Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/mm/tsb.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* arch/sparc64/mm/tsb.c
3
*
4
* Copyright (C) 2006, 2008 David S. Miller <[email protected]>
5
*/
6
7
#include <linux/kernel.h>
8
#include <linux/preempt.h>
9
#include <linux/slab.h>
10
#include <linux/mm_types.h>
11
#include <linux/pgtable.h>
12
13
#include <asm/page.h>
14
#include <asm/mmu_context.h>
15
#include <asm/setup.h>
16
#include <asm/tsb.h>
17
#include <asm/tlb.h>
18
#include <asm/oplib.h>
19
20
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
21
22
static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
23
{
24
vaddr >>= hash_shift;
25
return vaddr & (nentries - 1);
26
}
27
28
static inline int tag_compare(unsigned long tag, unsigned long vaddr)
29
{
30
return (tag == (vaddr >> 22));
31
}
32
33
static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
34
{
35
unsigned long idx;
36
37
for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
38
struct tsb *ent = &swapper_tsb[idx];
39
unsigned long match = idx << 13;
40
41
match |= (ent->tag << 22);
42
if (match >= start && match < end)
43
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
44
}
45
}
46
47
/* TSB flushes need only occur on the processor initiating the address
48
* space modification, not on each cpu the address space has run on.
49
* Only the TLB flush needs that treatment.
50
*/
51
52
void flush_tsb_kernel_range(unsigned long start, unsigned long end)
53
{
54
unsigned long v;
55
56
if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
57
return flush_tsb_kernel_range_scan(start, end);
58
59
for (v = start; v < end; v += PAGE_SIZE) {
60
unsigned long hash = tsb_hash(v, PAGE_SHIFT,
61
KERNEL_TSB_NENTRIES);
62
struct tsb *ent = &swapper_tsb[hash];
63
64
if (tag_compare(ent->tag, v))
65
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
66
}
67
}
68
69
static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
70
unsigned long hash_shift,
71
unsigned long nentries)
72
{
73
unsigned long tag, ent, hash;
74
75
v &= ~0x1UL;
76
hash = tsb_hash(v, hash_shift, nentries);
77
ent = tsb + (hash * sizeof(struct tsb));
78
tag = (v >> 22UL);
79
80
tsb_flush(ent, tag);
81
}
82
83
static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
84
unsigned long tsb, unsigned long nentries)
85
{
86
unsigned long i;
87
88
for (i = 0; i < tb->tlb_nr; i++)
89
__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
90
}
91
92
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
93
static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
94
unsigned long hash_shift,
95
unsigned long nentries,
96
unsigned int hugepage_shift)
97
{
98
unsigned int hpage_entries;
99
unsigned int i;
100
101
hpage_entries = 1 << (hugepage_shift - hash_shift);
102
for (i = 0; i < hpage_entries; i++)
103
__flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
104
nentries);
105
}
106
107
static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
108
unsigned long tsb, unsigned long nentries,
109
unsigned int hugepage_shift)
110
{
111
unsigned long i;
112
113
for (i = 0; i < tb->tlb_nr; i++)
114
__flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
115
nentries, hugepage_shift);
116
}
117
#endif
118
119
void flush_tsb_user(struct tlb_batch *tb)
120
{
121
struct mm_struct *mm = tb->mm;
122
unsigned long nentries, base, flags;
123
124
spin_lock_irqsave(&mm->context.lock, flags);
125
126
if (tb->hugepage_shift < REAL_HPAGE_SHIFT) {
127
base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
128
nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
129
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
130
base = __pa(base);
131
if (tb->hugepage_shift == PAGE_SHIFT)
132
__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
133
#if defined(CONFIG_HUGETLB_PAGE)
134
else
135
__flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
136
tb->hugepage_shift);
137
#endif
138
}
139
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
140
else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
141
base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
142
nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
143
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
144
base = __pa(base);
145
__flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
146
tb->hugepage_shift);
147
}
148
#endif
149
spin_unlock_irqrestore(&mm->context.lock, flags);
150
}
151
152
void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
153
unsigned int hugepage_shift)
154
{
155
unsigned long nentries, base, flags;
156
157
spin_lock_irqsave(&mm->context.lock, flags);
158
159
if (hugepage_shift < REAL_HPAGE_SHIFT) {
160
base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
161
nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
162
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
163
base = __pa(base);
164
if (hugepage_shift == PAGE_SHIFT)
165
__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
166
nentries);
167
#if defined(CONFIG_HUGETLB_PAGE)
168
else
169
__flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
170
nentries, hugepage_shift);
171
#endif
172
}
173
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
174
else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
175
base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
176
nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
177
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
178
base = __pa(base);
179
__flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
180
nentries, hugepage_shift);
181
}
182
#endif
183
spin_unlock_irqrestore(&mm->context.lock, flags);
184
}
185
186
#define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
187
#define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
188
189
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
190
#define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
191
#define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
192
#endif
193
194
static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
195
{
196
unsigned long tsb_reg, base, tsb_paddr;
197
unsigned long page_sz, tte;
198
199
mm->context.tsb_block[tsb_idx].tsb_nentries =
200
tsb_bytes / sizeof(struct tsb);
201
202
switch (tsb_idx) {
203
case MM_TSB_BASE:
204
base = TSBMAP_8K_BASE;
205
break;
206
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
207
case MM_TSB_HUGE:
208
base = TSBMAP_4M_BASE;
209
break;
210
#endif
211
default:
212
BUG();
213
}
214
215
tte = pgprot_val(PAGE_KERNEL_LOCKED);
216
tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
217
BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
218
219
/* Use the smallest page size that can map the whole TSB
220
* in one TLB entry.
221
*/
222
switch (tsb_bytes) {
223
case 8192 << 0:
224
tsb_reg = 0x0UL;
225
#ifdef DCACHE_ALIASING_POSSIBLE
226
base += (tsb_paddr & 8192);
227
#endif
228
page_sz = 8192;
229
break;
230
231
case 8192 << 1:
232
tsb_reg = 0x1UL;
233
page_sz = 64 * 1024;
234
break;
235
236
case 8192 << 2:
237
tsb_reg = 0x2UL;
238
page_sz = 64 * 1024;
239
break;
240
241
case 8192 << 3:
242
tsb_reg = 0x3UL;
243
page_sz = 64 * 1024;
244
break;
245
246
case 8192 << 4:
247
tsb_reg = 0x4UL;
248
page_sz = 512 * 1024;
249
break;
250
251
case 8192 << 5:
252
tsb_reg = 0x5UL;
253
page_sz = 512 * 1024;
254
break;
255
256
case 8192 << 6:
257
tsb_reg = 0x6UL;
258
page_sz = 512 * 1024;
259
break;
260
261
case 8192 << 7:
262
tsb_reg = 0x7UL;
263
page_sz = 4 * 1024 * 1024;
264
break;
265
266
default:
267
printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
268
current->comm, current->pid, tsb_bytes);
269
BUG();
270
}
271
tte |= pte_sz_bits(page_sz);
272
273
if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
274
/* Physical mapping, no locked TLB entry for TSB. */
275
tsb_reg |= tsb_paddr;
276
277
mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
278
mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
279
mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
280
} else {
281
tsb_reg |= base;
282
tsb_reg |= (tsb_paddr & (page_sz - 1UL));
283
tte |= (tsb_paddr & ~(page_sz - 1UL));
284
285
mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
286
mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
287
mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
288
}
289
290
/* Setup the Hypervisor TSB descriptor. */
291
if (tlb_type == hypervisor) {
292
struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
293
294
switch (tsb_idx) {
295
case MM_TSB_BASE:
296
hp->pgsz_idx = HV_PGSZ_IDX_BASE;
297
break;
298
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
299
case MM_TSB_HUGE:
300
hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
301
break;
302
#endif
303
default:
304
BUG();
305
}
306
hp->assoc = 1;
307
hp->num_ttes = tsb_bytes / 16;
308
hp->ctx_idx = 0;
309
switch (tsb_idx) {
310
case MM_TSB_BASE:
311
hp->pgsz_mask = HV_PGSZ_MASK_BASE;
312
break;
313
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
314
case MM_TSB_HUGE:
315
hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
316
break;
317
#endif
318
default:
319
BUG();
320
}
321
hp->tsb_base = tsb_paddr;
322
hp->resv = 0;
323
}
324
}
325
326
struct kmem_cache *pgtable_cache __read_mostly;
327
328
static struct kmem_cache *tsb_caches[8] __read_mostly;
329
330
static const char *tsb_cache_names[8] = {
331
"tsb_8KB",
332
"tsb_16KB",
333
"tsb_32KB",
334
"tsb_64KB",
335
"tsb_128KB",
336
"tsb_256KB",
337
"tsb_512KB",
338
"tsb_1MB",
339
};
340
341
void __init pgtable_cache_init(void)
342
{
343
unsigned long i;
344
345
pgtable_cache = kmem_cache_create("pgtable_cache",
346
PAGE_SIZE, PAGE_SIZE,
347
0,
348
_clear_page);
349
if (!pgtable_cache) {
350
prom_printf("pgtable_cache_init(): Could not create!\n");
351
prom_halt();
352
}
353
354
for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
355
unsigned long size = 8192 << i;
356
const char *name = tsb_cache_names[i];
357
358
tsb_caches[i] = kmem_cache_create(name,
359
size, size,
360
0, NULL);
361
if (!tsb_caches[i]) {
362
prom_printf("Could not create %s cache\n", name);
363
prom_halt();
364
}
365
}
366
}
367
368
int sysctl_tsb_ratio = -2;
369
370
static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
371
{
372
unsigned long num_ents = (new_size / sizeof(struct tsb));
373
374
if (sysctl_tsb_ratio < 0)
375
return num_ents - (num_ents >> -sysctl_tsb_ratio);
376
else
377
return num_ents + (num_ents >> sysctl_tsb_ratio);
378
}
379
380
/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
381
* do_sparc64_fault() invokes this routine to try and grow it.
382
*
383
* When we reach the maximum TSB size supported, we stick ~0UL into
384
* tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
385
* will not trigger any longer.
386
*
387
* The TSB can be anywhere from 8K to 1MB in size, in increasing powers
388
* of two. The TSB must be aligned to its size, so f.e. a 512K TSB
389
* must be 512K aligned. It also must be physically contiguous, so we
390
* cannot use vmalloc().
391
*
392
* The idea here is to grow the TSB when the RSS of the process approaches
393
* the number of entries that the current TSB can hold at once. Currently,
394
* we trigger when the RSS hits 3/4 of the TSB capacity.
395
*/
396
void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
397
{
398
unsigned long max_tsb_size = 1 * 1024 * 1024;
399
unsigned long new_size, old_size, flags;
400
struct tsb *old_tsb, *new_tsb;
401
unsigned long new_cache_index, old_cache_index;
402
unsigned long new_rss_limit;
403
gfp_t gfp_flags;
404
405
if (max_tsb_size > PAGE_SIZE << MAX_PAGE_ORDER)
406
max_tsb_size = PAGE_SIZE << MAX_PAGE_ORDER;
407
408
new_cache_index = 0;
409
for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
410
new_rss_limit = tsb_size_to_rss_limit(new_size);
411
if (new_rss_limit > rss)
412
break;
413
new_cache_index++;
414
}
415
416
if (new_size == max_tsb_size)
417
new_rss_limit = ~0UL;
418
419
retry_tsb_alloc:
420
gfp_flags = GFP_KERNEL;
421
if (new_size > (PAGE_SIZE * 2))
422
gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
423
424
new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
425
gfp_flags, numa_node_id());
426
if (unlikely(!new_tsb)) {
427
/* Not being able to fork due to a high-order TSB
428
* allocation failure is very bad behavior. Just back
429
* down to a 0-order allocation and force no TSB
430
* growing for this address space.
431
*/
432
if (mm->context.tsb_block[tsb_index].tsb == NULL &&
433
new_cache_index > 0) {
434
new_cache_index = 0;
435
new_size = 8192;
436
new_rss_limit = ~0UL;
437
goto retry_tsb_alloc;
438
}
439
440
/* If we failed on a TSB grow, we are under serious
441
* memory pressure so don't try to grow any more.
442
*/
443
if (mm->context.tsb_block[tsb_index].tsb != NULL)
444
mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
445
return;
446
}
447
448
/* Mark all tags as invalid. */
449
tsb_init(new_tsb, new_size);
450
451
/* Ok, we are about to commit the changes. If we are
452
* growing an existing TSB the locking is very tricky,
453
* so WATCH OUT!
454
*
455
* We have to hold mm->context.lock while committing to the
456
* new TSB, this synchronizes us with processors in
457
* flush_tsb_user() and switch_mm() for this address space.
458
*
459
* But even with that lock held, processors run asynchronously
460
* accessing the old TSB via TLB miss handling. This is OK
461
* because those actions are just propagating state from the
462
* Linux page tables into the TSB, page table mappings are not
463
* being changed. If a real fault occurs, the processor will
464
* synchronize with us when it hits flush_tsb_user(), this is
465
* also true for the case where vmscan is modifying the page
466
* tables. The only thing we need to be careful with is to
467
* skip any locked TSB entries during copy_tsb().
468
*
469
* When we finish committing to the new TSB, we have to drop
470
* the lock and ask all other cpus running this address space
471
* to run tsb_context_switch() to see the new TSB table.
472
*/
473
spin_lock_irqsave(&mm->context.lock, flags);
474
475
old_tsb = mm->context.tsb_block[tsb_index].tsb;
476
old_cache_index =
477
(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
478
old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
479
sizeof(struct tsb));
480
481
482
/* Handle multiple threads trying to grow the TSB at the same time.
483
* One will get in here first, and bump the size and the RSS limit.
484
* The others will get in here next and hit this check.
485
*/
486
if (unlikely(old_tsb &&
487
(rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
488
spin_unlock_irqrestore(&mm->context.lock, flags);
489
490
kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
491
return;
492
}
493
494
mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
495
496
if (old_tsb) {
497
extern void copy_tsb(unsigned long old_tsb_base,
498
unsigned long old_tsb_size,
499
unsigned long new_tsb_base,
500
unsigned long new_tsb_size,
501
unsigned long page_size_shift);
502
unsigned long old_tsb_base = (unsigned long) old_tsb;
503
unsigned long new_tsb_base = (unsigned long) new_tsb;
504
505
if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
506
old_tsb_base = __pa(old_tsb_base);
507
new_tsb_base = __pa(new_tsb_base);
508
}
509
copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size,
510
tsb_index == MM_TSB_BASE ?
511
PAGE_SHIFT : REAL_HPAGE_SHIFT);
512
}
513
514
mm->context.tsb_block[tsb_index].tsb = new_tsb;
515
setup_tsb_params(mm, tsb_index, new_size);
516
517
spin_unlock_irqrestore(&mm->context.lock, flags);
518
519
/* If old_tsb is NULL, we're being invoked for the first time
520
* from init_new_context().
521
*/
522
if (old_tsb) {
523
/* Reload it on the local cpu. */
524
tsb_context_switch(mm);
525
526
/* Now force other processors to do the same. */
527
preempt_disable();
528
smp_tsb_sync(mm);
529
preempt_enable();
530
531
/* Now it is safe to free the old tsb. */
532
kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
533
}
534
}
535
536
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
537
{
538
unsigned long mm_rss = get_mm_rss(mm);
539
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
540
unsigned long saved_hugetlb_pte_count;
541
unsigned long saved_thp_pte_count;
542
#endif
543
unsigned int i;
544
545
spin_lock_init(&mm->context.lock);
546
547
mm->context.sparc64_ctx_val = 0UL;
548
549
mm->context.tag_store = NULL;
550
spin_lock_init(&mm->context.tag_lock);
551
552
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
553
/* We reset them to zero because the fork() page copying
554
* will re-increment the counters as the parent PTEs are
555
* copied into the child address space.
556
*/
557
saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
558
saved_thp_pte_count = mm->context.thp_pte_count;
559
mm->context.hugetlb_pte_count = 0;
560
mm->context.thp_pte_count = 0;
561
562
mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
563
#endif
564
565
/* copy_mm() copies over the parent's mm_struct before calling
566
* us, so we need to zero out the TSB pointer or else tsb_grow()
567
* will be confused and think there is an older TSB to free up.
568
*/
569
for (i = 0; i < MM_NUM_TSBS; i++)
570
mm->context.tsb_block[i].tsb = NULL;
571
572
/* If this is fork, inherit the parent's TSB size. We would
573
* grow it to that size on the first page fault anyways.
574
*/
575
tsb_grow(mm, MM_TSB_BASE, mm_rss);
576
577
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
578
if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
579
tsb_grow(mm, MM_TSB_HUGE,
580
(saved_hugetlb_pte_count + saved_thp_pte_count) *
581
REAL_HPAGE_PER_HPAGE);
582
#endif
583
584
if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
585
return -ENOMEM;
586
587
return 0;
588
}
589
590
static void tsb_destroy_one(struct tsb_config *tp)
591
{
592
unsigned long cache_index;
593
594
if (!tp->tsb)
595
return;
596
cache_index = tp->tsb_reg_val & 0x7UL;
597
kmem_cache_free(tsb_caches[cache_index], tp->tsb);
598
tp->tsb = NULL;
599
tp->tsb_reg_val = 0UL;
600
}
601
602
void destroy_context(struct mm_struct *mm)
603
{
604
unsigned long flags, i;
605
606
for (i = 0; i < MM_NUM_TSBS; i++)
607
tsb_destroy_one(&mm->context.tsb_block[i]);
608
609
spin_lock_irqsave(&ctx_alloc_lock, flags);
610
611
if (CTX_VALID(mm->context)) {
612
unsigned long nr = CTX_NRBITS(mm->context);
613
mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
614
}
615
616
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
617
618
/* If ADI tag storage was allocated for this task, free it */
619
if (mm->context.tag_store) {
620
tag_storage_desc_t *tag_desc;
621
unsigned long max_desc;
622
unsigned char *tags;
623
624
tag_desc = mm->context.tag_store;
625
max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t);
626
for (i = 0; i < max_desc; i++) {
627
tags = tag_desc->tags;
628
tag_desc->tags = NULL;
629
kfree(tags);
630
tag_desc++;
631
}
632
kfree(mm->context.tag_store);
633
mm->context.tag_store = NULL;
634
}
635
}
636
637