Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/net/bpf_jit_comp_32.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/workqueue.h>
3
#include <linux/netdevice.h>
4
#include <linux/filter.h>
5
#include <linux/cache.h>
6
#include <linux/if_vlan.h>
7
#include <linux/execmem.h>
8
9
#include <asm/cacheflush.h>
10
#include <asm/ptrace.h>
11
12
#include "bpf_jit_32.h"
13
14
static inline bool is_simm13(unsigned int value)
15
{
16
return value + 0x1000 < 0x2000;
17
}
18
19
#define SEEN_DATAREF 1 /* might call external helpers */
20
#define SEEN_XREG 2 /* ebx is used */
21
#define SEEN_MEM 4 /* use mem[] for temporary storage */
22
23
#define S13(X) ((X) & 0x1fff)
24
#define IMMED 0x00002000
25
#define RD(X) ((X) << 25)
26
#define RS1(X) ((X) << 14)
27
#define RS2(X) ((X))
28
#define OP(X) ((X) << 30)
29
#define OP2(X) ((X) << 22)
30
#define OP3(X) ((X) << 19)
31
#define COND(X) ((X) << 25)
32
#define F1(X) OP(X)
33
#define F2(X, Y) (OP(X) | OP2(Y))
34
#define F3(X, Y) (OP(X) | OP3(Y))
35
36
#define CONDN COND(0x0)
37
#define CONDE COND(0x1)
38
#define CONDLE COND(0x2)
39
#define CONDL COND(0x3)
40
#define CONDLEU COND(0x4)
41
#define CONDCS COND(0x5)
42
#define CONDNEG COND(0x6)
43
#define CONDVC COND(0x7)
44
#define CONDA COND(0x8)
45
#define CONDNE COND(0x9)
46
#define CONDG COND(0xa)
47
#define CONDGE COND(0xb)
48
#define CONDGU COND(0xc)
49
#define CONDCC COND(0xd)
50
#define CONDPOS COND(0xe)
51
#define CONDVS COND(0xf)
52
53
#define CONDGEU CONDCC
54
#define CONDLU CONDCS
55
56
#define WDISP22(X) (((X) >> 2) & 0x3fffff)
57
58
#define BA (F2(0, 2) | CONDA)
59
#define BGU (F2(0, 2) | CONDGU)
60
#define BLEU (F2(0, 2) | CONDLEU)
61
#define BGEU (F2(0, 2) | CONDGEU)
62
#define BLU (F2(0, 2) | CONDLU)
63
#define BE (F2(0, 2) | CONDE)
64
#define BNE (F2(0, 2) | CONDNE)
65
66
#define BE_PTR BE
67
68
#define SETHI(K, REG) \
69
(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
70
#define OR_LO(K, REG) \
71
(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
72
73
#define ADD F3(2, 0x00)
74
#define AND F3(2, 0x01)
75
#define ANDCC F3(2, 0x11)
76
#define OR F3(2, 0x02)
77
#define XOR F3(2, 0x03)
78
#define SUB F3(2, 0x04)
79
#define SUBCC F3(2, 0x14)
80
#define MUL F3(2, 0x0a) /* umul */
81
#define DIV F3(2, 0x0e) /* udiv */
82
#define SLL F3(2, 0x25)
83
#define SRL F3(2, 0x26)
84
#define JMPL F3(2, 0x38)
85
#define CALL F1(1)
86
#define BR F2(0, 0x01)
87
#define RD_Y F3(2, 0x28)
88
#define WR_Y F3(2, 0x30)
89
90
#define LD32 F3(3, 0x00)
91
#define LD8 F3(3, 0x01)
92
#define LD16 F3(3, 0x02)
93
#define LD64 F3(3, 0x0b)
94
#define ST32 F3(3, 0x04)
95
96
#define LDPTR LD32
97
#define BASE_STACKFRAME 96
98
99
#define LD32I (LD32 | IMMED)
100
#define LD8I (LD8 | IMMED)
101
#define LD16I (LD16 | IMMED)
102
#define LD64I (LD64 | IMMED)
103
#define LDPTRI (LDPTR | IMMED)
104
#define ST32I (ST32 | IMMED)
105
106
#define emit_nop() \
107
do { \
108
*prog++ = SETHI(0, G0); \
109
} while (0)
110
111
#define emit_neg() \
112
do { /* sub %g0, r_A, r_A */ \
113
*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
114
} while (0)
115
116
#define emit_reg_move(FROM, TO) \
117
do { /* or %g0, FROM, TO */ \
118
*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
119
} while (0)
120
121
#define emit_clear(REG) \
122
do { /* or %g0, %g0, REG */ \
123
*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
124
} while (0)
125
126
#define emit_set_const(K, REG) \
127
do { /* sethi %hi(K), REG */ \
128
*prog++ = SETHI(K, REG); \
129
/* or REG, %lo(K), REG */ \
130
*prog++ = OR_LO(K, REG); \
131
} while (0)
132
133
/* Emit
134
*
135
* OP r_A, r_X, r_A
136
*/
137
#define emit_alu_X(OPCODE) \
138
do { \
139
seen |= SEEN_XREG; \
140
*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
141
} while (0)
142
143
/* Emit either:
144
*
145
* OP r_A, K, r_A
146
*
147
* or
148
*
149
* sethi %hi(K), r_TMP
150
* or r_TMP, %lo(K), r_TMP
151
* OP r_A, r_TMP, r_A
152
*
153
* depending upon whether K fits in a signed 13-bit
154
* immediate instruction field. Emit nothing if K
155
* is zero.
156
*/
157
#define emit_alu_K(OPCODE, K) \
158
do { \
159
if (K || OPCODE == AND || OPCODE == MUL) { \
160
unsigned int _insn = OPCODE; \
161
_insn |= RS1(r_A) | RD(r_A); \
162
if (is_simm13(K)) { \
163
*prog++ = _insn | IMMED | S13(K); \
164
} else { \
165
emit_set_const(K, r_TMP); \
166
*prog++ = _insn | RS2(r_TMP); \
167
} \
168
} \
169
} while (0)
170
171
#define emit_loadimm(K, DEST) \
172
do { \
173
if (is_simm13(K)) { \
174
/* or %g0, K, DEST */ \
175
*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
176
} else { \
177
emit_set_const(K, DEST); \
178
} \
179
} while (0)
180
181
#define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
182
do { unsigned int _off = offsetof(STRUCT, FIELD); \
183
BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *)); \
184
*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
185
} while (0)
186
187
#define emit_load32(BASE, STRUCT, FIELD, DEST) \
188
do { unsigned int _off = offsetof(STRUCT, FIELD); \
189
BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32)); \
190
*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
191
} while (0)
192
193
#define emit_load16(BASE, STRUCT, FIELD, DEST) \
194
do { unsigned int _off = offsetof(STRUCT, FIELD); \
195
BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16)); \
196
*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
197
} while (0)
198
199
#define __emit_load8(BASE, STRUCT, FIELD, DEST) \
200
do { unsigned int _off = offsetof(STRUCT, FIELD); \
201
*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
202
} while (0)
203
204
#define emit_load8(BASE, STRUCT, FIELD, DEST) \
205
do { BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8)); \
206
__emit_load8(BASE, STRUCT, FIELD, DEST); \
207
} while (0)
208
209
#define BIAS (-4)
210
211
#define emit_ldmem(OFF, DEST) \
212
do { *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST); \
213
} while (0)
214
215
#define emit_stmem(OFF, SRC) \
216
do { *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC); \
217
} while (0)
218
219
#ifdef CONFIG_SMP
220
#define emit_load_cpu(REG) \
221
emit_load32(G6, struct thread_info, cpu, REG)
222
#else
223
#define emit_load_cpu(REG) emit_clear(REG)
224
#endif
225
226
#define emit_skb_loadptr(FIELD, DEST) \
227
emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
228
#define emit_skb_load32(FIELD, DEST) \
229
emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
230
#define emit_skb_load16(FIELD, DEST) \
231
emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
232
#define __emit_skb_load8(FIELD, DEST) \
233
__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
234
#define emit_skb_load8(FIELD, DEST) \
235
emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
236
237
#define emit_jmpl(BASE, IMM_OFF, LREG) \
238
*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
239
240
#define emit_call(FUNC) \
241
do { void *_here = image + addrs[i] - 8; \
242
unsigned int _off = (void *)(FUNC) - _here; \
243
*prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
244
emit_nop(); \
245
} while (0)
246
247
#define emit_branch(BR_OPC, DEST) \
248
do { unsigned int _here = addrs[i] - 8; \
249
*prog++ = BR_OPC | WDISP22((DEST) - _here); \
250
} while (0)
251
252
#define emit_branch_off(BR_OPC, OFF) \
253
do { *prog++ = BR_OPC | WDISP22(OFF); \
254
} while (0)
255
256
#define emit_jump(DEST) emit_branch(BA, DEST)
257
258
#define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
259
#define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
260
261
#define emit_cmp(R1, R2) \
262
*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
263
264
#define emit_cmpi(R1, IMM) \
265
*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
266
267
#define emit_btst(R1, R2) \
268
*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
269
270
#define emit_btsti(R1, IMM) \
271
*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
272
273
#define emit_sub(R1, R2, R3) \
274
*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
275
276
#define emit_subi(R1, IMM, R3) \
277
*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
278
279
#define emit_add(R1, R2, R3) \
280
*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
281
282
#define emit_addi(R1, IMM, R3) \
283
*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
284
285
#define emit_and(R1, R2, R3) \
286
*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
287
288
#define emit_andi(R1, IMM, R3) \
289
*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
290
291
#define emit_alloc_stack(SZ) \
292
*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
293
294
#define emit_release_stack(SZ) \
295
*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
296
297
/* A note about branch offset calculations. The addrs[] array,
298
* indexed by BPF instruction, records the address after all the
299
* sparc instructions emitted for that BPF instruction.
300
*
301
* The most common case is to emit a branch at the end of such
302
* a code sequence. So this would be two instructions, the
303
* branch and its delay slot.
304
*
305
* Therefore by default the branch emitters calculate the branch
306
* offset field as:
307
*
308
* destination - (addrs[i] - 8)
309
*
310
* This "addrs[i] - 8" is the address of the branch itself or
311
* what "." would be in assembler notation. The "8" part is
312
* how we take into consideration the branch and its delay
313
* slot mentioned above.
314
*
315
* Sometimes we need to emit a branch earlier in the code
316
* sequence. And in these situations we adjust "destination"
317
* to accommodate this difference. For example, if we needed
318
* to emit a branch (and its delay slot) right before the
319
* final instruction emitted for a BPF opcode, we'd use
320
* "destination + 4" instead of just plain "destination" above.
321
*
322
* This is why you see all of these funny emit_branch() and
323
* emit_jump() calls with adjusted offsets.
324
*/
325
326
void bpf_jit_compile(struct bpf_prog *fp)
327
{
328
unsigned int cleanup_addr, proglen, oldproglen = 0;
329
u32 temp[8], *prog, *func, seen = 0, pass;
330
const struct sock_filter *filter = fp->insns;
331
int i, flen = fp->len, pc_ret0 = -1;
332
unsigned int *addrs;
333
void *image;
334
335
if (!bpf_jit_enable)
336
return;
337
338
addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
339
if (addrs == NULL)
340
return;
341
342
/* Before first pass, make a rough estimation of addrs[]
343
* each bpf instruction is translated to less than 64 bytes
344
*/
345
for (proglen = 0, i = 0; i < flen; i++) {
346
proglen += 64;
347
addrs[i] = proglen;
348
}
349
cleanup_addr = proglen; /* epilogue address */
350
image = NULL;
351
for (pass = 0; pass < 10; pass++) {
352
u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
353
354
/* no prologue/epilogue for trivial filters (RET something) */
355
proglen = 0;
356
prog = temp;
357
358
/* Prologue */
359
if (seen_or_pass0) {
360
if (seen_or_pass0 & SEEN_MEM) {
361
unsigned int sz = BASE_STACKFRAME;
362
sz += BPF_MEMWORDS * sizeof(u32);
363
emit_alloc_stack(sz);
364
}
365
366
/* Make sure we dont leek kernel memory. */
367
if (seen_or_pass0 & SEEN_XREG)
368
emit_clear(r_X);
369
370
/* If this filter needs to access skb data,
371
* load %o4 and %o5 with:
372
* %o4 = skb->len - skb->data_len
373
* %o5 = skb->data
374
* And also back up %o7 into r_saved_O7 so we can
375
* invoke the stubs using 'call'.
376
*/
377
if (seen_or_pass0 & SEEN_DATAREF) {
378
emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
379
emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
380
emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
381
emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
382
}
383
}
384
emit_reg_move(O7, r_saved_O7);
385
386
/* Make sure we dont leak kernel information to the user. */
387
if (bpf_needs_clear_a(&filter[0]))
388
emit_clear(r_A); /* A = 0 */
389
390
for (i = 0; i < flen; i++) {
391
unsigned int K = filter[i].k;
392
unsigned int t_offset;
393
unsigned int f_offset;
394
u32 t_op, f_op;
395
u16 code = bpf_anc_helper(&filter[i]);
396
int ilen;
397
398
switch (code) {
399
case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
400
emit_alu_X(ADD);
401
break;
402
case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
403
emit_alu_K(ADD, K);
404
break;
405
case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
406
emit_alu_X(SUB);
407
break;
408
case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
409
emit_alu_K(SUB, K);
410
break;
411
case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
412
emit_alu_X(AND);
413
break;
414
case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
415
emit_alu_K(AND, K);
416
break;
417
case BPF_ALU | BPF_OR | BPF_X: /* A |= X */
418
emit_alu_X(OR);
419
break;
420
case BPF_ALU | BPF_OR | BPF_K: /* A |= K */
421
emit_alu_K(OR, K);
422
break;
423
case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
424
case BPF_ALU | BPF_XOR | BPF_X:
425
emit_alu_X(XOR);
426
break;
427
case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
428
emit_alu_K(XOR, K);
429
break;
430
case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
431
emit_alu_X(SLL);
432
break;
433
case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
434
emit_alu_K(SLL, K);
435
break;
436
case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
437
emit_alu_X(SRL);
438
break;
439
case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
440
emit_alu_K(SRL, K);
441
break;
442
case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
443
emit_alu_X(MUL);
444
break;
445
case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
446
emit_alu_K(MUL, K);
447
break;
448
case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
449
if (K == 1)
450
break;
451
emit_write_y(G0);
452
/* The Sparc v8 architecture requires
453
* three instructions between a %y
454
* register write and the first use.
455
*/
456
emit_nop();
457
emit_nop();
458
emit_nop();
459
emit_alu_K(DIV, K);
460
break;
461
case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
462
emit_cmpi(r_X, 0);
463
if (pc_ret0 > 0) {
464
t_offset = addrs[pc_ret0 - 1];
465
emit_branch(BE, t_offset + 20);
466
emit_nop(); /* delay slot */
467
} else {
468
emit_branch_off(BNE, 16);
469
emit_nop();
470
emit_jump(cleanup_addr + 20);
471
emit_clear(r_A);
472
}
473
emit_write_y(G0);
474
/* The Sparc v8 architecture requires
475
* three instructions between a %y
476
* register write and the first use.
477
*/
478
emit_nop();
479
emit_nop();
480
emit_nop();
481
emit_alu_X(DIV);
482
break;
483
case BPF_ALU | BPF_NEG:
484
emit_neg();
485
break;
486
case BPF_RET | BPF_K:
487
if (!K) {
488
if (pc_ret0 == -1)
489
pc_ret0 = i;
490
emit_clear(r_A);
491
} else {
492
emit_loadimm(K, r_A);
493
}
494
fallthrough;
495
case BPF_RET | BPF_A:
496
if (seen_or_pass0) {
497
if (i != flen - 1) {
498
emit_jump(cleanup_addr);
499
emit_nop();
500
break;
501
}
502
if (seen_or_pass0 & SEEN_MEM) {
503
unsigned int sz = BASE_STACKFRAME;
504
sz += BPF_MEMWORDS * sizeof(u32);
505
emit_release_stack(sz);
506
}
507
}
508
/* jmpl %r_saved_O7 + 8, %g0 */
509
emit_jmpl(r_saved_O7, 8, G0);
510
emit_reg_move(r_A, O0); /* delay slot */
511
break;
512
case BPF_MISC | BPF_TAX:
513
seen |= SEEN_XREG;
514
emit_reg_move(r_A, r_X);
515
break;
516
case BPF_MISC | BPF_TXA:
517
seen |= SEEN_XREG;
518
emit_reg_move(r_X, r_A);
519
break;
520
case BPF_ANC | SKF_AD_CPU:
521
emit_load_cpu(r_A);
522
break;
523
case BPF_ANC | SKF_AD_PROTOCOL:
524
emit_skb_load16(protocol, r_A);
525
break;
526
case BPF_ANC | SKF_AD_PKTTYPE:
527
__emit_skb_load8(__pkt_type_offset, r_A);
528
emit_andi(r_A, PKT_TYPE_MAX, r_A);
529
emit_alu_K(SRL, 5);
530
break;
531
case BPF_ANC | SKF_AD_IFINDEX:
532
emit_skb_loadptr(dev, r_A);
533
emit_cmpi(r_A, 0);
534
emit_branch(BE_PTR, cleanup_addr + 4);
535
emit_nop();
536
emit_load32(r_A, struct net_device, ifindex, r_A);
537
break;
538
case BPF_ANC | SKF_AD_MARK:
539
emit_skb_load32(mark, r_A);
540
break;
541
case BPF_ANC | SKF_AD_QUEUE:
542
emit_skb_load16(queue_mapping, r_A);
543
break;
544
case BPF_ANC | SKF_AD_HATYPE:
545
emit_skb_loadptr(dev, r_A);
546
emit_cmpi(r_A, 0);
547
emit_branch(BE_PTR, cleanup_addr + 4);
548
emit_nop();
549
emit_load16(r_A, struct net_device, type, r_A);
550
break;
551
case BPF_ANC | SKF_AD_RXHASH:
552
emit_skb_load32(hash, r_A);
553
break;
554
case BPF_ANC | SKF_AD_VLAN_TAG:
555
emit_skb_load16(vlan_tci, r_A);
556
break;
557
case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
558
emit_skb_load32(vlan_all, r_A);
559
emit_cmpi(r_A, 0);
560
emit_branch_off(BE, 12);
561
emit_nop();
562
emit_loadimm(1, r_A);
563
break;
564
case BPF_LD | BPF_W | BPF_LEN:
565
emit_skb_load32(len, r_A);
566
break;
567
case BPF_LDX | BPF_W | BPF_LEN:
568
emit_skb_load32(len, r_X);
569
break;
570
case BPF_LD | BPF_IMM:
571
emit_loadimm(K, r_A);
572
break;
573
case BPF_LDX | BPF_IMM:
574
emit_loadimm(K, r_X);
575
break;
576
case BPF_LD | BPF_MEM:
577
seen |= SEEN_MEM;
578
emit_ldmem(K * 4, r_A);
579
break;
580
case BPF_LDX | BPF_MEM:
581
seen |= SEEN_MEM | SEEN_XREG;
582
emit_ldmem(K * 4, r_X);
583
break;
584
case BPF_ST:
585
seen |= SEEN_MEM;
586
emit_stmem(K * 4, r_A);
587
break;
588
case BPF_STX:
589
seen |= SEEN_MEM | SEEN_XREG;
590
emit_stmem(K * 4, r_X);
591
break;
592
593
#define CHOOSE_LOAD_FUNC(K, func) \
594
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
595
596
case BPF_LD | BPF_W | BPF_ABS:
597
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
598
common_load: seen |= SEEN_DATAREF;
599
emit_loadimm(K, r_OFF);
600
emit_call(func);
601
break;
602
case BPF_LD | BPF_H | BPF_ABS:
603
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
604
goto common_load;
605
case BPF_LD | BPF_B | BPF_ABS:
606
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
607
goto common_load;
608
case BPF_LDX | BPF_B | BPF_MSH:
609
func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
610
goto common_load;
611
case BPF_LD | BPF_W | BPF_IND:
612
func = bpf_jit_load_word;
613
common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
614
if (K) {
615
if (is_simm13(K)) {
616
emit_addi(r_X, K, r_OFF);
617
} else {
618
emit_loadimm(K, r_TMP);
619
emit_add(r_X, r_TMP, r_OFF);
620
}
621
} else {
622
emit_reg_move(r_X, r_OFF);
623
}
624
emit_call(func);
625
break;
626
case BPF_LD | BPF_H | BPF_IND:
627
func = bpf_jit_load_half;
628
goto common_load_ind;
629
case BPF_LD | BPF_B | BPF_IND:
630
func = bpf_jit_load_byte;
631
goto common_load_ind;
632
case BPF_JMP | BPF_JA:
633
emit_jump(addrs[i + K]);
634
emit_nop();
635
break;
636
637
#define COND_SEL(CODE, TOP, FOP) \
638
case CODE: \
639
t_op = TOP; \
640
f_op = FOP; \
641
goto cond_branch
642
643
COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
644
COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
645
COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
646
COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
647
COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
648
COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
649
COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
650
COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
651
652
cond_branch: f_offset = addrs[i + filter[i].jf];
653
t_offset = addrs[i + filter[i].jt];
654
655
/* same targets, can avoid doing the test :) */
656
if (filter[i].jt == filter[i].jf) {
657
emit_jump(t_offset);
658
emit_nop();
659
break;
660
}
661
662
switch (code) {
663
case BPF_JMP | BPF_JGT | BPF_X:
664
case BPF_JMP | BPF_JGE | BPF_X:
665
case BPF_JMP | BPF_JEQ | BPF_X:
666
seen |= SEEN_XREG;
667
emit_cmp(r_A, r_X);
668
break;
669
case BPF_JMP | BPF_JSET | BPF_X:
670
seen |= SEEN_XREG;
671
emit_btst(r_A, r_X);
672
break;
673
case BPF_JMP | BPF_JEQ | BPF_K:
674
case BPF_JMP | BPF_JGT | BPF_K:
675
case BPF_JMP | BPF_JGE | BPF_K:
676
if (is_simm13(K)) {
677
emit_cmpi(r_A, K);
678
} else {
679
emit_loadimm(K, r_TMP);
680
emit_cmp(r_A, r_TMP);
681
}
682
break;
683
case BPF_JMP | BPF_JSET | BPF_K:
684
if (is_simm13(K)) {
685
emit_btsti(r_A, K);
686
} else {
687
emit_loadimm(K, r_TMP);
688
emit_btst(r_A, r_TMP);
689
}
690
break;
691
}
692
if (filter[i].jt != 0) {
693
if (filter[i].jf)
694
t_offset += 8;
695
emit_branch(t_op, t_offset);
696
emit_nop(); /* delay slot */
697
if (filter[i].jf) {
698
emit_jump(f_offset);
699
emit_nop();
700
}
701
break;
702
}
703
emit_branch(f_op, f_offset);
704
emit_nop(); /* delay slot */
705
break;
706
707
default:
708
/* hmm, too complex filter, give up with jit compiler */
709
goto out;
710
}
711
ilen = (void *) prog - (void *) temp;
712
if (image) {
713
if (unlikely(proglen + ilen > oldproglen)) {
714
pr_err("bpb_jit_compile fatal error\n");
715
kfree(addrs);
716
execmem_free(image);
717
return;
718
}
719
memcpy(image + proglen, temp, ilen);
720
}
721
proglen += ilen;
722
addrs[i] = proglen;
723
prog = temp;
724
}
725
/* last bpf instruction is always a RET :
726
* use it to give the cleanup instruction(s) addr
727
*/
728
cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
729
if (seen_or_pass0 & SEEN_MEM)
730
cleanup_addr -= 4; /* add %sp, X, %sp; */
731
732
if (image) {
733
if (proglen != oldproglen)
734
pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
735
proglen, oldproglen);
736
break;
737
}
738
if (proglen == oldproglen) {
739
image = execmem_alloc(EXECMEM_BPF, proglen);
740
if (!image)
741
goto out;
742
}
743
oldproglen = proglen;
744
}
745
746
if (bpf_jit_enable > 1)
747
bpf_jit_dump(flen, proglen, pass + 1, image);
748
749
if (image) {
750
fp->bpf_func = (void *)image;
751
fp->jited = 1;
752
}
753
out:
754
kfree(addrs);
755
return;
756
}
757
758
void bpf_jit_free(struct bpf_prog *fp)
759
{
760
if (fp->jited)
761
execmem_free(fp->bpf_func);
762
763
bpf_prog_unlock_free(fp);
764
}
765
766