Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/mm/srmmu.c
51610 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* srmmu.c: SRMMU specific routines for memory management.
4
*
5
* Copyright (C) 1995 David S. Miller ([email protected])
6
* Copyright (C) 1995,2002 Pete Zaitcev ([email protected])
7
* Copyright (C) 1996 Eddie C. Dost ([email protected])
8
* Copyright (C) 1997,1998 Jakub Jelinek ([email protected])
9
* Copyright (C) 1999,2000 Anton Blanchard ([email protected])
10
*/
11
12
#include <linux/seq_file.h>
13
#include <linux/spinlock.h>
14
#include <linux/memblock.h>
15
#include <linux/pagemap.h>
16
#include <linux/vmalloc.h>
17
#include <linux/kdebug.h>
18
#include <linux/export.h>
19
#include <linux/kernel.h>
20
#include <linux/init.h>
21
#include <linux/log2.h>
22
#include <linux/gfp.h>
23
#include <linux/fs.h>
24
#include <linux/mm.h>
25
26
#include <asm/mmu_context.h>
27
#include <asm/cacheflush.h>
28
#include <asm/tlbflush.h>
29
#include <asm/io-unit.h>
30
#include <asm/pgalloc.h>
31
#include <asm/pgtable.h>
32
#include <asm/bitext.h>
33
#include <asm/vaddrs.h>
34
#include <asm/cache.h>
35
#include <asm/traps.h>
36
#include <asm/oplib.h>
37
#include <asm/mbus.h>
38
#include <asm/page.h>
39
#include <asm/asi.h>
40
#include <asm/smp.h>
41
#include <asm/io.h>
42
43
/* Now the cpu specific definitions. */
44
#include <asm/turbosparc.h>
45
#include <asm/tsunami.h>
46
#include <asm/viking.h>
47
#include <asm/swift.h>
48
#include <asm/leon.h>
49
#include <asm/mxcc.h>
50
#include <asm/ross.h>
51
52
#include "mm_32.h"
53
54
enum mbus_module srmmu_modtype;
55
static unsigned int hwbug_bitmask;
56
int vac_cache_size;
57
EXPORT_SYMBOL(vac_cache_size);
58
int vac_line_size;
59
60
extern struct resource sparc_iomap;
61
62
extern unsigned long last_valid_pfn;
63
64
static pgd_t *srmmu_swapper_pg_dir;
65
66
const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67
EXPORT_SYMBOL(sparc32_cachetlb_ops);
68
69
#ifdef CONFIG_SMP
70
const struct sparc32_cachetlb_ops *local_ops;
71
72
#define FLUSH_BEGIN(mm)
73
#define FLUSH_END
74
#else
75
#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76
#define FLUSH_END }
77
#endif
78
79
int flush_page_for_dma_global = 1;
80
81
char *srmmu_name;
82
83
ctxd_t *srmmu_ctx_table_phys;
84
static ctxd_t *srmmu_context_table;
85
86
int viking_mxcc_present;
87
static DEFINE_SPINLOCK(srmmu_context_spinlock);
88
89
static int is_hypersparc;
90
91
static int srmmu_cache_pagetables;
92
93
/* these will be initialized in srmmu_nocache_calcsize() */
94
static unsigned long srmmu_nocache_size;
95
static unsigned long srmmu_nocache_end;
96
97
/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98
#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99
100
/* The context table is a nocache user with the biggest alignment needs. */
101
#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102
103
void *srmmu_nocache_pool;
104
static struct bit_map srmmu_nocache_map;
105
106
static inline int srmmu_pmd_none(pmd_t pmd)
107
{ return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109
/* XXX should we hyper_flush_whole_icache here - Anton */
110
static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111
{
112
pte_t pte;
113
114
pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115
set_pte((pte_t *)ctxp, pte);
116
}
117
118
/*
119
* Locations of MSI Registers.
120
*/
121
#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
122
123
/*
124
* Useful bits in the MSI Registers.
125
*/
126
#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
127
128
static void msi_set_sync(void)
129
{
130
__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131
"andn %%g3, %2, %%g3\n\t"
132
"sta %%g3, [%0] %1\n\t" : :
133
"r" (MSI_MBUS_ARBEN),
134
"i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135
}
136
137
void pmd_set(pmd_t *pmdp, pte_t *ptep)
138
{
139
unsigned long ptp = __nocache_pa(ptep) >> 4;
140
set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
141
}
142
143
/*
144
* size: bytes to allocate in the nocache area.
145
* align: bytes, number to align at.
146
* Returns the virtual address of the allocated area.
147
*/
148
static void *__srmmu_get_nocache(int size, int align)
149
{
150
int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
151
unsigned long addr;
152
153
if (size < minsz) {
154
printk(KERN_ERR "Size 0x%x too small for nocache request\n",
155
size);
156
size = minsz;
157
}
158
if (size & (minsz - 1)) {
159
printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
160
size);
161
size += minsz - 1;
162
}
163
BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
164
165
offset = bit_map_string_get(&srmmu_nocache_map,
166
size >> SRMMU_NOCACHE_BITMAP_SHIFT,
167
align >> SRMMU_NOCACHE_BITMAP_SHIFT);
168
if (offset == -1) {
169
printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
170
size, (int) srmmu_nocache_size,
171
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
172
return NULL;
173
}
174
175
addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
176
return (void *)addr;
177
}
178
179
void *srmmu_get_nocache(int size, int align)
180
{
181
void *tmp;
182
183
tmp = __srmmu_get_nocache(size, align);
184
185
if (tmp)
186
memset(tmp, 0, size);
187
188
return tmp;
189
}
190
191
void srmmu_free_nocache(void *addr, int size)
192
{
193
unsigned long vaddr;
194
int offset;
195
196
vaddr = (unsigned long)addr;
197
if (vaddr < SRMMU_NOCACHE_VADDR) {
198
printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199
vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200
BUG();
201
}
202
if (vaddr + size > srmmu_nocache_end) {
203
printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204
vaddr, srmmu_nocache_end);
205
BUG();
206
}
207
if (!is_power_of_2(size)) {
208
printk("Size 0x%x is not a power of 2\n", size);
209
BUG();
210
}
211
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212
printk("Size 0x%x is too small\n", size);
213
BUG();
214
}
215
if (vaddr & (size - 1)) {
216
printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217
BUG();
218
}
219
220
offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221
size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222
223
bit_map_clear(&srmmu_nocache_map, offset, size);
224
}
225
226
static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227
unsigned long end);
228
229
/* Return how much physical memory we have. */
230
static unsigned long __init probe_memory(void)
231
{
232
unsigned long total = 0;
233
int i;
234
235
for (i = 0; sp_banks[i].num_bytes; i++)
236
total += sp_banks[i].num_bytes;
237
238
return total;
239
}
240
241
/*
242
* Reserve nocache dynamically proportionally to the amount of
243
* system RAM. -- Tomas Szepe <[email protected]>, June 2002
244
*/
245
static void __init srmmu_nocache_calcsize(void)
246
{
247
unsigned long sysmemavail = probe_memory() / 1024;
248
int srmmu_nocache_npages;
249
250
srmmu_nocache_npages =
251
sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
252
253
/* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
254
// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
255
if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
256
srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
257
258
/* anything above 1280 blows up */
259
if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
260
srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
261
262
srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
263
srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
264
}
265
266
static void __init srmmu_nocache_init(void)
267
{
268
void *srmmu_nocache_bitmap;
269
unsigned int bitmap_bits;
270
pgd_t *pgd;
271
p4d_t *p4d;
272
pud_t *pud;
273
pmd_t *pmd;
274
pte_t *pte;
275
unsigned long paddr, vaddr;
276
unsigned long pteval;
277
278
bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
279
280
srmmu_nocache_pool = memblock_alloc_or_panic(srmmu_nocache_size,
281
SRMMU_NOCACHE_ALIGN_MAX);
282
memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
283
284
srmmu_nocache_bitmap =
285
memblock_alloc_or_panic(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
286
SMP_CACHE_BYTES);
287
bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
288
289
srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
290
memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
291
init_mm.pgd = srmmu_swapper_pg_dir;
292
293
srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
294
295
paddr = __pa((unsigned long)srmmu_nocache_pool);
296
vaddr = SRMMU_NOCACHE_VADDR;
297
298
while (vaddr < srmmu_nocache_end) {
299
pgd = pgd_offset_k(vaddr);
300
p4d = p4d_offset(pgd, vaddr);
301
pud = pud_offset(p4d, vaddr);
302
pmd = pmd_offset(__nocache_fix(pud), vaddr);
303
pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
304
305
pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
306
307
if (srmmu_cache_pagetables)
308
pteval |= SRMMU_CACHE;
309
310
set_pte(__nocache_fix(pte), __pte(pteval));
311
312
vaddr += PAGE_SIZE;
313
paddr += PAGE_SIZE;
314
}
315
316
flush_cache_all();
317
flush_tlb_all();
318
}
319
320
pgd_t *get_pgd_fast(void)
321
{
322
pgd_t *pgd = NULL;
323
324
pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
325
if (pgd) {
326
pgd_t *init = pgd_offset_k(0);
327
memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
328
memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
329
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
330
}
331
332
return pgd;
333
}
334
335
/*
336
* Hardware needs alignment to 256 only, but we align to whole page size
337
* to reduce fragmentation problems due to the buddy principle.
338
* XXX Provide actual fragmentation statistics in /proc.
339
*
340
* Alignments up to the page size are the same for physical and virtual
341
* addresses of the nocache area.
342
*/
343
pgtable_t pte_alloc_one(struct mm_struct *mm)
344
{
345
pte_t *ptep;
346
struct page *page;
347
348
if (!(ptep = pte_alloc_one_kernel(mm)))
349
return NULL;
350
page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
351
spin_lock(&mm->page_table_lock);
352
if (page_ref_inc_return(page) == 2 &&
353
!pagetable_pte_ctor(mm, page_ptdesc(page))) {
354
page_ref_dec(page);
355
ptep = NULL;
356
}
357
spin_unlock(&mm->page_table_lock);
358
359
return ptep;
360
}
361
362
void pte_free(struct mm_struct *mm, pgtable_t ptep)
363
{
364
struct page *page;
365
366
page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
367
spin_lock(&mm->page_table_lock);
368
if (page_ref_dec_return(page) == 1)
369
pagetable_dtor(page_ptdesc(page));
370
spin_unlock(&mm->page_table_lock);
371
372
srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
373
}
374
375
/* context handling - a dynamically sized pool is used */
376
#define NO_CONTEXT -1
377
378
struct ctx_list {
379
struct ctx_list *next;
380
struct ctx_list *prev;
381
unsigned int ctx_number;
382
struct mm_struct *ctx_mm;
383
};
384
385
static struct ctx_list *ctx_list_pool;
386
static struct ctx_list ctx_free;
387
static struct ctx_list ctx_used;
388
389
/* At boot time we determine the number of contexts */
390
static int num_contexts;
391
392
static inline void remove_from_ctx_list(struct ctx_list *entry)
393
{
394
entry->next->prev = entry->prev;
395
entry->prev->next = entry->next;
396
}
397
398
static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
399
{
400
entry->next = head;
401
(entry->prev = head->prev)->next = entry;
402
head->prev = entry;
403
}
404
#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
405
#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
406
407
408
static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
409
{
410
struct ctx_list *ctxp;
411
412
ctxp = ctx_free.next;
413
if (ctxp != &ctx_free) {
414
remove_from_ctx_list(ctxp);
415
add_to_used_ctxlist(ctxp);
416
mm->context = ctxp->ctx_number;
417
ctxp->ctx_mm = mm;
418
return;
419
}
420
ctxp = ctx_used.next;
421
if (ctxp->ctx_mm == old_mm)
422
ctxp = ctxp->next;
423
if (ctxp == &ctx_used)
424
panic("out of mmu contexts");
425
flush_cache_mm(ctxp->ctx_mm);
426
flush_tlb_mm(ctxp->ctx_mm);
427
remove_from_ctx_list(ctxp);
428
add_to_used_ctxlist(ctxp);
429
ctxp->ctx_mm->context = NO_CONTEXT;
430
ctxp->ctx_mm = mm;
431
mm->context = ctxp->ctx_number;
432
}
433
434
static inline void free_context(int context)
435
{
436
struct ctx_list *ctx_old;
437
438
ctx_old = ctx_list_pool + context;
439
remove_from_ctx_list(ctx_old);
440
add_to_free_ctxlist(ctx_old);
441
}
442
443
static void __init sparc_context_init(int numctx)
444
{
445
int ctx;
446
unsigned long size;
447
448
size = numctx * sizeof(struct ctx_list);
449
ctx_list_pool = memblock_alloc_or_panic(size, SMP_CACHE_BYTES);
450
451
for (ctx = 0; ctx < numctx; ctx++) {
452
struct ctx_list *clist;
453
454
clist = (ctx_list_pool + ctx);
455
clist->ctx_number = ctx;
456
clist->ctx_mm = NULL;
457
}
458
ctx_free.next = ctx_free.prev = &ctx_free;
459
ctx_used.next = ctx_used.prev = &ctx_used;
460
for (ctx = 0; ctx < numctx; ctx++)
461
add_to_free_ctxlist(ctx_list_pool + ctx);
462
}
463
464
void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
465
struct task_struct *tsk)
466
{
467
unsigned long flags;
468
469
if (mm->context == NO_CONTEXT) {
470
spin_lock_irqsave(&srmmu_context_spinlock, flags);
471
alloc_context(old_mm, mm);
472
spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
473
srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
474
}
475
476
if (sparc_cpu_model == sparc_leon)
477
leon_switch_mm();
478
479
if (is_hypersparc)
480
hyper_flush_whole_icache();
481
482
srmmu_set_context(mm->context);
483
}
484
485
/* Low level IO area allocation on the SRMMU. */
486
static inline void srmmu_mapioaddr(unsigned long physaddr,
487
unsigned long virt_addr, int bus_type)
488
{
489
pgd_t *pgdp;
490
p4d_t *p4dp;
491
pud_t *pudp;
492
pmd_t *pmdp;
493
pte_t *ptep;
494
unsigned long tmp;
495
496
physaddr &= PAGE_MASK;
497
pgdp = pgd_offset_k(virt_addr);
498
p4dp = p4d_offset(pgdp, virt_addr);
499
pudp = pud_offset(p4dp, virt_addr);
500
pmdp = pmd_offset(pudp, virt_addr);
501
ptep = pte_offset_kernel(pmdp, virt_addr);
502
tmp = (physaddr >> 4) | SRMMU_ET_PTE;
503
504
/* I need to test whether this is consistent over all
505
* sun4m's. The bus_type represents the upper 4 bits of
506
* 36-bit physical address on the I/O space lines...
507
*/
508
tmp |= (bus_type << 28);
509
tmp |= SRMMU_PRIV;
510
__flush_page_to_ram(virt_addr);
511
set_pte(ptep, __pte(tmp));
512
}
513
514
void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
515
unsigned long xva, unsigned int len)
516
{
517
while (len != 0) {
518
len -= PAGE_SIZE;
519
srmmu_mapioaddr(xpa, xva, bus);
520
xva += PAGE_SIZE;
521
xpa += PAGE_SIZE;
522
}
523
flush_tlb_all();
524
}
525
526
static inline void srmmu_unmapioaddr(unsigned long virt_addr)
527
{
528
pgd_t *pgdp;
529
p4d_t *p4dp;
530
pud_t *pudp;
531
pmd_t *pmdp;
532
pte_t *ptep;
533
534
535
pgdp = pgd_offset_k(virt_addr);
536
p4dp = p4d_offset(pgdp, virt_addr);
537
pudp = pud_offset(p4dp, virt_addr);
538
pmdp = pmd_offset(pudp, virt_addr);
539
ptep = pte_offset_kernel(pmdp, virt_addr);
540
541
/* No need to flush uncacheable page. */
542
__pte_clear(ptep);
543
}
544
545
void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
546
{
547
while (len != 0) {
548
len -= PAGE_SIZE;
549
srmmu_unmapioaddr(virt_addr);
550
virt_addr += PAGE_SIZE;
551
}
552
flush_tlb_all();
553
}
554
555
/* tsunami.S */
556
extern void tsunami_flush_cache_all(void);
557
extern void tsunami_flush_cache_mm(struct mm_struct *mm);
558
extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
559
extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
560
extern void tsunami_flush_page_to_ram(unsigned long page);
561
extern void tsunami_flush_page_for_dma(unsigned long page);
562
extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
563
extern void tsunami_flush_tlb_all(void);
564
extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
565
extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
566
extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
567
extern void tsunami_setup_blockops(void);
568
569
/* swift.S */
570
extern void swift_flush_cache_all(void);
571
extern void swift_flush_cache_mm(struct mm_struct *mm);
572
extern void swift_flush_cache_range(struct vm_area_struct *vma,
573
unsigned long start, unsigned long end);
574
extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
575
extern void swift_flush_page_to_ram(unsigned long page);
576
extern void swift_flush_page_for_dma(unsigned long page);
577
extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
578
extern void swift_flush_tlb_all(void);
579
extern void swift_flush_tlb_mm(struct mm_struct *mm);
580
extern void swift_flush_tlb_range(struct vm_area_struct *vma,
581
unsigned long start, unsigned long end);
582
extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
583
584
#if 0 /* P3: deadwood to debug precise flushes on Swift. */
585
void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
586
{
587
int cctx, ctx1;
588
589
page &= PAGE_MASK;
590
if ((ctx1 = vma->vm_mm->context) != -1) {
591
cctx = srmmu_get_context();
592
/* Is context # ever different from current context? P3 */
593
if (cctx != ctx1) {
594
printk("flush ctx %02x curr %02x\n", ctx1, cctx);
595
srmmu_set_context(ctx1);
596
swift_flush_page(page);
597
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
598
"r" (page), "i" (ASI_M_FLUSH_PROBE));
599
srmmu_set_context(cctx);
600
} else {
601
/* Rm. prot. bits from virt. c. */
602
/* swift_flush_cache_all(); */
603
/* swift_flush_cache_page(vma, page); */
604
swift_flush_page(page);
605
606
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
607
"r" (page), "i" (ASI_M_FLUSH_PROBE));
608
/* same as above: srmmu_flush_tlb_page() */
609
}
610
}
611
}
612
#endif
613
614
/*
615
* The following are all MBUS based SRMMU modules, and therefore could
616
* be found in a multiprocessor configuration. On the whole, these
617
* chips seems to be much more touchy about DVMA and page tables
618
* with respect to cache coherency.
619
*/
620
621
/* viking.S */
622
extern void viking_flush_cache_all(void);
623
extern void viking_flush_cache_mm(struct mm_struct *mm);
624
extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
625
unsigned long end);
626
extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
627
extern void viking_flush_page_to_ram(unsigned long page);
628
extern void viking_flush_page_for_dma(unsigned long page);
629
extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
630
extern void viking_flush_page(unsigned long page);
631
extern void viking_mxcc_flush_page(unsigned long page);
632
extern void viking_flush_tlb_all(void);
633
extern void viking_flush_tlb_mm(struct mm_struct *mm);
634
extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
635
unsigned long end);
636
extern void viking_flush_tlb_page(struct vm_area_struct *vma,
637
unsigned long page);
638
extern void sun4dsmp_flush_tlb_all(void);
639
extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
640
extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
641
unsigned long end);
642
extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
643
unsigned long page);
644
645
/* hypersparc.S */
646
extern void hypersparc_flush_cache_all(void);
647
extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
648
extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
649
extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
650
extern void hypersparc_flush_page_to_ram(unsigned long page);
651
extern void hypersparc_flush_page_for_dma(unsigned long page);
652
extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
653
extern void hypersparc_flush_tlb_all(void);
654
extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
655
extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
656
extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
657
extern void hypersparc_setup_blockops(void);
658
659
/*
660
* NOTE: All of this startup code assumes the low 16mb (approx.) of
661
* kernel mappings are done with one single contiguous chunk of
662
* ram. On small ram machines (classics mainly) we only get
663
* around 8mb mapped for us.
664
*/
665
666
static void __init early_pgtable_allocfail(char *type)
667
{
668
prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
669
prom_halt();
670
}
671
672
static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
673
unsigned long end)
674
{
675
pgd_t *pgdp;
676
p4d_t *p4dp;
677
pud_t *pudp;
678
pmd_t *pmdp;
679
pte_t *ptep;
680
681
while (start < end) {
682
pgdp = pgd_offset_k(start);
683
p4dp = p4d_offset(pgdp, start);
684
pudp = pud_offset(p4dp, start);
685
if (pud_none(*__nocache_fix(pudp))) {
686
pmdp = __srmmu_get_nocache(
687
SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
688
if (pmdp == NULL)
689
early_pgtable_allocfail("pmd");
690
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
691
pud_set(__nocache_fix(pudp), pmdp);
692
}
693
pmdp = pmd_offset(__nocache_fix(pudp), start);
694
if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
695
ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
696
if (ptep == NULL)
697
early_pgtable_allocfail("pte");
698
memset(__nocache_fix(ptep), 0, PTE_SIZE);
699
pmd_set(__nocache_fix(pmdp), ptep);
700
}
701
if (start > (0xffffffffUL - PMD_SIZE))
702
break;
703
start = (start + PMD_SIZE) & PMD_MASK;
704
}
705
}
706
707
static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
708
unsigned long end)
709
{
710
pgd_t *pgdp;
711
p4d_t *p4dp;
712
pud_t *pudp;
713
pmd_t *pmdp;
714
pte_t *ptep;
715
716
while (start < end) {
717
pgdp = pgd_offset_k(start);
718
p4dp = p4d_offset(pgdp, start);
719
pudp = pud_offset(p4dp, start);
720
if (pud_none(*pudp)) {
721
pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
722
if (pmdp == NULL)
723
early_pgtable_allocfail("pmd");
724
memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
725
pud_set((pud_t *)pgdp, pmdp);
726
}
727
pmdp = pmd_offset(pudp, start);
728
if (srmmu_pmd_none(*pmdp)) {
729
ptep = __srmmu_get_nocache(PTE_SIZE,
730
PTE_SIZE);
731
if (ptep == NULL)
732
early_pgtable_allocfail("pte");
733
memset(ptep, 0, PTE_SIZE);
734
pmd_set(pmdp, ptep);
735
}
736
if (start > (0xffffffffUL - PMD_SIZE))
737
break;
738
start = (start + PMD_SIZE) & PMD_MASK;
739
}
740
}
741
742
/* These flush types are not available on all chips... */
743
static inline unsigned long srmmu_probe(unsigned long vaddr)
744
{
745
unsigned long retval;
746
747
if (sparc_cpu_model != sparc_leon) {
748
749
vaddr &= PAGE_MASK;
750
__asm__ __volatile__("lda [%1] %2, %0\n\t" :
751
"=r" (retval) :
752
"r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
753
} else {
754
retval = leon_swprobe(vaddr, NULL);
755
}
756
return retval;
757
}
758
759
/*
760
* This is much cleaner than poking around physical address space
761
* looking at the prom's page table directly which is what most
762
* other OS's do. Yuck... this is much better.
763
*/
764
static void __init srmmu_inherit_prom_mappings(unsigned long start,
765
unsigned long end)
766
{
767
unsigned long probed;
768
unsigned long addr;
769
pgd_t *pgdp;
770
p4d_t *p4dp;
771
pud_t *pudp;
772
pmd_t *pmdp;
773
pte_t *ptep;
774
int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
775
776
while (start <= end) {
777
if (start == 0)
778
break; /* probably wrap around */
779
if (start == 0xfef00000)
780
start = KADB_DEBUGGER_BEGVM;
781
probed = srmmu_probe(start);
782
if (!probed) {
783
/* continue probing until we find an entry */
784
start += PAGE_SIZE;
785
continue;
786
}
787
788
/* A red snapper, see what it really is. */
789
what = 0;
790
addr = start - PAGE_SIZE;
791
792
if (!(start & ~(PMD_MASK))) {
793
if (srmmu_probe(addr + PMD_SIZE) == probed)
794
what = 1;
795
}
796
797
if (!(start & ~(PGDIR_MASK))) {
798
if (srmmu_probe(addr + PGDIR_SIZE) == probed)
799
what = 2;
800
}
801
802
pgdp = pgd_offset_k(start);
803
p4dp = p4d_offset(pgdp, start);
804
pudp = pud_offset(p4dp, start);
805
if (what == 2) {
806
*__nocache_fix(pgdp) = __pgd(probed);
807
start += PGDIR_SIZE;
808
continue;
809
}
810
if (pud_none(*__nocache_fix(pudp))) {
811
pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
812
SRMMU_PMD_TABLE_SIZE);
813
if (pmdp == NULL)
814
early_pgtable_allocfail("pmd");
815
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
816
pud_set(__nocache_fix(pudp), pmdp);
817
}
818
pmdp = pmd_offset(__nocache_fix(pudp), start);
819
if (what == 1) {
820
*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
821
start += PMD_SIZE;
822
continue;
823
}
824
if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
825
ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
826
if (ptep == NULL)
827
early_pgtable_allocfail("pte");
828
memset(__nocache_fix(ptep), 0, PTE_SIZE);
829
pmd_set(__nocache_fix(pmdp), ptep);
830
}
831
ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
832
*__nocache_fix(ptep) = __pte(probed);
833
start += PAGE_SIZE;
834
}
835
}
836
837
#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
838
839
/* Create a third-level SRMMU 16MB page mapping. */
840
static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
841
{
842
pgd_t *pgdp = pgd_offset_k(vaddr);
843
unsigned long big_pte;
844
845
big_pte = KERNEL_PTE(phys_base >> 4);
846
*__nocache_fix(pgdp) = __pgd(big_pte);
847
}
848
849
/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
850
static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
851
{
852
unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
853
unsigned long vstart = (vbase & PGDIR_MASK);
854
unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
855
/* Map "low" memory only */
856
const unsigned long min_vaddr = PAGE_OFFSET;
857
const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
858
859
if (vstart < min_vaddr || vstart >= max_vaddr)
860
return vstart;
861
862
if (vend > max_vaddr || vend < min_vaddr)
863
vend = max_vaddr;
864
865
while (vstart < vend) {
866
do_large_mapping(vstart, pstart);
867
vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
868
}
869
return vstart;
870
}
871
872
static void __init map_kernel(void)
873
{
874
int i;
875
876
if (phys_base > 0) {
877
do_large_mapping(PAGE_OFFSET, phys_base);
878
}
879
880
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
881
map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
882
}
883
}
884
885
void (*poke_srmmu)(void) = NULL;
886
887
void __init arch_zone_limits_init(unsigned long *max_zone_pfns)
888
{
889
max_zone_pfns[ZONE_DMA] = max_low_pfn;
890
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
891
max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
892
}
893
894
void __init srmmu_paging_init(void)
895
{
896
int i;
897
phandle cpunode;
898
char node_str[128];
899
pgd_t *pgd;
900
p4d_t *p4d;
901
pud_t *pud;
902
pmd_t *pmd;
903
pte_t *pte;
904
unsigned long pages_avail;
905
906
init_mm.context = (unsigned long) NO_CONTEXT;
907
sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
908
909
if (sparc_cpu_model == sun4d)
910
num_contexts = 65536; /* We know it is Viking */
911
else {
912
/* Find the number of contexts on the srmmu. */
913
cpunode = prom_getchild(prom_root_node);
914
num_contexts = 0;
915
while (cpunode != 0) {
916
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
917
if (!strcmp(node_str, "cpu")) {
918
num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
919
break;
920
}
921
cpunode = prom_getsibling(cpunode);
922
}
923
}
924
925
if (!num_contexts) {
926
prom_printf("Something wrong, can't find cpu node in paging_init.\n");
927
prom_halt();
928
}
929
930
pages_avail = 0;
931
last_valid_pfn = bootmem_init(&pages_avail);
932
933
srmmu_nocache_calcsize();
934
srmmu_nocache_init();
935
srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
936
map_kernel();
937
938
/* ctx table has to be physically aligned to its size */
939
srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
940
srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
941
942
for (i = 0; i < num_contexts; i++)
943
srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
944
945
flush_cache_all();
946
srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
947
#ifdef CONFIG_SMP
948
/* Stop from hanging here... */
949
local_ops->tlb_all();
950
#else
951
flush_tlb_all();
952
#endif
953
poke_srmmu();
954
955
srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
956
srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
957
958
srmmu_allocate_ptable_skeleton(
959
__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
960
srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
961
962
pgd = pgd_offset_k(PKMAP_BASE);
963
p4d = p4d_offset(pgd, PKMAP_BASE);
964
pud = pud_offset(p4d, PKMAP_BASE);
965
pmd = pmd_offset(pud, PKMAP_BASE);
966
pte = pte_offset_kernel(pmd, PKMAP_BASE);
967
pkmap_page_table = pte;
968
969
flush_cache_all();
970
flush_tlb_all();
971
972
sparc_context_init(num_contexts);
973
}
974
975
void mmu_info(struct seq_file *m)
976
{
977
seq_printf(m,
978
"MMU type\t: %s\n"
979
"contexts\t: %d\n"
980
"nocache total\t: %ld\n"
981
"nocache used\t: %d\n",
982
srmmu_name,
983
num_contexts,
984
srmmu_nocache_size,
985
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
986
}
987
988
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
989
{
990
mm->context = NO_CONTEXT;
991
return 0;
992
}
993
994
void destroy_context(struct mm_struct *mm)
995
{
996
unsigned long flags;
997
998
if (mm->context != NO_CONTEXT) {
999
flush_cache_mm(mm);
1000
srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1001
flush_tlb_mm(mm);
1002
spin_lock_irqsave(&srmmu_context_spinlock, flags);
1003
free_context(mm->context);
1004
spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1005
mm->context = NO_CONTEXT;
1006
}
1007
}
1008
1009
/* Init various srmmu chip types. */
1010
static void __init srmmu_is_bad(void)
1011
{
1012
prom_printf("Could not determine SRMMU chip type.\n");
1013
prom_halt();
1014
}
1015
1016
static void __init init_vac_layout(void)
1017
{
1018
phandle nd;
1019
int cache_lines;
1020
char node_str[128];
1021
#ifdef CONFIG_SMP
1022
int cpu = 0;
1023
unsigned long max_size = 0;
1024
unsigned long min_line_size = 0x10000000;
1025
#endif
1026
1027
nd = prom_getchild(prom_root_node);
1028
while ((nd = prom_getsibling(nd)) != 0) {
1029
prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1030
if (!strcmp(node_str, "cpu")) {
1031
vac_line_size = prom_getint(nd, "cache-line-size");
1032
if (vac_line_size == -1) {
1033
prom_printf("can't determine cache-line-size, halting.\n");
1034
prom_halt();
1035
}
1036
cache_lines = prom_getint(nd, "cache-nlines");
1037
if (cache_lines == -1) {
1038
prom_printf("can't determine cache-nlines, halting.\n");
1039
prom_halt();
1040
}
1041
1042
vac_cache_size = cache_lines * vac_line_size;
1043
#ifdef CONFIG_SMP
1044
if (vac_cache_size > max_size)
1045
max_size = vac_cache_size;
1046
if (vac_line_size < min_line_size)
1047
min_line_size = vac_line_size;
1048
//FIXME: cpus not contiguous!!
1049
cpu++;
1050
if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1051
break;
1052
#else
1053
break;
1054
#endif
1055
}
1056
}
1057
if (nd == 0) {
1058
prom_printf("No CPU nodes found, halting.\n");
1059
prom_halt();
1060
}
1061
#ifdef CONFIG_SMP
1062
vac_cache_size = max_size;
1063
vac_line_size = min_line_size;
1064
#endif
1065
printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1066
(int)vac_cache_size, (int)vac_line_size);
1067
}
1068
1069
static void poke_hypersparc(void)
1070
{
1071
volatile unsigned long clear;
1072
unsigned long mreg = srmmu_get_mmureg();
1073
1074
hyper_flush_unconditional_combined();
1075
1076
mreg &= ~(HYPERSPARC_CWENABLE);
1077
mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1078
mreg |= (HYPERSPARC_CMODE);
1079
1080
srmmu_set_mmureg(mreg);
1081
1082
#if 0 /* XXX I think this is bad news... -DaveM */
1083
hyper_clear_all_tags();
1084
#endif
1085
1086
put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1087
hyper_flush_whole_icache();
1088
clear = srmmu_get_faddr();
1089
clear = srmmu_get_fstatus();
1090
}
1091
1092
static const struct sparc32_cachetlb_ops hypersparc_ops = {
1093
.cache_all = hypersparc_flush_cache_all,
1094
.cache_mm = hypersparc_flush_cache_mm,
1095
.cache_page = hypersparc_flush_cache_page,
1096
.cache_range = hypersparc_flush_cache_range,
1097
.tlb_all = hypersparc_flush_tlb_all,
1098
.tlb_mm = hypersparc_flush_tlb_mm,
1099
.tlb_page = hypersparc_flush_tlb_page,
1100
.tlb_range = hypersparc_flush_tlb_range,
1101
.page_to_ram = hypersparc_flush_page_to_ram,
1102
.sig_insns = hypersparc_flush_sig_insns,
1103
.page_for_dma = hypersparc_flush_page_for_dma,
1104
};
1105
1106
static void __init init_hypersparc(void)
1107
{
1108
srmmu_name = "ROSS HyperSparc";
1109
srmmu_modtype = HyperSparc;
1110
1111
init_vac_layout();
1112
1113
is_hypersparc = 1;
1114
sparc32_cachetlb_ops = &hypersparc_ops;
1115
1116
poke_srmmu = poke_hypersparc;
1117
1118
hypersparc_setup_blockops();
1119
}
1120
1121
static void poke_swift(void)
1122
{
1123
unsigned long mreg;
1124
1125
/* Clear any crap from the cache or else... */
1126
swift_flush_cache_all();
1127
1128
/* Enable I & D caches */
1129
mreg = srmmu_get_mmureg();
1130
mreg |= (SWIFT_IE | SWIFT_DE);
1131
/*
1132
* The Swift branch folding logic is completely broken. At
1133
* trap time, if things are just right, if can mistakenly
1134
* think that a trap is coming from kernel mode when in fact
1135
* it is coming from user mode (it mis-executes the branch in
1136
* the trap code). So you see things like crashme completely
1137
* hosing your machine which is completely unacceptable. Turn
1138
* this shit off... nice job Fujitsu.
1139
*/
1140
mreg &= ~(SWIFT_BF);
1141
srmmu_set_mmureg(mreg);
1142
}
1143
1144
static const struct sparc32_cachetlb_ops swift_ops = {
1145
.cache_all = swift_flush_cache_all,
1146
.cache_mm = swift_flush_cache_mm,
1147
.cache_page = swift_flush_cache_page,
1148
.cache_range = swift_flush_cache_range,
1149
.tlb_all = swift_flush_tlb_all,
1150
.tlb_mm = swift_flush_tlb_mm,
1151
.tlb_page = swift_flush_tlb_page,
1152
.tlb_range = swift_flush_tlb_range,
1153
.page_to_ram = swift_flush_page_to_ram,
1154
.sig_insns = swift_flush_sig_insns,
1155
.page_for_dma = swift_flush_page_for_dma,
1156
};
1157
1158
#define SWIFT_MASKID_ADDR 0x10003018
1159
static void __init init_swift(void)
1160
{
1161
unsigned long swift_rev;
1162
1163
__asm__ __volatile__("lda [%1] %2, %0\n\t"
1164
"srl %0, 0x18, %0\n\t" :
1165
"=r" (swift_rev) :
1166
"r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1167
srmmu_name = "Fujitsu Swift";
1168
switch (swift_rev) {
1169
case 0x11:
1170
case 0x20:
1171
case 0x23:
1172
case 0x30:
1173
srmmu_modtype = Swift_lots_o_bugs;
1174
hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1175
/*
1176
* Gee george, I wonder why Sun is so hush hush about
1177
* this hardware bug... really braindamage stuff going
1178
* on here. However I think we can find a way to avoid
1179
* all of the workaround overhead under Linux. Basically,
1180
* any page fault can cause kernel pages to become user
1181
* accessible (the mmu gets confused and clears some of
1182
* the ACC bits in kernel ptes). Aha, sounds pretty
1183
* horrible eh? But wait, after extensive testing it appears
1184
* that if you use pgd_t level large kernel pte's (like the
1185
* 4MB pages on the Pentium) the bug does not get tripped
1186
* at all. This avoids almost all of the major overhead.
1187
* Welcome to a world where your vendor tells you to,
1188
* "apply this kernel patch" instead of "sorry for the
1189
* broken hardware, send it back and we'll give you
1190
* properly functioning parts"
1191
*/
1192
break;
1193
case 0x25:
1194
case 0x31:
1195
srmmu_modtype = Swift_bad_c;
1196
hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1197
/*
1198
* You see Sun allude to this hardware bug but never
1199
* admit things directly, they'll say things like,
1200
* "the Swift chip cache problems" or similar.
1201
*/
1202
break;
1203
default:
1204
srmmu_modtype = Swift_ok;
1205
break;
1206
}
1207
1208
sparc32_cachetlb_ops = &swift_ops;
1209
flush_page_for_dma_global = 0;
1210
1211
/*
1212
* Are you now convinced that the Swift is one of the
1213
* biggest VLSI abortions of all time? Bravo Fujitsu!
1214
* Fujitsu, the !#?!%$'d up processor people. I bet if
1215
* you examined the microcode of the Swift you'd find
1216
* XXX's all over the place.
1217
*/
1218
poke_srmmu = poke_swift;
1219
}
1220
1221
static void turbosparc_flush_cache_all(void)
1222
{
1223
flush_user_windows();
1224
turbosparc_idflash_clear();
1225
}
1226
1227
static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1228
{
1229
FLUSH_BEGIN(mm)
1230
flush_user_windows();
1231
turbosparc_idflash_clear();
1232
FLUSH_END
1233
}
1234
1235
static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1236
{
1237
FLUSH_BEGIN(vma->vm_mm)
1238
flush_user_windows();
1239
turbosparc_idflash_clear();
1240
FLUSH_END
1241
}
1242
1243
static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1244
{
1245
FLUSH_BEGIN(vma->vm_mm)
1246
flush_user_windows();
1247
if (vma->vm_flags & VM_EXEC)
1248
turbosparc_flush_icache();
1249
turbosparc_flush_dcache();
1250
FLUSH_END
1251
}
1252
1253
/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1254
static void turbosparc_flush_page_to_ram(unsigned long page)
1255
{
1256
#ifdef TURBOSPARC_WRITEBACK
1257
volatile unsigned long clear;
1258
1259
if (srmmu_probe(page))
1260
turbosparc_flush_page_cache(page);
1261
clear = srmmu_get_fstatus();
1262
#endif
1263
}
1264
1265
static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1266
{
1267
}
1268
1269
static void turbosparc_flush_page_for_dma(unsigned long page)
1270
{
1271
turbosparc_flush_dcache();
1272
}
1273
1274
static void turbosparc_flush_tlb_all(void)
1275
{
1276
srmmu_flush_whole_tlb();
1277
}
1278
1279
static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1280
{
1281
FLUSH_BEGIN(mm)
1282
srmmu_flush_whole_tlb();
1283
FLUSH_END
1284
}
1285
1286
static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1287
{
1288
FLUSH_BEGIN(vma->vm_mm)
1289
srmmu_flush_whole_tlb();
1290
FLUSH_END
1291
}
1292
1293
static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1294
{
1295
FLUSH_BEGIN(vma->vm_mm)
1296
srmmu_flush_whole_tlb();
1297
FLUSH_END
1298
}
1299
1300
1301
static void poke_turbosparc(void)
1302
{
1303
unsigned long mreg = srmmu_get_mmureg();
1304
unsigned long ccreg;
1305
1306
/* Clear any crap from the cache or else... */
1307
turbosparc_flush_cache_all();
1308
/* Temporarily disable I & D caches */
1309
mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1310
mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1311
srmmu_set_mmureg(mreg);
1312
1313
ccreg = turbosparc_get_ccreg();
1314
1315
#ifdef TURBOSPARC_WRITEBACK
1316
ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1317
ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1318
/* Write-back D-cache, emulate VLSI
1319
* abortion number three, not number one */
1320
#else
1321
/* For now let's play safe, optimize later */
1322
ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1323
/* Do DVMA snooping in Dcache, Write-thru D-cache */
1324
ccreg &= ~(TURBOSPARC_uS2);
1325
/* Emulate VLSI abortion number three, not number one */
1326
#endif
1327
1328
switch (ccreg & 7) {
1329
case 0: /* No SE cache */
1330
case 7: /* Test mode */
1331
break;
1332
default:
1333
ccreg |= (TURBOSPARC_SCENABLE);
1334
}
1335
turbosparc_set_ccreg(ccreg);
1336
1337
mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1338
mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1339
srmmu_set_mmureg(mreg);
1340
}
1341
1342
static const struct sparc32_cachetlb_ops turbosparc_ops = {
1343
.cache_all = turbosparc_flush_cache_all,
1344
.cache_mm = turbosparc_flush_cache_mm,
1345
.cache_page = turbosparc_flush_cache_page,
1346
.cache_range = turbosparc_flush_cache_range,
1347
.tlb_all = turbosparc_flush_tlb_all,
1348
.tlb_mm = turbosparc_flush_tlb_mm,
1349
.tlb_page = turbosparc_flush_tlb_page,
1350
.tlb_range = turbosparc_flush_tlb_range,
1351
.page_to_ram = turbosparc_flush_page_to_ram,
1352
.sig_insns = turbosparc_flush_sig_insns,
1353
.page_for_dma = turbosparc_flush_page_for_dma,
1354
};
1355
1356
static void __init init_turbosparc(void)
1357
{
1358
srmmu_name = "Fujitsu TurboSparc";
1359
srmmu_modtype = TurboSparc;
1360
sparc32_cachetlb_ops = &turbosparc_ops;
1361
poke_srmmu = poke_turbosparc;
1362
}
1363
1364
static void poke_tsunami(void)
1365
{
1366
unsigned long mreg = srmmu_get_mmureg();
1367
1368
tsunami_flush_icache();
1369
tsunami_flush_dcache();
1370
mreg &= ~TSUNAMI_ITD;
1371
mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1372
srmmu_set_mmureg(mreg);
1373
}
1374
1375
static const struct sparc32_cachetlb_ops tsunami_ops = {
1376
.cache_all = tsunami_flush_cache_all,
1377
.cache_mm = tsunami_flush_cache_mm,
1378
.cache_page = tsunami_flush_cache_page,
1379
.cache_range = tsunami_flush_cache_range,
1380
.tlb_all = tsunami_flush_tlb_all,
1381
.tlb_mm = tsunami_flush_tlb_mm,
1382
.tlb_page = tsunami_flush_tlb_page,
1383
.tlb_range = tsunami_flush_tlb_range,
1384
.page_to_ram = tsunami_flush_page_to_ram,
1385
.sig_insns = tsunami_flush_sig_insns,
1386
.page_for_dma = tsunami_flush_page_for_dma,
1387
};
1388
1389
static void __init init_tsunami(void)
1390
{
1391
/*
1392
* Tsunami's pretty sane, Sun and TI actually got it
1393
* somewhat right this time. Fujitsu should have
1394
* taken some lessons from them.
1395
*/
1396
1397
srmmu_name = "TI Tsunami";
1398
srmmu_modtype = Tsunami;
1399
sparc32_cachetlb_ops = &tsunami_ops;
1400
poke_srmmu = poke_tsunami;
1401
1402
tsunami_setup_blockops();
1403
}
1404
1405
static void poke_viking(void)
1406
{
1407
unsigned long mreg = srmmu_get_mmureg();
1408
static int smp_catch;
1409
1410
if (viking_mxcc_present) {
1411
unsigned long mxcc_control = mxcc_get_creg();
1412
1413
mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1414
mxcc_control &= ~(MXCC_CTL_RRC);
1415
mxcc_set_creg(mxcc_control);
1416
1417
/*
1418
* We don't need memory parity checks.
1419
* XXX This is a mess, have to dig out later. ecd.
1420
viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1421
*/
1422
1423
/* We do cache ptables on MXCC. */
1424
mreg |= VIKING_TCENABLE;
1425
} else {
1426
unsigned long bpreg;
1427
1428
mreg &= ~(VIKING_TCENABLE);
1429
if (smp_catch++) {
1430
/* Must disable mixed-cmd mode here for other cpu's. */
1431
bpreg = viking_get_bpreg();
1432
bpreg &= ~(VIKING_ACTION_MIX);
1433
viking_set_bpreg(bpreg);
1434
1435
/* Just in case PROM does something funny. */
1436
msi_set_sync();
1437
}
1438
}
1439
1440
mreg |= VIKING_SPENABLE;
1441
mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1442
mreg |= VIKING_SBENABLE;
1443
mreg &= ~(VIKING_ACENABLE);
1444
srmmu_set_mmureg(mreg);
1445
}
1446
1447
static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1448
.cache_all = viking_flush_cache_all,
1449
.cache_mm = viking_flush_cache_mm,
1450
.cache_page = viking_flush_cache_page,
1451
.cache_range = viking_flush_cache_range,
1452
.tlb_all = viking_flush_tlb_all,
1453
.tlb_mm = viking_flush_tlb_mm,
1454
.tlb_page = viking_flush_tlb_page,
1455
.tlb_range = viking_flush_tlb_range,
1456
.page_to_ram = viking_flush_page_to_ram,
1457
.sig_insns = viking_flush_sig_insns,
1458
.page_for_dma = viking_flush_page_for_dma,
1459
};
1460
1461
#ifdef CONFIG_SMP
1462
/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1463
* perform the local TLB flush and all the other cpus will see it.
1464
* But, unfortunately, there is a bug in the sun4d XBUS backplane
1465
* that requires that we add some synchronization to these flushes.
1466
*
1467
* The bug is that the fifo which keeps track of all the pending TLB
1468
* broadcasts in the system is an entry or two too small, so if we
1469
* have too many going at once we'll overflow that fifo and lose a TLB
1470
* flush resulting in corruption.
1471
*
1472
* Our workaround is to take a global spinlock around the TLB flushes,
1473
* which guarentees we won't ever have too many pending. It's a big
1474
* hammer, but a semaphore like system to make sure we only have N TLB
1475
* flushes going at once will require SMP locking anyways so there's
1476
* no real value in trying any harder than this.
1477
*/
1478
static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1479
.cache_all = viking_flush_cache_all,
1480
.cache_mm = viking_flush_cache_mm,
1481
.cache_page = viking_flush_cache_page,
1482
.cache_range = viking_flush_cache_range,
1483
.tlb_all = sun4dsmp_flush_tlb_all,
1484
.tlb_mm = sun4dsmp_flush_tlb_mm,
1485
.tlb_page = sun4dsmp_flush_tlb_page,
1486
.tlb_range = sun4dsmp_flush_tlb_range,
1487
.page_to_ram = viking_flush_page_to_ram,
1488
.sig_insns = viking_flush_sig_insns,
1489
.page_for_dma = viking_flush_page_for_dma,
1490
};
1491
#endif
1492
1493
static void __init init_viking(void)
1494
{
1495
unsigned long mreg = srmmu_get_mmureg();
1496
1497
/* Ahhh, the viking. SRMMU VLSI abortion number two... */
1498
if (mreg & VIKING_MMODE) {
1499
srmmu_name = "TI Viking";
1500
viking_mxcc_present = 0;
1501
msi_set_sync();
1502
1503
/*
1504
* We need this to make sure old viking takes no hits
1505
* on its cache for dma snoops to workaround the
1506
* "load from non-cacheable memory" interrupt bug.
1507
* This is only necessary because of the new way in
1508
* which we use the IOMMU.
1509
*/
1510
viking_ops.page_for_dma = viking_flush_page;
1511
#ifdef CONFIG_SMP
1512
viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1513
#endif
1514
flush_page_for_dma_global = 0;
1515
} else {
1516
srmmu_name = "TI Viking/MXCC";
1517
viking_mxcc_present = 1;
1518
srmmu_cache_pagetables = 1;
1519
}
1520
1521
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1522
&viking_ops;
1523
#ifdef CONFIG_SMP
1524
if (sparc_cpu_model == sun4d)
1525
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1526
&viking_sun4d_smp_ops;
1527
#endif
1528
1529
poke_srmmu = poke_viking;
1530
}
1531
1532
/* Probe for the srmmu chip version. */
1533
static void __init get_srmmu_type(void)
1534
{
1535
unsigned long mreg, psr;
1536
unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1537
1538
srmmu_modtype = SRMMU_INVAL_MOD;
1539
hwbug_bitmask = 0;
1540
1541
mreg = srmmu_get_mmureg(); psr = get_psr();
1542
mod_typ = (mreg & 0xf0000000) >> 28;
1543
mod_rev = (mreg & 0x0f000000) >> 24;
1544
psr_typ = (psr >> 28) & 0xf;
1545
psr_vers = (psr >> 24) & 0xf;
1546
1547
/* First, check for sparc-leon. */
1548
if (sparc_cpu_model == sparc_leon) {
1549
init_leon();
1550
return;
1551
}
1552
1553
/* Second, check for HyperSparc or Cypress. */
1554
if (mod_typ == 1) {
1555
switch (mod_rev) {
1556
case 7:
1557
/* UP or MP Hypersparc */
1558
init_hypersparc();
1559
break;
1560
case 0:
1561
case 2:
1562
case 10:
1563
case 11:
1564
case 12:
1565
case 13:
1566
case 14:
1567
case 15:
1568
default:
1569
prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1570
prom_halt();
1571
break;
1572
}
1573
return;
1574
}
1575
1576
/* Now Fujitsu TurboSparc. It might happen that it is
1577
* in Swift emulation mode, so we will check later...
1578
*/
1579
if (psr_typ == 0 && psr_vers == 5) {
1580
init_turbosparc();
1581
return;
1582
}
1583
1584
/* Next check for Fujitsu Swift. */
1585
if (psr_typ == 0 && psr_vers == 4) {
1586
phandle cpunode;
1587
char node_str[128];
1588
1589
/* Look if it is not a TurboSparc emulating Swift... */
1590
cpunode = prom_getchild(prom_root_node);
1591
while ((cpunode = prom_getsibling(cpunode)) != 0) {
1592
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1593
if (!strcmp(node_str, "cpu")) {
1594
if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1595
prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1596
init_turbosparc();
1597
return;
1598
}
1599
break;
1600
}
1601
}
1602
1603
init_swift();
1604
return;
1605
}
1606
1607
/* Now the Viking family of srmmu. */
1608
if (psr_typ == 4 &&
1609
((psr_vers == 0) ||
1610
((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1611
init_viking();
1612
return;
1613
}
1614
1615
/* Finally the Tsunami. */
1616
if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1617
init_tsunami();
1618
return;
1619
}
1620
1621
/* Oh well */
1622
srmmu_is_bad();
1623
}
1624
1625
#ifdef CONFIG_SMP
1626
/* Local cross-calls. */
1627
static void smp_flush_page_for_dma(unsigned long page)
1628
{
1629
xc1(local_ops->page_for_dma, page);
1630
local_ops->page_for_dma(page);
1631
}
1632
1633
static void smp_flush_cache_all(void)
1634
{
1635
xc0(local_ops->cache_all);
1636
local_ops->cache_all();
1637
}
1638
1639
static void smp_flush_tlb_all(void)
1640
{
1641
xc0(local_ops->tlb_all);
1642
local_ops->tlb_all();
1643
}
1644
1645
static bool any_other_mm_cpus(struct mm_struct *mm)
1646
{
1647
return cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids;
1648
}
1649
1650
static void smp_flush_cache_mm(struct mm_struct *mm)
1651
{
1652
if (mm->context != NO_CONTEXT) {
1653
if (any_other_mm_cpus(mm))
1654
xc1(local_ops->cache_mm, (unsigned long)mm);
1655
local_ops->cache_mm(mm);
1656
}
1657
}
1658
1659
static void smp_flush_tlb_mm(struct mm_struct *mm)
1660
{
1661
if (mm->context != NO_CONTEXT) {
1662
if (any_other_mm_cpus(mm)) {
1663
xc1(local_ops->tlb_mm, (unsigned long)mm);
1664
if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1665
cpumask_copy(mm_cpumask(mm),
1666
cpumask_of(smp_processor_id()));
1667
}
1668
local_ops->tlb_mm(mm);
1669
}
1670
}
1671
1672
static void smp_flush_cache_range(struct vm_area_struct *vma,
1673
unsigned long start,
1674
unsigned long end)
1675
{
1676
struct mm_struct *mm = vma->vm_mm;
1677
1678
if (mm->context != NO_CONTEXT) {
1679
if (any_other_mm_cpus(mm))
1680
xc3(local_ops->cache_range, (unsigned long)vma, start,
1681
end);
1682
local_ops->cache_range(vma, start, end);
1683
}
1684
}
1685
1686
static void smp_flush_tlb_range(struct vm_area_struct *vma,
1687
unsigned long start,
1688
unsigned long end)
1689
{
1690
struct mm_struct *mm = vma->vm_mm;
1691
1692
if (mm->context != NO_CONTEXT) {
1693
if (any_other_mm_cpus(mm))
1694
xc3(local_ops->tlb_range, (unsigned long)vma, start,
1695
end);
1696
local_ops->tlb_range(vma, start, end);
1697
}
1698
}
1699
1700
static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1701
{
1702
struct mm_struct *mm = vma->vm_mm;
1703
1704
if (mm->context != NO_CONTEXT) {
1705
if (any_other_mm_cpus(mm))
1706
xc2(local_ops->cache_page, (unsigned long)vma, page);
1707
local_ops->cache_page(vma, page);
1708
}
1709
}
1710
1711
static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1712
{
1713
struct mm_struct *mm = vma->vm_mm;
1714
1715
if (mm->context != NO_CONTEXT) {
1716
if (any_other_mm_cpus(mm))
1717
xc2(local_ops->tlb_page, (unsigned long)vma, page);
1718
local_ops->tlb_page(vma, page);
1719
}
1720
}
1721
1722
static void smp_flush_page_to_ram(unsigned long page)
1723
{
1724
/* Current theory is that those who call this are the one's
1725
* who have just dirtied their cache with the pages contents
1726
* in kernel space, therefore we only run this on local cpu.
1727
*
1728
* XXX This experiment failed, research further... -DaveM
1729
*/
1730
#if 1
1731
xc1(local_ops->page_to_ram, page);
1732
#endif
1733
local_ops->page_to_ram(page);
1734
}
1735
1736
static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1737
{
1738
if (any_other_mm_cpus(mm))
1739
xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
1740
local_ops->sig_insns(mm, insn_addr);
1741
}
1742
1743
static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1744
.cache_all = smp_flush_cache_all,
1745
.cache_mm = smp_flush_cache_mm,
1746
.cache_page = smp_flush_cache_page,
1747
.cache_range = smp_flush_cache_range,
1748
.tlb_all = smp_flush_tlb_all,
1749
.tlb_mm = smp_flush_tlb_mm,
1750
.tlb_page = smp_flush_tlb_page,
1751
.tlb_range = smp_flush_tlb_range,
1752
.page_to_ram = smp_flush_page_to_ram,
1753
.sig_insns = smp_flush_sig_insns,
1754
.page_for_dma = smp_flush_page_for_dma,
1755
};
1756
#endif
1757
1758
/* Load up routines and constants for sun4m and sun4d mmu */
1759
void __init load_mmu(void)
1760
{
1761
/* Functions */
1762
get_srmmu_type();
1763
1764
#ifdef CONFIG_SMP
1765
/* El switcheroo... */
1766
local_ops = sparc32_cachetlb_ops;
1767
1768
if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1769
smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1770
smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1771
smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1772
smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1773
}
1774
1775
if (poke_srmmu == poke_viking) {
1776
/* Avoid unnecessary cross calls. */
1777
smp_cachetlb_ops.cache_all = local_ops->cache_all;
1778
smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1779
smp_cachetlb_ops.cache_range = local_ops->cache_range;
1780
smp_cachetlb_ops.cache_page = local_ops->cache_page;
1781
1782
smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1783
smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1784
smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1785
}
1786
1787
/* It really is const after this point. */
1788
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1789
&smp_cachetlb_ops;
1790
#endif
1791
1792
if (sparc_cpu_model != sun4d)
1793
ld_mmu_iommu();
1794
#ifdef CONFIG_SMP
1795
if (sparc_cpu_model == sun4d)
1796
sun4d_init_smp();
1797
else if (sparc_cpu_model == sparc_leon)
1798
leon_init_smp();
1799
else
1800
sun4m_init_smp();
1801
#endif
1802
}
1803
1804