Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/coco/sev/vc-handle.c
26489 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Memory Encryption Support
4
*
5
* Copyright (C) 2019 SUSE
6
*
7
* Author: Joerg Roedel <[email protected]>
8
*/
9
10
#define pr_fmt(fmt) "SEV: " fmt
11
12
#include <linux/sched/debug.h> /* For show_regs() */
13
#include <linux/cc_platform.h>
14
#include <linux/printk.h>
15
#include <linux/mm_types.h>
16
#include <linux/kernel.h>
17
#include <linux/mm.h>
18
#include <linux/io.h>
19
#include <linux/psp-sev.h>
20
#include <linux/efi.h>
21
#include <uapi/linux/sev-guest.h>
22
23
#include <asm/init.h>
24
#include <asm/stacktrace.h>
25
#include <asm/sev.h>
26
#include <asm/sev-internal.h>
27
#include <asm/insn-eval.h>
28
#include <asm/fpu/xcr.h>
29
#include <asm/processor.h>
30
#include <asm/setup.h>
31
#include <asm/traps.h>
32
#include <asm/svm.h>
33
#include <asm/smp.h>
34
#include <asm/cpu.h>
35
#include <asm/apic.h>
36
#include <asm/cpuid/api.h>
37
38
static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
39
unsigned long vaddr, phys_addr_t *paddr)
40
{
41
unsigned long va = (unsigned long)vaddr;
42
unsigned int level;
43
phys_addr_t pa;
44
pgd_t *pgd;
45
pte_t *pte;
46
47
pgd = __va(read_cr3_pa());
48
pgd = &pgd[pgd_index(va)];
49
pte = lookup_address_in_pgd(pgd, va, &level);
50
if (!pte) {
51
ctxt->fi.vector = X86_TRAP_PF;
52
ctxt->fi.cr2 = vaddr;
53
ctxt->fi.error_code = 0;
54
55
if (user_mode(ctxt->regs))
56
ctxt->fi.error_code |= X86_PF_USER;
57
58
return ES_EXCEPTION;
59
}
60
61
if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
62
/* Emulated MMIO to/from encrypted memory not supported */
63
return ES_UNSUPPORTED;
64
65
pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
66
pa |= va & ~page_level_mask(level);
67
68
*paddr = pa;
69
70
return ES_OK;
71
}
72
73
static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
74
{
75
BUG_ON(size > 4);
76
77
if (user_mode(ctxt->regs)) {
78
struct thread_struct *t = &current->thread;
79
struct io_bitmap *iobm = t->io_bitmap;
80
size_t idx;
81
82
if (!iobm)
83
goto fault;
84
85
for (idx = port; idx < port + size; ++idx) {
86
if (test_bit(idx, iobm->bitmap))
87
goto fault;
88
}
89
}
90
91
return ES_OK;
92
93
fault:
94
ctxt->fi.vector = X86_TRAP_GP;
95
ctxt->fi.error_code = 0;
96
97
return ES_EXCEPTION;
98
}
99
100
void vc_forward_exception(struct es_em_ctxt *ctxt)
101
{
102
long error_code = ctxt->fi.error_code;
103
int trapnr = ctxt->fi.vector;
104
105
ctxt->regs->orig_ax = ctxt->fi.error_code;
106
107
switch (trapnr) {
108
case X86_TRAP_GP:
109
exc_general_protection(ctxt->regs, error_code);
110
break;
111
case X86_TRAP_UD:
112
exc_invalid_op(ctxt->regs);
113
break;
114
case X86_TRAP_PF:
115
write_cr2(ctxt->fi.cr2);
116
exc_page_fault(ctxt->regs, error_code);
117
break;
118
case X86_TRAP_AC:
119
exc_alignment_check(ctxt->regs, error_code);
120
break;
121
default:
122
pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
123
BUG();
124
}
125
}
126
127
static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
128
unsigned char *buffer)
129
{
130
return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
131
}
132
133
static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
134
{
135
char buffer[MAX_INSN_SIZE];
136
int insn_bytes;
137
138
insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
139
if (insn_bytes == 0) {
140
/* Nothing could be copied */
141
ctxt->fi.vector = X86_TRAP_PF;
142
ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
143
ctxt->fi.cr2 = ctxt->regs->ip;
144
return ES_EXCEPTION;
145
} else if (insn_bytes == -EINVAL) {
146
/* Effective RIP could not be calculated */
147
ctxt->fi.vector = X86_TRAP_GP;
148
ctxt->fi.error_code = 0;
149
ctxt->fi.cr2 = 0;
150
return ES_EXCEPTION;
151
}
152
153
if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
154
return ES_DECODE_FAILED;
155
156
if (ctxt->insn.immediate.got)
157
return ES_OK;
158
else
159
return ES_DECODE_FAILED;
160
}
161
162
static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
163
{
164
char buffer[MAX_INSN_SIZE];
165
int res, ret;
166
167
res = vc_fetch_insn_kernel(ctxt, buffer);
168
if (res) {
169
ctxt->fi.vector = X86_TRAP_PF;
170
ctxt->fi.error_code = X86_PF_INSTR;
171
ctxt->fi.cr2 = ctxt->regs->ip;
172
return ES_EXCEPTION;
173
}
174
175
ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
176
if (ret < 0)
177
return ES_DECODE_FAILED;
178
else
179
return ES_OK;
180
}
181
182
/*
183
* User instruction decoding is also required for the EFI runtime. Even though
184
* the EFI runtime is running in kernel mode, it uses special EFI virtual
185
* address mappings that require the use of efi_mm to properly address and
186
* decode.
187
*/
188
static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
189
{
190
if (user_mode(ctxt->regs) || mm_is_efi(current->active_mm))
191
return __vc_decode_user_insn(ctxt);
192
else
193
return __vc_decode_kern_insn(ctxt);
194
}
195
196
static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
197
char *dst, char *buf, size_t size)
198
{
199
unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
200
201
/*
202
* This function uses __put_user() independent of whether kernel or user
203
* memory is accessed. This works fine because __put_user() does no
204
* sanity checks of the pointer being accessed. All that it does is
205
* to report when the access failed.
206
*
207
* Also, this function runs in atomic context, so __put_user() is not
208
* allowed to sleep. The page-fault handler detects that it is running
209
* in atomic context and will not try to take mmap_sem and handle the
210
* fault, so additional pagefault_enable()/disable() calls are not
211
* needed.
212
*
213
* The access can't be done via copy_to_user() here because
214
* vc_write_mem() must not use string instructions to access unsafe
215
* memory. The reason is that MOVS is emulated by the #VC handler by
216
* splitting the move up into a read and a write and taking a nested #VC
217
* exception on whatever of them is the MMIO access. Using string
218
* instructions here would cause infinite nesting.
219
*/
220
switch (size) {
221
case 1: {
222
u8 d1;
223
u8 __user *target = (u8 __user *)dst;
224
225
memcpy(&d1, buf, 1);
226
if (__put_user(d1, target))
227
goto fault;
228
break;
229
}
230
case 2: {
231
u16 d2;
232
u16 __user *target = (u16 __user *)dst;
233
234
memcpy(&d2, buf, 2);
235
if (__put_user(d2, target))
236
goto fault;
237
break;
238
}
239
case 4: {
240
u32 d4;
241
u32 __user *target = (u32 __user *)dst;
242
243
memcpy(&d4, buf, 4);
244
if (__put_user(d4, target))
245
goto fault;
246
break;
247
}
248
case 8: {
249
u64 d8;
250
u64 __user *target = (u64 __user *)dst;
251
252
memcpy(&d8, buf, 8);
253
if (__put_user(d8, target))
254
goto fault;
255
break;
256
}
257
default:
258
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
259
return ES_UNSUPPORTED;
260
}
261
262
return ES_OK;
263
264
fault:
265
if (user_mode(ctxt->regs))
266
error_code |= X86_PF_USER;
267
268
ctxt->fi.vector = X86_TRAP_PF;
269
ctxt->fi.error_code = error_code;
270
ctxt->fi.cr2 = (unsigned long)dst;
271
272
return ES_EXCEPTION;
273
}
274
275
static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
276
char *src, char *buf, size_t size)
277
{
278
unsigned long error_code = X86_PF_PROT;
279
280
/*
281
* This function uses __get_user() independent of whether kernel or user
282
* memory is accessed. This works fine because __get_user() does no
283
* sanity checks of the pointer being accessed. All that it does is
284
* to report when the access failed.
285
*
286
* Also, this function runs in atomic context, so __get_user() is not
287
* allowed to sleep. The page-fault handler detects that it is running
288
* in atomic context and will not try to take mmap_sem and handle the
289
* fault, so additional pagefault_enable()/disable() calls are not
290
* needed.
291
*
292
* The access can't be done via copy_from_user() here because
293
* vc_read_mem() must not use string instructions to access unsafe
294
* memory. The reason is that MOVS is emulated by the #VC handler by
295
* splitting the move up into a read and a write and taking a nested #VC
296
* exception on whatever of them is the MMIO access. Using string
297
* instructions here would cause infinite nesting.
298
*/
299
switch (size) {
300
case 1: {
301
u8 d1;
302
u8 __user *s = (u8 __user *)src;
303
304
if (__get_user(d1, s))
305
goto fault;
306
memcpy(buf, &d1, 1);
307
break;
308
}
309
case 2: {
310
u16 d2;
311
u16 __user *s = (u16 __user *)src;
312
313
if (__get_user(d2, s))
314
goto fault;
315
memcpy(buf, &d2, 2);
316
break;
317
}
318
case 4: {
319
u32 d4;
320
u32 __user *s = (u32 __user *)src;
321
322
if (__get_user(d4, s))
323
goto fault;
324
memcpy(buf, &d4, 4);
325
break;
326
}
327
case 8: {
328
u64 d8;
329
u64 __user *s = (u64 __user *)src;
330
if (__get_user(d8, s))
331
goto fault;
332
memcpy(buf, &d8, 8);
333
break;
334
}
335
default:
336
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
337
return ES_UNSUPPORTED;
338
}
339
340
return ES_OK;
341
342
fault:
343
if (user_mode(ctxt->regs))
344
error_code |= X86_PF_USER;
345
346
ctxt->fi.vector = X86_TRAP_PF;
347
ctxt->fi.error_code = error_code;
348
ctxt->fi.cr2 = (unsigned long)src;
349
350
return ES_EXCEPTION;
351
}
352
353
#define sev_printk(fmt, ...) printk(fmt, ##__VA_ARGS__)
354
355
#include "vc-shared.c"
356
357
/* Writes to the SVSM CAA MSR are ignored */
358
static enum es_result __vc_handle_msr_caa(struct pt_regs *regs, bool write)
359
{
360
if (write)
361
return ES_OK;
362
363
regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
364
regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));
365
366
return ES_OK;
367
}
368
369
/*
370
* TSC related accesses should not exit to the hypervisor when a guest is
371
* executing with Secure TSC enabled, so special handling is required for
372
* accesses of MSR_IA32_TSC and MSR_AMD64_GUEST_TSC_FREQ.
373
*/
374
static enum es_result __vc_handle_secure_tsc_msrs(struct es_em_ctxt *ctxt, bool write)
375
{
376
struct pt_regs *regs = ctxt->regs;
377
u64 tsc;
378
379
/*
380
* Writing to MSR_IA32_TSC can cause subsequent reads of the TSC to
381
* return undefined values, and GUEST_TSC_FREQ is read-only. Generate
382
* a #GP on all writes.
383
*/
384
if (write) {
385
ctxt->fi.vector = X86_TRAP_GP;
386
ctxt->fi.error_code = 0;
387
return ES_EXCEPTION;
388
}
389
390
/*
391
* GUEST_TSC_FREQ read should not be intercepted when Secure TSC is
392
* enabled. Terminate the guest if a read is attempted.
393
*/
394
if (regs->cx == MSR_AMD64_GUEST_TSC_FREQ)
395
return ES_VMM_ERROR;
396
397
/* Reads of MSR_IA32_TSC should return the current TSC value. */
398
tsc = rdtsc_ordered();
399
regs->ax = lower_32_bits(tsc);
400
regs->dx = upper_32_bits(tsc);
401
402
return ES_OK;
403
}
404
405
static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
406
{
407
struct pt_regs *regs = ctxt->regs;
408
enum es_result ret;
409
bool write;
410
411
/* Is it a WRMSR? */
412
write = ctxt->insn.opcode.bytes[1] == 0x30;
413
414
switch (regs->cx) {
415
case MSR_SVSM_CAA:
416
return __vc_handle_msr_caa(regs, write);
417
case MSR_IA32_TSC:
418
case MSR_AMD64_GUEST_TSC_FREQ:
419
if (sev_status & MSR_AMD64_SNP_SECURE_TSC)
420
return __vc_handle_secure_tsc_msrs(ctxt, write);
421
break;
422
default:
423
break;
424
}
425
426
ghcb_set_rcx(ghcb, regs->cx);
427
if (write) {
428
ghcb_set_rax(ghcb, regs->ax);
429
ghcb_set_rdx(ghcb, regs->dx);
430
}
431
432
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, write, 0);
433
434
if ((ret == ES_OK) && !write) {
435
regs->ax = ghcb->save.rax;
436
regs->dx = ghcb->save.rdx;
437
}
438
439
return ret;
440
}
441
442
static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
443
{
444
int trapnr = ctxt->fi.vector;
445
446
if (trapnr == X86_TRAP_PF)
447
native_write_cr2(ctxt->fi.cr2);
448
449
ctxt->regs->orig_ax = ctxt->fi.error_code;
450
do_early_exception(ctxt->regs, trapnr);
451
}
452
453
static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
454
{
455
long *reg_array;
456
int offset;
457
458
reg_array = (long *)ctxt->regs;
459
offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
460
461
if (offset < 0)
462
return NULL;
463
464
offset /= sizeof(long);
465
466
return reg_array + offset;
467
}
468
static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
469
unsigned int bytes, bool read)
470
{
471
u64 exit_code, exit_info_1, exit_info_2;
472
unsigned long ghcb_pa = __pa(ghcb);
473
enum es_result res;
474
phys_addr_t paddr;
475
void __user *ref;
476
477
ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
478
if (ref == (void __user *)-1L)
479
return ES_UNSUPPORTED;
480
481
exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
482
483
res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
484
if (res != ES_OK) {
485
if (res == ES_EXCEPTION && !read)
486
ctxt->fi.error_code |= X86_PF_WRITE;
487
488
return res;
489
}
490
491
exit_info_1 = paddr;
492
/* Can never be greater than 8 */
493
exit_info_2 = bytes;
494
495
ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
496
497
return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
498
}
499
500
/*
501
* The MOVS instruction has two memory operands, which raises the
502
* problem that it is not known whether the access to the source or the
503
* destination caused the #VC exception (and hence whether an MMIO read
504
* or write operation needs to be emulated).
505
*
506
* Instead of playing games with walking page-tables and trying to guess
507
* whether the source or destination is an MMIO range, split the move
508
* into two operations, a read and a write with only one memory operand.
509
* This will cause a nested #VC exception on the MMIO address which can
510
* then be handled.
511
*
512
* This implementation has the benefit that it also supports MOVS where
513
* source _and_ destination are MMIO regions.
514
*
515
* It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
516
* rare operation. If it turns out to be a performance problem the split
517
* operations can be moved to memcpy_fromio() and memcpy_toio().
518
*/
519
static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
520
unsigned int bytes)
521
{
522
unsigned long ds_base, es_base;
523
unsigned char *src, *dst;
524
unsigned char buffer[8];
525
enum es_result ret;
526
bool rep;
527
int off;
528
529
ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
530
es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
531
532
if (ds_base == -1L || es_base == -1L) {
533
ctxt->fi.vector = X86_TRAP_GP;
534
ctxt->fi.error_code = 0;
535
return ES_EXCEPTION;
536
}
537
538
src = ds_base + (unsigned char *)ctxt->regs->si;
539
dst = es_base + (unsigned char *)ctxt->regs->di;
540
541
ret = vc_read_mem(ctxt, src, buffer, bytes);
542
if (ret != ES_OK)
543
return ret;
544
545
ret = vc_write_mem(ctxt, dst, buffer, bytes);
546
if (ret != ES_OK)
547
return ret;
548
549
if (ctxt->regs->flags & X86_EFLAGS_DF)
550
off = -bytes;
551
else
552
off = bytes;
553
554
ctxt->regs->si += off;
555
ctxt->regs->di += off;
556
557
rep = insn_has_rep_prefix(&ctxt->insn);
558
if (rep)
559
ctxt->regs->cx -= 1;
560
561
if (!rep || ctxt->regs->cx == 0)
562
return ES_OK;
563
else
564
return ES_RETRY;
565
}
566
567
static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
568
{
569
struct insn *insn = &ctxt->insn;
570
enum insn_mmio_type mmio;
571
unsigned int bytes = 0;
572
enum es_result ret;
573
u8 sign_byte;
574
long *reg_data;
575
576
mmio = insn_decode_mmio(insn, &bytes);
577
if (mmio == INSN_MMIO_DECODE_FAILED)
578
return ES_DECODE_FAILED;
579
580
if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
581
reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
582
if (!reg_data)
583
return ES_DECODE_FAILED;
584
}
585
586
if (user_mode(ctxt->regs))
587
return ES_UNSUPPORTED;
588
589
switch (mmio) {
590
case INSN_MMIO_WRITE:
591
memcpy(ghcb->shared_buffer, reg_data, bytes);
592
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
593
break;
594
case INSN_MMIO_WRITE_IMM:
595
memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
596
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
597
break;
598
case INSN_MMIO_READ:
599
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
600
if (ret)
601
break;
602
603
/* Zero-extend for 32-bit operation */
604
if (bytes == 4)
605
*reg_data = 0;
606
607
memcpy(reg_data, ghcb->shared_buffer, bytes);
608
break;
609
case INSN_MMIO_READ_ZERO_EXTEND:
610
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
611
if (ret)
612
break;
613
614
/* Zero extend based on operand size */
615
memset(reg_data, 0, insn->opnd_bytes);
616
memcpy(reg_data, ghcb->shared_buffer, bytes);
617
break;
618
case INSN_MMIO_READ_SIGN_EXTEND:
619
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
620
if (ret)
621
break;
622
623
if (bytes == 1) {
624
u8 *val = (u8 *)ghcb->shared_buffer;
625
626
sign_byte = (*val & 0x80) ? 0xff : 0x00;
627
} else {
628
u16 *val = (u16 *)ghcb->shared_buffer;
629
630
sign_byte = (*val & 0x8000) ? 0xff : 0x00;
631
}
632
633
/* Sign extend based on operand size */
634
memset(reg_data, sign_byte, insn->opnd_bytes);
635
memcpy(reg_data, ghcb->shared_buffer, bytes);
636
break;
637
case INSN_MMIO_MOVS:
638
ret = vc_handle_mmio_movs(ctxt, bytes);
639
break;
640
default:
641
ret = ES_UNSUPPORTED;
642
break;
643
}
644
645
return ret;
646
}
647
648
static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
649
struct es_em_ctxt *ctxt)
650
{
651
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
652
long val, *reg = vc_insn_get_rm(ctxt);
653
enum es_result ret;
654
655
if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
656
return ES_VMM_ERROR;
657
658
if (!reg)
659
return ES_DECODE_FAILED;
660
661
val = *reg;
662
663
/* Upper 32 bits must be written as zeroes */
664
if (val >> 32) {
665
ctxt->fi.vector = X86_TRAP_GP;
666
ctxt->fi.error_code = 0;
667
return ES_EXCEPTION;
668
}
669
670
/* Clear out other reserved bits and set bit 10 */
671
val = (val & 0xffff23ffL) | BIT(10);
672
673
/* Early non-zero writes to DR7 are not supported */
674
if (!data && (val & ~DR7_RESET_VALUE))
675
return ES_UNSUPPORTED;
676
677
/* Using a value of 0 for ExitInfo1 means RAX holds the value */
678
ghcb_set_rax(ghcb, val);
679
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
680
if (ret != ES_OK)
681
return ret;
682
683
if (data)
684
data->dr7 = val;
685
686
return ES_OK;
687
}
688
689
static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
690
struct es_em_ctxt *ctxt)
691
{
692
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
693
long *reg = vc_insn_get_rm(ctxt);
694
695
if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
696
return ES_VMM_ERROR;
697
698
if (!reg)
699
return ES_DECODE_FAILED;
700
701
if (data)
702
*reg = data->dr7;
703
else
704
*reg = DR7_RESET_VALUE;
705
706
return ES_OK;
707
}
708
709
static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
710
struct es_em_ctxt *ctxt)
711
{
712
return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
713
}
714
715
static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
716
{
717
enum es_result ret;
718
719
ghcb_set_rcx(ghcb, ctxt->regs->cx);
720
721
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
722
if (ret != ES_OK)
723
return ret;
724
725
if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
726
return ES_VMM_ERROR;
727
728
ctxt->regs->ax = ghcb->save.rax;
729
ctxt->regs->dx = ghcb->save.rdx;
730
731
return ES_OK;
732
}
733
734
static enum es_result vc_handle_monitor(struct ghcb *ghcb,
735
struct es_em_ctxt *ctxt)
736
{
737
/*
738
* Treat it as a NOP and do not leak a physical address to the
739
* hypervisor.
740
*/
741
return ES_OK;
742
}
743
744
static enum es_result vc_handle_mwait(struct ghcb *ghcb,
745
struct es_em_ctxt *ctxt)
746
{
747
/* Treat the same as MONITOR/MONITORX */
748
return ES_OK;
749
}
750
751
static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
752
struct es_em_ctxt *ctxt)
753
{
754
enum es_result ret;
755
756
ghcb_set_rax(ghcb, ctxt->regs->ax);
757
ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
758
759
if (x86_platform.hyper.sev_es_hcall_prepare)
760
x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
761
762
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
763
if (ret != ES_OK)
764
return ret;
765
766
if (!ghcb_rax_is_valid(ghcb))
767
return ES_VMM_ERROR;
768
769
ctxt->regs->ax = ghcb->save.rax;
770
771
/*
772
* Call sev_es_hcall_finish() after regs->ax is already set.
773
* This allows the hypervisor handler to overwrite it again if
774
* necessary.
775
*/
776
if (x86_platform.hyper.sev_es_hcall_finish &&
777
!x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
778
return ES_VMM_ERROR;
779
780
return ES_OK;
781
}
782
783
static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
784
struct es_em_ctxt *ctxt)
785
{
786
/*
787
* Calling ecx_alignment_check() directly does not work, because it
788
* enables IRQs and the GHCB is active. Forward the exception and call
789
* it later from vc_forward_exception().
790
*/
791
ctxt->fi.vector = X86_TRAP_AC;
792
ctxt->fi.error_code = 0;
793
return ES_EXCEPTION;
794
}
795
796
static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
797
struct ghcb *ghcb,
798
unsigned long exit_code)
799
{
800
enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
801
802
if (result != ES_OK)
803
return result;
804
805
switch (exit_code) {
806
case SVM_EXIT_READ_DR7:
807
result = vc_handle_dr7_read(ghcb, ctxt);
808
break;
809
case SVM_EXIT_WRITE_DR7:
810
result = vc_handle_dr7_write(ghcb, ctxt);
811
break;
812
case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
813
result = vc_handle_trap_ac(ghcb, ctxt);
814
break;
815
case SVM_EXIT_RDTSC:
816
case SVM_EXIT_RDTSCP:
817
result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
818
break;
819
case SVM_EXIT_RDPMC:
820
result = vc_handle_rdpmc(ghcb, ctxt);
821
break;
822
case SVM_EXIT_INVD:
823
pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
824
result = ES_UNSUPPORTED;
825
break;
826
case SVM_EXIT_CPUID:
827
result = vc_handle_cpuid(ghcb, ctxt);
828
break;
829
case SVM_EXIT_IOIO:
830
result = vc_handle_ioio(ghcb, ctxt);
831
break;
832
case SVM_EXIT_MSR:
833
result = vc_handle_msr(ghcb, ctxt);
834
break;
835
case SVM_EXIT_VMMCALL:
836
result = vc_handle_vmmcall(ghcb, ctxt);
837
break;
838
case SVM_EXIT_WBINVD:
839
result = vc_handle_wbinvd(ghcb, ctxt);
840
break;
841
case SVM_EXIT_MONITOR:
842
result = vc_handle_monitor(ghcb, ctxt);
843
break;
844
case SVM_EXIT_MWAIT:
845
result = vc_handle_mwait(ghcb, ctxt);
846
break;
847
case SVM_EXIT_NPF:
848
result = vc_handle_mmio(ghcb, ctxt);
849
break;
850
default:
851
/*
852
* Unexpected #VC exception
853
*/
854
result = ES_UNSUPPORTED;
855
}
856
857
return result;
858
}
859
860
static __always_inline bool is_vc2_stack(unsigned long sp)
861
{
862
return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
863
}
864
865
static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
866
{
867
unsigned long sp, prev_sp;
868
869
sp = (unsigned long)regs;
870
prev_sp = regs->sp;
871
872
/*
873
* If the code was already executing on the VC2 stack when the #VC
874
* happened, let it proceed to the normal handling routine. This way the
875
* code executing on the VC2 stack can cause #VC exceptions to get handled.
876
*/
877
return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
878
}
879
880
static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
881
{
882
struct ghcb_state state;
883
struct es_em_ctxt ctxt;
884
enum es_result result;
885
struct ghcb *ghcb;
886
bool ret = true;
887
888
ghcb = __sev_get_ghcb(&state);
889
890
vc_ghcb_invalidate(ghcb);
891
result = vc_init_em_ctxt(&ctxt, regs, error_code);
892
893
if (result == ES_OK)
894
result = vc_handle_exitcode(&ctxt, ghcb, error_code);
895
896
__sev_put_ghcb(&state);
897
898
/* Done - now check the result */
899
switch (result) {
900
case ES_OK:
901
vc_finish_insn(&ctxt);
902
break;
903
case ES_UNSUPPORTED:
904
pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
905
error_code, regs->ip);
906
ret = false;
907
break;
908
case ES_VMM_ERROR:
909
pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
910
error_code, regs->ip);
911
ret = false;
912
break;
913
case ES_DECODE_FAILED:
914
pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
915
error_code, regs->ip);
916
ret = false;
917
break;
918
case ES_EXCEPTION:
919
vc_forward_exception(&ctxt);
920
break;
921
case ES_RETRY:
922
/* Nothing to do */
923
break;
924
default:
925
pr_emerg("Unknown result in %s():%d\n", __func__, result);
926
/*
927
* Emulating the instruction which caused the #VC exception
928
* failed - can't continue so print debug information
929
*/
930
BUG();
931
}
932
933
return ret;
934
}
935
936
static __always_inline bool vc_is_db(unsigned long error_code)
937
{
938
return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
939
}
940
941
/*
942
* Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
943
* and will panic when an error happens.
944
*/
945
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
946
{
947
irqentry_state_t irq_state;
948
949
/*
950
* With the current implementation it is always possible to switch to a
951
* safe stack because #VC exceptions only happen at known places, like
952
* intercepted instructions or accesses to MMIO areas/IO ports. They can
953
* also happen with code instrumentation when the hypervisor intercepts
954
* #DB, but the critical paths are forbidden to be instrumented, so #DB
955
* exceptions currently also only happen in safe places.
956
*
957
* But keep this here in case the noinstr annotations are violated due
958
* to bug elsewhere.
959
*/
960
if (unlikely(vc_from_invalid_context(regs))) {
961
instrumentation_begin();
962
panic("Can't handle #VC exception from unsupported context\n");
963
instrumentation_end();
964
}
965
966
/*
967
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
968
*/
969
if (vc_is_db(error_code)) {
970
exc_debug(regs);
971
return;
972
}
973
974
irq_state = irqentry_nmi_enter(regs);
975
976
instrumentation_begin();
977
978
if (!vc_raw_handle_exception(regs, error_code)) {
979
/* Show some debug info */
980
show_regs(regs);
981
982
/* Ask hypervisor to sev_es_terminate */
983
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
984
985
/* If that fails and we get here - just panic */
986
panic("Returned from Terminate-Request to Hypervisor\n");
987
}
988
989
instrumentation_end();
990
irqentry_nmi_exit(regs, irq_state);
991
}
992
993
/*
994
* Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
995
* and will kill the current task with SIGBUS when an error happens.
996
*/
997
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
998
{
999
/*
1000
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
1001
*/
1002
if (vc_is_db(error_code)) {
1003
noist_exc_debug(regs);
1004
return;
1005
}
1006
1007
irqentry_enter_from_user_mode(regs);
1008
instrumentation_begin();
1009
1010
if (!vc_raw_handle_exception(regs, error_code)) {
1011
/*
1012
* Do not kill the machine if user-space triggered the
1013
* exception. Send SIGBUS instead and let user-space deal with
1014
* it.
1015
*/
1016
force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1017
}
1018
1019
instrumentation_end();
1020
irqentry_exit_to_user_mode(regs);
1021
}
1022
1023
bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1024
{
1025
unsigned long exit_code = regs->orig_ax;
1026
struct es_em_ctxt ctxt;
1027
enum es_result result;
1028
1029
vc_ghcb_invalidate(boot_ghcb);
1030
1031
result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1032
if (result == ES_OK)
1033
result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1034
1035
/* Done - now check the result */
1036
switch (result) {
1037
case ES_OK:
1038
vc_finish_insn(&ctxt);
1039
break;
1040
case ES_UNSUPPORTED:
1041
early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1042
exit_code, regs->ip);
1043
goto fail;
1044
case ES_VMM_ERROR:
1045
early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1046
exit_code, regs->ip);
1047
goto fail;
1048
case ES_DECODE_FAILED:
1049
early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1050
exit_code, regs->ip);
1051
goto fail;
1052
case ES_EXCEPTION:
1053
vc_early_forward_exception(&ctxt);
1054
break;
1055
case ES_RETRY:
1056
/* Nothing to do */
1057
break;
1058
default:
1059
BUG();
1060
}
1061
1062
return true;
1063
1064
fail:
1065
show_regs(regs);
1066
1067
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1068
}
1069
1070
1071