Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/boot/startup/sme.c
26535 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Memory Encryption Support
4
*
5
* Copyright (C) 2016 Advanced Micro Devices, Inc.
6
*
7
* Author: Tom Lendacky <[email protected]>
8
*/
9
10
/*
11
* Since we're dealing with identity mappings, physical and virtual
12
* addresses are the same, so override these defines which are ultimately
13
* used by the headers in misc.h.
14
*/
15
#define __pa(x) ((unsigned long)(x))
16
#define __va(x) ((void *)((unsigned long)(x)))
17
18
/*
19
* Special hack: we have to be careful, because no indirections are
20
* allowed here, and paravirt_ops is a kind of one. As it will only run in
21
* baremetal anyway, we just keep it from happening. (This list needs to
22
* be extended when new paravirt and debugging variants are added.)
23
*/
24
#undef CONFIG_PARAVIRT
25
#undef CONFIG_PARAVIRT_XXL
26
#undef CONFIG_PARAVIRT_SPINLOCKS
27
28
/*
29
* This code runs before CPU feature bits are set. By default, the
30
* pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
31
* 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
32
* is provided to handle this situation and, instead, use a variable that
33
* has been set by the early boot code.
34
*/
35
#define USE_EARLY_PGTABLE_L5
36
37
#include <linux/kernel.h>
38
#include <linux/mm.h>
39
#include <linux/mem_encrypt.h>
40
#include <linux/cc_platform.h>
41
42
#include <asm/init.h>
43
#include <asm/setup.h>
44
#include <asm/sections.h>
45
#include <asm/coco.h>
46
#include <asm/sev.h>
47
48
#define PGD_FLAGS _KERNPG_TABLE_NOENC
49
#define P4D_FLAGS _KERNPG_TABLE_NOENC
50
#define PUD_FLAGS _KERNPG_TABLE_NOENC
51
#define PMD_FLAGS _KERNPG_TABLE_NOENC
52
53
#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
54
55
#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
56
#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
57
(_PAGE_PAT_LARGE | _PAGE_PWT))
58
59
#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
60
61
#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
62
63
#define PTE_FLAGS_DEC PTE_FLAGS
64
#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
65
(_PAGE_PAT | _PAGE_PWT))
66
67
#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
68
69
struct sme_populate_pgd_data {
70
void *pgtable_area;
71
pgd_t *pgd;
72
73
pmdval_t pmd_flags;
74
pteval_t pte_flags;
75
unsigned long paddr;
76
77
unsigned long vaddr;
78
unsigned long vaddr_end;
79
};
80
81
/*
82
* This work area lives in the .init.scratch section, which lives outside of
83
* the kernel proper. It is sized to hold the intermediate copy buffer and
84
* more than enough pagetable pages.
85
*
86
* By using this section, the kernel can be encrypted in place and it
87
* avoids any possibility of boot parameters or initramfs images being
88
* placed such that the in-place encryption logic overwrites them. This
89
* section is 2MB aligned to allow for simple pagetable setup using only
90
* PMD entries (see vmlinux.lds.S).
91
*/
92
static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
93
94
static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd)
95
{
96
unsigned long pgd_start, pgd_end, pgd_size;
97
pgd_t *pgd_p;
98
99
pgd_start = ppd->vaddr & PGDIR_MASK;
100
pgd_end = ppd->vaddr_end & PGDIR_MASK;
101
102
pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
103
104
pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
105
106
memset(pgd_p, 0, pgd_size);
107
}
108
109
static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
110
{
111
pgd_t *pgd;
112
p4d_t *p4d;
113
pud_t *pud;
114
pmd_t *pmd;
115
116
pgd = ppd->pgd + pgd_index(ppd->vaddr);
117
if (pgd_none(*pgd)) {
118
p4d = ppd->pgtable_area;
119
memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
120
ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
121
set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
122
}
123
124
p4d = p4d_offset(pgd, ppd->vaddr);
125
if (p4d_none(*p4d)) {
126
pud = ppd->pgtable_area;
127
memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
128
ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
129
set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
130
}
131
132
pud = pud_offset(p4d, ppd->vaddr);
133
if (pud_none(*pud)) {
134
pmd = ppd->pgtable_area;
135
memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
136
ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
137
set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
138
}
139
140
if (pud_leaf(*pud))
141
return NULL;
142
143
return pud;
144
}
145
146
static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
147
{
148
pud_t *pud;
149
pmd_t *pmd;
150
151
pud = sme_prepare_pgd(ppd);
152
if (!pud)
153
return;
154
155
pmd = pmd_offset(pud, ppd->vaddr);
156
if (pmd_leaf(*pmd))
157
return;
158
159
set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
160
}
161
162
static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd)
163
{
164
pud_t *pud;
165
pmd_t *pmd;
166
pte_t *pte;
167
168
pud = sme_prepare_pgd(ppd);
169
if (!pud)
170
return;
171
172
pmd = pmd_offset(pud, ppd->vaddr);
173
if (pmd_none(*pmd)) {
174
pte = ppd->pgtable_area;
175
memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
176
ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
177
set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
178
}
179
180
if (pmd_leaf(*pmd))
181
return;
182
183
pte = pte_offset_kernel(pmd, ppd->vaddr);
184
if (pte_none(*pte))
185
set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
186
}
187
188
static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
189
{
190
while (ppd->vaddr < ppd->vaddr_end) {
191
sme_populate_pgd_large(ppd);
192
193
ppd->vaddr += PMD_SIZE;
194
ppd->paddr += PMD_SIZE;
195
}
196
}
197
198
static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
199
{
200
while (ppd->vaddr < ppd->vaddr_end) {
201
sme_populate_pgd(ppd);
202
203
ppd->vaddr += PAGE_SIZE;
204
ppd->paddr += PAGE_SIZE;
205
}
206
}
207
208
static void __head __sme_map_range(struct sme_populate_pgd_data *ppd,
209
pmdval_t pmd_flags, pteval_t pte_flags)
210
{
211
unsigned long vaddr_end;
212
213
ppd->pmd_flags = pmd_flags;
214
ppd->pte_flags = pte_flags;
215
216
/* Save original end value since we modify the struct value */
217
vaddr_end = ppd->vaddr_end;
218
219
/* If start is not 2MB aligned, create PTE entries */
220
ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
221
__sme_map_range_pte(ppd);
222
223
/* Create PMD entries */
224
ppd->vaddr_end = vaddr_end & PMD_MASK;
225
__sme_map_range_pmd(ppd);
226
227
/* If end is not 2MB aligned, create PTE entries */
228
ppd->vaddr_end = vaddr_end;
229
__sme_map_range_pte(ppd);
230
}
231
232
static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
233
{
234
__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
235
}
236
237
static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
238
{
239
__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
240
}
241
242
static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
243
{
244
__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
245
}
246
247
static unsigned long __head sme_pgtable_calc(unsigned long len)
248
{
249
unsigned long entries = 0, tables = 0;
250
251
/*
252
* Perform a relatively simplistic calculation of the pagetable
253
* entries that are needed. Those mappings will be covered mostly
254
* by 2MB PMD entries so we can conservatively calculate the required
255
* number of P4D, PUD and PMD structures needed to perform the
256
* mappings. For mappings that are not 2MB aligned, PTE mappings
257
* would be needed for the start and end portion of the address range
258
* that fall outside of the 2MB alignment. This results in, at most,
259
* two extra pages to hold PTE entries for each range that is mapped.
260
* Incrementing the count for each covers the case where the addresses
261
* cross entries.
262
*/
263
264
/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
265
if (PTRS_PER_P4D > 1)
266
entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
267
entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
268
entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
269
entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
270
271
/*
272
* Now calculate the added pagetable structures needed to populate
273
* the new pagetables.
274
*/
275
276
if (PTRS_PER_P4D > 1)
277
tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
278
tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
279
tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
280
281
return entries + tables;
282
}
283
284
void __head sme_encrypt_kernel(struct boot_params *bp)
285
{
286
unsigned long workarea_start, workarea_end, workarea_len;
287
unsigned long execute_start, execute_end, execute_len;
288
unsigned long kernel_start, kernel_end, kernel_len;
289
unsigned long initrd_start, initrd_end, initrd_len;
290
struct sme_populate_pgd_data ppd;
291
unsigned long pgtable_area_len;
292
unsigned long decrypted_base;
293
294
/*
295
* This is early code, use an open coded check for SME instead of
296
* using cc_platform_has(). This eliminates worries about removing
297
* instrumentation or checking boot_cpu_data in the cc_platform_has()
298
* function.
299
*/
300
if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
301
return;
302
303
/*
304
* Prepare for encrypting the kernel and initrd by building new
305
* pagetables with the necessary attributes needed to encrypt the
306
* kernel in place.
307
*
308
* One range of virtual addresses will map the memory occupied
309
* by the kernel and initrd as encrypted.
310
*
311
* Another range of virtual addresses will map the memory occupied
312
* by the kernel and initrd as decrypted and write-protected.
313
*
314
* The use of write-protect attribute will prevent any of the
315
* memory from being cached.
316
*/
317
318
kernel_start = (unsigned long)rip_rel_ptr(_text);
319
kernel_end = ALIGN((unsigned long)rip_rel_ptr(_end), PMD_SIZE);
320
kernel_len = kernel_end - kernel_start;
321
322
initrd_start = 0;
323
initrd_end = 0;
324
initrd_len = 0;
325
#ifdef CONFIG_BLK_DEV_INITRD
326
initrd_len = (unsigned long)bp->hdr.ramdisk_size |
327
((unsigned long)bp->ext_ramdisk_size << 32);
328
if (initrd_len) {
329
initrd_start = (unsigned long)bp->hdr.ramdisk_image |
330
((unsigned long)bp->ext_ramdisk_image << 32);
331
initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
332
initrd_len = initrd_end - initrd_start;
333
}
334
#endif
335
336
/*
337
* Calculate required number of workarea bytes needed:
338
* executable encryption area size:
339
* stack page (PAGE_SIZE)
340
* encryption routine page (PAGE_SIZE)
341
* intermediate copy buffer (PMD_SIZE)
342
* pagetable structures for the encryption of the kernel
343
* pagetable structures for workarea (in case not currently mapped)
344
*/
345
execute_start = workarea_start = (unsigned long)rip_rel_ptr(sme_workarea);
346
execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
347
execute_len = execute_end - execute_start;
348
349
/*
350
* One PGD for both encrypted and decrypted mappings and a set of
351
* PUDs and PMDs for each of the encrypted and decrypted mappings.
352
*/
353
pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
354
pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
355
if (initrd_len)
356
pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
357
358
/* PUDs and PMDs needed in the current pagetables for the workarea */
359
pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
360
361
/*
362
* The total workarea includes the executable encryption area and
363
* the pagetable area. The start of the workarea is already 2MB
364
* aligned, align the end of the workarea on a 2MB boundary so that
365
* we don't try to create/allocate PTE entries from the workarea
366
* before it is mapped.
367
*/
368
workarea_len = execute_len + pgtable_area_len;
369
workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
370
371
/*
372
* Set the address to the start of where newly created pagetable
373
* structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
374
* structures are created when the workarea is added to the current
375
* pagetables and when the new encrypted and decrypted kernel
376
* mappings are populated.
377
*/
378
ppd.pgtable_area = (void *)execute_end;
379
380
/*
381
* Make sure the current pagetable structure has entries for
382
* addressing the workarea.
383
*/
384
ppd.pgd = (pgd_t *)native_read_cr3_pa();
385
ppd.paddr = workarea_start;
386
ppd.vaddr = workarea_start;
387
ppd.vaddr_end = workarea_end;
388
sme_map_range_decrypted(&ppd);
389
390
/* Flush the TLB - no globals so cr3 is enough */
391
native_write_cr3(__native_read_cr3());
392
393
/*
394
* A new pagetable structure is being built to allow for the kernel
395
* and initrd to be encrypted. It starts with an empty PGD that will
396
* then be populated with new PUDs and PMDs as the encrypted and
397
* decrypted kernel mappings are created.
398
*/
399
ppd.pgd = ppd.pgtable_area;
400
memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
401
ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
402
403
/*
404
* A different PGD index/entry must be used to get different
405
* pagetable entries for the decrypted mapping. Choose the next
406
* PGD index and convert it to a virtual address to be used as
407
* the base of the mapping.
408
*/
409
decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
410
if (initrd_len) {
411
unsigned long check_base;
412
413
check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
414
decrypted_base = max(decrypted_base, check_base);
415
}
416
decrypted_base <<= PGDIR_SHIFT;
417
418
/* Add encrypted kernel (identity) mappings */
419
ppd.paddr = kernel_start;
420
ppd.vaddr = kernel_start;
421
ppd.vaddr_end = kernel_end;
422
sme_map_range_encrypted(&ppd);
423
424
/* Add decrypted, write-protected kernel (non-identity) mappings */
425
ppd.paddr = kernel_start;
426
ppd.vaddr = kernel_start + decrypted_base;
427
ppd.vaddr_end = kernel_end + decrypted_base;
428
sme_map_range_decrypted_wp(&ppd);
429
430
if (initrd_len) {
431
/* Add encrypted initrd (identity) mappings */
432
ppd.paddr = initrd_start;
433
ppd.vaddr = initrd_start;
434
ppd.vaddr_end = initrd_end;
435
sme_map_range_encrypted(&ppd);
436
/*
437
* Add decrypted, write-protected initrd (non-identity) mappings
438
*/
439
ppd.paddr = initrd_start;
440
ppd.vaddr = initrd_start + decrypted_base;
441
ppd.vaddr_end = initrd_end + decrypted_base;
442
sme_map_range_decrypted_wp(&ppd);
443
}
444
445
/* Add decrypted workarea mappings to both kernel mappings */
446
ppd.paddr = workarea_start;
447
ppd.vaddr = workarea_start;
448
ppd.vaddr_end = workarea_end;
449
sme_map_range_decrypted(&ppd);
450
451
ppd.paddr = workarea_start;
452
ppd.vaddr = workarea_start + decrypted_base;
453
ppd.vaddr_end = workarea_end + decrypted_base;
454
sme_map_range_decrypted(&ppd);
455
456
/* Perform the encryption */
457
sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
458
kernel_len, workarea_start, (unsigned long)ppd.pgd);
459
460
if (initrd_len)
461
sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
462
initrd_len, workarea_start,
463
(unsigned long)ppd.pgd);
464
465
/*
466
* At this point we are running encrypted. Remove the mappings for
467
* the decrypted areas - all that is needed for this is to remove
468
* the PGD entry/entries.
469
*/
470
ppd.vaddr = kernel_start + decrypted_base;
471
ppd.vaddr_end = kernel_end + decrypted_base;
472
sme_clear_pgd(&ppd);
473
474
if (initrd_len) {
475
ppd.vaddr = initrd_start + decrypted_base;
476
ppd.vaddr_end = initrd_end + decrypted_base;
477
sme_clear_pgd(&ppd);
478
}
479
480
ppd.vaddr = workarea_start + decrypted_base;
481
ppd.vaddr_end = workarea_end + decrypted_base;
482
sme_clear_pgd(&ppd);
483
484
/* Flush the TLB - no globals so cr3 is enough */
485
native_write_cr3(__native_read_cr3());
486
}
487
488
void __head sme_enable(struct boot_params *bp)
489
{
490
unsigned int eax, ebx, ecx, edx;
491
unsigned long feature_mask;
492
unsigned long me_mask;
493
bool snp_en;
494
u64 msr;
495
496
snp_en = snp_init(bp);
497
498
/* Check for the SME/SEV support leaf */
499
eax = 0x80000000;
500
ecx = 0;
501
native_cpuid(&eax, &ebx, &ecx, &edx);
502
if (eax < 0x8000001f)
503
return;
504
505
#define AMD_SME_BIT BIT(0)
506
#define AMD_SEV_BIT BIT(1)
507
508
/*
509
* Check for the SME/SEV feature:
510
* CPUID Fn8000_001F[EAX]
511
* - Bit 0 - Secure Memory Encryption support
512
* - Bit 1 - Secure Encrypted Virtualization support
513
* CPUID Fn8000_001F[EBX]
514
* - Bits 5:0 - Pagetable bit position used to indicate encryption
515
*/
516
eax = 0x8000001f;
517
ecx = 0;
518
native_cpuid(&eax, &ebx, &ecx, &edx);
519
/* Check whether SEV or SME is supported */
520
if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
521
return;
522
523
me_mask = 1UL << (ebx & 0x3f);
524
525
/* Check the SEV MSR whether SEV or SME is enabled */
526
sev_status = msr = native_rdmsrq(MSR_AMD64_SEV);
527
feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
528
529
/*
530
* Any discrepancies between the presence of a CC blob and SNP
531
* enablement abort the guest.
532
*/
533
if (snp_en ^ !!(msr & MSR_AMD64_SEV_SNP_ENABLED))
534
snp_abort();
535
536
/* Check if memory encryption is enabled */
537
if (feature_mask == AMD_SME_BIT) {
538
if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
539
return;
540
541
/*
542
* No SME if Hypervisor bit is set. This check is here to
543
* prevent a guest from trying to enable SME. For running as a
544
* KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
545
* might be other hypervisors which emulate that MSR as non-zero
546
* or even pass it through to the guest.
547
* A malicious hypervisor can still trick a guest into this
548
* path, but there is no way to protect against that.
549
*/
550
eax = 1;
551
ecx = 0;
552
native_cpuid(&eax, &ebx, &ecx, &edx);
553
if (ecx & BIT(31))
554
return;
555
556
/* For SME, check the SYSCFG MSR */
557
msr = native_rdmsrq(MSR_AMD64_SYSCFG);
558
if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
559
return;
560
}
561
562
sme_me_mask = me_mask;
563
physical_mask &= ~me_mask;
564
cc_vendor = CC_VENDOR_AMD;
565
cc_set_mask(me_mask);
566
}
567
568
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
569
/* Local version for startup code, which never operates on user page tables */
570
__weak
571
pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
572
{
573
return pgd;
574
}
575
#endif
576
577