Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/um/include/asm/pgtable.h
26481 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4
* Copyright 2003 PathScale, Inc.
5
* Derived from include/asm-i386/pgtable.h
6
*/
7
8
#ifndef __UM_PGTABLE_H
9
#define __UM_PGTABLE_H
10
11
#include <asm/page.h>
12
#include <linux/mm_types.h>
13
14
#define _PAGE_PRESENT 0x001
15
#define _PAGE_NEEDSYNC 0x002
16
#define _PAGE_RW 0x020
17
#define _PAGE_USER 0x040
18
#define _PAGE_ACCESSED 0x080
19
#define _PAGE_DIRTY 0x100
20
/* If _PAGE_PRESENT is clear, we use these: */
21
#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22
pte_present gives true */
23
24
/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
25
#define _PAGE_SWP_EXCLUSIVE 0x400
26
27
#if CONFIG_PGTABLE_LEVELS == 4
28
#include <asm/pgtable-4level.h>
29
#elif CONFIG_PGTABLE_LEVELS == 2
30
#include <asm/pgtable-2level.h>
31
#else
32
#error "Unsupported number of page table levels"
33
#endif
34
35
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
36
37
/* zero page used for uninitialized stuff */
38
extern unsigned long *empty_zero_page;
39
40
/* Just any arbitrary offset to the start of the vmalloc VM area: the
41
* current 8MB value just means that there will be a 8MB "hole" after the
42
* physical memory until the kernel virtual memory starts. That means that
43
* any out-of-bounds memory accesses will hopefully be caught.
44
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
45
* area for the same reason. ;)
46
*/
47
48
extern unsigned long end_iomem;
49
50
#define VMALLOC_OFFSET (__va_space)
51
#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
52
#define VMALLOC_END (TASK_SIZE-2*PAGE_SIZE)
53
#define MODULES_VADDR VMALLOC_START
54
#define MODULES_END VMALLOC_END
55
56
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
57
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
58
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
59
#define __PAGE_KERNEL_EXEC \
60
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
61
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
62
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
63
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
65
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
66
#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
67
68
/*
69
* The i386 can't do page protection for execute, and considers that the same
70
* are read.
71
* Also, write permissions imply read permissions. This is the closest we can
72
* get..
73
*/
74
75
/*
76
* ZERO_PAGE is a global shared page that is always zero: used
77
* for zero-mapped memory areas etc..
78
*/
79
#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
80
81
#define pte_clear(mm, addr, xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEEDSYNC))
82
83
#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEEDSYNC))
84
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
85
86
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
87
#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEEDSYNC; } while (0)
88
89
#define pmd_needsync(x) (pmd_val(x) & _PAGE_NEEDSYNC)
90
#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEEDSYNC)
91
92
#define pud_needsync(x) (pud_val(x) & _PAGE_NEEDSYNC)
93
#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEEDSYNC)
94
95
#define p4d_needsync(x) (p4d_val(x) & _PAGE_NEEDSYNC)
96
#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEEDSYNC)
97
98
#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
99
#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
100
101
#define pte_page(x) pfn_to_page(pte_pfn(x))
102
103
#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
104
105
/*
106
* =================================
107
* Flags checking section.
108
* =================================
109
*/
110
111
static inline int pte_none(pte_t pte)
112
{
113
return pte_is_zero(pte);
114
}
115
116
/*
117
* The following only work if pte_present() is true.
118
* Undefined behaviour if not..
119
*/
120
static inline int pte_read(pte_t pte)
121
{
122
return((pte_get_bits(pte, _PAGE_USER)) &&
123
!(pte_get_bits(pte, _PAGE_PROTNONE)));
124
}
125
126
static inline int pte_exec(pte_t pte){
127
return((pte_get_bits(pte, _PAGE_USER)) &&
128
!(pte_get_bits(pte, _PAGE_PROTNONE)));
129
}
130
131
static inline int pte_write(pte_t pte)
132
{
133
return((pte_get_bits(pte, _PAGE_RW)) &&
134
!(pte_get_bits(pte, _PAGE_PROTNONE)));
135
}
136
137
static inline int pte_dirty(pte_t pte)
138
{
139
return pte_get_bits(pte, _PAGE_DIRTY);
140
}
141
142
static inline int pte_young(pte_t pte)
143
{
144
return pte_get_bits(pte, _PAGE_ACCESSED);
145
}
146
147
static inline int pte_needsync(pte_t pte)
148
{
149
return pte_get_bits(pte, _PAGE_NEEDSYNC);
150
}
151
152
/*
153
* =================================
154
* Flags setting section.
155
* =================================
156
*/
157
158
static inline pte_t pte_mkclean(pte_t pte)
159
{
160
pte_clear_bits(pte, _PAGE_DIRTY);
161
return(pte);
162
}
163
164
static inline pte_t pte_mkold(pte_t pte)
165
{
166
pte_clear_bits(pte, _PAGE_ACCESSED);
167
return(pte);
168
}
169
170
static inline pte_t pte_wrprotect(pte_t pte)
171
{
172
pte_clear_bits(pte, _PAGE_RW);
173
return pte;
174
}
175
176
static inline pte_t pte_mkread(pte_t pte)
177
{
178
pte_set_bits(pte, _PAGE_USER);
179
return pte;
180
}
181
182
static inline pte_t pte_mkdirty(pte_t pte)
183
{
184
pte_set_bits(pte, _PAGE_DIRTY);
185
return(pte);
186
}
187
188
static inline pte_t pte_mkyoung(pte_t pte)
189
{
190
pte_set_bits(pte, _PAGE_ACCESSED);
191
return(pte);
192
}
193
194
static inline pte_t pte_mkwrite_novma(pte_t pte)
195
{
196
pte_set_bits(pte, _PAGE_RW);
197
return pte;
198
}
199
200
static inline pte_t pte_mkuptodate(pte_t pte)
201
{
202
pte_clear_bits(pte, _PAGE_NEEDSYNC);
203
return pte;
204
}
205
206
static inline pte_t pte_mkneedsync(pte_t pte)
207
{
208
pte_set_bits(pte, _PAGE_NEEDSYNC);
209
return(pte);
210
}
211
212
static inline void set_pte(pte_t *pteptr, pte_t pteval)
213
{
214
pte_copy(*pteptr, pteval);
215
216
/* If it's a swap entry, it needs to be marked _PAGE_NEEDSYNC so
217
* update_pte_range knows to unmap it.
218
*/
219
220
*pteptr = pte_mkneedsync(*pteptr);
221
}
222
223
#define PFN_PTE_SHIFT PAGE_SHIFT
224
225
static inline void um_tlb_mark_sync(struct mm_struct *mm, unsigned long start,
226
unsigned long end)
227
{
228
if (!mm->context.sync_tlb_range_to) {
229
mm->context.sync_tlb_range_from = start;
230
mm->context.sync_tlb_range_to = end;
231
} else {
232
if (start < mm->context.sync_tlb_range_from)
233
mm->context.sync_tlb_range_from = start;
234
if (end > mm->context.sync_tlb_range_to)
235
mm->context.sync_tlb_range_to = end;
236
}
237
}
238
239
#define set_ptes set_ptes
240
static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
241
pte_t *ptep, pte_t pte, int nr)
242
{
243
/* Basically the default implementation */
244
size_t length = nr * PAGE_SIZE;
245
246
for (;;) {
247
set_pte(ptep, pte);
248
if (--nr == 0)
249
break;
250
ptep++;
251
pte = __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
252
}
253
254
um_tlb_mark_sync(mm, addr, addr + length);
255
}
256
257
#define __HAVE_ARCH_PTE_SAME
258
static inline int pte_same(pte_t pte_a, pte_t pte_b)
259
{
260
return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEEDSYNC);
261
}
262
263
#define __virt_to_page(virt) phys_to_page(__pa(virt))
264
#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
265
266
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
267
{
268
pte_t pte;
269
270
pte_set_val(pte, pfn_to_phys(pfn), pgprot);
271
272
return pte;
273
}
274
275
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
276
{
277
pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
278
return pte;
279
}
280
281
/*
282
* the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
283
*
284
* this macro returns the index of the entry in the pmd page which would
285
* control the given virtual address
286
*/
287
#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
288
289
struct mm_struct;
290
extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
291
292
#define update_mmu_cache(vma,address,ptep) do {} while (0)
293
#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
294
295
/*
296
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
297
* are !pte_none() && !pte_present().
298
*
299
* Format of swap PTEs:
300
*
301
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
302
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
303
* <--------------- offset ----------------> E < type -> 0 0 0 1 0
304
*
305
* E is the exclusive marker that is not stored in swap entries.
306
* _PAGE_NEEDSYNC (bit 1) is always set to 1 in set_pte().
307
*/
308
#define __swp_type(x) (((x).val >> 5) & 0x1f)
309
#define __swp_offset(x) ((x).val >> 11)
310
311
#define __swp_entry(type, offset) \
312
((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
313
#define __pte_to_swp_entry(pte) \
314
((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
315
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
316
317
static inline bool pte_swp_exclusive(pte_t pte)
318
{
319
return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
320
}
321
322
static inline pte_t pte_swp_mkexclusive(pte_t pte)
323
{
324
pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
325
return pte;
326
}
327
328
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
329
{
330
pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
331
return pte;
332
}
333
334
#endif
335
336