Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/um/os-Linux/skas/process.c
26489 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2021 Benjamin Berg <[email protected]>
4
* Copyright (C) 2015 Thomas Meyer ([email protected])
5
* Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6
*/
7
8
#include <stdlib.h>
9
#include <stdbool.h>
10
#include <unistd.h>
11
#include <sched.h>
12
#include <errno.h>
13
#include <string.h>
14
#include <fcntl.h>
15
#include <mem_user.h>
16
#include <sys/mman.h>
17
#include <sys/wait.h>
18
#include <sys/stat.h>
19
#include <sys/socket.h>
20
#include <asm/unistd.h>
21
#include <as-layout.h>
22
#include <init.h>
23
#include <kern_util.h>
24
#include <mem.h>
25
#include <os.h>
26
#include <ptrace_user.h>
27
#include <registers.h>
28
#include <skas.h>
29
#include <sysdep/stub.h>
30
#include <sysdep/mcontext.h>
31
#include <linux/futex.h>
32
#include <linux/threads.h>
33
#include <timetravel.h>
34
#include <asm-generic/rwonce.h>
35
#include "../internal.h"
36
37
int is_skas_winch(int pid, int fd, void *data)
38
{
39
return pid == getpgrp();
40
}
41
42
static const char *ptrace_reg_name(int idx)
43
{
44
#define R(n) case HOST_##n: return #n
45
46
switch (idx) {
47
#ifdef __x86_64__
48
R(BX);
49
R(CX);
50
R(DI);
51
R(SI);
52
R(DX);
53
R(BP);
54
R(AX);
55
R(R8);
56
R(R9);
57
R(R10);
58
R(R11);
59
R(R12);
60
R(R13);
61
R(R14);
62
R(R15);
63
R(ORIG_AX);
64
R(CS);
65
R(SS);
66
R(EFLAGS);
67
#elif defined(__i386__)
68
R(IP);
69
R(SP);
70
R(EFLAGS);
71
R(AX);
72
R(BX);
73
R(CX);
74
R(DX);
75
R(SI);
76
R(DI);
77
R(BP);
78
R(CS);
79
R(SS);
80
R(DS);
81
R(FS);
82
R(ES);
83
R(GS);
84
R(ORIG_AX);
85
#endif
86
}
87
return "";
88
}
89
90
static int ptrace_dump_regs(int pid)
91
{
92
unsigned long regs[MAX_REG_NR];
93
int i;
94
95
if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
96
return -errno;
97
98
printk(UM_KERN_ERR "Stub registers -\n");
99
for (i = 0; i < ARRAY_SIZE(regs); i++) {
100
const char *regname = ptrace_reg_name(i);
101
102
printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
103
}
104
105
return 0;
106
}
107
108
/*
109
* Signals that are OK to receive in the stub - we'll just continue it.
110
* SIGWINCH will happen when UML is inside a detached screen.
111
*/
112
#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
113
114
/* Signals that the stub will finish with - anything else is an error */
115
#define STUB_DONE_MASK (1 << SIGTRAP)
116
117
void wait_stub_done(int pid)
118
{
119
int n, status, err;
120
121
while (1) {
122
CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
123
if ((n < 0) || !WIFSTOPPED(status))
124
goto bad_wait;
125
126
if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
127
break;
128
129
err = ptrace(PTRACE_CONT, pid, 0, 0);
130
if (err) {
131
printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
132
__func__, errno);
133
fatal_sigsegv();
134
}
135
}
136
137
if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
138
return;
139
140
bad_wait:
141
err = ptrace_dump_regs(pid);
142
if (err)
143
printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
144
-err);
145
printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
146
__func__, pid, n, errno, status);
147
fatal_sigsegv();
148
}
149
150
void wait_stub_done_seccomp(struct mm_id *mm_idp, int running, int wait_sigsys)
151
{
152
struct stub_data *data = (void *)mm_idp->stack;
153
int ret;
154
155
do {
156
const char byte = 0;
157
struct iovec iov = {
158
.iov_base = (void *)&byte,
159
.iov_len = sizeof(byte),
160
};
161
union {
162
char data[CMSG_SPACE(sizeof(mm_idp->syscall_fd_map))];
163
struct cmsghdr align;
164
} ctrl;
165
struct msghdr msgh = {
166
.msg_iov = &iov,
167
.msg_iovlen = 1,
168
};
169
170
if (!running) {
171
if (mm_idp->syscall_fd_num) {
172
unsigned int fds_size =
173
sizeof(int) * mm_idp->syscall_fd_num;
174
struct cmsghdr *cmsg;
175
176
msgh.msg_control = ctrl.data;
177
msgh.msg_controllen = CMSG_SPACE(fds_size);
178
cmsg = CMSG_FIRSTHDR(&msgh);
179
cmsg->cmsg_level = SOL_SOCKET;
180
cmsg->cmsg_type = SCM_RIGHTS;
181
cmsg->cmsg_len = CMSG_LEN(fds_size);
182
memcpy(CMSG_DATA(cmsg), mm_idp->syscall_fd_map,
183
fds_size);
184
185
CATCH_EINTR(syscall(__NR_sendmsg, mm_idp->sock,
186
&msgh, 0));
187
}
188
189
data->signal = 0;
190
data->futex = FUTEX_IN_CHILD;
191
CATCH_EINTR(syscall(__NR_futex, &data->futex,
192
FUTEX_WAKE, 1, NULL, NULL, 0));
193
}
194
195
do {
196
/*
197
* We need to check whether the child is still alive
198
* before and after the FUTEX_WAIT call. Before, in
199
* case it just died but we still updated data->futex
200
* to FUTEX_IN_CHILD. And after, in case it died while
201
* we were waiting (and SIGCHLD woke us up, see the
202
* IRQ handler in mmu.c).
203
*
204
* Either way, if PID is negative, then we have no
205
* choice but to kill the task.
206
*/
207
if (__READ_ONCE(mm_idp->pid) < 0)
208
goto out_kill;
209
210
ret = syscall(__NR_futex, &data->futex,
211
FUTEX_WAIT, FUTEX_IN_CHILD,
212
NULL, NULL, 0);
213
if (ret < 0 && errno != EINTR && errno != EAGAIN) {
214
printk(UM_KERN_ERR "%s : FUTEX_WAIT failed, errno = %d\n",
215
__func__, errno);
216
goto out_kill;
217
}
218
} while (data->futex == FUTEX_IN_CHILD);
219
220
if (__READ_ONCE(mm_idp->pid) < 0)
221
goto out_kill;
222
223
running = 0;
224
225
/* We may receive a SIGALRM before SIGSYS, iterate again. */
226
} while (wait_sigsys && data->signal == SIGALRM);
227
228
if (data->mctx_offset > sizeof(data->sigstack) - sizeof(mcontext_t)) {
229
printk(UM_KERN_ERR "%s : invalid mcontext offset", __func__);
230
goto out_kill;
231
}
232
233
if (wait_sigsys && data->signal != SIGSYS) {
234
printk(UM_KERN_ERR "%s : expected SIGSYS but got %d",
235
__func__, data->signal);
236
goto out_kill;
237
}
238
239
return;
240
241
out_kill:
242
printk(UM_KERN_ERR "%s : failed to wait for stub, pid = %d, errno = %d\n",
243
__func__, mm_idp->pid, errno);
244
/* This is not true inside start_userspace */
245
if (current_mm_id() == mm_idp)
246
fatal_sigsegv();
247
}
248
249
extern unsigned long current_stub_stack(void);
250
251
static void get_skas_faultinfo(int pid, struct faultinfo *fi)
252
{
253
int err;
254
255
err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
256
if (err) {
257
printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
258
"errno = %d\n", pid, errno);
259
fatal_sigsegv();
260
}
261
wait_stub_done(pid);
262
263
/*
264
* faultinfo is prepared by the stub_segv_handler at start of
265
* the stub stack page. We just have to copy it.
266
*/
267
memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
268
}
269
270
static void handle_trap(struct uml_pt_regs *regs)
271
{
272
if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
273
fatal_sigsegv();
274
275
handle_syscall(regs);
276
}
277
278
extern char __syscall_stub_start[];
279
280
static int stub_exe_fd;
281
282
struct tramp_data {
283
struct stub_data *stub_data;
284
/* 0 is inherited, 1 is the kernel side */
285
int sockpair[2];
286
};
287
288
#ifndef CLOSE_RANGE_CLOEXEC
289
#define CLOSE_RANGE_CLOEXEC (1U << 2)
290
#endif
291
292
static int userspace_tramp(void *data)
293
{
294
struct tramp_data *tramp_data = data;
295
char *const argv[] = { "uml-userspace", NULL };
296
unsigned long long offset;
297
struct stub_init_data init_data = {
298
.seccomp = using_seccomp,
299
.stub_start = STUB_START,
300
};
301
struct iomem_region *iomem;
302
int ret;
303
304
if (using_seccomp) {
305
init_data.signal_handler = STUB_CODE +
306
(unsigned long) stub_signal_interrupt -
307
(unsigned long) __syscall_stub_start;
308
init_data.signal_restorer = STUB_CODE +
309
(unsigned long) stub_signal_restorer -
310
(unsigned long) __syscall_stub_start;
311
} else {
312
init_data.signal_handler = STUB_CODE +
313
(unsigned long) stub_segv_handler -
314
(unsigned long) __syscall_stub_start;
315
init_data.signal_restorer = 0;
316
}
317
318
init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
319
&offset);
320
init_data.stub_code_offset = MMAP_OFFSET(offset);
321
322
init_data.stub_data_fd = phys_mapping(uml_to_phys(tramp_data->stub_data),
323
&offset);
324
init_data.stub_data_offset = MMAP_OFFSET(offset);
325
326
/*
327
* Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs
328
* and then unsetting it on all memory related FDs.
329
* This is not strictly necessary from a safety perspective.
330
*/
331
syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC);
332
333
fcntl(init_data.stub_data_fd, F_SETFD, 0);
334
335
/* In SECCOMP mode, these FDs are passed when needed */
336
if (!using_seccomp) {
337
for (iomem = iomem_regions; iomem; iomem = iomem->next)
338
fcntl(iomem->fd, F_SETFD, 0);
339
}
340
341
/* dup2 signaling FD/socket to STDIN */
342
if (dup2(tramp_data->sockpair[0], 0) < 0)
343
exit(3);
344
close(tramp_data->sockpair[0]);
345
346
/* Write init_data and close write side */
347
ret = write(tramp_data->sockpair[1], &init_data, sizeof(init_data));
348
close(tramp_data->sockpair[1]);
349
350
if (ret != sizeof(init_data))
351
exit(4);
352
353
/* Raw execveat for compatibility with older libc versions */
354
syscall(__NR_execveat, stub_exe_fd, (unsigned long)"",
355
(unsigned long)argv, NULL, AT_EMPTY_PATH);
356
357
exit(5);
358
}
359
360
extern char stub_exe_start[];
361
extern char stub_exe_end[];
362
363
extern char *tempdir;
364
365
#define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"
366
367
#ifndef MFD_EXEC
368
#define MFD_EXEC 0x0010U
369
#endif
370
371
static int __init init_stub_exe_fd(void)
372
{
373
size_t written = 0;
374
char *tmpfile = NULL;
375
376
stub_exe_fd = memfd_create("uml-userspace",
377
MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);
378
379
if (stub_exe_fd < 0) {
380
printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");
381
382
tmpfile = malloc(strlen(tempdir) +
383
strlen(STUB_EXE_NAME_TEMPLATE) + 1);
384
if (tmpfile == NULL)
385
panic("Failed to allocate memory for stub binary name");
386
387
strcpy(tmpfile, tempdir);
388
strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);
389
390
stub_exe_fd = mkstemp(tmpfile);
391
if (stub_exe_fd < 0)
392
panic("Could not create temporary file for stub binary: %d",
393
-errno);
394
}
395
396
while (written < stub_exe_end - stub_exe_start) {
397
ssize_t res = write(stub_exe_fd, stub_exe_start + written,
398
stub_exe_end - stub_exe_start - written);
399
if (res < 0) {
400
if (errno == EINTR)
401
continue;
402
403
if (tmpfile)
404
unlink(tmpfile);
405
panic("Failed write stub binary: %d", -errno);
406
}
407
408
written += res;
409
}
410
411
if (!tmpfile) {
412
fcntl(stub_exe_fd, F_ADD_SEALS,
413
F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
414
} else {
415
if (fchmod(stub_exe_fd, 00500) < 0) {
416
unlink(tmpfile);
417
panic("Could not make stub binary executable: %d",
418
-errno);
419
}
420
421
close(stub_exe_fd);
422
stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
423
if (stub_exe_fd < 0) {
424
unlink(tmpfile);
425
panic("Could not reopen stub binary: %d", -errno);
426
}
427
428
unlink(tmpfile);
429
free(tmpfile);
430
}
431
432
return 0;
433
}
434
__initcall(init_stub_exe_fd);
435
436
int using_seccomp;
437
438
/**
439
* start_userspace() - prepare a new userspace process
440
* @mm_id: The corresponding struct mm_id
441
*
442
* Setups a new temporary stack page that is used while userspace_tramp() runs
443
* Clones the kernel process into a new userspace process, with FDs only.
444
*
445
* Return: When positive: the process id of the new userspace process,
446
* when negative: an error number.
447
* FIXME: can PIDs become negative?!
448
*/
449
int start_userspace(struct mm_id *mm_id)
450
{
451
struct stub_data *proc_data = (void *)mm_id->stack;
452
struct tramp_data tramp_data = {
453
.stub_data = proc_data,
454
};
455
void *stack;
456
unsigned long sp;
457
int status, n, err;
458
459
/* setup a temporary stack page */
460
stack = mmap(NULL, UM_KERN_PAGE_SIZE,
461
PROT_READ | PROT_WRITE | PROT_EXEC,
462
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
463
if (stack == MAP_FAILED) {
464
err = -errno;
465
printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
466
__func__, errno);
467
return err;
468
}
469
470
/* set stack pointer to the end of the stack page, so it can grow downwards */
471
sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
472
473
/* socket pair for init data and SECCOMP FD passing (no CLOEXEC here) */
474
if (socketpair(AF_UNIX, SOCK_STREAM, 0, tramp_data.sockpair)) {
475
err = -errno;
476
printk(UM_KERN_ERR "%s : socketpair failed, errno = %d\n",
477
__func__, errno);
478
return err;
479
}
480
481
if (using_seccomp)
482
proc_data->futex = FUTEX_IN_CHILD;
483
484
mm_id->pid = clone(userspace_tramp, (void *) sp,
485
CLONE_VFORK | CLONE_VM | SIGCHLD,
486
(void *)&tramp_data);
487
if (mm_id->pid < 0) {
488
err = -errno;
489
printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
490
__func__, errno);
491
goto out_close;
492
}
493
494
if (using_seccomp) {
495
wait_stub_done_seccomp(mm_id, 1, 1);
496
} else {
497
do {
498
CATCH_EINTR(n = waitpid(mm_id->pid, &status,
499
WUNTRACED | __WALL));
500
if (n < 0) {
501
err = -errno;
502
printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
503
__func__, errno);
504
goto out_kill;
505
}
506
} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
507
508
if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
509
err = -EINVAL;
510
printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
511
__func__, status);
512
goto out_kill;
513
}
514
515
if (ptrace(PTRACE_SETOPTIONS, mm_id->pid, NULL,
516
(void *) PTRACE_O_TRACESYSGOOD) < 0) {
517
err = -errno;
518
printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
519
__func__, errno);
520
goto out_kill;
521
}
522
}
523
524
if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
525
err = -errno;
526
printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
527
__func__, errno);
528
goto out_kill;
529
}
530
531
close(tramp_data.sockpair[0]);
532
if (using_seccomp)
533
mm_id->sock = tramp_data.sockpair[1];
534
else
535
close(tramp_data.sockpair[1]);
536
537
return 0;
538
539
out_kill:
540
os_kill_ptraced_process(mm_id->pid, 1);
541
out_close:
542
close(tramp_data.sockpair[0]);
543
close(tramp_data.sockpair[1]);
544
545
mm_id->pid = -1;
546
547
return err;
548
}
549
550
static int unscheduled_userspace_iterations;
551
extern unsigned long tt_extra_sched_jiffies;
552
553
void userspace(struct uml_pt_regs *regs)
554
{
555
int err, status, op;
556
siginfo_t si_ptrace;
557
siginfo_t *si;
558
int sig;
559
560
/* Handle any immediate reschedules or signals */
561
interrupt_end();
562
563
while (1) {
564
struct mm_id *mm_id = current_mm_id();
565
566
/*
567
* When we are in time-travel mode, userspace can theoretically
568
* do a *lot* of work without being scheduled. The problem with
569
* this is that it will prevent kernel bookkeeping (primarily
570
* the RCU) from running and this can for example cause OOM
571
* situations.
572
*
573
* This code accounts a jiffie against the scheduling clock
574
* after the defined userspace iterations in the same thread.
575
* By doing so the situation is effectively prevented.
576
*/
577
if (time_travel_mode == TT_MODE_INFCPU ||
578
time_travel_mode == TT_MODE_EXTERNAL) {
579
#ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
580
if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
581
unscheduled_userspace_iterations++ >
582
CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
583
tt_extra_sched_jiffies += 1;
584
unscheduled_userspace_iterations = 0;
585
}
586
#endif
587
}
588
589
time_travel_print_bc_msg();
590
591
current_mm_sync();
592
593
if (using_seccomp) {
594
struct stub_data *proc_data = (void *) mm_id->stack;
595
596
err = set_stub_state(regs, proc_data, singlestepping());
597
if (err) {
598
printk(UM_KERN_ERR "%s - failed to set regs: %d",
599
__func__, err);
600
fatal_sigsegv();
601
}
602
603
/* Must have been reset by the syscall caller */
604
if (proc_data->restart_wait != 0)
605
panic("Programming error: Flag to only run syscalls in child was not cleared!");
606
607
/* Mark pending syscalls for flushing */
608
proc_data->syscall_data_len = mm_id->syscall_data_len;
609
610
wait_stub_done_seccomp(mm_id, 0, 0);
611
612
sig = proc_data->signal;
613
614
if (sig == SIGTRAP && proc_data->err != 0) {
615
printk(UM_KERN_ERR "%s - Error flushing stub syscalls",
616
__func__);
617
syscall_stub_dump_error(mm_id);
618
mm_id->syscall_data_len = proc_data->err;
619
fatal_sigsegv();
620
}
621
622
mm_id->syscall_data_len = 0;
623
mm_id->syscall_fd_num = 0;
624
625
err = get_stub_state(regs, proc_data, NULL);
626
if (err) {
627
printk(UM_KERN_ERR "%s - failed to get regs: %d",
628
__func__, err);
629
fatal_sigsegv();
630
}
631
632
if (proc_data->si_offset > sizeof(proc_data->sigstack) - sizeof(*si))
633
panic("%s - Invalid siginfo offset from child",
634
__func__);
635
si = (void *)&proc_data->sigstack[proc_data->si_offset];
636
637
regs->is_user = 1;
638
639
/* Fill in ORIG_RAX and extract fault information */
640
PT_SYSCALL_NR(regs->gp) = si->si_syscall;
641
if (sig == SIGSEGV) {
642
mcontext_t *mcontext = (void *)&proc_data->sigstack[proc_data->mctx_offset];
643
644
GET_FAULTINFO_FROM_MC(regs->faultinfo, mcontext);
645
}
646
} else {
647
int pid = mm_id->pid;
648
649
/* Flush out any pending syscalls */
650
err = syscall_stub_flush(mm_id);
651
if (err) {
652
if (err == -ENOMEM)
653
report_enomem();
654
655
printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
656
__func__, -err);
657
fatal_sigsegv();
658
}
659
660
/*
661
* This can legitimately fail if the process loads a
662
* bogus value into a segment register. It will
663
* segfault and PTRACE_GETREGS will read that value
664
* out of the process. However, PTRACE_SETREGS will
665
* fail. In this case, there is nothing to do but
666
* just kill the process.
667
*/
668
if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
669
printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
670
__func__, errno);
671
fatal_sigsegv();
672
}
673
674
if (put_fp_registers(pid, regs->fp)) {
675
printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
676
__func__, errno);
677
fatal_sigsegv();
678
}
679
680
if (singlestepping())
681
op = PTRACE_SYSEMU_SINGLESTEP;
682
else
683
op = PTRACE_SYSEMU;
684
685
if (ptrace(op, pid, 0, 0)) {
686
printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
687
__func__, op, errno);
688
fatal_sigsegv();
689
}
690
691
CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
692
if (err < 0) {
693
printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
694
__func__, errno);
695
fatal_sigsegv();
696
}
697
698
regs->is_user = 1;
699
if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
700
printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
701
__func__, errno);
702
fatal_sigsegv();
703
}
704
705
if (get_fp_registers(pid, regs->fp)) {
706
printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n",
707
__func__, errno);
708
fatal_sigsegv();
709
}
710
711
if (WIFSTOPPED(status)) {
712
sig = WSTOPSIG(status);
713
714
/*
715
* These signal handlers need the si argument
716
* and SIGSEGV needs the faultinfo.
717
* The SIGIO and SIGALARM handlers which constitute
718
* the majority of invocations, do not use it.
719
*/
720
switch (sig) {
721
case SIGSEGV:
722
get_skas_faultinfo(pid,
723
&regs->faultinfo);
724
fallthrough;
725
case SIGTRAP:
726
case SIGILL:
727
case SIGBUS:
728
case SIGFPE:
729
case SIGWINCH:
730
ptrace(PTRACE_GETSIGINFO, pid, 0,
731
(struct siginfo *)&si_ptrace);
732
si = &si_ptrace;
733
break;
734
default:
735
si = NULL;
736
break;
737
}
738
} else {
739
sig = 0;
740
}
741
}
742
743
UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
744
745
if (sig) {
746
switch (sig) {
747
case SIGSEGV:
748
if (using_seccomp || PTRACE_FULL_FAULTINFO)
749
(*sig_info[SIGSEGV])(SIGSEGV,
750
(struct siginfo *)si,
751
regs, NULL);
752
else
753
segv(regs->faultinfo, 0, 1, NULL, NULL);
754
755
break;
756
case SIGSYS:
757
handle_syscall(regs);
758
break;
759
case SIGTRAP + 0x80:
760
handle_trap(regs);
761
break;
762
case SIGTRAP:
763
relay_signal(SIGTRAP, (struct siginfo *)si, regs, NULL);
764
break;
765
case SIGALRM:
766
break;
767
case SIGIO:
768
case SIGILL:
769
case SIGBUS:
770
case SIGFPE:
771
case SIGWINCH:
772
block_signals_trace();
773
(*sig_info[sig])(sig, (struct siginfo *)si, regs, NULL);
774
unblock_signals_trace();
775
break;
776
default:
777
printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
778
__func__, sig);
779
fatal_sigsegv();
780
}
781
interrupt_end();
782
783
/* Avoid -ERESTARTSYS handling in host */
784
if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
785
PT_SYSCALL_NR(regs->gp) = -1;
786
}
787
}
788
}
789
790
void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
791
{
792
(*buf)[0].JB_IP = (unsigned long) handler;
793
(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
794
sizeof(void *);
795
}
796
797
#define INIT_JMP_NEW_THREAD 0
798
#define INIT_JMP_CALLBACK 1
799
#define INIT_JMP_HALT 2
800
#define INIT_JMP_REBOOT 3
801
802
void switch_threads(jmp_buf *me, jmp_buf *you)
803
{
804
unscheduled_userspace_iterations = 0;
805
806
if (UML_SETJMP(me) == 0)
807
UML_LONGJMP(you, 1);
808
}
809
810
static jmp_buf initial_jmpbuf;
811
812
/* XXX Make these percpu */
813
static void (*cb_proc)(void *arg);
814
static void *cb_arg;
815
static jmp_buf *cb_back;
816
817
int start_idle_thread(void *stack, jmp_buf *switch_buf)
818
{
819
int n;
820
821
set_handler(SIGWINCH);
822
823
/*
824
* Can't use UML_SETJMP or UML_LONGJMP here because they save
825
* and restore signals, with the possible side-effect of
826
* trying to handle any signals which came when they were
827
* blocked, which can't be done on this stack.
828
* Signals must be blocked when jumping back here and restored
829
* after returning to the jumper.
830
*/
831
n = setjmp(initial_jmpbuf);
832
switch (n) {
833
case INIT_JMP_NEW_THREAD:
834
(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
835
(*switch_buf)[0].JB_SP = (unsigned long) stack +
836
UM_THREAD_SIZE - sizeof(void *);
837
break;
838
case INIT_JMP_CALLBACK:
839
(*cb_proc)(cb_arg);
840
longjmp(*cb_back, 1);
841
break;
842
case INIT_JMP_HALT:
843
kmalloc_ok = 0;
844
return 0;
845
case INIT_JMP_REBOOT:
846
kmalloc_ok = 0;
847
return 1;
848
default:
849
printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
850
__func__, n);
851
fatal_sigsegv();
852
}
853
longjmp(*switch_buf, 1);
854
855
/* unreachable */
856
printk(UM_KERN_ERR "impossible long jump!");
857
fatal_sigsegv();
858
return 0;
859
}
860
861
void initial_thread_cb_skas(void (*proc)(void *), void *arg)
862
{
863
jmp_buf here;
864
865
cb_proc = proc;
866
cb_arg = arg;
867
cb_back = &here;
868
869
block_signals_trace();
870
if (UML_SETJMP(&here) == 0)
871
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
872
unblock_signals_trace();
873
874
cb_proc = NULL;
875
cb_arg = NULL;
876
cb_back = NULL;
877
}
878
879
void halt_skas(void)
880
{
881
block_signals_trace();
882
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
883
}
884
885
static bool noreboot;
886
887
static int __init noreboot_cmd_param(char *str, int *add)
888
{
889
*add = 0;
890
noreboot = true;
891
return 0;
892
}
893
894
__uml_setup("noreboot", noreboot_cmd_param,
895
"noreboot\n"
896
" Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
897
" This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
898
" crashes in CI\n");
899
900
void reboot_skas(void)
901
{
902
block_signals_trace();
903
UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
904
}
905
906