Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/um/drivers/vector_kern.c
26439 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2017 - 2019 Cambridge Greys Limited
4
* Copyright (C) 2011 - 2014 Cisco Systems Inc
5
* Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6
* Copyright (C) 2001 Lennert Buytenhek ([email protected]) and
7
* James Leu ([email protected]).
8
* Copyright (C) 2001 by various other people who didn't put their name here.
9
*/
10
11
#define pr_fmt(fmt) "uml-vector: " fmt
12
13
#include <linux/memblock.h>
14
#include <linux/etherdevice.h>
15
#include <linux/ethtool.h>
16
#include <linux/inetdevice.h>
17
#include <linux/init.h>
18
#include <linux/list.h>
19
#include <linux/netdevice.h>
20
#include <linux/platform_device.h>
21
#include <linux/rtnetlink.h>
22
#include <linux/skbuff.h>
23
#include <linux/slab.h>
24
#include <linux/interrupt.h>
25
#include <linux/firmware.h>
26
#include <linux/fs.h>
27
#include <asm/atomic.h>
28
#include <uapi/linux/filter.h>
29
#include <init.h>
30
#include <irq_kern.h>
31
#include <irq_user.h>
32
#include <os.h>
33
#include "mconsole_kern.h"
34
#include "vector_user.h"
35
#include "vector_kern.h"
36
37
/*
38
* Adapted from network devices with the following major changes:
39
* All transports are static - simplifies the code significantly
40
* Multiple FDs/IRQs per device
41
* Vector IO optionally used for read/write, falling back to legacy
42
* based on configuration and/or availability
43
* Configuration is no longer positional - L2TPv3 and GRE require up to
44
* 10 parameters, passing this as positional is not fit for purpose.
45
* Only socket transports are supported
46
*/
47
48
49
#define DRIVER_NAME "uml-vector"
50
struct vector_cmd_line_arg {
51
struct list_head list;
52
int unit;
53
char *arguments;
54
};
55
56
struct vector_device {
57
struct list_head list;
58
struct net_device *dev;
59
struct platform_device pdev;
60
int unit;
61
int opened;
62
};
63
64
static LIST_HEAD(vec_cmd_line);
65
66
static DEFINE_SPINLOCK(vector_devices_lock);
67
static LIST_HEAD(vector_devices);
68
69
static int driver_registered;
70
71
static void vector_eth_configure(int n, struct arglist *def);
72
static int vector_mmsg_rx(struct vector_private *vp, int budget);
73
74
/* Argument accessors to set variables (and/or set default values)
75
* mtu, buffer sizing, default headroom, etc
76
*/
77
78
#define DEFAULT_HEADROOM 2
79
#define SAFETY_MARGIN 32
80
#define DEFAULT_VECTOR_SIZE 64
81
#define TX_SMALL_PACKET 128
82
#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
83
84
static const struct {
85
const char string[ETH_GSTRING_LEN];
86
} ethtool_stats_keys[] = {
87
{ "rx_queue_max" },
88
{ "rx_queue_running_average" },
89
{ "tx_queue_max" },
90
{ "tx_queue_running_average" },
91
{ "rx_encaps_errors" },
92
{ "tx_timeout_count" },
93
{ "tx_restart_queue" },
94
{ "tx_kicks" },
95
{ "tx_flow_control_xon" },
96
{ "tx_flow_control_xoff" },
97
{ "rx_csum_offload_good" },
98
{ "rx_csum_offload_errors"},
99
{ "sg_ok"},
100
{ "sg_linearized"},
101
};
102
103
#define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
104
105
static void vector_reset_stats(struct vector_private *vp)
106
{
107
/* We reuse the existing queue locks for stats */
108
109
/* RX stats are modified with RX head_lock held
110
* in vector_poll.
111
*/
112
113
spin_lock(&vp->rx_queue->head_lock);
114
vp->estats.rx_queue_max = 0;
115
vp->estats.rx_queue_running_average = 0;
116
vp->estats.rx_encaps_errors = 0;
117
vp->estats.sg_ok = 0;
118
vp->estats.sg_linearized = 0;
119
spin_unlock(&vp->rx_queue->head_lock);
120
121
/* TX stats are modified with TX head_lock held
122
* in vector_send.
123
*/
124
125
spin_lock(&vp->tx_queue->head_lock);
126
vp->estats.tx_timeout_count = 0;
127
vp->estats.tx_restart_queue = 0;
128
vp->estats.tx_kicks = 0;
129
vp->estats.tx_flow_control_xon = 0;
130
vp->estats.tx_flow_control_xoff = 0;
131
vp->estats.tx_queue_max = 0;
132
vp->estats.tx_queue_running_average = 0;
133
spin_unlock(&vp->tx_queue->head_lock);
134
}
135
136
static int get_mtu(struct arglist *def)
137
{
138
char *mtu = uml_vector_fetch_arg(def, "mtu");
139
long result;
140
141
if (mtu != NULL) {
142
if (kstrtoul(mtu, 10, &result) == 0)
143
if ((result < (1 << 16) - 1) && (result >= 576))
144
return result;
145
}
146
return ETH_MAX_PACKET;
147
}
148
149
static char *get_bpf_file(struct arglist *def)
150
{
151
return uml_vector_fetch_arg(def, "bpffile");
152
}
153
154
static bool get_bpf_flash(struct arglist *def)
155
{
156
char *allow = uml_vector_fetch_arg(def, "bpfflash");
157
long result;
158
159
if (allow != NULL) {
160
if (kstrtoul(allow, 10, &result) == 0)
161
return result > 0;
162
}
163
return false;
164
}
165
166
static int get_depth(struct arglist *def)
167
{
168
char *mtu = uml_vector_fetch_arg(def, "depth");
169
long result;
170
171
if (mtu != NULL) {
172
if (kstrtoul(mtu, 10, &result) == 0)
173
return result;
174
}
175
return DEFAULT_VECTOR_SIZE;
176
}
177
178
static int get_headroom(struct arglist *def)
179
{
180
char *mtu = uml_vector_fetch_arg(def, "headroom");
181
long result;
182
183
if (mtu != NULL) {
184
if (kstrtoul(mtu, 10, &result) == 0)
185
return result;
186
}
187
return DEFAULT_HEADROOM;
188
}
189
190
static int get_req_size(struct arglist *def)
191
{
192
char *gro = uml_vector_fetch_arg(def, "gro");
193
long result;
194
195
if (gro != NULL) {
196
if (kstrtoul(gro, 10, &result) == 0) {
197
if (result > 0)
198
return 65536;
199
}
200
}
201
return get_mtu(def) + ETH_HEADER_OTHER +
202
get_headroom(def) + SAFETY_MARGIN;
203
}
204
205
206
static int get_transport_options(struct arglist *def)
207
{
208
char *transport = uml_vector_fetch_arg(def, "transport");
209
char *vector = uml_vector_fetch_arg(def, "vec");
210
211
int vec_rx = VECTOR_RX;
212
int vec_tx = VECTOR_TX;
213
long parsed;
214
int result = 0;
215
216
if (transport == NULL)
217
return -EINVAL;
218
219
if (vector != NULL) {
220
if (kstrtoul(vector, 10, &parsed) == 0) {
221
if (parsed == 0) {
222
vec_rx = 0;
223
vec_tx = 0;
224
}
225
}
226
}
227
228
if (get_bpf_flash(def))
229
result = VECTOR_BPF_FLASH;
230
231
if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
232
return result;
233
if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
234
return (result | vec_rx | VECTOR_BPF);
235
if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
236
return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
237
return (result | vec_rx | vec_tx);
238
}
239
240
241
/* A mini-buffer for packet drop read
242
* All of our supported transports are datagram oriented and we always
243
* read using recvmsg or recvmmsg. If we pass a buffer which is smaller
244
* than the packet size it still counts as full packet read and will
245
* clean the incoming stream to keep sigio/epoll happy
246
*/
247
248
#define DROP_BUFFER_SIZE 32
249
250
static char *drop_buffer;
251
252
253
/*
254
* Advance the mmsg queue head by n = advance. Resets the queue to
255
* maximum enqueue/dequeue-at-once capacity if possible. Called by
256
* dequeuers. Caller must hold the head_lock!
257
*/
258
259
static int vector_advancehead(struct vector_queue *qi, int advance)
260
{
261
qi->head =
262
(qi->head + advance)
263
% qi->max_depth;
264
265
266
atomic_sub(advance, &qi->queue_depth);
267
return atomic_read(&qi->queue_depth);
268
}
269
270
/* Advance the queue tail by n = advance.
271
* This is called by enqueuers which should hold the
272
* head lock already
273
*/
274
275
static int vector_advancetail(struct vector_queue *qi, int advance)
276
{
277
qi->tail =
278
(qi->tail + advance)
279
% qi->max_depth;
280
atomic_add(advance, &qi->queue_depth);
281
return atomic_read(&qi->queue_depth);
282
}
283
284
static int prep_msg(struct vector_private *vp,
285
struct sk_buff *skb,
286
struct iovec *iov)
287
{
288
int iov_index = 0;
289
int nr_frags, frag;
290
skb_frag_t *skb_frag;
291
292
nr_frags = skb_shinfo(skb)->nr_frags;
293
if (nr_frags > MAX_IOV_SIZE) {
294
if (skb_linearize(skb) != 0)
295
goto drop;
296
}
297
if (vp->header_size > 0) {
298
iov[iov_index].iov_len = vp->header_size;
299
vp->form_header(iov[iov_index].iov_base, skb, vp);
300
iov_index++;
301
}
302
iov[iov_index].iov_base = skb->data;
303
if (nr_frags > 0) {
304
iov[iov_index].iov_len = skb->len - skb->data_len;
305
vp->estats.sg_ok++;
306
} else
307
iov[iov_index].iov_len = skb->len;
308
iov_index++;
309
for (frag = 0; frag < nr_frags; frag++) {
310
skb_frag = &skb_shinfo(skb)->frags[frag];
311
iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
312
iov[iov_index].iov_len = skb_frag_size(skb_frag);
313
iov_index++;
314
}
315
return iov_index;
316
drop:
317
return -1;
318
}
319
/*
320
* Generic vector enqueue with support for forming headers using transport
321
* specific callback. Allows GRE, L2TPv3, RAW and other transports
322
* to use a common enqueue procedure in vector mode
323
*/
324
325
static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
326
{
327
struct vector_private *vp = netdev_priv(qi->dev);
328
int queue_depth;
329
int packet_len;
330
struct mmsghdr *mmsg_vector = qi->mmsg_vector;
331
int iov_count;
332
333
spin_lock(&qi->tail_lock);
334
queue_depth = atomic_read(&qi->queue_depth);
335
336
if (skb)
337
packet_len = skb->len;
338
339
if (queue_depth < qi->max_depth) {
340
341
*(qi->skbuff_vector + qi->tail) = skb;
342
mmsg_vector += qi->tail;
343
iov_count = prep_msg(
344
vp,
345
skb,
346
mmsg_vector->msg_hdr.msg_iov
347
);
348
if (iov_count < 1)
349
goto drop;
350
mmsg_vector->msg_hdr.msg_iovlen = iov_count;
351
mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
352
mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
353
wmb(); /* Make the packet visible to the NAPI poll thread */
354
queue_depth = vector_advancetail(qi, 1);
355
} else
356
goto drop;
357
spin_unlock(&qi->tail_lock);
358
return queue_depth;
359
drop:
360
qi->dev->stats.tx_dropped++;
361
if (skb != NULL) {
362
packet_len = skb->len;
363
dev_consume_skb_any(skb);
364
netdev_completed_queue(qi->dev, 1, packet_len);
365
}
366
spin_unlock(&qi->tail_lock);
367
return queue_depth;
368
}
369
370
static int consume_vector_skbs(struct vector_queue *qi, int count)
371
{
372
struct sk_buff *skb;
373
int skb_index;
374
int bytes_compl = 0;
375
376
for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
377
skb = *(qi->skbuff_vector + skb_index);
378
/* mark as empty to ensure correct destruction if
379
* needed
380
*/
381
bytes_compl += skb->len;
382
*(qi->skbuff_vector + skb_index) = NULL;
383
dev_consume_skb_any(skb);
384
}
385
qi->dev->stats.tx_bytes += bytes_compl;
386
qi->dev->stats.tx_packets += count;
387
netdev_completed_queue(qi->dev, count, bytes_compl);
388
return vector_advancehead(qi, count);
389
}
390
391
/*
392
* Generic vector dequeue via sendmmsg with support for forming headers
393
* using transport specific callback. Allows GRE, L2TPv3, RAW and
394
* other transports to use a common dequeue procedure in vector mode
395
*/
396
397
398
static int vector_send(struct vector_queue *qi)
399
{
400
struct vector_private *vp = netdev_priv(qi->dev);
401
struct mmsghdr *send_from;
402
int result = 0, send_len;
403
404
if (spin_trylock(&qi->head_lock)) {
405
/* update queue_depth to current value */
406
while (atomic_read(&qi->queue_depth) > 0) {
407
/* Calculate the start of the vector */
408
send_len = atomic_read(&qi->queue_depth);
409
send_from = qi->mmsg_vector;
410
send_from += qi->head;
411
/* Adjust vector size if wraparound */
412
if (send_len + qi->head > qi->max_depth)
413
send_len = qi->max_depth - qi->head;
414
/* Try to TX as many packets as possible */
415
if (send_len > 0) {
416
result = uml_vector_sendmmsg(
417
vp->fds->tx_fd,
418
send_from,
419
send_len,
420
0
421
);
422
vp->in_write_poll =
423
(result != send_len);
424
}
425
/* For some of the sendmmsg error scenarios
426
* we may end being unsure in the TX success
427
* for all packets. It is safer to declare
428
* them all TX-ed and blame the network.
429
*/
430
if (result < 0) {
431
if (net_ratelimit())
432
netdev_err(vp->dev, "sendmmsg err=%i\n",
433
result);
434
vp->in_error = true;
435
result = send_len;
436
}
437
if (result > 0) {
438
consume_vector_skbs(qi, result);
439
/* This is equivalent to an TX IRQ.
440
* Restart the upper layers to feed us
441
* more packets.
442
*/
443
if (result > vp->estats.tx_queue_max)
444
vp->estats.tx_queue_max = result;
445
vp->estats.tx_queue_running_average =
446
(vp->estats.tx_queue_running_average + result) >> 1;
447
}
448
netif_wake_queue(qi->dev);
449
/* if TX is busy, break out of the send loop,
450
* poll write IRQ will reschedule xmit for us.
451
*/
452
if (result != send_len) {
453
vp->estats.tx_restart_queue++;
454
break;
455
}
456
}
457
spin_unlock(&qi->head_lock);
458
}
459
return atomic_read(&qi->queue_depth);
460
}
461
462
/* Queue destructor. Deliberately stateless so we can use
463
* it in queue cleanup if initialization fails.
464
*/
465
466
static void destroy_queue(struct vector_queue *qi)
467
{
468
int i;
469
struct iovec *iov;
470
struct vector_private *vp = netdev_priv(qi->dev);
471
struct mmsghdr *mmsg_vector;
472
473
if (qi == NULL)
474
return;
475
/* deallocate any skbuffs - we rely on any unused to be
476
* set to NULL.
477
*/
478
if (qi->skbuff_vector != NULL) {
479
for (i = 0; i < qi->max_depth; i++) {
480
if (*(qi->skbuff_vector + i) != NULL)
481
dev_kfree_skb_any(*(qi->skbuff_vector + i));
482
}
483
kfree(qi->skbuff_vector);
484
}
485
/* deallocate matching IOV structures including header buffs */
486
if (qi->mmsg_vector != NULL) {
487
mmsg_vector = qi->mmsg_vector;
488
for (i = 0; i < qi->max_depth; i++) {
489
iov = mmsg_vector->msg_hdr.msg_iov;
490
if (iov != NULL) {
491
if ((vp->header_size > 0) &&
492
(iov->iov_base != NULL))
493
kfree(iov->iov_base);
494
kfree(iov);
495
}
496
mmsg_vector++;
497
}
498
kfree(qi->mmsg_vector);
499
}
500
kfree(qi);
501
}
502
503
/*
504
* Queue constructor. Create a queue with a given side.
505
*/
506
static struct vector_queue *create_queue(
507
struct vector_private *vp,
508
int max_size,
509
int header_size,
510
int num_extra_frags)
511
{
512
struct vector_queue *result;
513
int i;
514
struct iovec *iov;
515
struct mmsghdr *mmsg_vector;
516
517
result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
518
if (result == NULL)
519
return NULL;
520
result->max_depth = max_size;
521
result->dev = vp->dev;
522
result->mmsg_vector = kmalloc(
523
(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
524
if (result->mmsg_vector == NULL)
525
goto out_mmsg_fail;
526
result->skbuff_vector = kmalloc(
527
(sizeof(void *) * max_size), GFP_KERNEL);
528
if (result->skbuff_vector == NULL)
529
goto out_skb_fail;
530
531
/* further failures can be handled safely by destroy_queue*/
532
533
mmsg_vector = result->mmsg_vector;
534
for (i = 0; i < max_size; i++) {
535
/* Clear all pointers - we use non-NULL as marking on
536
* what to free on destruction
537
*/
538
*(result->skbuff_vector + i) = NULL;
539
mmsg_vector->msg_hdr.msg_iov = NULL;
540
mmsg_vector++;
541
}
542
mmsg_vector = result->mmsg_vector;
543
result->max_iov_frags = num_extra_frags;
544
for (i = 0; i < max_size; i++) {
545
if (vp->header_size > 0)
546
iov = kmalloc_array(3 + num_extra_frags,
547
sizeof(struct iovec),
548
GFP_KERNEL
549
);
550
else
551
iov = kmalloc_array(2 + num_extra_frags,
552
sizeof(struct iovec),
553
GFP_KERNEL
554
);
555
if (iov == NULL)
556
goto out_fail;
557
mmsg_vector->msg_hdr.msg_iov = iov;
558
mmsg_vector->msg_hdr.msg_iovlen = 1;
559
mmsg_vector->msg_hdr.msg_control = NULL;
560
mmsg_vector->msg_hdr.msg_controllen = 0;
561
mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
562
mmsg_vector->msg_hdr.msg_name = NULL;
563
mmsg_vector->msg_hdr.msg_namelen = 0;
564
if (vp->header_size > 0) {
565
iov->iov_base = kmalloc(header_size, GFP_KERNEL);
566
if (iov->iov_base == NULL)
567
goto out_fail;
568
iov->iov_len = header_size;
569
mmsg_vector->msg_hdr.msg_iovlen = 2;
570
iov++;
571
}
572
iov->iov_base = NULL;
573
iov->iov_len = 0;
574
mmsg_vector++;
575
}
576
spin_lock_init(&result->head_lock);
577
spin_lock_init(&result->tail_lock);
578
atomic_set(&result->queue_depth, 0);
579
result->head = 0;
580
result->tail = 0;
581
return result;
582
out_skb_fail:
583
kfree(result->mmsg_vector);
584
out_mmsg_fail:
585
kfree(result);
586
return NULL;
587
out_fail:
588
destroy_queue(result);
589
return NULL;
590
}
591
592
/*
593
* We do not use the RX queue as a proper wraparound queue for now
594
* This is not necessary because the consumption via napi_gro_receive()
595
* happens in-line. While we can try using the return code of
596
* netif_rx() for flow control there are no drivers doing this today.
597
* For this RX specific use we ignore the tail/head locks and
598
* just read into a prepared queue filled with skbuffs.
599
*/
600
601
static struct sk_buff *prep_skb(
602
struct vector_private *vp,
603
struct user_msghdr *msg)
604
{
605
int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
606
struct sk_buff *result;
607
int iov_index = 0, len;
608
struct iovec *iov = msg->msg_iov;
609
int err, nr_frags, frag;
610
skb_frag_t *skb_frag;
611
612
if (vp->req_size <= linear)
613
len = linear;
614
else
615
len = vp->req_size;
616
result = alloc_skb_with_frags(
617
linear,
618
len - vp->max_packet,
619
3,
620
&err,
621
GFP_ATOMIC
622
);
623
if (vp->header_size > 0)
624
iov_index++;
625
if (result == NULL) {
626
iov[iov_index].iov_base = NULL;
627
iov[iov_index].iov_len = 0;
628
goto done;
629
}
630
skb_reserve(result, vp->headroom);
631
result->dev = vp->dev;
632
skb_put(result, vp->max_packet);
633
result->data_len = len - vp->max_packet;
634
result->len += len - vp->max_packet;
635
skb_reset_mac_header(result);
636
result->ip_summed = CHECKSUM_NONE;
637
iov[iov_index].iov_base = result->data;
638
iov[iov_index].iov_len = vp->max_packet;
639
iov_index++;
640
641
nr_frags = skb_shinfo(result)->nr_frags;
642
for (frag = 0; frag < nr_frags; frag++) {
643
skb_frag = &skb_shinfo(result)->frags[frag];
644
iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
645
if (iov[iov_index].iov_base != NULL)
646
iov[iov_index].iov_len = skb_frag_size(skb_frag);
647
else
648
iov[iov_index].iov_len = 0;
649
iov_index++;
650
}
651
done:
652
msg->msg_iovlen = iov_index;
653
return result;
654
}
655
656
657
/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */
658
659
static void prep_queue_for_rx(struct vector_queue *qi)
660
{
661
struct vector_private *vp = netdev_priv(qi->dev);
662
struct mmsghdr *mmsg_vector = qi->mmsg_vector;
663
void **skbuff_vector = qi->skbuff_vector;
664
int i, queue_depth;
665
666
queue_depth = atomic_read(&qi->queue_depth);
667
668
if (queue_depth == 0)
669
return;
670
671
/* RX is always emptied 100% during each cycle, so we do not
672
* have to do the tail wraparound math for it.
673
*/
674
675
qi->head = qi->tail = 0;
676
677
for (i = 0; i < queue_depth; i++) {
678
/* it is OK if allocation fails - recvmmsg with NULL data in
679
* iov argument still performs an RX, just drops the packet
680
* This allows us stop faffing around with a "drop buffer"
681
*/
682
683
*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
684
skbuff_vector++;
685
mmsg_vector++;
686
}
687
atomic_set(&qi->queue_depth, 0);
688
}
689
690
static struct vector_device *find_device(int n)
691
{
692
struct vector_device *device;
693
struct list_head *ele;
694
695
spin_lock(&vector_devices_lock);
696
list_for_each(ele, &vector_devices) {
697
device = list_entry(ele, struct vector_device, list);
698
if (device->unit == n)
699
goto out;
700
}
701
device = NULL;
702
out:
703
spin_unlock(&vector_devices_lock);
704
return device;
705
}
706
707
static int vector_parse(char *str, int *index_out, char **str_out,
708
char **error_out)
709
{
710
int n, err;
711
char *start = str;
712
713
while ((*str != ':') && (strlen(str) > 1))
714
str++;
715
if (*str != ':') {
716
*error_out = "Expected ':' after device number";
717
return -EINVAL;
718
}
719
*str = '\0';
720
721
err = kstrtouint(start, 0, &n);
722
if (err < 0) {
723
*error_out = "Bad device number";
724
return err;
725
}
726
727
str++;
728
if (find_device(n)) {
729
*error_out = "Device already configured";
730
return -EINVAL;
731
}
732
733
*index_out = n;
734
*str_out = str;
735
return 0;
736
}
737
738
static int vector_config(char *str, char **error_out)
739
{
740
int err, n;
741
char *params;
742
struct arglist *parsed;
743
744
err = vector_parse(str, &n, &params, error_out);
745
if (err != 0)
746
return err;
747
748
/* This string is broken up and the pieces used by the underlying
749
* driver. We should copy it to make sure things do not go wrong
750
* later.
751
*/
752
753
params = kstrdup(params, GFP_KERNEL);
754
if (params == NULL) {
755
*error_out = "vector_config failed to strdup string";
756
return -ENOMEM;
757
}
758
759
parsed = uml_parse_vector_ifspec(params);
760
761
if (parsed == NULL) {
762
*error_out = "vector_config failed to parse parameters";
763
kfree(params);
764
return -EINVAL;
765
}
766
767
vector_eth_configure(n, parsed);
768
return 0;
769
}
770
771
static int vector_id(char **str, int *start_out, int *end_out)
772
{
773
char *end;
774
int n;
775
776
n = simple_strtoul(*str, &end, 0);
777
if ((*end != '\0') || (end == *str))
778
return -1;
779
780
*start_out = n;
781
*end_out = n;
782
*str = end;
783
return n;
784
}
785
786
static int vector_remove(int n, char **error_out)
787
{
788
struct vector_device *vec_d;
789
struct net_device *dev;
790
struct vector_private *vp;
791
792
vec_d = find_device(n);
793
if (vec_d == NULL)
794
return -ENODEV;
795
dev = vec_d->dev;
796
vp = netdev_priv(dev);
797
if (vp->fds != NULL)
798
return -EBUSY;
799
unregister_netdev(dev);
800
platform_device_unregister(&vec_d->pdev);
801
return 0;
802
}
803
804
/*
805
* There is no shared per-transport initialization code, so
806
* we will just initialize each interface one by one and
807
* add them to a list
808
*/
809
810
static struct platform_driver uml_net_driver = {
811
.driver = {
812
.name = DRIVER_NAME,
813
},
814
};
815
816
817
static void vector_device_release(struct device *dev)
818
{
819
struct vector_device *device =
820
container_of(dev, struct vector_device, pdev.dev);
821
struct net_device *netdev = device->dev;
822
823
list_del(&device->list);
824
kfree(device);
825
free_netdev(netdev);
826
}
827
828
/* Bog standard recv using recvmsg - not used normally unless the user
829
* explicitly specifies not to use recvmmsg vector RX.
830
*/
831
832
static int vector_legacy_rx(struct vector_private *vp)
833
{
834
int pkt_len;
835
struct user_msghdr hdr;
836
struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
837
int iovpos = 0;
838
struct sk_buff *skb;
839
int header_check;
840
841
hdr.msg_name = NULL;
842
hdr.msg_namelen = 0;
843
hdr.msg_iov = (struct iovec *) &iov;
844
hdr.msg_control = NULL;
845
hdr.msg_controllen = 0;
846
hdr.msg_flags = 0;
847
848
if (vp->header_size > 0) {
849
iov[0].iov_base = vp->header_rxbuffer;
850
iov[0].iov_len = vp->header_size;
851
}
852
853
skb = prep_skb(vp, &hdr);
854
855
if (skb == NULL) {
856
/* Read a packet into drop_buffer and don't do
857
* anything with it.
858
*/
859
iov[iovpos].iov_base = drop_buffer;
860
iov[iovpos].iov_len = DROP_BUFFER_SIZE;
861
hdr.msg_iovlen = 1;
862
vp->dev->stats.rx_dropped++;
863
}
864
865
pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
866
if (pkt_len < 0) {
867
vp->in_error = true;
868
return pkt_len;
869
}
870
871
if (skb != NULL) {
872
if (pkt_len > vp->header_size) {
873
if (vp->header_size > 0) {
874
header_check = vp->verify_header(
875
vp->header_rxbuffer, skb, vp);
876
if (header_check < 0) {
877
dev_kfree_skb_irq(skb);
878
vp->dev->stats.rx_dropped++;
879
vp->estats.rx_encaps_errors++;
880
return 0;
881
}
882
if (header_check > 0) {
883
vp->estats.rx_csum_offload_good++;
884
skb->ip_summed = CHECKSUM_UNNECESSARY;
885
}
886
}
887
pskb_trim(skb, pkt_len - vp->rx_header_size);
888
skb->protocol = eth_type_trans(skb, skb->dev);
889
vp->dev->stats.rx_bytes += skb->len;
890
vp->dev->stats.rx_packets++;
891
napi_gro_receive(&vp->napi, skb);
892
} else {
893
dev_kfree_skb_irq(skb);
894
}
895
}
896
return pkt_len;
897
}
898
899
/*
900
* Packet at a time TX which falls back to vector TX if the
901
* underlying transport is busy.
902
*/
903
904
905
906
static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
907
{
908
struct iovec iov[3 + MAX_IOV_SIZE];
909
int iov_count, pkt_len = 0;
910
911
iov[0].iov_base = vp->header_txbuffer;
912
iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
913
914
if (iov_count < 1)
915
goto drop;
916
917
pkt_len = uml_vector_writev(
918
vp->fds->tx_fd,
919
(struct iovec *) &iov,
920
iov_count
921
);
922
923
if (pkt_len < 0)
924
goto drop;
925
926
netif_trans_update(vp->dev);
927
netif_wake_queue(vp->dev);
928
929
if (pkt_len > 0) {
930
vp->dev->stats.tx_bytes += skb->len;
931
vp->dev->stats.tx_packets++;
932
} else {
933
vp->dev->stats.tx_dropped++;
934
}
935
consume_skb(skb);
936
return pkt_len;
937
drop:
938
vp->dev->stats.tx_dropped++;
939
consume_skb(skb);
940
if (pkt_len < 0)
941
vp->in_error = true;
942
return pkt_len;
943
}
944
945
/*
946
* Receive as many messages as we can in one call using the special
947
* mmsg vector matched to an skb vector which we prepared earlier.
948
*/
949
950
static int vector_mmsg_rx(struct vector_private *vp, int budget)
951
{
952
int packet_count, i;
953
struct vector_queue *qi = vp->rx_queue;
954
struct sk_buff *skb;
955
struct mmsghdr *mmsg_vector = qi->mmsg_vector;
956
void **skbuff_vector = qi->skbuff_vector;
957
int header_check;
958
959
/* Refresh the vector and make sure it is with new skbs and the
960
* iovs are updated to point to them.
961
*/
962
963
prep_queue_for_rx(qi);
964
965
/* Fire the Lazy Gun - get as many packets as we can in one go. */
966
967
if (budget > qi->max_depth)
968
budget = qi->max_depth;
969
970
packet_count = uml_vector_recvmmsg(
971
vp->fds->rx_fd, qi->mmsg_vector, budget, 0);
972
973
if (packet_count < 0)
974
vp->in_error = true;
975
976
if (packet_count <= 0)
977
return packet_count;
978
979
/* We treat packet processing as enqueue, buffer refresh as dequeue
980
* The queue_depth tells us how many buffers have been used and how
981
* many do we need to prep the next time prep_queue_for_rx() is called.
982
*/
983
984
atomic_add(packet_count, &qi->queue_depth);
985
986
for (i = 0; i < packet_count; i++) {
987
skb = (*skbuff_vector);
988
if (mmsg_vector->msg_len > vp->header_size) {
989
if (vp->header_size > 0) {
990
header_check = vp->verify_header(
991
mmsg_vector->msg_hdr.msg_iov->iov_base,
992
skb,
993
vp
994
);
995
if (header_check < 0) {
996
/* Overlay header failed to verify - discard.
997
* We can actually keep this skb and reuse it,
998
* but that will make the prep logic too
999
* complex.
1000
*/
1001
dev_kfree_skb_irq(skb);
1002
vp->estats.rx_encaps_errors++;
1003
continue;
1004
}
1005
if (header_check > 0) {
1006
vp->estats.rx_csum_offload_good++;
1007
skb->ip_summed = CHECKSUM_UNNECESSARY;
1008
}
1009
}
1010
pskb_trim(skb,
1011
mmsg_vector->msg_len - vp->rx_header_size);
1012
skb->protocol = eth_type_trans(skb, skb->dev);
1013
/*
1014
* We do not need to lock on updating stats here
1015
* The interrupt loop is non-reentrant.
1016
*/
1017
vp->dev->stats.rx_bytes += skb->len;
1018
vp->dev->stats.rx_packets++;
1019
napi_gro_receive(&vp->napi, skb);
1020
} else {
1021
/* Overlay header too short to do anything - discard.
1022
* We can actually keep this skb and reuse it,
1023
* but that will make the prep logic too complex.
1024
*/
1025
if (skb != NULL)
1026
dev_kfree_skb_irq(skb);
1027
}
1028
(*skbuff_vector) = NULL;
1029
/* Move to the next buffer element */
1030
mmsg_vector++;
1031
skbuff_vector++;
1032
}
1033
if (packet_count > 0) {
1034
if (vp->estats.rx_queue_max < packet_count)
1035
vp->estats.rx_queue_max = packet_count;
1036
vp->estats.rx_queue_running_average =
1037
(vp->estats.rx_queue_running_average + packet_count) >> 1;
1038
}
1039
return packet_count;
1040
}
1041
1042
static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1043
{
1044
struct vector_private *vp = netdev_priv(dev);
1045
int queue_depth = 0;
1046
1047
if (vp->in_error) {
1048
deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1049
if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1050
deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1051
return NETDEV_TX_BUSY;
1052
}
1053
1054
if ((vp->options & VECTOR_TX) == 0) {
1055
writev_tx(vp, skb);
1056
return NETDEV_TX_OK;
1057
}
1058
1059
/* We do BQL only in the vector path, no point doing it in
1060
* packet at a time mode as there is no device queue
1061
*/
1062
1063
netdev_sent_queue(vp->dev, skb->len);
1064
queue_depth = vector_enqueue(vp->tx_queue, skb);
1065
1066
if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1067
mod_timer(&vp->tl, vp->coalesce);
1068
return NETDEV_TX_OK;
1069
} else {
1070
queue_depth = vector_send(vp->tx_queue);
1071
if (queue_depth > 0)
1072
napi_schedule(&vp->napi);
1073
}
1074
1075
return NETDEV_TX_OK;
1076
}
1077
1078
static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1079
{
1080
struct net_device *dev = dev_id;
1081
struct vector_private *vp = netdev_priv(dev);
1082
1083
if (!netif_running(dev))
1084
return IRQ_NONE;
1085
napi_schedule(&vp->napi);
1086
return IRQ_HANDLED;
1087
1088
}
1089
1090
static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1091
{
1092
struct net_device *dev = dev_id;
1093
struct vector_private *vp = netdev_priv(dev);
1094
1095
if (!netif_running(dev))
1096
return IRQ_NONE;
1097
/* We need to pay attention to it only if we got
1098
* -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1099
* we ignore it. In the future, it may be worth
1100
* it to improve the IRQ controller a bit to make
1101
* tweaking the IRQ mask less costly
1102
*/
1103
1104
napi_schedule(&vp->napi);
1105
return IRQ_HANDLED;
1106
1107
}
1108
1109
static int irq_rr;
1110
1111
static int vector_net_close(struct net_device *dev)
1112
{
1113
struct vector_private *vp = netdev_priv(dev);
1114
1115
netif_stop_queue(dev);
1116
timer_delete(&vp->tl);
1117
1118
vp->opened = false;
1119
1120
if (vp->fds == NULL)
1121
return 0;
1122
1123
/* Disable and free all IRQS */
1124
if (vp->rx_irq > 0) {
1125
um_free_irq(vp->rx_irq, dev);
1126
vp->rx_irq = 0;
1127
}
1128
if (vp->tx_irq > 0) {
1129
um_free_irq(vp->tx_irq, dev);
1130
vp->tx_irq = 0;
1131
}
1132
napi_disable(&vp->napi);
1133
netif_napi_del(&vp->napi);
1134
if (vp->fds->rx_fd > 0) {
1135
if (vp->bpf)
1136
uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1137
os_close_file(vp->fds->rx_fd);
1138
vp->fds->rx_fd = -1;
1139
}
1140
if (vp->fds->tx_fd > 0) {
1141
os_close_file(vp->fds->tx_fd);
1142
vp->fds->tx_fd = -1;
1143
}
1144
if (vp->bpf != NULL)
1145
kfree(vp->bpf->filter);
1146
kfree(vp->bpf);
1147
vp->bpf = NULL;
1148
kfree(vp->fds->remote_addr);
1149
kfree(vp->transport_data);
1150
kfree(vp->header_rxbuffer);
1151
kfree(vp->header_txbuffer);
1152
if (vp->rx_queue != NULL)
1153
destroy_queue(vp->rx_queue);
1154
if (vp->tx_queue != NULL)
1155
destroy_queue(vp->tx_queue);
1156
kfree(vp->fds);
1157
vp->fds = NULL;
1158
vp->in_error = false;
1159
return 0;
1160
}
1161
1162
static int vector_poll(struct napi_struct *napi, int budget)
1163
{
1164
struct vector_private *vp = container_of(napi, struct vector_private, napi);
1165
int work_done = 0;
1166
int err;
1167
bool tx_enqueued = false;
1168
1169
if ((vp->options & VECTOR_TX) != 0)
1170
tx_enqueued = (vector_send(vp->tx_queue) > 0);
1171
spin_lock(&vp->rx_queue->head_lock);
1172
if ((vp->options & VECTOR_RX) > 0)
1173
err = vector_mmsg_rx(vp, budget);
1174
else {
1175
err = vector_legacy_rx(vp);
1176
if (err > 0)
1177
err = 1;
1178
}
1179
spin_unlock(&vp->rx_queue->head_lock);
1180
if (err > 0)
1181
work_done += err;
1182
1183
if (tx_enqueued || err > 0)
1184
napi_schedule(napi);
1185
if (work_done <= budget)
1186
napi_complete_done(napi, work_done);
1187
return work_done;
1188
}
1189
1190
static void vector_reset_tx(struct work_struct *work)
1191
{
1192
struct vector_private *vp =
1193
container_of(work, struct vector_private, reset_tx);
1194
netdev_reset_queue(vp->dev);
1195
netif_start_queue(vp->dev);
1196
netif_wake_queue(vp->dev);
1197
}
1198
1199
static int vector_net_open(struct net_device *dev)
1200
{
1201
struct vector_private *vp = netdev_priv(dev);
1202
int err = -EINVAL;
1203
struct vector_device *vdevice;
1204
1205
if (vp->opened)
1206
return -ENXIO;
1207
vp->opened = true;
1208
1209
vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1210
1211
vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1212
1213
if (vp->fds == NULL)
1214
goto out_close;
1215
1216
if (build_transport_data(vp) < 0)
1217
goto out_close;
1218
1219
if ((vp->options & VECTOR_RX) > 0) {
1220
vp->rx_queue = create_queue(
1221
vp,
1222
get_depth(vp->parsed),
1223
vp->rx_header_size,
1224
MAX_IOV_SIZE
1225
);
1226
atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed));
1227
} else {
1228
vp->header_rxbuffer = kmalloc(
1229
vp->rx_header_size,
1230
GFP_KERNEL
1231
);
1232
if (vp->header_rxbuffer == NULL)
1233
goto out_close;
1234
}
1235
if ((vp->options & VECTOR_TX) > 0) {
1236
vp->tx_queue = create_queue(
1237
vp,
1238
get_depth(vp->parsed),
1239
vp->header_size,
1240
MAX_IOV_SIZE
1241
);
1242
} else {
1243
vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1244
if (vp->header_txbuffer == NULL)
1245
goto out_close;
1246
}
1247
1248
netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1249
get_depth(vp->parsed));
1250
napi_enable(&vp->napi);
1251
1252
/* READ IRQ */
1253
err = um_request_irq(
1254
irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1255
IRQ_READ, vector_rx_interrupt,
1256
IRQF_SHARED, dev->name, dev);
1257
if (err < 0) {
1258
netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1259
err = -ENETUNREACH;
1260
goto out_close;
1261
}
1262
vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1263
dev->irq = irq_rr + VECTOR_BASE_IRQ;
1264
irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1265
1266
/* WRITE IRQ - we need it only if we have vector TX */
1267
if ((vp->options & VECTOR_TX) > 0) {
1268
err = um_request_irq(
1269
irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1270
IRQ_WRITE, vector_tx_interrupt,
1271
IRQF_SHARED, dev->name, dev);
1272
if (err < 0) {
1273
netdev_err(dev,
1274
"vector_open: failed to get tx irq(%d)\n", err);
1275
err = -ENETUNREACH;
1276
goto out_close;
1277
}
1278
vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1279
irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1280
}
1281
1282
if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1283
if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1284
vp->options |= VECTOR_BPF;
1285
}
1286
if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1287
vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1288
1289
if (vp->bpf != NULL)
1290
uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1291
1292
netif_start_queue(dev);
1293
vector_reset_stats(vp);
1294
1295
/* clear buffer - it can happen that the host side of the interface
1296
* is full when we get here. In this case, new data is never queued,
1297
* SIGIOs never arrive, and the net never works.
1298
*/
1299
1300
napi_schedule(&vp->napi);
1301
1302
vdevice = find_device(vp->unit);
1303
vdevice->opened = 1;
1304
1305
if ((vp->options & VECTOR_TX) != 0)
1306
add_timer(&vp->tl);
1307
return 0;
1308
out_close:
1309
vector_net_close(dev);
1310
return err;
1311
}
1312
1313
1314
static void vector_net_set_multicast_list(struct net_device *dev)
1315
{
1316
/* TODO: - we can do some BPF games here */
1317
return;
1318
}
1319
1320
static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1321
{
1322
struct vector_private *vp = netdev_priv(dev);
1323
1324
vp->estats.tx_timeout_count++;
1325
netif_trans_update(dev);
1326
schedule_work(&vp->reset_tx);
1327
}
1328
1329
static netdev_features_t vector_fix_features(struct net_device *dev,
1330
netdev_features_t features)
1331
{
1332
features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1333
return features;
1334
}
1335
1336
static int vector_set_features(struct net_device *dev,
1337
netdev_features_t features)
1338
{
1339
struct vector_private *vp = netdev_priv(dev);
1340
/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1341
* no way to negotiate it on raw sockets, so we can change
1342
* only our side.
1343
*/
1344
if (features & NETIF_F_GRO)
1345
/* All new frame buffers will be GRO-sized */
1346
vp->req_size = 65536;
1347
else
1348
/* All new frame buffers will be normal sized */
1349
vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1350
return 0;
1351
}
1352
1353
#ifdef CONFIG_NET_POLL_CONTROLLER
1354
static void vector_net_poll_controller(struct net_device *dev)
1355
{
1356
disable_irq(dev->irq);
1357
vector_rx_interrupt(dev->irq, dev);
1358
enable_irq(dev->irq);
1359
}
1360
#endif
1361
1362
static void vector_net_get_drvinfo(struct net_device *dev,
1363
struct ethtool_drvinfo *info)
1364
{
1365
strscpy(info->driver, DRIVER_NAME);
1366
}
1367
1368
static int vector_net_load_bpf_flash(struct net_device *dev,
1369
struct ethtool_flash *efl)
1370
{
1371
struct vector_private *vp = netdev_priv(dev);
1372
struct vector_device *vdevice;
1373
const struct firmware *fw;
1374
int result = 0;
1375
1376
if (!(vp->options & VECTOR_BPF_FLASH)) {
1377
netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1378
return -1;
1379
}
1380
1381
if (vp->bpf != NULL) {
1382
if (vp->opened)
1383
uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1384
kfree(vp->bpf->filter);
1385
vp->bpf->filter = NULL;
1386
} else {
1387
vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1388
if (vp->bpf == NULL) {
1389
netdev_err(dev, "failed to allocate memory for firmware\n");
1390
goto flash_fail;
1391
}
1392
}
1393
1394
vdevice = find_device(vp->unit);
1395
1396
if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1397
goto flash_fail;
1398
1399
vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1400
if (!vp->bpf->filter)
1401
goto free_buffer;
1402
1403
vp->bpf->len = fw->size / sizeof(struct sock_filter);
1404
release_firmware(fw);
1405
1406
if (vp->opened)
1407
result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1408
1409
return result;
1410
1411
free_buffer:
1412
release_firmware(fw);
1413
1414
flash_fail:
1415
if (vp->bpf != NULL)
1416
kfree(vp->bpf->filter);
1417
kfree(vp->bpf);
1418
vp->bpf = NULL;
1419
return -1;
1420
}
1421
1422
static void vector_get_ringparam(struct net_device *netdev,
1423
struct ethtool_ringparam *ring,
1424
struct kernel_ethtool_ringparam *kernel_ring,
1425
struct netlink_ext_ack *extack)
1426
{
1427
struct vector_private *vp = netdev_priv(netdev);
1428
1429
ring->rx_max_pending = vp->rx_queue->max_depth;
1430
ring->tx_max_pending = vp->tx_queue->max_depth;
1431
ring->rx_pending = vp->rx_queue->max_depth;
1432
ring->tx_pending = vp->tx_queue->max_depth;
1433
}
1434
1435
static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1436
{
1437
switch (stringset) {
1438
case ETH_SS_TEST:
1439
*buf = '\0';
1440
break;
1441
case ETH_SS_STATS:
1442
memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1443
break;
1444
default:
1445
WARN_ON(1);
1446
break;
1447
}
1448
}
1449
1450
static int vector_get_sset_count(struct net_device *dev, int sset)
1451
{
1452
switch (sset) {
1453
case ETH_SS_TEST:
1454
return 0;
1455
case ETH_SS_STATS:
1456
return VECTOR_NUM_STATS;
1457
default:
1458
return -EOPNOTSUPP;
1459
}
1460
}
1461
1462
static void vector_get_ethtool_stats(struct net_device *dev,
1463
struct ethtool_stats *estats,
1464
u64 *tmp_stats)
1465
{
1466
struct vector_private *vp = netdev_priv(dev);
1467
1468
/* Stats are modified in the dequeue portions of
1469
* rx/tx which are protected by the head locks
1470
* grabbing these locks here ensures they are up
1471
* to date.
1472
*/
1473
1474
spin_lock(&vp->tx_queue->head_lock);
1475
spin_lock(&vp->rx_queue->head_lock);
1476
memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1477
spin_unlock(&vp->rx_queue->head_lock);
1478
spin_unlock(&vp->tx_queue->head_lock);
1479
}
1480
1481
static int vector_get_coalesce(struct net_device *netdev,
1482
struct ethtool_coalesce *ec,
1483
struct kernel_ethtool_coalesce *kernel_coal,
1484
struct netlink_ext_ack *extack)
1485
{
1486
struct vector_private *vp = netdev_priv(netdev);
1487
1488
ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1489
return 0;
1490
}
1491
1492
static int vector_set_coalesce(struct net_device *netdev,
1493
struct ethtool_coalesce *ec,
1494
struct kernel_ethtool_coalesce *kernel_coal,
1495
struct netlink_ext_ack *extack)
1496
{
1497
struct vector_private *vp = netdev_priv(netdev);
1498
1499
vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1500
if (vp->coalesce == 0)
1501
vp->coalesce = 1;
1502
return 0;
1503
}
1504
1505
static const struct ethtool_ops vector_net_ethtool_ops = {
1506
.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1507
.get_drvinfo = vector_net_get_drvinfo,
1508
.get_link = ethtool_op_get_link,
1509
.get_ts_info = ethtool_op_get_ts_info,
1510
.get_ringparam = vector_get_ringparam,
1511
.get_strings = vector_get_strings,
1512
.get_sset_count = vector_get_sset_count,
1513
.get_ethtool_stats = vector_get_ethtool_stats,
1514
.get_coalesce = vector_get_coalesce,
1515
.set_coalesce = vector_set_coalesce,
1516
.flash_device = vector_net_load_bpf_flash,
1517
};
1518
1519
1520
static const struct net_device_ops vector_netdev_ops = {
1521
.ndo_open = vector_net_open,
1522
.ndo_stop = vector_net_close,
1523
.ndo_start_xmit = vector_net_start_xmit,
1524
.ndo_set_rx_mode = vector_net_set_multicast_list,
1525
.ndo_tx_timeout = vector_net_tx_timeout,
1526
.ndo_set_mac_address = eth_mac_addr,
1527
.ndo_validate_addr = eth_validate_addr,
1528
.ndo_fix_features = vector_fix_features,
1529
.ndo_set_features = vector_set_features,
1530
#ifdef CONFIG_NET_POLL_CONTROLLER
1531
.ndo_poll_controller = vector_net_poll_controller,
1532
#endif
1533
};
1534
1535
static void vector_timer_expire(struct timer_list *t)
1536
{
1537
struct vector_private *vp = timer_container_of(vp, t, tl);
1538
1539
vp->estats.tx_kicks++;
1540
napi_schedule(&vp->napi);
1541
}
1542
1543
static void vector_setup_etheraddr(struct net_device *dev, char *str)
1544
{
1545
u8 addr[ETH_ALEN];
1546
1547
if (str == NULL)
1548
goto random;
1549
1550
if (!mac_pton(str, addr)) {
1551
netdev_err(dev,
1552
"Failed to parse '%s' as an ethernet address\n", str);
1553
goto random;
1554
}
1555
if (is_multicast_ether_addr(addr)) {
1556
netdev_err(dev,
1557
"Attempt to assign a multicast ethernet address to a device disallowed\n");
1558
goto random;
1559
}
1560
if (!is_valid_ether_addr(addr)) {
1561
netdev_err(dev,
1562
"Attempt to assign an invalid ethernet address to a device disallowed\n");
1563
goto random;
1564
}
1565
if (!is_local_ether_addr(addr)) {
1566
netdev_warn(dev, "Warning: Assigning a globally valid ethernet address to a device\n");
1567
netdev_warn(dev, "You should set the 2nd rightmost bit in the first byte of the MAC,\n");
1568
netdev_warn(dev, "i.e. %02x:%02x:%02x:%02x:%02x:%02x\n",
1569
addr[0] | 0x02, addr[1], addr[2], addr[3], addr[4], addr[5]);
1570
}
1571
eth_hw_addr_set(dev, addr);
1572
return;
1573
1574
random:
1575
netdev_info(dev, "Choosing a random ethernet address\n");
1576
eth_hw_addr_random(dev);
1577
}
1578
1579
static void vector_eth_configure(
1580
int n,
1581
struct arglist *def
1582
)
1583
{
1584
struct vector_device *device;
1585
struct net_device *dev;
1586
struct vector_private *vp;
1587
int err;
1588
1589
device = kzalloc(sizeof(*device), GFP_KERNEL);
1590
if (device == NULL) {
1591
pr_err("Failed to allocate struct vector_device for vec%d\n", n);
1592
return;
1593
}
1594
dev = alloc_etherdev(sizeof(struct vector_private));
1595
if (dev == NULL) {
1596
pr_err("Failed to allocate struct net_device for vec%d\n", n);
1597
goto out_free_device;
1598
}
1599
1600
dev->mtu = get_mtu(def);
1601
1602
INIT_LIST_HEAD(&device->list);
1603
device->unit = n;
1604
1605
/* If this name ends up conflicting with an existing registered
1606
* netdevice, that is OK, register_netdev{,ice}() will notice this
1607
* and fail.
1608
*/
1609
snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1610
vector_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1611
vp = netdev_priv(dev);
1612
1613
/* sysfs register */
1614
if (!driver_registered) {
1615
platform_driver_register(&uml_net_driver);
1616
driver_registered = 1;
1617
}
1618
device->pdev.id = n;
1619
device->pdev.name = DRIVER_NAME;
1620
device->pdev.dev.release = vector_device_release;
1621
dev_set_drvdata(&device->pdev.dev, device);
1622
if (platform_device_register(&device->pdev))
1623
goto out_free_netdev;
1624
SET_NETDEV_DEV(dev, &device->pdev.dev);
1625
1626
device->dev = dev;
1627
1628
INIT_LIST_HEAD(&vp->list);
1629
vp->dev = dev;
1630
vp->unit = n;
1631
vp->options = get_transport_options(def);
1632
vp->parsed = def;
1633
vp->max_packet = get_mtu(def) + ETH_HEADER_OTHER;
1634
/*
1635
* TODO - we need to calculate headroom so that ip header
1636
* is 16 byte aligned all the time
1637
*/
1638
vp->headroom = get_headroom(def);
1639
vp->coalesce = 2;
1640
vp->req_size = get_req_size(def);
1641
1642
dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1643
INIT_WORK(&vp->reset_tx, vector_reset_tx);
1644
1645
timer_setup(&vp->tl, vector_timer_expire, 0);
1646
1647
/* FIXME */
1648
dev->netdev_ops = &vector_netdev_ops;
1649
dev->ethtool_ops = &vector_net_ethtool_ops;
1650
dev->watchdog_timeo = (HZ >> 1);
1651
/* primary IRQ - fixme */
1652
dev->irq = 0; /* we will adjust this once opened */
1653
1654
rtnl_lock();
1655
err = register_netdevice(dev);
1656
rtnl_unlock();
1657
if (err)
1658
goto out_undo_user_init;
1659
1660
spin_lock(&vector_devices_lock);
1661
list_add(&device->list, &vector_devices);
1662
spin_unlock(&vector_devices_lock);
1663
1664
return;
1665
1666
out_undo_user_init:
1667
return;
1668
out_free_netdev:
1669
free_netdev(dev);
1670
out_free_device:
1671
kfree(device);
1672
}
1673
1674
1675
1676
1677
/*
1678
* Invoked late in the init
1679
*/
1680
1681
static int __init vector_init(void)
1682
{
1683
struct list_head *ele;
1684
struct vector_cmd_line_arg *def;
1685
struct arglist *parsed;
1686
1687
list_for_each(ele, &vec_cmd_line) {
1688
def = list_entry(ele, struct vector_cmd_line_arg, list);
1689
parsed = uml_parse_vector_ifspec(def->arguments);
1690
if (parsed != NULL)
1691
vector_eth_configure(def->unit, parsed);
1692
}
1693
return 0;
1694
}
1695
1696
1697
/* Invoked at initial argument parsing, only stores
1698
* arguments until a proper vector_init is called
1699
* later
1700
*/
1701
1702
static int __init vector_setup(char *str)
1703
{
1704
char *error;
1705
int n, err;
1706
struct vector_cmd_line_arg *new;
1707
1708
err = vector_parse(str, &n, &str, &error);
1709
if (err) {
1710
pr_err("Couldn't parse '%s': %s\n", str, error);
1711
return 1;
1712
}
1713
new = memblock_alloc_or_panic(sizeof(*new), SMP_CACHE_BYTES);
1714
INIT_LIST_HEAD(&new->list);
1715
new->unit = n;
1716
new->arguments = str;
1717
list_add_tail(&new->list, &vec_cmd_line);
1718
return 1;
1719
}
1720
1721
__setup("vec", vector_setup);
1722
__uml_help(vector_setup,
1723
"vec[0-9]+:<option>=<value>,<option>=<value>\n"
1724
" Configure a vector io network device.\n\n"
1725
);
1726
1727
late_initcall(vector_init);
1728
1729
static struct mc_device vector_mc = {
1730
.list = LIST_HEAD_INIT(vector_mc.list),
1731
.name = "vec",
1732
.config = vector_config,
1733
.get_config = NULL,
1734
.id = vector_id,
1735
.remove = vector_remove,
1736
};
1737
1738
#ifdef CONFIG_INET
1739
static int vector_inetaddr_event(
1740
struct notifier_block *this,
1741
unsigned long event,
1742
void *ptr)
1743
{
1744
return NOTIFY_DONE;
1745
}
1746
1747
static struct notifier_block vector_inetaddr_notifier = {
1748
.notifier_call = vector_inetaddr_event,
1749
};
1750
1751
static void inet_register(void)
1752
{
1753
register_inetaddr_notifier(&vector_inetaddr_notifier);
1754
}
1755
#else
1756
static inline void inet_register(void)
1757
{
1758
}
1759
#endif
1760
1761
static int vector_net_init(void)
1762
{
1763
mconsole_register_dev(&vector_mc);
1764
inet_register();
1765
return 0;
1766
}
1767
1768
__initcall(vector_net_init);
1769
1770
1771
1772
1773