Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/um/include/asm/pgtable.h
49231 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4
* Copyright 2003 PathScale, Inc.
5
* Derived from include/asm-i386/pgtable.h
6
*/
7
8
#ifndef __UM_PGTABLE_H
9
#define __UM_PGTABLE_H
10
11
#include <asm/page.h>
12
#include <linux/mm_types.h>
13
14
#define _PAGE_PRESENT 0x001
15
#define _PAGE_NEEDSYNC 0x002
16
#define _PAGE_RW 0x020
17
#define _PAGE_USER 0x040
18
#define _PAGE_ACCESSED 0x080
19
#define _PAGE_DIRTY 0x100
20
/* If _PAGE_PRESENT is clear, we use these: */
21
#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22
pte_present gives true */
23
24
/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
25
#define _PAGE_SWP_EXCLUSIVE 0x400
26
27
#if CONFIG_PGTABLE_LEVELS == 4
28
#include <asm/pgtable-4level.h>
29
#elif CONFIG_PGTABLE_LEVELS == 2
30
#include <asm/pgtable-2level.h>
31
#else
32
#error "Unsupported number of page table levels"
33
#endif
34
35
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
36
37
/* zero page used for uninitialized stuff */
38
extern unsigned long *empty_zero_page;
39
40
/* Just any arbitrary offset to the start of the vmalloc VM area: the
41
* current 8MB value just means that there will be a 8MB "hole" after the
42
* physical memory until the kernel virtual memory starts. That means that
43
* any out-of-bounds memory accesses will hopefully be caught.
44
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
45
* area for the same reason. ;)
46
*/
47
48
#ifndef COMPILE_OFFSETS
49
#include <as-layout.h> /* for high_physmem */
50
#endif
51
52
#define VMALLOC_OFFSET (__va_space)
53
#define VMALLOC_START ((high_physmem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
54
#define VMALLOC_END (TASK_SIZE-2*PAGE_SIZE)
55
#define MODULES_VADDR VMALLOC_START
56
#define MODULES_END VMALLOC_END
57
58
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
59
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
60
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
61
#define __PAGE_KERNEL_EXEC \
62
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
63
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
64
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
65
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
66
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
67
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
68
#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
69
70
/*
71
* The i386 can't do page protection for execute, and considers that the same
72
* are read.
73
* Also, write permissions imply read permissions. This is the closest we can
74
* get..
75
*/
76
77
/*
78
* ZERO_PAGE is a global shared page that is always zero: used
79
* for zero-mapped memory areas etc..
80
*/
81
#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
82
83
#define pte_clear(mm, addr, xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEEDSYNC))
84
85
#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEEDSYNC))
86
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
87
88
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
89
#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEEDSYNC; } while (0)
90
91
#define pmd_needsync(x) (pmd_val(x) & _PAGE_NEEDSYNC)
92
#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEEDSYNC)
93
94
#define pud_needsync(x) (pud_val(x) & _PAGE_NEEDSYNC)
95
#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEEDSYNC)
96
97
#define p4d_needsync(x) (p4d_val(x) & _PAGE_NEEDSYNC)
98
#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEEDSYNC)
99
100
#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
101
#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
102
103
#define pte_page(x) pfn_to_page(pte_pfn(x))
104
105
#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
106
107
/*
108
* =================================
109
* Flags checking section.
110
* =================================
111
*/
112
113
static inline int pte_none(pte_t pte)
114
{
115
return pte_is_zero(pte);
116
}
117
118
/*
119
* The following only work if pte_present() is true.
120
* Undefined behaviour if not..
121
*/
122
static inline int pte_read(pte_t pte)
123
{
124
return((pte_get_bits(pte, _PAGE_USER)) &&
125
!(pte_get_bits(pte, _PAGE_PROTNONE)));
126
}
127
128
static inline int pte_exec(pte_t pte){
129
return((pte_get_bits(pte, _PAGE_USER)) &&
130
!(pte_get_bits(pte, _PAGE_PROTNONE)));
131
}
132
133
static inline int pte_write(pte_t pte)
134
{
135
return((pte_get_bits(pte, _PAGE_RW)) &&
136
!(pte_get_bits(pte, _PAGE_PROTNONE)));
137
}
138
139
static inline int pte_dirty(pte_t pte)
140
{
141
return pte_get_bits(pte, _PAGE_DIRTY);
142
}
143
144
static inline int pte_young(pte_t pte)
145
{
146
return pte_get_bits(pte, _PAGE_ACCESSED);
147
}
148
149
static inline int pte_needsync(pte_t pte)
150
{
151
return pte_get_bits(pte, _PAGE_NEEDSYNC);
152
}
153
154
/*
155
* =================================
156
* Flags setting section.
157
* =================================
158
*/
159
160
static inline pte_t pte_mkclean(pte_t pte)
161
{
162
pte_clear_bits(pte, _PAGE_DIRTY);
163
return(pte);
164
}
165
166
static inline pte_t pte_mkold(pte_t pte)
167
{
168
pte_clear_bits(pte, _PAGE_ACCESSED);
169
return(pte);
170
}
171
172
static inline pte_t pte_wrprotect(pte_t pte)
173
{
174
pte_clear_bits(pte, _PAGE_RW);
175
return pte;
176
}
177
178
static inline pte_t pte_mkread(pte_t pte)
179
{
180
pte_set_bits(pte, _PAGE_USER);
181
return pte;
182
}
183
184
static inline pte_t pte_mkdirty(pte_t pte)
185
{
186
pte_set_bits(pte, _PAGE_DIRTY);
187
return(pte);
188
}
189
190
static inline pte_t pte_mkyoung(pte_t pte)
191
{
192
pte_set_bits(pte, _PAGE_ACCESSED);
193
return(pte);
194
}
195
196
static inline pte_t pte_mkwrite_novma(pte_t pte)
197
{
198
pte_set_bits(pte, _PAGE_RW);
199
return pte;
200
}
201
202
static inline pte_t pte_mkuptodate(pte_t pte)
203
{
204
pte_clear_bits(pte, _PAGE_NEEDSYNC);
205
return pte;
206
}
207
208
static inline pte_t pte_mkneedsync(pte_t pte)
209
{
210
pte_set_bits(pte, _PAGE_NEEDSYNC);
211
return(pte);
212
}
213
214
static inline void set_pte(pte_t *pteptr, pte_t pteval)
215
{
216
pte_copy(*pteptr, pteval);
217
218
/* If it's a swap entry, it needs to be marked _PAGE_NEEDSYNC so
219
* update_pte_range knows to unmap it.
220
*/
221
222
*pteptr = pte_mkneedsync(*pteptr);
223
}
224
225
#define PFN_PTE_SHIFT PAGE_SHIFT
226
227
static inline void um_tlb_mark_sync(struct mm_struct *mm, unsigned long start,
228
unsigned long end)
229
{
230
guard(spinlock_irqsave)(&mm->context.sync_tlb_lock);
231
232
if (!mm->context.sync_tlb_range_to) {
233
mm->context.sync_tlb_range_from = start;
234
mm->context.sync_tlb_range_to = end;
235
} else {
236
if (start < mm->context.sync_tlb_range_from)
237
mm->context.sync_tlb_range_from = start;
238
if (end > mm->context.sync_tlb_range_to)
239
mm->context.sync_tlb_range_to = end;
240
}
241
}
242
243
#define set_ptes set_ptes
244
static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
245
pte_t *ptep, pte_t pte, int nr)
246
{
247
/* Basically the default implementation */
248
size_t length = nr * PAGE_SIZE;
249
250
for (;;) {
251
set_pte(ptep, pte);
252
if (--nr == 0)
253
break;
254
ptep++;
255
pte = __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
256
}
257
258
um_tlb_mark_sync(mm, addr, addr + length);
259
}
260
261
#define __HAVE_ARCH_PTE_SAME
262
static inline int pte_same(pte_t pte_a, pte_t pte_b)
263
{
264
return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEEDSYNC);
265
}
266
267
#define __virt_to_page(virt) phys_to_page(__pa(virt))
268
#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
269
270
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
271
{
272
pte_t pte;
273
274
pte_set_val(pte, pfn_to_phys(pfn), pgprot);
275
276
return pte;
277
}
278
279
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
280
{
281
pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
282
return pte;
283
}
284
285
/*
286
* the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
287
*
288
* this macro returns the index of the entry in the pmd page which would
289
* control the given virtual address
290
*/
291
#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
292
293
struct mm_struct;
294
extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
295
296
#define update_mmu_cache(vma,address,ptep) do {} while (0)
297
#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
298
299
/*
300
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
301
* are !pte_none() && !pte_present().
302
*
303
* Format of swap PTEs:
304
*
305
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
306
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
307
* <--------------- offset ----------------> E < type -> 0 0 0 1 0
308
*
309
* E is the exclusive marker that is not stored in swap entries.
310
* _PAGE_NEEDSYNC (bit 1) is always set to 1 in set_pte().
311
*/
312
#define __swp_type(x) (((x).val >> 5) & 0x1f)
313
#define __swp_offset(x) ((x).val >> 11)
314
315
#define __swp_entry(type, offset) \
316
((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
317
#define __pte_to_swp_entry(pte) \
318
((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
319
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
320
321
static inline bool pte_swp_exclusive(pte_t pte)
322
{
323
return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
324
}
325
326
static inline pte_t pte_swp_mkexclusive(pte_t pte)
327
{
328
pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
329
return pte;
330
}
331
332
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
333
{
334
pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
335
return pte;
336
}
337
338
#endif
339
340