Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/sparc/net/bpf_jit_comp_64.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/moduleloader.h>
3
#include <linux/workqueue.h>
4
#include <linux/netdevice.h>
5
#include <linux/filter.h>
6
#include <linux/bpf.h>
7
#include <linux/cache.h>
8
#include <linux/if_vlan.h>
9
10
#include <asm/cacheflush.h>
11
#include <asm/ptrace.h>
12
13
#include "bpf_jit_64.h"
14
15
static inline bool is_simm13(unsigned int value)
16
{
17
return value + 0x1000 < 0x2000;
18
}
19
20
static inline bool is_simm10(unsigned int value)
21
{
22
return value + 0x200 < 0x400;
23
}
24
25
static inline bool is_simm5(unsigned int value)
26
{
27
return value + 0x10 < 0x20;
28
}
29
30
static inline bool is_sethi(unsigned int value)
31
{
32
return (value & ~0x3fffff) == 0;
33
}
34
35
static void bpf_flush_icache(void *start_, void *end_)
36
{
37
/* Cheetah's I-cache is fully coherent. */
38
if (tlb_type == spitfire) {
39
unsigned long start = (unsigned long) start_;
40
unsigned long end = (unsigned long) end_;
41
42
start &= ~7UL;
43
end = (end + 7UL) & ~7UL;
44
while (start < end) {
45
flushi(start);
46
start += 32;
47
}
48
}
49
}
50
51
#define S13(X) ((X) & 0x1fff)
52
#define S5(X) ((X) & 0x1f)
53
#define IMMED 0x00002000
54
#define RD(X) ((X) << 25)
55
#define RS1(X) ((X) << 14)
56
#define RS2(X) ((X))
57
#define OP(X) ((X) << 30)
58
#define OP2(X) ((X) << 22)
59
#define OP3(X) ((X) << 19)
60
#define COND(X) (((X) & 0xf) << 25)
61
#define CBCOND(X) (((X) & 0x1f) << 25)
62
#define F1(X) OP(X)
63
#define F2(X, Y) (OP(X) | OP2(Y))
64
#define F3(X, Y) (OP(X) | OP3(Y))
65
#define ASI(X) (((X) & 0xff) << 5)
66
67
#define CONDN COND(0x0)
68
#define CONDE COND(0x1)
69
#define CONDLE COND(0x2)
70
#define CONDL COND(0x3)
71
#define CONDLEU COND(0x4)
72
#define CONDCS COND(0x5)
73
#define CONDNEG COND(0x6)
74
#define CONDVC COND(0x7)
75
#define CONDA COND(0x8)
76
#define CONDNE COND(0x9)
77
#define CONDG COND(0xa)
78
#define CONDGE COND(0xb)
79
#define CONDGU COND(0xc)
80
#define CONDCC COND(0xd)
81
#define CONDPOS COND(0xe)
82
#define CONDVS COND(0xf)
83
84
#define CONDGEU CONDCC
85
#define CONDLU CONDCS
86
87
#define WDISP22(X) (((X) >> 2) & 0x3fffff)
88
#define WDISP19(X) (((X) >> 2) & 0x7ffff)
89
90
/* The 10-bit branch displacement for CBCOND is split into two fields */
91
static u32 WDISP10(u32 off)
92
{
93
u32 ret = ((off >> 2) & 0xff) << 5;
94
95
ret |= ((off >> (2 + 8)) & 0x03) << 19;
96
97
return ret;
98
}
99
100
#define CBCONDE CBCOND(0x09)
101
#define CBCONDLE CBCOND(0x0a)
102
#define CBCONDL CBCOND(0x0b)
103
#define CBCONDLEU CBCOND(0x0c)
104
#define CBCONDCS CBCOND(0x0d)
105
#define CBCONDN CBCOND(0x0e)
106
#define CBCONDVS CBCOND(0x0f)
107
#define CBCONDNE CBCOND(0x19)
108
#define CBCONDG CBCOND(0x1a)
109
#define CBCONDGE CBCOND(0x1b)
110
#define CBCONDGU CBCOND(0x1c)
111
#define CBCONDCC CBCOND(0x1d)
112
#define CBCONDPOS CBCOND(0x1e)
113
#define CBCONDVC CBCOND(0x1f)
114
115
#define CBCONDGEU CBCONDCC
116
#define CBCONDLU CBCONDCS
117
118
#define ANNUL (1 << 29)
119
#define XCC (1 << 21)
120
121
#define BRANCH (F2(0, 1) | XCC)
122
#define CBCOND_OP (F2(0, 3) | XCC)
123
124
#define BA (BRANCH | CONDA)
125
#define BG (BRANCH | CONDG)
126
#define BL (BRANCH | CONDL)
127
#define BLE (BRANCH | CONDLE)
128
#define BGU (BRANCH | CONDGU)
129
#define BLEU (BRANCH | CONDLEU)
130
#define BGE (BRANCH | CONDGE)
131
#define BGEU (BRANCH | CONDGEU)
132
#define BLU (BRANCH | CONDLU)
133
#define BE (BRANCH | CONDE)
134
#define BNE (BRANCH | CONDNE)
135
136
#define SETHI(K, REG) \
137
(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
138
#define OR_LO(K, REG) \
139
(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
140
141
#define ADD F3(2, 0x00)
142
#define AND F3(2, 0x01)
143
#define ANDCC F3(2, 0x11)
144
#define OR F3(2, 0x02)
145
#define XOR F3(2, 0x03)
146
#define SUB F3(2, 0x04)
147
#define SUBCC F3(2, 0x14)
148
#define MUL F3(2, 0x0a)
149
#define MULX F3(2, 0x09)
150
#define UDIVX F3(2, 0x0d)
151
#define DIV F3(2, 0x0e)
152
#define SLL F3(2, 0x25)
153
#define SLLX (F3(2, 0x25)|(1<<12))
154
#define SRA F3(2, 0x27)
155
#define SRAX (F3(2, 0x27)|(1<<12))
156
#define SRL F3(2, 0x26)
157
#define SRLX (F3(2, 0x26)|(1<<12))
158
#define JMPL F3(2, 0x38)
159
#define SAVE F3(2, 0x3c)
160
#define RESTORE F3(2, 0x3d)
161
#define CALL F1(1)
162
#define BR F2(0, 0x01)
163
#define RD_Y F3(2, 0x28)
164
#define WR_Y F3(2, 0x30)
165
166
#define LD32 F3(3, 0x00)
167
#define LD8 F3(3, 0x01)
168
#define LD16 F3(3, 0x02)
169
#define LD64 F3(3, 0x0b)
170
#define LD64A F3(3, 0x1b)
171
#define ST8 F3(3, 0x05)
172
#define ST16 F3(3, 0x06)
173
#define ST32 F3(3, 0x04)
174
#define ST64 F3(3, 0x0e)
175
176
#define CAS F3(3, 0x3c)
177
#define CASX F3(3, 0x3e)
178
179
#define LDPTR LD64
180
#define BASE_STACKFRAME 176
181
182
#define LD32I (LD32 | IMMED)
183
#define LD8I (LD8 | IMMED)
184
#define LD16I (LD16 | IMMED)
185
#define LD64I (LD64 | IMMED)
186
#define LDPTRI (LDPTR | IMMED)
187
#define ST32I (ST32 | IMMED)
188
189
struct jit_ctx {
190
struct bpf_prog *prog;
191
unsigned int *offset;
192
int idx;
193
int epilogue_offset;
194
bool tmp_1_used;
195
bool tmp_2_used;
196
bool tmp_3_used;
197
bool saw_frame_pointer;
198
bool saw_call;
199
bool saw_tail_call;
200
u32 *image;
201
};
202
203
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
204
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
205
#define TMP_REG_3 (MAX_BPF_JIT_REG + 2)
206
207
/* Map BPF registers to SPARC registers */
208
static const int bpf2sparc[] = {
209
/* return value from in-kernel function, and exit value from eBPF */
210
[BPF_REG_0] = O5,
211
212
/* arguments from eBPF program to in-kernel function */
213
[BPF_REG_1] = O0,
214
[BPF_REG_2] = O1,
215
[BPF_REG_3] = O2,
216
[BPF_REG_4] = O3,
217
[BPF_REG_5] = O4,
218
219
/* callee saved registers that in-kernel function will preserve */
220
[BPF_REG_6] = L0,
221
[BPF_REG_7] = L1,
222
[BPF_REG_8] = L2,
223
[BPF_REG_9] = L3,
224
225
/* read-only frame pointer to access stack */
226
[BPF_REG_FP] = L6,
227
228
[BPF_REG_AX] = G7,
229
230
/* temporary register for BPF JIT */
231
[TMP_REG_1] = G1,
232
[TMP_REG_2] = G2,
233
[TMP_REG_3] = G3,
234
};
235
236
static void emit(const u32 insn, struct jit_ctx *ctx)
237
{
238
if (ctx->image != NULL)
239
ctx->image[ctx->idx] = insn;
240
241
ctx->idx++;
242
}
243
244
static void emit_call(u32 *func, struct jit_ctx *ctx)
245
{
246
if (ctx->image != NULL) {
247
void *here = &ctx->image[ctx->idx];
248
unsigned int off;
249
250
off = (void *)func - here;
251
ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
252
}
253
ctx->idx++;
254
}
255
256
static void emit_nop(struct jit_ctx *ctx)
257
{
258
emit(SETHI(0, G0), ctx);
259
}
260
261
static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
262
{
263
emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
264
}
265
266
/* Emit 32-bit constant, zero extended. */
267
static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
268
{
269
emit(SETHI(K, reg), ctx);
270
emit(OR_LO(K, reg), ctx);
271
}
272
273
/* Emit 32-bit constant, sign extended. */
274
static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
275
{
276
if (K >= 0) {
277
emit(SETHI(K, reg), ctx);
278
emit(OR_LO(K, reg), ctx);
279
} else {
280
u32 hbits = ~(u32) K;
281
u32 lbits = -0x400 | (u32) K;
282
283
emit(SETHI(hbits, reg), ctx);
284
emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
285
}
286
}
287
288
static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
289
{
290
emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
291
}
292
293
static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
294
{
295
emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
296
}
297
298
static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
299
struct jit_ctx *ctx)
300
{
301
bool small_immed = is_simm13(imm);
302
unsigned int insn = opcode;
303
304
insn |= RS1(dst) | RD(dst);
305
if (small_immed) {
306
emit(insn | IMMED | S13(imm), ctx);
307
} else {
308
unsigned int tmp = bpf2sparc[TMP_REG_1];
309
310
ctx->tmp_1_used = true;
311
312
emit_set_const_sext(imm, tmp, ctx);
313
emit(insn | RS2(tmp), ctx);
314
}
315
}
316
317
static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
318
unsigned int dst, struct jit_ctx *ctx)
319
{
320
bool small_immed = is_simm13(imm);
321
unsigned int insn = opcode;
322
323
insn |= RS1(src) | RD(dst);
324
if (small_immed) {
325
emit(insn | IMMED | S13(imm), ctx);
326
} else {
327
unsigned int tmp = bpf2sparc[TMP_REG_1];
328
329
ctx->tmp_1_used = true;
330
331
emit_set_const_sext(imm, tmp, ctx);
332
emit(insn | RS2(tmp), ctx);
333
}
334
}
335
336
static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
337
{
338
if (K >= 0 && is_simm13(K)) {
339
/* or %g0, K, DEST */
340
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
341
} else {
342
emit_set_const(K, dest, ctx);
343
}
344
}
345
346
static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
347
{
348
if (is_simm13(K)) {
349
/* or %g0, K, DEST */
350
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
351
} else {
352
emit_set_const(K, dest, ctx);
353
}
354
}
355
356
static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
357
{
358
if (is_simm13(K)) {
359
/* or %g0, K, DEST */
360
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
361
} else {
362
emit_set_const_sext(K, dest, ctx);
363
}
364
}
365
366
static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
367
int *hbsp, int *lbsp, int *abbasp)
368
{
369
int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
370
int i;
371
372
lowest_bit_set = highest_bit_set = -1;
373
i = 0;
374
do {
375
if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
376
lowest_bit_set = i;
377
if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
378
highest_bit_set = (64 - i - 1);
379
} while (++i < 32 && (highest_bit_set == -1 ||
380
lowest_bit_set == -1));
381
if (i == 32) {
382
i = 0;
383
do {
384
if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
385
lowest_bit_set = i + 32;
386
if (highest_bit_set == -1 &&
387
((low_bits >> (32 - i - 1)) & 1))
388
highest_bit_set = 32 - i - 1;
389
} while (++i < 32 && (highest_bit_set == -1 ||
390
lowest_bit_set == -1));
391
}
392
393
all_bits_between_are_set = 1;
394
for (i = lowest_bit_set; i <= highest_bit_set; i++) {
395
if (i < 32) {
396
if ((low_bits & (1 << i)) != 0)
397
continue;
398
} else {
399
if ((high_bits & (1 << (i - 32))) != 0)
400
continue;
401
}
402
all_bits_between_are_set = 0;
403
break;
404
}
405
*hbsp = highest_bit_set;
406
*lbsp = lowest_bit_set;
407
*abbasp = all_bits_between_are_set;
408
}
409
410
static unsigned long create_simple_focus_bits(unsigned long high_bits,
411
unsigned long low_bits,
412
int lowest_bit_set, int shift)
413
{
414
long hi, lo;
415
416
if (lowest_bit_set < 32) {
417
lo = (low_bits >> lowest_bit_set) << shift;
418
hi = ((high_bits << (32 - lowest_bit_set)) << shift);
419
} else {
420
lo = 0;
421
hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
422
}
423
return hi | lo;
424
}
425
426
static bool const64_is_2insns(unsigned long high_bits,
427
unsigned long low_bits)
428
{
429
int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
430
431
if (high_bits == 0 || high_bits == 0xffffffff)
432
return true;
433
434
analyze_64bit_constant(high_bits, low_bits,
435
&highest_bit_set, &lowest_bit_set,
436
&all_bits_between_are_set);
437
438
if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
439
all_bits_between_are_set != 0)
440
return true;
441
442
if (highest_bit_set - lowest_bit_set < 21)
443
return true;
444
445
return false;
446
}
447
448
static void sparc_emit_set_const64_quick2(unsigned long high_bits,
449
unsigned long low_imm,
450
unsigned int dest,
451
int shift_count, struct jit_ctx *ctx)
452
{
453
emit_loadimm32(high_bits, dest, ctx);
454
455
/* Now shift it up into place. */
456
emit_alu_K(SLLX, dest, shift_count, ctx);
457
458
/* If there is a low immediate part piece, finish up by
459
* putting that in as well.
460
*/
461
if (low_imm != 0)
462
emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
463
}
464
465
static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
466
{
467
int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
468
unsigned int tmp = bpf2sparc[TMP_REG_1];
469
u32 low_bits = (K & 0xffffffff);
470
u32 high_bits = (K >> 32);
471
472
/* These two tests also take care of all of the one
473
* instruction cases.
474
*/
475
if (high_bits == 0xffffffff && (low_bits & 0x80000000))
476
return emit_loadimm_sext(K, dest, ctx);
477
if (high_bits == 0x00000000)
478
return emit_loadimm32(K, dest, ctx);
479
480
analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
481
&lowest_bit_set, &all_bits_between_are_set);
482
483
/* 1) mov -1, %reg
484
* sllx %reg, shift, %reg
485
* 2) mov -1, %reg
486
* srlx %reg, shift, %reg
487
* 3) mov some_small_const, %reg
488
* sllx %reg, shift, %reg
489
*/
490
if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
491
all_bits_between_are_set != 0) ||
492
((highest_bit_set - lowest_bit_set) < 12)) {
493
int shift = lowest_bit_set;
494
long the_const = -1;
495
496
if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
497
all_bits_between_are_set == 0) {
498
the_const =
499
create_simple_focus_bits(high_bits, low_bits,
500
lowest_bit_set, 0);
501
} else if (lowest_bit_set == 0)
502
shift = -(63 - highest_bit_set);
503
504
emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
505
if (shift > 0)
506
emit_alu_K(SLLX, dest, shift, ctx);
507
else if (shift < 0)
508
emit_alu_K(SRLX, dest, -shift, ctx);
509
510
return;
511
}
512
513
/* Now a range of 22 or less bits set somewhere.
514
* 1) sethi %hi(focus_bits), %reg
515
* sllx %reg, shift, %reg
516
* 2) sethi %hi(focus_bits), %reg
517
* srlx %reg, shift, %reg
518
*/
519
if ((highest_bit_set - lowest_bit_set) < 21) {
520
unsigned long focus_bits =
521
create_simple_focus_bits(high_bits, low_bits,
522
lowest_bit_set, 10);
523
524
emit(SETHI(focus_bits, dest), ctx);
525
526
/* If lowest_bit_set == 10 then a sethi alone could
527
* have done it.
528
*/
529
if (lowest_bit_set < 10)
530
emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
531
else if (lowest_bit_set > 10)
532
emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
533
return;
534
}
535
536
/* Ok, now 3 instruction sequences. */
537
if (low_bits == 0) {
538
emit_loadimm32(high_bits, dest, ctx);
539
emit_alu_K(SLLX, dest, 32, ctx);
540
return;
541
}
542
543
/* We may be able to do something quick
544
* when the constant is negated, so try that.
545
*/
546
if (const64_is_2insns((~high_bits) & 0xffffffff,
547
(~low_bits) & 0xfffffc00)) {
548
/* NOTE: The trailing bits get XOR'd so we need the
549
* non-negated bits, not the negated ones.
550
*/
551
unsigned long trailing_bits = low_bits & 0x3ff;
552
553
if ((((~high_bits) & 0xffffffff) == 0 &&
554
((~low_bits) & 0x80000000) == 0) ||
555
(((~high_bits) & 0xffffffff) == 0xffffffff &&
556
((~low_bits) & 0x80000000) != 0)) {
557
unsigned long fast_int = (~low_bits & 0xffffffff);
558
559
if ((is_sethi(fast_int) &&
560
(~high_bits & 0xffffffff) == 0)) {
561
emit(SETHI(fast_int, dest), ctx);
562
} else if (is_simm13(fast_int)) {
563
emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
564
} else {
565
emit_loadimm64(fast_int, dest, ctx);
566
}
567
} else {
568
u64 n = ((~low_bits) & 0xfffffc00) |
569
(((unsigned long)((~high_bits) & 0xffffffff))<<32);
570
emit_loadimm64(n, dest, ctx);
571
}
572
573
low_bits = -0x400 | trailing_bits;
574
575
emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
576
return;
577
}
578
579
/* 1) sethi %hi(xxx), %reg
580
* or %reg, %lo(xxx), %reg
581
* sllx %reg, yyy, %reg
582
*/
583
if ((highest_bit_set - lowest_bit_set) < 32) {
584
unsigned long focus_bits =
585
create_simple_focus_bits(high_bits, low_bits,
586
lowest_bit_set, 0);
587
588
/* So what we know is that the set bits straddle the
589
* middle of the 64-bit word.
590
*/
591
sparc_emit_set_const64_quick2(focus_bits, 0, dest,
592
lowest_bit_set, ctx);
593
return;
594
}
595
596
/* 1) sethi %hi(high_bits), %reg
597
* or %reg, %lo(high_bits), %reg
598
* sllx %reg, 32, %reg
599
* or %reg, low_bits, %reg
600
*/
601
if (is_simm13(low_bits) && ((int)low_bits > 0)) {
602
sparc_emit_set_const64_quick2(high_bits, low_bits,
603
dest, 32, ctx);
604
return;
605
}
606
607
/* Oh well, we tried... Do a full 64-bit decomposition. */
608
ctx->tmp_1_used = true;
609
610
emit_loadimm32(high_bits, tmp, ctx);
611
emit_loadimm32(low_bits, dest, ctx);
612
emit_alu_K(SLLX, tmp, 32, ctx);
613
emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
614
}
615
616
static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
617
struct jit_ctx *ctx)
618
{
619
unsigned int off = to_idx - from_idx;
620
621
if (br_opc & XCC)
622
emit(br_opc | WDISP19(off << 2), ctx);
623
else
624
emit(br_opc | WDISP22(off << 2), ctx);
625
}
626
627
static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
628
const u8 dst, const u8 src, struct jit_ctx *ctx)
629
{
630
unsigned int off = to_idx - from_idx;
631
632
emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
633
}
634
635
static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
636
const u8 dst, s32 imm, struct jit_ctx *ctx)
637
{
638
unsigned int off = to_idx - from_idx;
639
640
emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
641
}
642
643
#define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
644
#define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
645
646
#define emit_cmp(R1, R2, CTX) \
647
emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
648
649
#define emit_cmpi(R1, IMM, CTX) \
650
emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
651
652
#define emit_btst(R1, R2, CTX) \
653
emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
654
655
#define emit_btsti(R1, IMM, CTX) \
656
emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
657
658
static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
659
const s32 imm, bool is_imm, int branch_dst,
660
struct jit_ctx *ctx)
661
{
662
bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
663
const u8 tmp = bpf2sparc[TMP_REG_1];
664
665
branch_dst = ctx->offset[branch_dst];
666
667
if (!is_simm10(branch_dst - ctx->idx) ||
668
BPF_OP(code) == BPF_JSET)
669
use_cbcond = false;
670
671
if (is_imm) {
672
bool fits = true;
673
674
if (use_cbcond) {
675
if (!is_simm5(imm))
676
fits = false;
677
} else if (!is_simm13(imm)) {
678
fits = false;
679
}
680
if (!fits) {
681
ctx->tmp_1_used = true;
682
emit_loadimm_sext(imm, tmp, ctx);
683
src = tmp;
684
is_imm = false;
685
}
686
}
687
688
if (!use_cbcond) {
689
u32 br_opcode;
690
691
if (BPF_OP(code) == BPF_JSET) {
692
if (is_imm)
693
emit_btsti(dst, imm, ctx);
694
else
695
emit_btst(dst, src, ctx);
696
} else {
697
if (is_imm)
698
emit_cmpi(dst, imm, ctx);
699
else
700
emit_cmp(dst, src, ctx);
701
}
702
switch (BPF_OP(code)) {
703
case BPF_JEQ:
704
br_opcode = BE;
705
break;
706
case BPF_JGT:
707
br_opcode = BGU;
708
break;
709
case BPF_JLT:
710
br_opcode = BLU;
711
break;
712
case BPF_JGE:
713
br_opcode = BGEU;
714
break;
715
case BPF_JLE:
716
br_opcode = BLEU;
717
break;
718
case BPF_JSET:
719
case BPF_JNE:
720
br_opcode = BNE;
721
break;
722
case BPF_JSGT:
723
br_opcode = BG;
724
break;
725
case BPF_JSLT:
726
br_opcode = BL;
727
break;
728
case BPF_JSGE:
729
br_opcode = BGE;
730
break;
731
case BPF_JSLE:
732
br_opcode = BLE;
733
break;
734
default:
735
/* Make sure we dont leak kernel information to the
736
* user.
737
*/
738
return -EFAULT;
739
}
740
emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
741
emit_nop(ctx);
742
} else {
743
u32 cbcond_opcode;
744
745
switch (BPF_OP(code)) {
746
case BPF_JEQ:
747
cbcond_opcode = CBCONDE;
748
break;
749
case BPF_JGT:
750
cbcond_opcode = CBCONDGU;
751
break;
752
case BPF_JLT:
753
cbcond_opcode = CBCONDLU;
754
break;
755
case BPF_JGE:
756
cbcond_opcode = CBCONDGEU;
757
break;
758
case BPF_JLE:
759
cbcond_opcode = CBCONDLEU;
760
break;
761
case BPF_JNE:
762
cbcond_opcode = CBCONDNE;
763
break;
764
case BPF_JSGT:
765
cbcond_opcode = CBCONDG;
766
break;
767
case BPF_JSLT:
768
cbcond_opcode = CBCONDL;
769
break;
770
case BPF_JSGE:
771
cbcond_opcode = CBCONDGE;
772
break;
773
case BPF_JSLE:
774
cbcond_opcode = CBCONDLE;
775
break;
776
default:
777
/* Make sure we dont leak kernel information to the
778
* user.
779
*/
780
return -EFAULT;
781
}
782
cbcond_opcode |= CBCOND_OP;
783
if (is_imm)
784
emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
785
dst, imm, ctx);
786
else
787
emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
788
dst, src, ctx);
789
}
790
return 0;
791
}
792
793
/* Just skip the save instruction and the ctx register move. */
794
#define BPF_TAILCALL_PROLOGUE_SKIP 32
795
#define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
796
797
static void build_prologue(struct jit_ctx *ctx)
798
{
799
s32 stack_needed = BASE_STACKFRAME;
800
801
if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
802
struct bpf_prog *prog = ctx->prog;
803
u32 stack_depth;
804
805
stack_depth = prog->aux->stack_depth;
806
stack_needed += round_up(stack_depth, 16);
807
}
808
809
if (ctx->saw_tail_call)
810
stack_needed += 8;
811
812
/* save %sp, -176, %sp */
813
emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
814
815
/* tail_call_cnt = 0 */
816
if (ctx->saw_tail_call) {
817
u32 off = BPF_TAILCALL_CNT_SP_OFF;
818
819
emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
820
} else {
821
emit_nop(ctx);
822
}
823
if (ctx->saw_frame_pointer) {
824
const u8 vfp = bpf2sparc[BPF_REG_FP];
825
826
emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
827
} else {
828
emit_nop(ctx);
829
}
830
831
emit_reg_move(I0, O0, ctx);
832
emit_reg_move(I1, O1, ctx);
833
emit_reg_move(I2, O2, ctx);
834
emit_reg_move(I3, O3, ctx);
835
emit_reg_move(I4, O4, ctx);
836
/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
837
}
838
839
static void build_epilogue(struct jit_ctx *ctx)
840
{
841
ctx->epilogue_offset = ctx->idx;
842
843
/* ret (jmpl %i7 + 8, %g0) */
844
emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
845
846
/* restore %i5, %g0, %o0 */
847
emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
848
}
849
850
static void emit_tail_call(struct jit_ctx *ctx)
851
{
852
const u8 bpf_array = bpf2sparc[BPF_REG_2];
853
const u8 bpf_index = bpf2sparc[BPF_REG_3];
854
const u8 tmp = bpf2sparc[TMP_REG_1];
855
u32 off;
856
857
ctx->saw_tail_call = true;
858
859
off = offsetof(struct bpf_array, map.max_entries);
860
emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
861
emit_cmp(bpf_index, tmp, ctx);
862
#define OFFSET1 17
863
emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
864
emit_nop(ctx);
865
866
off = BPF_TAILCALL_CNT_SP_OFF;
867
emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
868
emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
869
#define OFFSET2 13
870
emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET2, ctx);
871
emit_nop(ctx);
872
873
emit_alu_K(ADD, tmp, 1, ctx);
874
off = BPF_TAILCALL_CNT_SP_OFF;
875
emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
876
877
emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
878
emit_alu(ADD, bpf_array, tmp, ctx);
879
off = offsetof(struct bpf_array, ptrs);
880
emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
881
882
emit_cmpi(tmp, 0, ctx);
883
#define OFFSET3 5
884
emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
885
emit_nop(ctx);
886
887
off = offsetof(struct bpf_prog, bpf_func);
888
emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
889
890
off = BPF_TAILCALL_PROLOGUE_SKIP;
891
emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
892
emit_nop(ctx);
893
}
894
895
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
896
{
897
const u8 code = insn->code;
898
const u8 dst = bpf2sparc[insn->dst_reg];
899
const u8 src = bpf2sparc[insn->src_reg];
900
const int i = insn - ctx->prog->insnsi;
901
const s16 off = insn->off;
902
const s32 imm = insn->imm;
903
904
if (insn->src_reg == BPF_REG_FP)
905
ctx->saw_frame_pointer = true;
906
907
switch (code) {
908
/* dst = src */
909
case BPF_ALU | BPF_MOV | BPF_X:
910
emit_alu3_K(SRL, src, 0, dst, ctx);
911
if (insn_is_zext(&insn[1]))
912
return 1;
913
break;
914
case BPF_ALU64 | BPF_MOV | BPF_X:
915
emit_reg_move(src, dst, ctx);
916
break;
917
/* dst = dst OP src */
918
case BPF_ALU | BPF_ADD | BPF_X:
919
case BPF_ALU64 | BPF_ADD | BPF_X:
920
emit_alu(ADD, src, dst, ctx);
921
goto do_alu32_trunc;
922
case BPF_ALU | BPF_SUB | BPF_X:
923
case BPF_ALU64 | BPF_SUB | BPF_X:
924
emit_alu(SUB, src, dst, ctx);
925
goto do_alu32_trunc;
926
case BPF_ALU | BPF_AND | BPF_X:
927
case BPF_ALU64 | BPF_AND | BPF_X:
928
emit_alu(AND, src, dst, ctx);
929
goto do_alu32_trunc;
930
case BPF_ALU | BPF_OR | BPF_X:
931
case BPF_ALU64 | BPF_OR | BPF_X:
932
emit_alu(OR, src, dst, ctx);
933
goto do_alu32_trunc;
934
case BPF_ALU | BPF_XOR | BPF_X:
935
case BPF_ALU64 | BPF_XOR | BPF_X:
936
emit_alu(XOR, src, dst, ctx);
937
goto do_alu32_trunc;
938
case BPF_ALU | BPF_MUL | BPF_X:
939
emit_alu(MUL, src, dst, ctx);
940
goto do_alu32_trunc;
941
case BPF_ALU64 | BPF_MUL | BPF_X:
942
emit_alu(MULX, src, dst, ctx);
943
break;
944
case BPF_ALU | BPF_DIV | BPF_X:
945
emit_write_y(G0, ctx);
946
emit_alu(DIV, src, dst, ctx);
947
if (insn_is_zext(&insn[1]))
948
return 1;
949
break;
950
case BPF_ALU64 | BPF_DIV | BPF_X:
951
emit_alu(UDIVX, src, dst, ctx);
952
break;
953
case BPF_ALU | BPF_MOD | BPF_X: {
954
const u8 tmp = bpf2sparc[TMP_REG_1];
955
956
ctx->tmp_1_used = true;
957
958
emit_write_y(G0, ctx);
959
emit_alu3(DIV, dst, src, tmp, ctx);
960
emit_alu3(MULX, tmp, src, tmp, ctx);
961
emit_alu3(SUB, dst, tmp, dst, ctx);
962
goto do_alu32_trunc;
963
}
964
case BPF_ALU64 | BPF_MOD | BPF_X: {
965
const u8 tmp = bpf2sparc[TMP_REG_1];
966
967
ctx->tmp_1_used = true;
968
969
emit_alu3(UDIVX, dst, src, tmp, ctx);
970
emit_alu3(MULX, tmp, src, tmp, ctx);
971
emit_alu3(SUB, dst, tmp, dst, ctx);
972
break;
973
}
974
case BPF_ALU | BPF_LSH | BPF_X:
975
emit_alu(SLL, src, dst, ctx);
976
goto do_alu32_trunc;
977
case BPF_ALU64 | BPF_LSH | BPF_X:
978
emit_alu(SLLX, src, dst, ctx);
979
break;
980
case BPF_ALU | BPF_RSH | BPF_X:
981
emit_alu(SRL, src, dst, ctx);
982
if (insn_is_zext(&insn[1]))
983
return 1;
984
break;
985
case BPF_ALU64 | BPF_RSH | BPF_X:
986
emit_alu(SRLX, src, dst, ctx);
987
break;
988
case BPF_ALU | BPF_ARSH | BPF_X:
989
emit_alu(SRA, src, dst, ctx);
990
goto do_alu32_trunc;
991
case BPF_ALU64 | BPF_ARSH | BPF_X:
992
emit_alu(SRAX, src, dst, ctx);
993
break;
994
995
/* dst = -dst */
996
case BPF_ALU | BPF_NEG:
997
case BPF_ALU64 | BPF_NEG:
998
emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
999
goto do_alu32_trunc;
1000
1001
case BPF_ALU | BPF_END | BPF_FROM_BE:
1002
switch (imm) {
1003
case 16:
1004
emit_alu_K(SLL, dst, 16, ctx);
1005
emit_alu_K(SRL, dst, 16, ctx);
1006
if (insn_is_zext(&insn[1]))
1007
return 1;
1008
break;
1009
case 32:
1010
if (!ctx->prog->aux->verifier_zext)
1011
emit_alu_K(SRL, dst, 0, ctx);
1012
break;
1013
case 64:
1014
/* nop */
1015
break;
1016
1017
}
1018
break;
1019
1020
/* dst = BSWAP##imm(dst) */
1021
case BPF_ALU | BPF_END | BPF_FROM_LE: {
1022
const u8 tmp = bpf2sparc[TMP_REG_1];
1023
const u8 tmp2 = bpf2sparc[TMP_REG_2];
1024
1025
ctx->tmp_1_used = true;
1026
switch (imm) {
1027
case 16:
1028
emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1029
emit_alu3_K(SRL, dst, 8, dst, ctx);
1030
emit_alu3_K(AND, dst, 0xff, dst, ctx);
1031
emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1032
emit_alu(OR, tmp, dst, ctx);
1033
if (insn_is_zext(&insn[1]))
1034
return 1;
1035
break;
1036
1037
case 32:
1038
ctx->tmp_2_used = true;
1039
emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
1040
emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
1041
emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1042
emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
1043
emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
1044
emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
1045
emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1046
emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
1047
emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
1048
emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
1049
emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
1050
emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
1051
if (insn_is_zext(&insn[1]))
1052
return 1;
1053
break;
1054
1055
case 64:
1056
emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1057
emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1058
emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1059
break;
1060
}
1061
break;
1062
}
1063
/* dst = imm */
1064
case BPF_ALU | BPF_MOV | BPF_K:
1065
emit_loadimm32(imm, dst, ctx);
1066
if (insn_is_zext(&insn[1]))
1067
return 1;
1068
break;
1069
case BPF_ALU64 | BPF_MOV | BPF_K:
1070
emit_loadimm_sext(imm, dst, ctx);
1071
break;
1072
/* dst = dst OP imm */
1073
case BPF_ALU | BPF_ADD | BPF_K:
1074
case BPF_ALU64 | BPF_ADD | BPF_K:
1075
emit_alu_K(ADD, dst, imm, ctx);
1076
goto do_alu32_trunc;
1077
case BPF_ALU | BPF_SUB | BPF_K:
1078
case BPF_ALU64 | BPF_SUB | BPF_K:
1079
emit_alu_K(SUB, dst, imm, ctx);
1080
goto do_alu32_trunc;
1081
case BPF_ALU | BPF_AND | BPF_K:
1082
case BPF_ALU64 | BPF_AND | BPF_K:
1083
emit_alu_K(AND, dst, imm, ctx);
1084
goto do_alu32_trunc;
1085
case BPF_ALU | BPF_OR | BPF_K:
1086
case BPF_ALU64 | BPF_OR | BPF_K:
1087
emit_alu_K(OR, dst, imm, ctx);
1088
goto do_alu32_trunc;
1089
case BPF_ALU | BPF_XOR | BPF_K:
1090
case BPF_ALU64 | BPF_XOR | BPF_K:
1091
emit_alu_K(XOR, dst, imm, ctx);
1092
goto do_alu32_trunc;
1093
case BPF_ALU | BPF_MUL | BPF_K:
1094
emit_alu_K(MUL, dst, imm, ctx);
1095
goto do_alu32_trunc;
1096
case BPF_ALU64 | BPF_MUL | BPF_K:
1097
emit_alu_K(MULX, dst, imm, ctx);
1098
break;
1099
case BPF_ALU | BPF_DIV | BPF_K:
1100
if (imm == 0)
1101
return -EINVAL;
1102
1103
emit_write_y(G0, ctx);
1104
emit_alu_K(DIV, dst, imm, ctx);
1105
goto do_alu32_trunc;
1106
case BPF_ALU64 | BPF_DIV | BPF_K:
1107
if (imm == 0)
1108
return -EINVAL;
1109
1110
emit_alu_K(UDIVX, dst, imm, ctx);
1111
break;
1112
case BPF_ALU64 | BPF_MOD | BPF_K:
1113
case BPF_ALU | BPF_MOD | BPF_K: {
1114
const u8 tmp = bpf2sparc[TMP_REG_2];
1115
unsigned int div;
1116
1117
if (imm == 0)
1118
return -EINVAL;
1119
1120
div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1121
1122
ctx->tmp_2_used = true;
1123
1124
if (BPF_CLASS(code) != BPF_ALU64)
1125
emit_write_y(G0, ctx);
1126
if (is_simm13(imm)) {
1127
emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1128
emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1129
emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1130
} else {
1131
const u8 tmp1 = bpf2sparc[TMP_REG_1];
1132
1133
ctx->tmp_1_used = true;
1134
1135
emit_set_const_sext(imm, tmp1, ctx);
1136
emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1137
emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1138
emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1139
}
1140
goto do_alu32_trunc;
1141
}
1142
case BPF_ALU | BPF_LSH | BPF_K:
1143
emit_alu_K(SLL, dst, imm, ctx);
1144
goto do_alu32_trunc;
1145
case BPF_ALU64 | BPF_LSH | BPF_K:
1146
emit_alu_K(SLLX, dst, imm, ctx);
1147
break;
1148
case BPF_ALU | BPF_RSH | BPF_K:
1149
emit_alu_K(SRL, dst, imm, ctx);
1150
if (insn_is_zext(&insn[1]))
1151
return 1;
1152
break;
1153
case BPF_ALU64 | BPF_RSH | BPF_K:
1154
emit_alu_K(SRLX, dst, imm, ctx);
1155
break;
1156
case BPF_ALU | BPF_ARSH | BPF_K:
1157
emit_alu_K(SRA, dst, imm, ctx);
1158
goto do_alu32_trunc;
1159
case BPF_ALU64 | BPF_ARSH | BPF_K:
1160
emit_alu_K(SRAX, dst, imm, ctx);
1161
break;
1162
1163
do_alu32_trunc:
1164
if (BPF_CLASS(code) == BPF_ALU &&
1165
!ctx->prog->aux->verifier_zext)
1166
emit_alu_K(SRL, dst, 0, ctx);
1167
break;
1168
1169
/* JUMP off */
1170
case BPF_JMP | BPF_JA:
1171
emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1172
emit_nop(ctx);
1173
break;
1174
/* IF (dst COND src) JUMP off */
1175
case BPF_JMP | BPF_JEQ | BPF_X:
1176
case BPF_JMP | BPF_JGT | BPF_X:
1177
case BPF_JMP | BPF_JLT | BPF_X:
1178
case BPF_JMP | BPF_JGE | BPF_X:
1179
case BPF_JMP | BPF_JLE | BPF_X:
1180
case BPF_JMP | BPF_JNE | BPF_X:
1181
case BPF_JMP | BPF_JSGT | BPF_X:
1182
case BPF_JMP | BPF_JSLT | BPF_X:
1183
case BPF_JMP | BPF_JSGE | BPF_X:
1184
case BPF_JMP | BPF_JSLE | BPF_X:
1185
case BPF_JMP | BPF_JSET | BPF_X: {
1186
int err;
1187
1188
err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1189
if (err)
1190
return err;
1191
break;
1192
}
1193
/* IF (dst COND imm) JUMP off */
1194
case BPF_JMP | BPF_JEQ | BPF_K:
1195
case BPF_JMP | BPF_JGT | BPF_K:
1196
case BPF_JMP | BPF_JLT | BPF_K:
1197
case BPF_JMP | BPF_JGE | BPF_K:
1198
case BPF_JMP | BPF_JLE | BPF_K:
1199
case BPF_JMP | BPF_JNE | BPF_K:
1200
case BPF_JMP | BPF_JSGT | BPF_K:
1201
case BPF_JMP | BPF_JSLT | BPF_K:
1202
case BPF_JMP | BPF_JSGE | BPF_K:
1203
case BPF_JMP | BPF_JSLE | BPF_K:
1204
case BPF_JMP | BPF_JSET | BPF_K: {
1205
int err;
1206
1207
err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1208
if (err)
1209
return err;
1210
break;
1211
}
1212
1213
/* function call */
1214
case BPF_JMP | BPF_CALL:
1215
{
1216
u8 *func = ((u8 *)__bpf_call_base) + imm;
1217
1218
ctx->saw_call = true;
1219
1220
emit_call((u32 *)func, ctx);
1221
emit_nop(ctx);
1222
1223
emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1224
break;
1225
}
1226
1227
/* tail call */
1228
case BPF_JMP | BPF_TAIL_CALL:
1229
emit_tail_call(ctx);
1230
break;
1231
1232
/* function return */
1233
case BPF_JMP | BPF_EXIT:
1234
/* Optimization: when last instruction is EXIT,
1235
simply fallthrough to epilogue. */
1236
if (i == ctx->prog->len - 1)
1237
break;
1238
emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1239
emit_nop(ctx);
1240
break;
1241
1242
/* dst = imm64 */
1243
case BPF_LD | BPF_IMM | BPF_DW:
1244
{
1245
const struct bpf_insn insn1 = insn[1];
1246
u64 imm64;
1247
1248
imm64 = (u64)insn1.imm << 32 | (u32)imm;
1249
emit_loadimm64(imm64, dst, ctx);
1250
1251
return 1;
1252
}
1253
1254
/* LDX: dst = *(size *)(src + off) */
1255
case BPF_LDX | BPF_MEM | BPF_W:
1256
case BPF_LDX | BPF_MEM | BPF_H:
1257
case BPF_LDX | BPF_MEM | BPF_B:
1258
case BPF_LDX | BPF_MEM | BPF_DW: {
1259
const u8 tmp = bpf2sparc[TMP_REG_1];
1260
u32 opcode = 0, rs2;
1261
1262
ctx->tmp_1_used = true;
1263
switch (BPF_SIZE(code)) {
1264
case BPF_W:
1265
opcode = LD32;
1266
break;
1267
case BPF_H:
1268
opcode = LD16;
1269
break;
1270
case BPF_B:
1271
opcode = LD8;
1272
break;
1273
case BPF_DW:
1274
opcode = LD64;
1275
break;
1276
}
1277
1278
if (is_simm13(off)) {
1279
opcode |= IMMED;
1280
rs2 = S13(off);
1281
} else {
1282
emit_loadimm(off, tmp, ctx);
1283
rs2 = RS2(tmp);
1284
}
1285
emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1286
if (opcode != LD64 && insn_is_zext(&insn[1]))
1287
return 1;
1288
break;
1289
}
1290
/* speculation barrier */
1291
case BPF_ST | BPF_NOSPEC:
1292
break;
1293
/* ST: *(size *)(dst + off) = imm */
1294
case BPF_ST | BPF_MEM | BPF_W:
1295
case BPF_ST | BPF_MEM | BPF_H:
1296
case BPF_ST | BPF_MEM | BPF_B:
1297
case BPF_ST | BPF_MEM | BPF_DW: {
1298
const u8 tmp = bpf2sparc[TMP_REG_1];
1299
const u8 tmp2 = bpf2sparc[TMP_REG_2];
1300
u32 opcode = 0, rs2;
1301
1302
if (insn->dst_reg == BPF_REG_FP)
1303
ctx->saw_frame_pointer = true;
1304
1305
ctx->tmp_2_used = true;
1306
emit_loadimm(imm, tmp2, ctx);
1307
1308
switch (BPF_SIZE(code)) {
1309
case BPF_W:
1310
opcode = ST32;
1311
break;
1312
case BPF_H:
1313
opcode = ST16;
1314
break;
1315
case BPF_B:
1316
opcode = ST8;
1317
break;
1318
case BPF_DW:
1319
opcode = ST64;
1320
break;
1321
}
1322
1323
if (is_simm13(off)) {
1324
opcode |= IMMED;
1325
rs2 = S13(off);
1326
} else {
1327
ctx->tmp_1_used = true;
1328
emit_loadimm(off, tmp, ctx);
1329
rs2 = RS2(tmp);
1330
}
1331
emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1332
break;
1333
}
1334
1335
/* STX: *(size *)(dst + off) = src */
1336
case BPF_STX | BPF_MEM | BPF_W:
1337
case BPF_STX | BPF_MEM | BPF_H:
1338
case BPF_STX | BPF_MEM | BPF_B:
1339
case BPF_STX | BPF_MEM | BPF_DW: {
1340
const u8 tmp = bpf2sparc[TMP_REG_1];
1341
u32 opcode = 0, rs2;
1342
1343
if (insn->dst_reg == BPF_REG_FP)
1344
ctx->saw_frame_pointer = true;
1345
1346
switch (BPF_SIZE(code)) {
1347
case BPF_W:
1348
opcode = ST32;
1349
break;
1350
case BPF_H:
1351
opcode = ST16;
1352
break;
1353
case BPF_B:
1354
opcode = ST8;
1355
break;
1356
case BPF_DW:
1357
opcode = ST64;
1358
break;
1359
}
1360
if (is_simm13(off)) {
1361
opcode |= IMMED;
1362
rs2 = S13(off);
1363
} else {
1364
ctx->tmp_1_used = true;
1365
emit_loadimm(off, tmp, ctx);
1366
rs2 = RS2(tmp);
1367
}
1368
emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1369
break;
1370
}
1371
1372
case BPF_STX | BPF_ATOMIC | BPF_W: {
1373
const u8 tmp = bpf2sparc[TMP_REG_1];
1374
const u8 tmp2 = bpf2sparc[TMP_REG_2];
1375
const u8 tmp3 = bpf2sparc[TMP_REG_3];
1376
1377
if (insn->imm != BPF_ADD) {
1378
pr_err_once("unknown atomic op %02x\n", insn->imm);
1379
return -EINVAL;
1380
}
1381
1382
/* lock *(u32 *)(dst + off) += src */
1383
1384
if (insn->dst_reg == BPF_REG_FP)
1385
ctx->saw_frame_pointer = true;
1386
1387
ctx->tmp_1_used = true;
1388
ctx->tmp_2_used = true;
1389
ctx->tmp_3_used = true;
1390
emit_loadimm(off, tmp, ctx);
1391
emit_alu3(ADD, dst, tmp, tmp, ctx);
1392
1393
emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1394
emit_alu3(ADD, tmp2, src, tmp3, ctx);
1395
emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1396
emit_cmp(tmp2, tmp3, ctx);
1397
emit_branch(BNE, 4, 0, ctx);
1398
emit_nop(ctx);
1399
break;
1400
}
1401
/* STX XADD: lock *(u64 *)(dst + off) += src */
1402
case BPF_STX | BPF_ATOMIC | BPF_DW: {
1403
const u8 tmp = bpf2sparc[TMP_REG_1];
1404
const u8 tmp2 = bpf2sparc[TMP_REG_2];
1405
const u8 tmp3 = bpf2sparc[TMP_REG_3];
1406
1407
if (insn->imm != BPF_ADD) {
1408
pr_err_once("unknown atomic op %02x\n", insn->imm);
1409
return -EINVAL;
1410
}
1411
1412
if (insn->dst_reg == BPF_REG_FP)
1413
ctx->saw_frame_pointer = true;
1414
1415
ctx->tmp_1_used = true;
1416
ctx->tmp_2_used = true;
1417
ctx->tmp_3_used = true;
1418
emit_loadimm(off, tmp, ctx);
1419
emit_alu3(ADD, dst, tmp, tmp, ctx);
1420
1421
emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1422
emit_alu3(ADD, tmp2, src, tmp3, ctx);
1423
emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1424
emit_cmp(tmp2, tmp3, ctx);
1425
emit_branch(BNE, 4, 0, ctx);
1426
emit_nop(ctx);
1427
break;
1428
}
1429
1430
default:
1431
pr_err_once("unknown opcode %02x\n", code);
1432
return -EINVAL;
1433
}
1434
1435
return 0;
1436
}
1437
1438
static int build_body(struct jit_ctx *ctx)
1439
{
1440
const struct bpf_prog *prog = ctx->prog;
1441
int i;
1442
1443
for (i = 0; i < prog->len; i++) {
1444
const struct bpf_insn *insn = &prog->insnsi[i];
1445
int ret;
1446
1447
ret = build_insn(insn, ctx);
1448
1449
if (ret > 0) {
1450
i++;
1451
ctx->offset[i] = ctx->idx;
1452
continue;
1453
}
1454
ctx->offset[i] = ctx->idx;
1455
if (ret)
1456
return ret;
1457
}
1458
return 0;
1459
}
1460
1461
static void jit_fill_hole(void *area, unsigned int size)
1462
{
1463
u32 *ptr;
1464
/* We are guaranteed to have aligned memory. */
1465
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1466
*ptr++ = 0x91d02005; /* ta 5 */
1467
}
1468
1469
bool bpf_jit_needs_zext(void)
1470
{
1471
return true;
1472
}
1473
1474
struct sparc64_jit_data {
1475
struct bpf_binary_header *header;
1476
u8 *image;
1477
struct jit_ctx ctx;
1478
};
1479
1480
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1481
{
1482
struct bpf_prog *tmp, *orig_prog = prog;
1483
struct sparc64_jit_data *jit_data;
1484
struct bpf_binary_header *header;
1485
u32 prev_image_size, image_size;
1486
bool tmp_blinded = false;
1487
bool extra_pass = false;
1488
struct jit_ctx ctx;
1489
u8 *image_ptr;
1490
int pass, i;
1491
1492
if (!prog->jit_requested)
1493
return orig_prog;
1494
1495
tmp = bpf_jit_blind_constants(prog);
1496
/* If blinding was requested and we failed during blinding,
1497
* we must fall back to the interpreter.
1498
*/
1499
if (IS_ERR(tmp))
1500
return orig_prog;
1501
if (tmp != prog) {
1502
tmp_blinded = true;
1503
prog = tmp;
1504
}
1505
1506
jit_data = prog->aux->jit_data;
1507
if (!jit_data) {
1508
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1509
if (!jit_data) {
1510
prog = orig_prog;
1511
goto out;
1512
}
1513
prog->aux->jit_data = jit_data;
1514
}
1515
if (jit_data->ctx.offset) {
1516
ctx = jit_data->ctx;
1517
image_ptr = jit_data->image;
1518
header = jit_data->header;
1519
extra_pass = true;
1520
image_size = sizeof(u32) * ctx.idx;
1521
prev_image_size = image_size;
1522
pass = 1;
1523
goto skip_init_ctx;
1524
}
1525
1526
memset(&ctx, 0, sizeof(ctx));
1527
ctx.prog = prog;
1528
1529
ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL);
1530
if (ctx.offset == NULL) {
1531
prog = orig_prog;
1532
goto out_off;
1533
}
1534
1535
/* Longest sequence emitted is for bswap32, 12 instructions. Pre-cook
1536
* the offset array so that we converge faster.
1537
*/
1538
for (i = 0; i < prog->len; i++)
1539
ctx.offset[i] = i * (12 * 4);
1540
1541
prev_image_size = ~0U;
1542
for (pass = 1; pass < 40; pass++) {
1543
ctx.idx = 0;
1544
1545
build_prologue(&ctx);
1546
if (build_body(&ctx)) {
1547
prog = orig_prog;
1548
goto out_off;
1549
}
1550
build_epilogue(&ctx);
1551
1552
if (bpf_jit_enable > 1)
1553
pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass,
1554
ctx.idx * 4,
1555
ctx.tmp_1_used ? '1' : ' ',
1556
ctx.tmp_2_used ? '2' : ' ',
1557
ctx.tmp_3_used ? '3' : ' ',
1558
ctx.saw_frame_pointer ? 'F' : ' ',
1559
ctx.saw_call ? 'C' : ' ',
1560
ctx.saw_tail_call ? 'T' : ' ');
1561
1562
if (ctx.idx * 4 == prev_image_size)
1563
break;
1564
prev_image_size = ctx.idx * 4;
1565
cond_resched();
1566
}
1567
1568
/* Now we know the actual image size. */
1569
image_size = sizeof(u32) * ctx.idx;
1570
header = bpf_jit_binary_alloc(image_size, &image_ptr,
1571
sizeof(u32), jit_fill_hole);
1572
if (header == NULL) {
1573
prog = orig_prog;
1574
goto out_off;
1575
}
1576
1577
ctx.image = (u32 *)image_ptr;
1578
skip_init_ctx:
1579
ctx.idx = 0;
1580
1581
build_prologue(&ctx);
1582
1583
if (build_body(&ctx)) {
1584
bpf_jit_binary_free(header);
1585
prog = orig_prog;
1586
goto out_off;
1587
}
1588
1589
build_epilogue(&ctx);
1590
1591
if (ctx.idx * 4 != prev_image_size) {
1592
pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n",
1593
prev_image_size, ctx.idx * 4);
1594
bpf_jit_binary_free(header);
1595
prog = orig_prog;
1596
goto out_off;
1597
}
1598
1599
if (bpf_jit_enable > 1)
1600
bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1601
1602
bpf_flush_icache(header, (u8 *)header + header->size);
1603
1604
if (!prog->is_func || extra_pass) {
1605
if (bpf_jit_binary_lock_ro(header)) {
1606
bpf_jit_binary_free(header);
1607
prog = orig_prog;
1608
goto out_off;
1609
}
1610
} else {
1611
jit_data->ctx = ctx;
1612
jit_data->image = image_ptr;
1613
jit_data->header = header;
1614
}
1615
1616
prog->bpf_func = (void *)ctx.image;
1617
prog->jited = 1;
1618
prog->jited_len = image_size;
1619
1620
if (!prog->is_func || extra_pass) {
1621
bpf_prog_fill_jited_linfo(prog, ctx.offset);
1622
out_off:
1623
kfree(ctx.offset);
1624
kfree(jit_data);
1625
prog->aux->jit_data = NULL;
1626
}
1627
out:
1628
if (tmp_blinded)
1629
bpf_jit_prog_release_other(prog, prog == orig_prog ?
1630
tmp : orig_prog);
1631
return prog;
1632
}
1633
1634