Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/um/os-Linux/skas/process.c
49875 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2021 Benjamin Berg <[email protected]>
4
* Copyright (C) 2015 Thomas Meyer ([email protected])
5
* Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6
*/
7
8
#include <stdlib.h>
9
#include <stdbool.h>
10
#include <unistd.h>
11
#include <sched.h>
12
#include <errno.h>
13
#include <string.h>
14
#include <fcntl.h>
15
#include <mem_user.h>
16
#include <sys/mman.h>
17
#include <sys/wait.h>
18
#include <sys/stat.h>
19
#include <sys/socket.h>
20
#include <asm/unistd.h>
21
#include <as-layout.h>
22
#include <init.h>
23
#include <kern_util.h>
24
#include <mem.h>
25
#include <os.h>
26
#include <ptrace_user.h>
27
#include <registers.h>
28
#include <skas.h>
29
#include <sysdep/stub.h>
30
#include <sysdep/mcontext.h>
31
#include <linux/futex.h>
32
#include <linux/threads.h>
33
#include <timetravel.h>
34
#include <asm-generic/rwonce.h>
35
#include "../internal.h"
36
37
int is_skas_winch(int pid, int fd, void *data)
38
{
39
return pid == getpgrp();
40
}
41
42
static const char *ptrace_reg_name(int idx)
43
{
44
#define R(n) case HOST_##n: return #n
45
46
switch (idx) {
47
#ifdef __x86_64__
48
R(BX);
49
R(CX);
50
R(DI);
51
R(SI);
52
R(DX);
53
R(BP);
54
R(AX);
55
R(R8);
56
R(R9);
57
R(R10);
58
R(R11);
59
R(R12);
60
R(R13);
61
R(R14);
62
R(R15);
63
R(ORIG_AX);
64
R(CS);
65
R(SS);
66
R(EFLAGS);
67
#elif defined(__i386__)
68
R(IP);
69
R(SP);
70
R(EFLAGS);
71
R(AX);
72
R(BX);
73
R(CX);
74
R(DX);
75
R(SI);
76
R(DI);
77
R(BP);
78
R(CS);
79
R(SS);
80
R(DS);
81
R(FS);
82
R(ES);
83
R(GS);
84
R(ORIG_AX);
85
#endif
86
}
87
return "";
88
}
89
90
static int ptrace_dump_regs(int pid)
91
{
92
unsigned long regs[MAX_REG_NR];
93
int i;
94
95
if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
96
return -errno;
97
98
printk(UM_KERN_ERR "Stub registers -\n");
99
for (i = 0; i < ARRAY_SIZE(regs); i++) {
100
const char *regname = ptrace_reg_name(i);
101
102
printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
103
}
104
105
return 0;
106
}
107
108
/*
109
* Signals that are OK to receive in the stub - we'll just continue it.
110
* SIGWINCH will happen when UML is inside a detached screen.
111
*/
112
#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
113
114
/* Signals that the stub will finish with - anything else is an error */
115
#define STUB_DONE_MASK (1 << SIGTRAP)
116
117
void wait_stub_done(int pid)
118
{
119
int n, status, err;
120
121
while (1) {
122
CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
123
if ((n < 0) || !WIFSTOPPED(status))
124
goto bad_wait;
125
126
if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
127
break;
128
129
err = ptrace(PTRACE_CONT, pid, 0, 0);
130
if (err) {
131
printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
132
__func__, errno);
133
fatal_sigsegv();
134
}
135
}
136
137
if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
138
return;
139
140
bad_wait:
141
err = ptrace_dump_regs(pid);
142
if (err)
143
printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
144
-err);
145
printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
146
__func__, pid, n, errno, status);
147
fatal_sigsegv();
148
}
149
150
void wait_stub_done_seccomp(struct mm_id *mm_idp, int running, int wait_sigsys)
151
{
152
struct stub_data *data = (void *)mm_idp->stack;
153
int ret;
154
155
do {
156
const char byte = 0;
157
struct iovec iov = {
158
.iov_base = (void *)&byte,
159
.iov_len = sizeof(byte),
160
};
161
union {
162
char data[CMSG_SPACE(sizeof(mm_idp->syscall_fd_map))];
163
struct cmsghdr align;
164
} ctrl;
165
struct msghdr msgh = {
166
.msg_iov = &iov,
167
.msg_iovlen = 1,
168
};
169
170
if (!running) {
171
if (mm_idp->syscall_fd_num) {
172
unsigned int fds_size =
173
sizeof(int) * mm_idp->syscall_fd_num;
174
struct cmsghdr *cmsg;
175
176
msgh.msg_control = ctrl.data;
177
msgh.msg_controllen = CMSG_SPACE(fds_size);
178
cmsg = CMSG_FIRSTHDR(&msgh);
179
cmsg->cmsg_level = SOL_SOCKET;
180
cmsg->cmsg_type = SCM_RIGHTS;
181
cmsg->cmsg_len = CMSG_LEN(fds_size);
182
memcpy(CMSG_DATA(cmsg), mm_idp->syscall_fd_map,
183
fds_size);
184
185
CATCH_EINTR(syscall(__NR_sendmsg, mm_idp->sock,
186
&msgh, 0));
187
}
188
189
data->signal = 0;
190
data->futex = FUTEX_IN_CHILD;
191
CATCH_EINTR(syscall(__NR_futex, &data->futex,
192
FUTEX_WAKE, 1, NULL, NULL, 0));
193
}
194
195
do {
196
/*
197
* We need to check whether the child is still alive
198
* before and after the FUTEX_WAIT call. Before, in
199
* case it just died but we still updated data->futex
200
* to FUTEX_IN_CHILD. And after, in case it died while
201
* we were waiting (and SIGCHLD woke us up, see the
202
* IRQ handler in mmu.c).
203
*
204
* Either way, if PID is negative, then we have no
205
* choice but to kill the task.
206
*/
207
if (__READ_ONCE(mm_idp->pid) < 0)
208
goto out_kill;
209
210
ret = syscall(__NR_futex, &data->futex,
211
FUTEX_WAIT, FUTEX_IN_CHILD,
212
NULL, NULL, 0);
213
if (ret < 0 && errno != EINTR && errno != EAGAIN) {
214
printk(UM_KERN_ERR "%s : FUTEX_WAIT failed, errno = %d\n",
215
__func__, errno);
216
goto out_kill;
217
}
218
} while (data->futex == FUTEX_IN_CHILD);
219
220
if (__READ_ONCE(mm_idp->pid) < 0)
221
goto out_kill;
222
223
running = 0;
224
225
/* We may receive a SIGALRM before SIGSYS, iterate again. */
226
} while (wait_sigsys && data->signal == SIGALRM);
227
228
if (data->mctx_offset > sizeof(data->sigstack) - sizeof(mcontext_t)) {
229
printk(UM_KERN_ERR "%s : invalid mcontext offset", __func__);
230
goto out_kill;
231
}
232
233
if (wait_sigsys && data->signal != SIGSYS) {
234
printk(UM_KERN_ERR "%s : expected SIGSYS but got %d",
235
__func__, data->signal);
236
goto out_kill;
237
}
238
239
return;
240
241
out_kill:
242
printk(UM_KERN_ERR "%s : failed to wait for stub, pid = %d, errno = %d\n",
243
__func__, mm_idp->pid, errno);
244
/* This is not true inside start_userspace */
245
if (current_mm_id() == mm_idp)
246
fatal_sigsegv();
247
}
248
249
extern unsigned long current_stub_stack(void);
250
251
static void get_skas_faultinfo(int pid, struct faultinfo *fi)
252
{
253
int err;
254
255
err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
256
if (err) {
257
printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
258
"errno = %d\n", pid, errno);
259
fatal_sigsegv();
260
}
261
wait_stub_done(pid);
262
263
/*
264
* faultinfo is prepared by the stub_segv_handler at start of
265
* the stub stack page. We just have to copy it.
266
*/
267
memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
268
}
269
270
static void handle_trap(struct uml_pt_regs *regs)
271
{
272
if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
273
fatal_sigsegv();
274
275
handle_syscall(regs);
276
}
277
278
extern char __syscall_stub_start[];
279
280
static int stub_exe_fd;
281
282
struct tramp_data {
283
struct stub_data *stub_data;
284
/* 0 is inherited, 1 is the kernel side */
285
int sockpair[2];
286
};
287
288
#ifndef CLOSE_RANGE_CLOEXEC
289
#define CLOSE_RANGE_CLOEXEC (1U << 2)
290
#endif
291
292
static int userspace_tramp(void *data)
293
{
294
struct tramp_data *tramp_data = data;
295
char *const argv[] = { "uml-userspace", NULL };
296
unsigned long long offset;
297
struct stub_init_data init_data = {
298
.seccomp = using_seccomp,
299
.stub_start = STUB_START,
300
};
301
int ret;
302
303
if (using_seccomp) {
304
init_data.signal_handler = STUB_CODE +
305
(unsigned long) stub_signal_interrupt -
306
(unsigned long) __syscall_stub_start;
307
init_data.signal_restorer = STUB_CODE +
308
(unsigned long) stub_signal_restorer -
309
(unsigned long) __syscall_stub_start;
310
} else {
311
init_data.signal_handler = STUB_CODE +
312
(unsigned long) stub_segv_handler -
313
(unsigned long) __syscall_stub_start;
314
init_data.signal_restorer = 0;
315
}
316
317
init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
318
&offset);
319
init_data.stub_code_offset = MMAP_OFFSET(offset);
320
321
init_data.stub_data_fd = phys_mapping(uml_to_phys(tramp_data->stub_data),
322
&offset);
323
init_data.stub_data_offset = MMAP_OFFSET(offset);
324
325
/*
326
* Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs
327
* and then unsetting it on all memory related FDs.
328
* This is not strictly necessary from a safety perspective.
329
*/
330
syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC);
331
332
fcntl(init_data.stub_data_fd, F_SETFD, 0);
333
334
/* dup2 signaling FD/socket to STDIN */
335
if (dup2(tramp_data->sockpair[0], 0) < 0)
336
exit(3);
337
close(tramp_data->sockpair[0]);
338
339
/* Write init_data and close write side */
340
ret = write(tramp_data->sockpair[1], &init_data, sizeof(init_data));
341
close(tramp_data->sockpair[1]);
342
343
if (ret != sizeof(init_data))
344
exit(4);
345
346
/* Raw execveat for compatibility with older libc versions */
347
syscall(__NR_execveat, stub_exe_fd, (unsigned long)"",
348
(unsigned long)argv, NULL, AT_EMPTY_PATH);
349
350
exit(5);
351
}
352
353
extern char stub_exe_start[];
354
extern char stub_exe_end[];
355
356
extern char *tempdir;
357
358
#define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"
359
360
#ifndef MFD_EXEC
361
#define MFD_EXEC 0x0010U
362
#endif
363
364
static int __init init_stub_exe_fd(void)
365
{
366
size_t written = 0;
367
char *tmpfile = NULL;
368
369
stub_exe_fd = memfd_create("uml-userspace",
370
MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);
371
372
if (stub_exe_fd < 0) {
373
printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");
374
375
tmpfile = malloc(strlen(tempdir) +
376
strlen(STUB_EXE_NAME_TEMPLATE) + 1);
377
if (tmpfile == NULL)
378
panic("Failed to allocate memory for stub binary name");
379
380
strcpy(tmpfile, tempdir);
381
strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);
382
383
stub_exe_fd = mkstemp(tmpfile);
384
if (stub_exe_fd < 0)
385
panic("Could not create temporary file for stub binary: %d",
386
-errno);
387
}
388
389
while (written < stub_exe_end - stub_exe_start) {
390
ssize_t res = write(stub_exe_fd, stub_exe_start + written,
391
stub_exe_end - stub_exe_start - written);
392
if (res < 0) {
393
if (errno == EINTR)
394
continue;
395
396
if (tmpfile)
397
unlink(tmpfile);
398
panic("Failed write stub binary: %d", -errno);
399
}
400
401
written += res;
402
}
403
404
if (!tmpfile) {
405
fcntl(stub_exe_fd, F_ADD_SEALS,
406
F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
407
} else {
408
if (fchmod(stub_exe_fd, 00500) < 0) {
409
unlink(tmpfile);
410
panic("Could not make stub binary executable: %d",
411
-errno);
412
}
413
414
close(stub_exe_fd);
415
stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
416
if (stub_exe_fd < 0) {
417
unlink(tmpfile);
418
panic("Could not reopen stub binary: %d", -errno);
419
}
420
421
unlink(tmpfile);
422
free(tmpfile);
423
}
424
425
return 0;
426
}
427
__initcall(init_stub_exe_fd);
428
429
int using_seccomp;
430
431
/**
432
* start_userspace() - prepare a new userspace process
433
* @mm_id: The corresponding struct mm_id
434
*
435
* Setups a new temporary stack page that is used while userspace_tramp() runs
436
* Clones the kernel process into a new userspace process, with FDs only.
437
*
438
* Return: When positive: the process id of the new userspace process,
439
* when negative: an error number.
440
* FIXME: can PIDs become negative?!
441
*/
442
int start_userspace(struct mm_id *mm_id)
443
{
444
struct stub_data *proc_data = (void *)mm_id->stack;
445
struct tramp_data tramp_data = {
446
.stub_data = proc_data,
447
};
448
void *stack;
449
unsigned long sp;
450
int status, n, err;
451
452
/* setup a temporary stack page */
453
stack = mmap(NULL, UM_KERN_PAGE_SIZE,
454
PROT_READ | PROT_WRITE | PROT_EXEC,
455
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
456
if (stack == MAP_FAILED) {
457
err = -errno;
458
printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
459
__func__, errno);
460
return err;
461
}
462
463
/* set stack pointer to the end of the stack page, so it can grow downwards */
464
sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
465
466
/* socket pair for init data and SECCOMP FD passing (no CLOEXEC here) */
467
if (socketpair(AF_UNIX, SOCK_STREAM, 0, tramp_data.sockpair)) {
468
err = -errno;
469
printk(UM_KERN_ERR "%s : socketpair failed, errno = %d\n",
470
__func__, errno);
471
return err;
472
}
473
474
if (using_seccomp)
475
proc_data->futex = FUTEX_IN_CHILD;
476
477
mm_id->pid = clone(userspace_tramp, (void *) sp,
478
CLONE_VFORK | CLONE_VM | SIGCHLD,
479
(void *)&tramp_data);
480
if (mm_id->pid < 0) {
481
err = -errno;
482
printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
483
__func__, errno);
484
goto out_close;
485
}
486
487
if (using_seccomp) {
488
wait_stub_done_seccomp(mm_id, 1, 1);
489
} else {
490
do {
491
CATCH_EINTR(n = waitpid(mm_id->pid, &status,
492
WUNTRACED | __WALL));
493
if (n < 0) {
494
err = -errno;
495
printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
496
__func__, errno);
497
goto out_kill;
498
}
499
} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
500
501
if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
502
err = -EINVAL;
503
printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
504
__func__, status);
505
goto out_kill;
506
}
507
508
if (ptrace(PTRACE_SETOPTIONS, mm_id->pid, NULL,
509
(void *) PTRACE_O_TRACESYSGOOD) < 0) {
510
err = -errno;
511
printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
512
__func__, errno);
513
goto out_kill;
514
}
515
}
516
517
if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
518
err = -errno;
519
printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
520
__func__, errno);
521
goto out_kill;
522
}
523
524
close(tramp_data.sockpair[0]);
525
if (using_seccomp)
526
mm_id->sock = tramp_data.sockpair[1];
527
else
528
close(tramp_data.sockpair[1]);
529
530
return 0;
531
532
out_kill:
533
os_kill_ptraced_process(mm_id->pid, 1);
534
out_close:
535
close(tramp_data.sockpair[0]);
536
close(tramp_data.sockpair[1]);
537
538
mm_id->pid = -1;
539
540
return err;
541
}
542
543
static int unscheduled_userspace_iterations;
544
extern unsigned long tt_extra_sched_jiffies;
545
546
void userspace(struct uml_pt_regs *regs)
547
{
548
int err, status, op;
549
siginfo_t si_local;
550
siginfo_t *si;
551
int sig;
552
553
/* Handle any immediate reschedules or signals */
554
interrupt_end();
555
556
while (1) {
557
struct mm_id *mm_id = current_mm_id();
558
559
/*
560
* At any given time, only one CPU thread can enter the
561
* turnstile to operate on the same stub process, including
562
* executing stub system calls (mmap and munmap).
563
*/
564
enter_turnstile(mm_id);
565
566
/*
567
* When we are in time-travel mode, userspace can theoretically
568
* do a *lot* of work without being scheduled. The problem with
569
* this is that it will prevent kernel bookkeeping (primarily
570
* the RCU) from running and this can for example cause OOM
571
* situations.
572
*
573
* This code accounts a jiffie against the scheduling clock
574
* after the defined userspace iterations in the same thread.
575
* By doing so the situation is effectively prevented.
576
*/
577
if (time_travel_mode == TT_MODE_INFCPU ||
578
time_travel_mode == TT_MODE_EXTERNAL) {
579
#ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
580
if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
581
unscheduled_userspace_iterations++ >
582
CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
583
tt_extra_sched_jiffies += 1;
584
unscheduled_userspace_iterations = 0;
585
}
586
#endif
587
}
588
589
time_travel_print_bc_msg();
590
591
current_mm_sync();
592
593
if (using_seccomp) {
594
struct stub_data *proc_data = (void *) mm_id->stack;
595
596
err = set_stub_state(regs, proc_data, singlestepping());
597
if (err) {
598
printk(UM_KERN_ERR "%s - failed to set regs: %d",
599
__func__, err);
600
fatal_sigsegv();
601
}
602
603
/* Must have been reset by the syscall caller */
604
if (proc_data->restart_wait != 0)
605
panic("Programming error: Flag to only run syscalls in child was not cleared!");
606
607
/* Mark pending syscalls for flushing */
608
proc_data->syscall_data_len = mm_id->syscall_data_len;
609
610
wait_stub_done_seccomp(mm_id, 0, 0);
611
612
sig = proc_data->signal;
613
614
if (sig == SIGTRAP && proc_data->err != 0) {
615
printk(UM_KERN_ERR "%s - Error flushing stub syscalls",
616
__func__);
617
syscall_stub_dump_error(mm_id);
618
mm_id->syscall_data_len = proc_data->err;
619
fatal_sigsegv();
620
}
621
622
mm_id->syscall_data_len = 0;
623
mm_id->syscall_fd_num = 0;
624
625
err = get_stub_state(regs, proc_data, NULL);
626
if (err) {
627
printk(UM_KERN_ERR "%s - failed to get regs: %d",
628
__func__, err);
629
fatal_sigsegv();
630
}
631
632
if (proc_data->si_offset > sizeof(proc_data->sigstack) - sizeof(*si))
633
panic("%s - Invalid siginfo offset from child", __func__);
634
635
si = &si_local;
636
memcpy(si, &proc_data->sigstack[proc_data->si_offset], sizeof(*si));
637
638
regs->is_user = 1;
639
640
/* Fill in ORIG_RAX and extract fault information */
641
PT_SYSCALL_NR(regs->gp) = si->si_syscall;
642
if (sig == SIGSEGV) {
643
mcontext_t *mcontext = (void *)&proc_data->sigstack[proc_data->mctx_offset];
644
645
GET_FAULTINFO_FROM_MC(regs->faultinfo, mcontext);
646
}
647
} else {
648
int pid = mm_id->pid;
649
650
/* Flush out any pending syscalls */
651
err = syscall_stub_flush(mm_id);
652
if (err) {
653
if (err == -ENOMEM)
654
report_enomem();
655
656
printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
657
__func__, -err);
658
fatal_sigsegv();
659
}
660
661
/*
662
* This can legitimately fail if the process loads a
663
* bogus value into a segment register. It will
664
* segfault and PTRACE_GETREGS will read that value
665
* out of the process. However, PTRACE_SETREGS will
666
* fail. In this case, there is nothing to do but
667
* just kill the process.
668
*/
669
if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
670
printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
671
__func__, errno);
672
fatal_sigsegv();
673
}
674
675
if (put_fp_registers(pid, regs->fp)) {
676
printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
677
__func__, errno);
678
fatal_sigsegv();
679
}
680
681
if (singlestepping())
682
op = PTRACE_SYSEMU_SINGLESTEP;
683
else
684
op = PTRACE_SYSEMU;
685
686
if (ptrace(op, pid, 0, 0)) {
687
printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
688
__func__, op, errno);
689
fatal_sigsegv();
690
}
691
692
CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
693
if (err < 0) {
694
printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
695
__func__, errno);
696
fatal_sigsegv();
697
}
698
699
regs->is_user = 1;
700
if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
701
printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
702
__func__, errno);
703
fatal_sigsegv();
704
}
705
706
if (get_fp_registers(pid, regs->fp)) {
707
printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n",
708
__func__, errno);
709
fatal_sigsegv();
710
}
711
712
if (WIFSTOPPED(status)) {
713
sig = WSTOPSIG(status);
714
715
/*
716
* These signal handlers need the si argument
717
* and SIGSEGV needs the faultinfo.
718
* The SIGIO and SIGALARM handlers which constitute
719
* the majority of invocations, do not use it.
720
*/
721
switch (sig) {
722
case SIGSEGV:
723
get_skas_faultinfo(pid,
724
&regs->faultinfo);
725
fallthrough;
726
case SIGTRAP:
727
case SIGILL:
728
case SIGBUS:
729
case SIGFPE:
730
case SIGWINCH:
731
ptrace(PTRACE_GETSIGINFO, pid, 0,
732
(struct siginfo *)&si_local);
733
si = &si_local;
734
break;
735
default:
736
si = NULL;
737
break;
738
}
739
} else {
740
sig = 0;
741
}
742
}
743
744
exit_turnstile(mm_id);
745
746
UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
747
748
if (sig) {
749
switch (sig) {
750
case SIGSEGV:
751
if (using_seccomp || PTRACE_FULL_FAULTINFO)
752
(*sig_info[SIGSEGV])(SIGSEGV,
753
(struct siginfo *)si,
754
regs, NULL);
755
else
756
segv(regs->faultinfo, 0, 1, NULL, NULL);
757
758
break;
759
case SIGSYS:
760
handle_syscall(regs);
761
break;
762
case SIGTRAP + 0x80:
763
handle_trap(regs);
764
break;
765
case SIGTRAP:
766
relay_signal(SIGTRAP, (struct siginfo *)si, regs, NULL);
767
break;
768
case SIGALRM:
769
break;
770
case SIGIO:
771
case SIGILL:
772
case SIGBUS:
773
case SIGFPE:
774
case SIGWINCH:
775
block_signals_trace();
776
(*sig_info[sig])(sig, (struct siginfo *)si, regs, NULL);
777
unblock_signals_trace();
778
break;
779
default:
780
printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
781
__func__, sig);
782
fatal_sigsegv();
783
}
784
interrupt_end();
785
786
/* Avoid -ERESTARTSYS handling in host */
787
if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
788
PT_SYSCALL_NR(regs->gp) = -1;
789
}
790
}
791
}
792
793
void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
794
{
795
(*buf)[0].JB_IP = (unsigned long) handler;
796
(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
797
sizeof(void *);
798
}
799
800
#define INIT_JMP_NEW_THREAD 0
801
#define INIT_JMP_CALLBACK 1
802
#define INIT_JMP_HALT 2
803
#define INIT_JMP_REBOOT 3
804
805
void switch_threads(jmp_buf *me, jmp_buf *you)
806
{
807
unscheduled_userspace_iterations = 0;
808
809
if (UML_SETJMP(me) == 0)
810
UML_LONGJMP(you, 1);
811
}
812
813
static jmp_buf initial_jmpbuf;
814
815
static __thread void (*cb_proc)(void *arg);
816
static __thread void *cb_arg;
817
static __thread jmp_buf *cb_back;
818
819
int start_idle_thread(void *stack, jmp_buf *switch_buf)
820
{
821
int n;
822
823
set_handler(SIGWINCH);
824
825
/*
826
* Can't use UML_SETJMP or UML_LONGJMP here because they save
827
* and restore signals, with the possible side-effect of
828
* trying to handle any signals which came when they were
829
* blocked, which can't be done on this stack.
830
* Signals must be blocked when jumping back here and restored
831
* after returning to the jumper.
832
*/
833
n = setjmp(initial_jmpbuf);
834
switch (n) {
835
case INIT_JMP_NEW_THREAD:
836
(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
837
(*switch_buf)[0].JB_SP = (unsigned long) stack +
838
UM_THREAD_SIZE - sizeof(void *);
839
break;
840
case INIT_JMP_CALLBACK:
841
(*cb_proc)(cb_arg);
842
longjmp(*cb_back, 1);
843
break;
844
case INIT_JMP_HALT:
845
kmalloc_ok = 0;
846
return 0;
847
case INIT_JMP_REBOOT:
848
kmalloc_ok = 0;
849
return 1;
850
default:
851
printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
852
__func__, n);
853
fatal_sigsegv();
854
}
855
longjmp(*switch_buf, 1);
856
857
/* unreachable */
858
printk(UM_KERN_ERR "impossible long jump!");
859
fatal_sigsegv();
860
return 0;
861
}
862
863
void initial_thread_cb_skas(void (*proc)(void *), void *arg)
864
{
865
jmp_buf here;
866
867
cb_proc = proc;
868
cb_arg = arg;
869
cb_back = &here;
870
871
initial_jmpbuf_lock();
872
if (UML_SETJMP(&here) == 0)
873
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
874
initial_jmpbuf_unlock();
875
876
cb_proc = NULL;
877
cb_arg = NULL;
878
cb_back = NULL;
879
}
880
881
void halt_skas(void)
882
{
883
initial_jmpbuf_lock();
884
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
885
/* unreachable */
886
}
887
888
static bool noreboot;
889
890
static int __init noreboot_cmd_param(char *str, int *add)
891
{
892
*add = 0;
893
noreboot = true;
894
return 0;
895
}
896
897
__uml_setup("noreboot", noreboot_cmd_param,
898
"noreboot\n"
899
" Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
900
" This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
901
" crashes in CI\n\n");
902
903
void reboot_skas(void)
904
{
905
initial_jmpbuf_lock();
906
UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
907
/* unreachable */
908
}
909
910