*/
3031
mm->context.sparc64_ctx_val = ctx;
3032
need_context_reload = true;
3033
}
3034
spin_unlock_irq(&ctx_alloc_lock);
3035
3036
if (need_context_reload)
3037
on_each_cpu(context_reload, mm, 0);
3038
}
3039
}
3040
#endif
3041
3042
static struct resource code_resource = {
3043
.name = "Kernel code",
3044
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3045
};
3046
3047
static struct resource data_resource = {
3048
.name = "Kernel data",
3049
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3050
};
3051
3052
static struct resource bss_resource = {
3053
.name = "Kernel bss",
3054
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3055
};
3056
3057
static inline resource_size_t compute_kern_paddr(void *addr)
3058
{
3059
return (resource_size_t) (addr - KERNBASE + kern_base);
3060
}
3061
3062
static void __init kernel_lds_init(void)
3063
{
3064
code_resource.start = compute_kern_paddr(_text);
3065
code_resource.end = compute_kern_paddr(_etext - 1);
3066
data_resource.start = compute_kern_paddr(_etext);
3067
data_resource.end = compute_kern_paddr(_edata - 1);
3068
bss_resource.start = compute_kern_paddr(__bss_start);
3069
bss_resource.end = compute_kern_paddr(_end - 1);
3070
}
3071
3072
static int __init report_memory(void)
3073
{
3074
int i;
3075
struct resource *res;
3076
3077
kernel_lds_init();
3078
3079
for (i = 0; i < pavail_ents; i++) {
3080
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3081
3082
if (!res) {
3083
pr_warn("Failed to allocate source.\n");
3084
break;
3085
}
3086
3087
res->name = "System RAM";
3088
res->start = pavail[i].phys_addr;
3089
res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3090
res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3091
3092
if (insert_resource(&iomem_resource, res) < 0) {
3093
pr_warn("Resource insertion failed.\n");
3094
break;
3095
}
3096
3097
insert_resource(res, &code_resource);
3098
insert_resource(res, &data_resource);
3099
insert_resource(res, &bss_resource);
3100
}
3101
3102
return 0;
3103
}
3104
arch_initcall(report_memory);
3105
3106
#ifdef CONFIG_SMP
3107
#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3108
#else
3109
#define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3110
#endif
3111
3112
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3113
{
3114
if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3115
if (start < LOW_OBP_ADDRESS) {
3116
flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3117
do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3118
}
3119
if (end > HI_OBP_ADDRESS) {
3120
flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3121
do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3122
}
3123
} else {
3124
flush_tsb_kernel_range(start, end);
3125
do_flush_tlb_kernel_range(start, end);
3126
}
3127
}
3128
3129
void copy_user_highpage(struct page *to, struct page *from,
3130
unsigned long vaddr, struct vm_area_struct *vma)
3131
{
3132
char *vfrom, *vto;
3133
3134
vfrom = kmap_atomic(from);
3135
vto = kmap_atomic(to);
3136
copy_user_page(vto, vfrom, vaddr, to);
3137
kunmap_atomic(vto);
3138
kunmap_atomic(vfrom);
3139
3140
/* If this page has ADI enabled, copy over any ADI tags
3141
* as well
3142
*/
3143
if (vma->vm_flags & VM_SPARC_ADI) {
3144
unsigned long pfrom, pto, i, adi_tag;
3145
3146
pfrom = page_to_phys(from);
3147
pto = page_to_phys(to);
3148
3149
for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3150
asm volatile("ldxa [%1] %2, %0\n\t"
3151
: "=r" (adi_tag)
3152
: "r" (i), "i" (ASI_MCD_REAL));
3153
asm volatile("stxa %0, [%1] %2\n\t"
3154
:
3155
: "r" (adi_tag), "r" (pto),
3156
"i" (ASI_MCD_REAL));
3157
pto += adi_blksize();
3158
}
3159
asm volatile("membar #Sync\n\t");
3160
}
3161
}
3162
EXPORT_SYMBOL(copy_user_highpage);
3163
3164
void copy_highpage(struct page *to, struct page *from)
3165
{
3166
char *vfrom, *vto;
3167
3168
vfrom = kmap_atomic(from);
3169
vto = kmap_atomic(to);
3170
copy_page(vto, vfrom);
3171
kunmap_atomic(vto);
3172
kunmap_atomic(vfrom);
3173
3174
/* If this platform is ADI enabled, copy any ADI tags
3175
* as well
3176
*/
3177
if (adi_capable()) {
3178
unsigned long pfrom, pto, i, adi_tag;
3179
3180
pfrom = page_to_phys(from);
3181
pto = page_to_phys(to);
3182
3183
for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3184
asm volatile("ldxa [%1] %2, %0\n\t"
3185
: "=r" (adi_tag)
3186
: "r" (i), "i" (ASI_MCD_REAL));
3187
asm volatile("stxa %0, [%1] %2\n\t"
3188
:
3189
: "r" (adi_tag), "r" (pto),
3190
"i" (ASI_MCD_REAL));
3191
pto += adi_blksize();
3192
}
3193
asm volatile("membar #Sync\n\t");
3194
}
3195
}
3196
EXPORT_SYMBOL(copy_highpage);
3197
3198
pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3199
{
3200
unsigned long prot = pgprot_val(protection_map[vm_flags &
3201
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3202
3203
if (vm_flags & VM_SPARC_ADI)
3204
prot |= _PAGE_MCD_4V;
3205
3206
return __pgprot(prot);
3207
}
3208
EXPORT_SYMBOL(vm_get_page_prot);
3209
3210