Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/boot/compressed/kaslr.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* kaslr.c
4
*
5
* This contains the routines needed to generate a reasonable level of
6
* entropy to choose a randomized kernel base address offset in support
7
* of Kernel Address Space Layout Randomization (KASLR). Additionally
8
* handles walking the physical memory maps (and tracking memory regions
9
* to avoid) in order to select a physical memory location that can
10
* contain the entire properly aligned running kernel image.
11
*
12
*/
13
14
/*
15
* isspace() in linux/ctype.h is expected by next_args() to filter
16
* out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17
* since isdigit() is implemented in both of them. Hence disable it
18
* here.
19
*/
20
#define BOOT_CTYPE_H
21
22
#include "misc.h"
23
#include "error.h"
24
#include "../string.h"
25
#include "efi.h"
26
27
#include <generated/compile.h>
28
#include <generated/utsversion.h>
29
#include <generated/utsrelease.h>
30
31
#define _SETUP
32
#include <asm/setup.h> /* For COMMAND_LINE_SIZE */
33
#undef _SETUP
34
35
extern unsigned long get_cmd_line_ptr(void);
36
37
/* Simplified build-specific string for starting entropy. */
38
static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
39
LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
40
41
static unsigned long rotate_xor(unsigned long hash, const void *area,
42
size_t size)
43
{
44
size_t i;
45
unsigned long *ptr = (unsigned long *)area;
46
47
for (i = 0; i < size / sizeof(hash); i++) {
48
/* Rotate by odd number of bits and XOR. */
49
hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
50
hash ^= ptr[i];
51
}
52
53
return hash;
54
}
55
56
/* Attempt to create a simple but unpredictable starting entropy. */
57
static unsigned long get_boot_seed(void)
58
{
59
unsigned long hash = 0;
60
61
hash = rotate_xor(hash, build_str, sizeof(build_str));
62
hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr));
63
64
return hash;
65
}
66
67
#define KASLR_COMPRESSED_BOOT
68
#include "../../lib/kaslr.c"
69
70
71
/* Only supporting at most 4 unusable memmap regions with kaslr */
72
#define MAX_MEMMAP_REGIONS 4
73
74
static bool memmap_too_large;
75
76
77
/*
78
* Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
79
* It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
80
*/
81
static u64 mem_limit;
82
83
/* Number of immovable memory regions */
84
static int num_immovable_mem;
85
86
enum mem_avoid_index {
87
MEM_AVOID_ZO_RANGE = 0,
88
MEM_AVOID_INITRD,
89
MEM_AVOID_CMDLINE,
90
MEM_AVOID_BOOTPARAMS,
91
MEM_AVOID_MEMMAP_BEGIN,
92
MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
93
MEM_AVOID_MAX,
94
};
95
96
static struct mem_vector mem_avoid[MEM_AVOID_MAX];
97
98
static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
99
{
100
/* Item one is entirely before item two. */
101
if (one->start + one->size <= two->start)
102
return false;
103
/* Item one is entirely after item two. */
104
if (one->start >= two->start + two->size)
105
return false;
106
return true;
107
}
108
109
char *skip_spaces(const char *str)
110
{
111
while (isspace(*str))
112
++str;
113
return (char *)str;
114
}
115
#include "../../../../lib/ctype.c"
116
#include "../../../../lib/cmdline.c"
117
118
static int
119
parse_memmap(char *p, u64 *start, u64 *size)
120
{
121
char *oldp;
122
123
if (!p)
124
return -EINVAL;
125
126
/* We don't care about this option here */
127
if (!strncmp(p, "exactmap", 8))
128
return -EINVAL;
129
130
oldp = p;
131
*size = memparse(p, &p);
132
if (p == oldp)
133
return -EINVAL;
134
135
switch (*p) {
136
case '#':
137
case '$':
138
case '!':
139
*start = memparse(p + 1, &p);
140
return 0;
141
case '@':
142
/*
143
* memmap=nn@ss specifies usable region, should
144
* be skipped
145
*/
146
*size = 0;
147
fallthrough;
148
default:
149
/*
150
* If w/o offset, only size specified, memmap=nn[KMG] has the
151
* same behaviour as mem=nn[KMG]. It limits the max address
152
* system can use. Region above the limit should be avoided.
153
*/
154
*start = 0;
155
return 0;
156
}
157
158
return -EINVAL;
159
}
160
161
static void mem_avoid_memmap(char *str)
162
{
163
static int i;
164
165
if (i >= MAX_MEMMAP_REGIONS)
166
return;
167
168
while (str && (i < MAX_MEMMAP_REGIONS)) {
169
int rc;
170
u64 start, size;
171
char *k = strchr(str, ',');
172
173
if (k)
174
*k++ = 0;
175
176
rc = parse_memmap(str, &start, &size);
177
if (rc < 0)
178
break;
179
str = k;
180
181
if (start == 0) {
182
/* Store the specified memory limit if size > 0 */
183
if (size > 0 && size < mem_limit)
184
mem_limit = size;
185
186
continue;
187
}
188
189
mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
190
mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
191
i++;
192
}
193
194
/* More than 4 memmaps, fail kaslr */
195
if ((i >= MAX_MEMMAP_REGIONS) && str)
196
memmap_too_large = true;
197
}
198
199
/* Store the number of 1GB huge pages which users specified: */
200
static unsigned long max_gb_huge_pages;
201
202
static void parse_gb_huge_pages(char *param, char *val)
203
{
204
static bool gbpage_sz;
205
char *p;
206
207
if (!strcmp(param, "hugepagesz")) {
208
p = val;
209
if (memparse(p, &p) != PUD_SIZE) {
210
gbpage_sz = false;
211
return;
212
}
213
214
if (gbpage_sz)
215
warn("Repeatedly set hugeTLB page size of 1G!\n");
216
gbpage_sz = true;
217
return;
218
}
219
220
if (!strcmp(param, "hugepages") && gbpage_sz) {
221
p = val;
222
max_gb_huge_pages = simple_strtoull(p, &p, 0);
223
return;
224
}
225
}
226
227
static void handle_mem_options(void)
228
{
229
char *args = (char *)get_cmd_line_ptr();
230
size_t len;
231
char *tmp_cmdline;
232
char *param, *val;
233
u64 mem_size;
234
235
if (!args)
236
return;
237
238
len = strnlen(args, COMMAND_LINE_SIZE-1);
239
tmp_cmdline = malloc(len + 1);
240
if (!tmp_cmdline)
241
error("Failed to allocate space for tmp_cmdline");
242
243
memcpy(tmp_cmdline, args, len);
244
tmp_cmdline[len] = 0;
245
args = tmp_cmdline;
246
247
/* Chew leading spaces */
248
args = skip_spaces(args);
249
250
while (*args) {
251
args = next_arg(args, &param, &val);
252
/* Stop at -- */
253
if (!val && strcmp(param, "--") == 0)
254
break;
255
256
if (!strcmp(param, "memmap")) {
257
mem_avoid_memmap(val);
258
} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
259
parse_gb_huge_pages(param, val);
260
} else if (!strcmp(param, "mem")) {
261
char *p = val;
262
263
if (!strcmp(p, "nopentium"))
264
continue;
265
mem_size = memparse(p, &p);
266
if (mem_size == 0)
267
break;
268
269
if (mem_size < mem_limit)
270
mem_limit = mem_size;
271
}
272
}
273
274
free(tmp_cmdline);
275
return;
276
}
277
278
/*
279
* In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
280
* on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
281
*
282
* The mem_avoid array is used to store the ranges that need to be avoided
283
* when KASLR searches for an appropriate random address. We must avoid any
284
* regions that are unsafe to overlap with during decompression, and other
285
* things like the initrd, cmdline and boot_params. This comment seeks to
286
* explain mem_avoid as clearly as possible since incorrect mem_avoid
287
* memory ranges lead to really hard to debug boot failures.
288
*
289
* The initrd, cmdline, and boot_params are trivial to identify for
290
* avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
291
* MEM_AVOID_BOOTPARAMS respectively below.
292
*
293
* What is not obvious how to avoid is the range of memory that is used
294
* during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
295
* the compressed kernel (ZO) and its run space, which is used to extract
296
* the uncompressed kernel (VO) and relocs.
297
*
298
* ZO's full run size sits against the end of the decompression buffer, so
299
* we can calculate where text, data, bss, etc of ZO are positioned more
300
* easily.
301
*
302
* For additional background, the decompression calculations can be found
303
* in header.S, and the memory diagram is based on the one found in misc.c.
304
*
305
* The following conditions are already enforced by the image layouts and
306
* associated code:
307
* - input + input_size >= output + output_size
308
* - kernel_total_size <= init_size
309
* - kernel_total_size <= output_size (see Note below)
310
* - output + init_size >= output + output_size
311
*
312
* (Note that kernel_total_size and output_size have no fundamental
313
* relationship, but output_size is passed to choose_random_location
314
* as a maximum of the two. The diagram is showing a case where
315
* kernel_total_size is larger than output_size, but this case is
316
* handled by bumping output_size.)
317
*
318
* The above conditions can be illustrated by a diagram:
319
*
320
* 0 output input input+input_size output+init_size
321
* | | | | |
322
* | | | | |
323
* |-----|--------|--------|--------------|-----------|--|-------------|
324
* | | |
325
* | | |
326
* output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size
327
*
328
* [output, output+init_size) is the entire memory range used for
329
* extracting the compressed image.
330
*
331
* [output, output+kernel_total_size) is the range needed for the
332
* uncompressed kernel (VO) and its run size (bss, brk, etc).
333
*
334
* [output, output+output_size) is VO plus relocs (i.e. the entire
335
* uncompressed payload contained by ZO). This is the area of the buffer
336
* written to during decompression.
337
*
338
* [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
339
* range of the copied ZO and decompression code. (i.e. the range
340
* covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
341
*
342
* [input, input+input_size) is the original copied compressed image (ZO)
343
* (i.e. it does not include its run size). This range must be avoided
344
* because it contains the data used for decompression.
345
*
346
* [input+input_size, output+init_size) is [_text, _end) for ZO. This
347
* range includes ZO's heap and stack, and must be avoided since it
348
* performs the decompression.
349
*
350
* Since the above two ranges need to be avoided and they are adjacent,
351
* they can be merged, resulting in: [input, output+init_size) which
352
* becomes the MEM_AVOID_ZO_RANGE below.
353
*/
354
static void mem_avoid_init(unsigned long input, unsigned long input_size,
355
unsigned long output)
356
{
357
unsigned long init_size = boot_params_ptr->hdr.init_size;
358
u64 initrd_start, initrd_size;
359
unsigned long cmd_line, cmd_line_size;
360
361
/*
362
* Avoid the region that is unsafe to overlap during
363
* decompression.
364
*/
365
mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
366
mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
367
368
/* Avoid initrd. */
369
initrd_start = (u64)boot_params_ptr->ext_ramdisk_image << 32;
370
initrd_start |= boot_params_ptr->hdr.ramdisk_image;
371
initrd_size = (u64)boot_params_ptr->ext_ramdisk_size << 32;
372
initrd_size |= boot_params_ptr->hdr.ramdisk_size;
373
mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
374
mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
375
/* No need to set mapping for initrd, it will be handled in VO. */
376
377
/* Avoid kernel command line. */
378
cmd_line = get_cmd_line_ptr();
379
/* Calculate size of cmd_line. */
380
if (cmd_line) {
381
cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
382
mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
383
mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
384
}
385
386
/* Avoid boot parameters. */
387
mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr;
388
mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr);
389
390
/* We don't need to set a mapping for setup_data. */
391
392
/* Mark the memmap regions we need to avoid */
393
handle_mem_options();
394
395
/* Enumerate the immovable memory regions */
396
num_immovable_mem = count_immovable_mem_regions();
397
}
398
399
/*
400
* Does this memory vector overlap a known avoided area? If so, record the
401
* overlap region with the lowest address.
402
*/
403
static bool mem_avoid_overlap(struct mem_vector *img,
404
struct mem_vector *overlap)
405
{
406
int i;
407
struct setup_data *ptr;
408
u64 earliest = img->start + img->size;
409
bool is_overlapping = false;
410
411
for (i = 0; i < MEM_AVOID_MAX; i++) {
412
if (mem_overlaps(img, &mem_avoid[i]) &&
413
mem_avoid[i].start < earliest) {
414
*overlap = mem_avoid[i];
415
earliest = overlap->start;
416
is_overlapping = true;
417
}
418
}
419
420
/* Avoid all entries in the setup_data linked list. */
421
ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data;
422
while (ptr) {
423
struct mem_vector avoid;
424
425
avoid.start = (unsigned long)ptr;
426
avoid.size = sizeof(*ptr) + ptr->len;
427
428
if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
429
*overlap = avoid;
430
earliest = overlap->start;
431
is_overlapping = true;
432
}
433
434
if (ptr->type == SETUP_INDIRECT &&
435
((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
436
avoid.start = ((struct setup_indirect *)ptr->data)->addr;
437
avoid.size = ((struct setup_indirect *)ptr->data)->len;
438
439
if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
440
*overlap = avoid;
441
earliest = overlap->start;
442
is_overlapping = true;
443
}
444
}
445
446
ptr = (struct setup_data *)(unsigned long)ptr->next;
447
}
448
449
return is_overlapping;
450
}
451
452
struct slot_area {
453
u64 addr;
454
unsigned long num;
455
};
456
457
#define MAX_SLOT_AREA 100
458
459
static struct slot_area slot_areas[MAX_SLOT_AREA];
460
static unsigned int slot_area_index;
461
static unsigned long slot_max;
462
463
static void store_slot_info(struct mem_vector *region, unsigned long image_size)
464
{
465
struct slot_area slot_area;
466
467
if (slot_area_index == MAX_SLOT_AREA)
468
return;
469
470
slot_area.addr = region->start;
471
slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
472
473
slot_areas[slot_area_index++] = slot_area;
474
slot_max += slot_area.num;
475
}
476
477
/*
478
* Skip as many 1GB huge pages as possible in the passed region
479
* according to the number which users specified:
480
*/
481
static void
482
process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
483
{
484
u64 pud_start, pud_end;
485
unsigned long gb_huge_pages;
486
struct mem_vector tmp;
487
488
if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
489
store_slot_info(region, image_size);
490
return;
491
}
492
493
/* Are there any 1GB pages in the region? */
494
pud_start = ALIGN(region->start, PUD_SIZE);
495
pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
496
497
/* No good 1GB huge pages found: */
498
if (pud_start >= pud_end) {
499
store_slot_info(region, image_size);
500
return;
501
}
502
503
/* Check if the head part of the region is usable. */
504
if (pud_start >= region->start + image_size) {
505
tmp.start = region->start;
506
tmp.size = pud_start - region->start;
507
store_slot_info(&tmp, image_size);
508
}
509
510
/* Skip the good 1GB pages. */
511
gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
512
if (gb_huge_pages > max_gb_huge_pages) {
513
pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
514
max_gb_huge_pages = 0;
515
} else {
516
max_gb_huge_pages -= gb_huge_pages;
517
}
518
519
/* Check if the tail part of the region is usable. */
520
if (region->start + region->size >= pud_end + image_size) {
521
tmp.start = pud_end;
522
tmp.size = region->start + region->size - pud_end;
523
store_slot_info(&tmp, image_size);
524
}
525
}
526
527
static u64 slots_fetch_random(void)
528
{
529
unsigned long slot;
530
unsigned int i;
531
532
/* Handle case of no slots stored. */
533
if (slot_max == 0)
534
return 0;
535
536
slot = kaslr_get_random_long("Physical") % slot_max;
537
538
for (i = 0; i < slot_area_index; i++) {
539
if (slot >= slot_areas[i].num) {
540
slot -= slot_areas[i].num;
541
continue;
542
}
543
return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
544
}
545
546
if (i == slot_area_index)
547
debug_putstr("slots_fetch_random() failed!?\n");
548
return 0;
549
}
550
551
static void __process_mem_region(struct mem_vector *entry,
552
unsigned long minimum,
553
unsigned long image_size)
554
{
555
struct mem_vector region, overlap;
556
u64 region_end;
557
558
/* Enforce minimum and memory limit. */
559
region.start = max_t(u64, entry->start, minimum);
560
region_end = min(entry->start + entry->size, mem_limit);
561
562
/* Give up if slot area array is full. */
563
while (slot_area_index < MAX_SLOT_AREA) {
564
/* Potentially raise address to meet alignment needs. */
565
region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
566
567
/* Did we raise the address above the passed in memory entry? */
568
if (region.start > region_end)
569
return;
570
571
/* Reduce size by any delta from the original address. */
572
region.size = region_end - region.start;
573
574
/* Return if region can't contain decompressed kernel */
575
if (region.size < image_size)
576
return;
577
578
/* If nothing overlaps, store the region and return. */
579
if (!mem_avoid_overlap(&region, &overlap)) {
580
process_gb_huge_pages(&region, image_size);
581
return;
582
}
583
584
/* Store beginning of region if holds at least image_size. */
585
if (overlap.start >= region.start + image_size) {
586
region.size = overlap.start - region.start;
587
process_gb_huge_pages(&region, image_size);
588
}
589
590
/* Clip off the overlapping region and start over. */
591
region.start = overlap.start + overlap.size;
592
}
593
}
594
595
static bool process_mem_region(struct mem_vector *region,
596
unsigned long minimum,
597
unsigned long image_size)
598
{
599
int i;
600
/*
601
* If no immovable memory found, or MEMORY_HOTREMOVE disabled,
602
* use @region directly.
603
*/
604
if (!num_immovable_mem) {
605
__process_mem_region(region, minimum, image_size);
606
607
if (slot_area_index == MAX_SLOT_AREA) {
608
debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
609
return true;
610
}
611
return false;
612
}
613
614
#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
615
/*
616
* If immovable memory found, filter the intersection between
617
* immovable memory and @region.
618
*/
619
for (i = 0; i < num_immovable_mem; i++) {
620
u64 start, end, entry_end, region_end;
621
struct mem_vector entry;
622
623
if (!mem_overlaps(region, &immovable_mem[i]))
624
continue;
625
626
start = immovable_mem[i].start;
627
end = start + immovable_mem[i].size;
628
region_end = region->start + region->size;
629
630
entry.start = clamp(region->start, start, end);
631
entry_end = clamp(region_end, start, end);
632
entry.size = entry_end - entry.start;
633
634
__process_mem_region(&entry, minimum, image_size);
635
636
if (slot_area_index == MAX_SLOT_AREA) {
637
debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
638
return true;
639
}
640
}
641
#endif
642
return false;
643
}
644
645
#ifdef CONFIG_EFI
646
647
/*
648
* Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are
649
* guaranteed to be free.
650
*
651
* Pick free memory more conservatively than the EFI spec allows: according to
652
* the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus
653
* available to place the kernel image into, but in practice there's firmware
654
* where using that memory leads to crashes. Buggy vendor EFI code registers
655
* for an event that triggers on SetVirtualAddressMap(). The handler assumes
656
* that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which
657
* is probably true for Windows.
658
*
659
* Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap().
660
*/
661
static inline bool memory_type_is_free(efi_memory_desc_t *md)
662
{
663
if (md->type == EFI_CONVENTIONAL_MEMORY)
664
return true;
665
666
if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
667
md->type == EFI_UNACCEPTED_MEMORY)
668
return true;
669
670
return false;
671
}
672
673
/*
674
* Returns true if we processed the EFI memmap, which we prefer over the E820
675
* table if it is available.
676
*/
677
static bool
678
process_efi_entries(unsigned long minimum, unsigned long image_size)
679
{
680
struct efi_info *e = &boot_params_ptr->efi_info;
681
bool efi_mirror_found = false;
682
struct mem_vector region;
683
efi_memory_desc_t *md;
684
unsigned long pmap;
685
char *signature;
686
u32 nr_desc;
687
int i;
688
689
signature = (char *)&e->efi_loader_signature;
690
if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
691
strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
692
return false;
693
694
#ifdef CONFIG_X86_32
695
/* Can't handle data above 4GB at this time */
696
if (e->efi_memmap_hi) {
697
warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
698
return false;
699
}
700
pmap = e->efi_memmap;
701
#else
702
pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
703
#endif
704
705
nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
706
for (i = 0; i < nr_desc; i++) {
707
md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
708
if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
709
efi_mirror_found = true;
710
break;
711
}
712
}
713
714
for (i = 0; i < nr_desc; i++) {
715
md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
716
717
if (!memory_type_is_free(md))
718
continue;
719
720
if (efi_soft_reserve_enabled() &&
721
(md->attribute & EFI_MEMORY_SP))
722
continue;
723
724
if (efi_mirror_found &&
725
!(md->attribute & EFI_MEMORY_MORE_RELIABLE))
726
continue;
727
728
region.start = md->phys_addr;
729
region.size = md->num_pages << EFI_PAGE_SHIFT;
730
if (process_mem_region(&region, minimum, image_size))
731
break;
732
}
733
return true;
734
}
735
#else
736
static inline bool
737
process_efi_entries(unsigned long minimum, unsigned long image_size)
738
{
739
return false;
740
}
741
#endif
742
743
static void process_e820_entries(unsigned long minimum,
744
unsigned long image_size)
745
{
746
int i;
747
struct mem_vector region;
748
struct boot_e820_entry *entry;
749
750
/* Verify potential e820 positions, appending to slots list. */
751
for (i = 0; i < boot_params_ptr->e820_entries; i++) {
752
entry = &boot_params_ptr->e820_table[i];
753
/* Skip non-RAM entries. */
754
if (entry->type != E820_TYPE_RAM)
755
continue;
756
region.start = entry->addr;
757
region.size = entry->size;
758
if (process_mem_region(&region, minimum, image_size))
759
break;
760
}
761
}
762
763
/*
764
* If KHO is active, only process its scratch areas to ensure we are not
765
* stepping onto preserved memory.
766
*/
767
static bool process_kho_entries(unsigned long minimum, unsigned long image_size)
768
{
769
struct kho_scratch *kho_scratch;
770
struct setup_data *ptr;
771
struct kho_data *kho;
772
int i, nr_areas = 0;
773
774
if (!IS_ENABLED(CONFIG_KEXEC_HANDOVER))
775
return false;
776
777
ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data;
778
while (ptr) {
779
if (ptr->type == SETUP_KEXEC_KHO) {
780
kho = (struct kho_data *)(unsigned long)ptr->data;
781
kho_scratch = (void *)(unsigned long)kho->scratch_addr;
782
nr_areas = kho->scratch_size / sizeof(*kho_scratch);
783
break;
784
}
785
786
ptr = (struct setup_data *)(unsigned long)ptr->next;
787
}
788
789
if (!nr_areas)
790
return false;
791
792
for (i = 0; i < nr_areas; i++) {
793
struct kho_scratch *area = &kho_scratch[i];
794
struct mem_vector region = {
795
.start = area->addr,
796
.size = area->size,
797
};
798
799
if (process_mem_region(&region, minimum, image_size))
800
break;
801
}
802
803
return true;
804
}
805
806
static unsigned long find_random_phys_addr(unsigned long minimum,
807
unsigned long image_size)
808
{
809
u64 phys_addr;
810
811
/* Bail out early if it's impossible to succeed. */
812
if (minimum + image_size > mem_limit)
813
return 0;
814
815
/* Check if we had too many memmaps. */
816
if (memmap_too_large) {
817
debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
818
return 0;
819
}
820
821
/*
822
* During kexec handover only process KHO scratch areas that are known
823
* not to contain any data that must be preserved.
824
*/
825
if (!process_kho_entries(minimum, image_size) &&
826
!process_efi_entries(minimum, image_size))
827
process_e820_entries(minimum, image_size);
828
829
phys_addr = slots_fetch_random();
830
831
/* Perform a final check to make sure the address is in range. */
832
if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
833
warn("Invalid physical address chosen!\n");
834
return 0;
835
}
836
837
return (unsigned long)phys_addr;
838
}
839
840
static unsigned long find_random_virt_addr(unsigned long minimum,
841
unsigned long image_size)
842
{
843
unsigned long slots, random_addr;
844
845
/*
846
* There are how many CONFIG_PHYSICAL_ALIGN-sized slots
847
* that can hold image_size within the range of minimum to
848
* KERNEL_IMAGE_SIZE?
849
*/
850
slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
851
852
random_addr = kaslr_get_random_long("Virtual") % slots;
853
854
return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
855
}
856
857
/*
858
* Since this function examines addresses much more numerically,
859
* it takes the input and output pointers as 'unsigned long'.
860
*/
861
void choose_random_location(unsigned long input,
862
unsigned long input_size,
863
unsigned long *output,
864
unsigned long output_size,
865
unsigned long *virt_addr)
866
{
867
unsigned long random_addr, min_addr;
868
869
if (cmdline_find_option_bool("nokaslr")) {
870
warn("KASLR disabled: 'nokaslr' on cmdline.");
871
return;
872
}
873
874
boot_params_ptr->hdr.loadflags |= KASLR_FLAG;
875
876
if (IS_ENABLED(CONFIG_X86_32))
877
mem_limit = KERNEL_IMAGE_SIZE;
878
else
879
mem_limit = MAXMEM;
880
881
/* Record the various known unsafe memory ranges. */
882
mem_avoid_init(input, input_size, *output);
883
884
/*
885
* Low end of the randomization range should be the
886
* smaller of 512M or the initial kernel image
887
* location:
888
*/
889
min_addr = min(*output, 512UL << 20);
890
/* Make sure minimum is aligned. */
891
min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
892
893
/* Walk available memory entries to find a random address. */
894
random_addr = find_random_phys_addr(min_addr, output_size);
895
if (!random_addr) {
896
warn("Physical KASLR disabled: no suitable memory region!");
897
} else {
898
/* Update the new physical address location. */
899
if (*output != random_addr)
900
*output = random_addr;
901
}
902
903
904
/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
905
if (IS_ENABLED(CONFIG_X86_64))
906
random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
907
*virt_addr = random_addr;
908
}
909
910