Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/coco/tdx/tdx.c
26489 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright (C) 2021-2022 Intel Corporation */
3
4
#undef pr_fmt
5
#define pr_fmt(fmt) "tdx: " fmt
6
7
#include <linux/cpufeature.h>
8
#include <linux/export.h>
9
#include <linux/io.h>
10
#include <linux/kexec.h>
11
#include <asm/coco.h>
12
#include <asm/tdx.h>
13
#include <asm/vmx.h>
14
#include <asm/ia32.h>
15
#include <asm/insn.h>
16
#include <asm/insn-eval.h>
17
#include <asm/paravirt_types.h>
18
#include <asm/pgtable.h>
19
#include <asm/set_memory.h>
20
#include <asm/traps.h>
21
22
/* MMIO direction */
23
#define EPT_READ 0
24
#define EPT_WRITE 1
25
26
/* Port I/O direction */
27
#define PORT_READ 0
28
#define PORT_WRITE 1
29
30
/* See Exit Qualification for I/O Instructions in VMX documentation */
31
#define VE_IS_IO_IN(e) ((e) & BIT(3))
32
#define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1)
33
#define VE_GET_PORT_NUM(e) ((e) >> 16)
34
#define VE_IS_IO_STRING(e) ((e) & BIT(4))
35
36
/* TDX Module call error codes */
37
#define TDCALL_RETURN_CODE(a) ((a) >> 32)
38
#define TDCALL_INVALID_OPERAND 0xc0000100
39
#define TDCALL_OPERAND_BUSY 0x80000200
40
41
#define TDREPORT_SUBTYPE_0 0
42
43
static atomic_long_t nr_shared;
44
45
/* Called from __tdx_hypercall() for unrecoverable failure */
46
noinstr void __noreturn __tdx_hypercall_failed(void)
47
{
48
instrumentation_begin();
49
panic("TDVMCALL failed. TDX module bug?");
50
}
51
52
#ifdef CONFIG_KVM_GUEST
53
long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
54
unsigned long p3, unsigned long p4)
55
{
56
struct tdx_module_args args = {
57
.r10 = nr,
58
.r11 = p1,
59
.r12 = p2,
60
.r13 = p3,
61
.r14 = p4,
62
};
63
64
return __tdx_hypercall(&args);
65
}
66
EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
67
#endif
68
69
/*
70
* Used for TDX guests to make calls directly to the TD module. This
71
* should only be used for calls that have no legitimate reason to fail
72
* or where the kernel can not survive the call failing.
73
*/
74
static inline void tdcall(u64 fn, struct tdx_module_args *args)
75
{
76
if (__tdcall_ret(fn, args))
77
panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
78
}
79
80
/* Read TD-scoped metadata */
81
static inline u64 tdg_vm_rd(u64 field, u64 *value)
82
{
83
struct tdx_module_args args = {
84
.rdx = field,
85
};
86
u64 ret;
87
88
ret = __tdcall_ret(TDG_VM_RD, &args);
89
*value = args.r8;
90
91
return ret;
92
}
93
94
/* Write TD-scoped metadata */
95
static inline u64 tdg_vm_wr(u64 field, u64 value, u64 mask)
96
{
97
struct tdx_module_args args = {
98
.rdx = field,
99
.r8 = value,
100
.r9 = mask,
101
};
102
103
return __tdcall(TDG_VM_WR, &args);
104
}
105
106
/**
107
* tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
108
* subtype 0) using TDG.MR.REPORT TDCALL.
109
* @reportdata: Address of the input buffer which contains user-defined
110
* REPORTDATA to be included into TDREPORT.
111
* @tdreport: Address of the output buffer to store TDREPORT.
112
*
113
* Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module v1.0
114
* specification for more information on TDG.MR.REPORT TDCALL.
115
*
116
* It is used in the TDX guest driver module to get the TDREPORT0.
117
*
118
* Return 0 on success, -ENXIO for invalid operands, -EBUSY for busy operation,
119
* or -EIO on other TDCALL failures.
120
*/
121
int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
122
{
123
struct tdx_module_args args = {
124
.rcx = virt_to_phys(tdreport),
125
.rdx = virt_to_phys(reportdata),
126
.r8 = TDREPORT_SUBTYPE_0,
127
};
128
u64 ret;
129
130
ret = __tdcall(TDG_MR_REPORT, &args);
131
if (ret) {
132
if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
133
return -ENXIO;
134
else if (TDCALL_RETURN_CODE(ret) == TDCALL_OPERAND_BUSY)
135
return -EBUSY;
136
return -EIO;
137
}
138
139
return 0;
140
}
141
EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
142
143
/**
144
* tdx_mcall_extend_rtmr() - Wrapper to extend RTMR registers using
145
* TDG.MR.RTMR.EXTEND TDCALL.
146
* @index: Index of RTMR register to be extended.
147
* @data: Address of the input buffer with RTMR register extend data.
148
*
149
* Refer to section titled "TDG.MR.RTMR.EXTEND leaf" in the TDX Module v1.0
150
* specification for more information on TDG.MR.RTMR.EXTEND TDCALL.
151
*
152
* It is used in the TDX guest driver module to allow user to extend the RTMR
153
* registers.
154
*
155
* Return 0 on success, -ENXIO for invalid operands, -EBUSY for busy operation,
156
* or -EIO on other TDCALL failures.
157
*/
158
int tdx_mcall_extend_rtmr(u8 index, u8 *data)
159
{
160
struct tdx_module_args args = {
161
.rcx = virt_to_phys(data),
162
.rdx = index,
163
};
164
u64 ret;
165
166
ret = __tdcall(TDG_MR_RTMR_EXTEND, &args);
167
if (ret) {
168
if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
169
return -ENXIO;
170
if (TDCALL_RETURN_CODE(ret) == TDCALL_OPERAND_BUSY)
171
return -EBUSY;
172
return -EIO;
173
}
174
175
return 0;
176
}
177
EXPORT_SYMBOL_GPL(tdx_mcall_extend_rtmr);
178
179
/**
180
* tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote
181
* hypercall.
182
* @buf: Address of the directly mapped shared kernel buffer which
183
* contains TDREPORT. The same buffer will be used by VMM to
184
* store the generated TD Quote output.
185
* @size: size of the tdquote buffer (4KB-aligned).
186
*
187
* Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI
188
* v1.0 specification for more information on GetQuote hypercall.
189
* It is used in the TDX guest driver module to get the TD Quote.
190
*
191
* Return 0 on success or error code on failure.
192
*/
193
u64 tdx_hcall_get_quote(u8 *buf, size_t size)
194
{
195
/* Since buf is a shared memory, set the shared (decrypted) bits */
196
return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0);
197
}
198
EXPORT_SYMBOL_GPL(tdx_hcall_get_quote);
199
200
static void __noreturn tdx_panic(const char *msg)
201
{
202
struct tdx_module_args args = {
203
.r10 = TDX_HYPERCALL_STANDARD,
204
.r11 = TDVMCALL_REPORT_FATAL_ERROR,
205
.r12 = 0, /* Error code: 0 is Panic */
206
};
207
union {
208
/* Define register order according to the GHCI */
209
struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
210
211
char bytes[64] __nonstring;
212
} message;
213
214
/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
215
strtomem_pad(message.bytes, msg, '\0');
216
217
args.r8 = message.r8;
218
args.r9 = message.r9;
219
args.r14 = message.r14;
220
args.r15 = message.r15;
221
args.rdi = message.rdi;
222
args.rsi = message.rsi;
223
args.rbx = message.rbx;
224
args.rdx = message.rdx;
225
226
/*
227
* This hypercall should never return and it is not safe
228
* to keep the guest running. Call it forever if it
229
* happens to return.
230
*/
231
while (1)
232
__tdx_hypercall(&args);
233
}
234
235
/*
236
* The kernel cannot handle #VEs when accessing normal kernel memory. Ensure
237
* that no #VE will be delivered for accesses to TD-private memory.
238
*
239
* TDX 1.0 does not allow the guest to disable SEPT #VE on its own. The VMM
240
* controls if the guest will receive such #VE with TD attribute
241
* TDX_ATTR_SEPT_VE_DISABLE.
242
*
243
* Newer TDX modules allow the guest to control if it wants to receive SEPT
244
* violation #VEs.
245
*
246
* Check if the feature is available and disable SEPT #VE if possible.
247
*
248
* If the TD is allowed to disable/enable SEPT #VEs, the TDX_ATTR_SEPT_VE_DISABLE
249
* attribute is no longer reliable. It reflects the initial state of the
250
* control for the TD, but it will not be updated if someone (e.g. bootloader)
251
* changes it before the kernel starts. Kernel must check TDCS_TD_CTLS bit to
252
* determine if SEPT #VEs are enabled or disabled.
253
*/
254
static void disable_sept_ve(u64 td_attr)
255
{
256
const char *msg = "TD misconfiguration: SEPT #VE has to be disabled";
257
bool debug = td_attr & TDX_ATTR_DEBUG;
258
u64 config, controls;
259
260
/* Is this TD allowed to disable SEPT #VE */
261
tdg_vm_rd(TDCS_CONFIG_FLAGS, &config);
262
if (!(config & TDCS_CONFIG_FLEXIBLE_PENDING_VE)) {
263
/* No SEPT #VE controls for the guest: check the attribute */
264
if (td_attr & TDX_ATTR_SEPT_VE_DISABLE)
265
return;
266
267
/* Relax SEPT_VE_DISABLE check for debug TD for backtraces */
268
if (debug)
269
pr_warn("%s\n", msg);
270
else
271
tdx_panic(msg);
272
return;
273
}
274
275
/* Check if SEPT #VE has been disabled before us */
276
tdg_vm_rd(TDCS_TD_CTLS, &controls);
277
if (controls & TD_CTLS_PENDING_VE_DISABLE)
278
return;
279
280
/* Keep #VEs enabled for splats in debugging environments */
281
if (debug)
282
return;
283
284
/* Disable SEPT #VEs */
285
tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_PENDING_VE_DISABLE,
286
TD_CTLS_PENDING_VE_DISABLE);
287
}
288
289
/*
290
* TDX 1.0 generates a #VE when accessing topology-related CPUID leafs (0xB and
291
* 0x1F) and the X2APIC_APICID MSR. The kernel returns all zeros on CPUID #VEs.
292
* In practice, this means that the kernel can only boot with a plain topology.
293
* Any complications will cause problems.
294
*
295
* The ENUM_TOPOLOGY feature allows the VMM to provide topology information.
296
* Enabling the feature eliminates topology-related #VEs: the TDX module
297
* virtualizes accesses to the CPUID leafs and the MSR.
298
*
299
* Enable ENUM_TOPOLOGY if it is available.
300
*/
301
static void enable_cpu_topology_enumeration(void)
302
{
303
u64 configured;
304
305
/* Has the VMM provided a valid topology configuration? */
306
tdg_vm_rd(TDCS_TOPOLOGY_ENUM_CONFIGURED, &configured);
307
if (!configured) {
308
pr_err("VMM did not configure X2APIC_IDs properly\n");
309
return;
310
}
311
312
tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_ENUM_TOPOLOGY, TD_CTLS_ENUM_TOPOLOGY);
313
}
314
315
static void reduce_unnecessary_ve(void)
316
{
317
u64 err = tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_REDUCE_VE, TD_CTLS_REDUCE_VE);
318
319
if (err == TDX_SUCCESS)
320
return;
321
322
/*
323
* Enabling REDUCE_VE includes ENUM_TOPOLOGY. Only try to
324
* enable ENUM_TOPOLOGY if REDUCE_VE was not successful.
325
*/
326
enable_cpu_topology_enumeration();
327
}
328
329
static void tdx_setup(u64 *cc_mask)
330
{
331
struct tdx_module_args args = {};
332
unsigned int gpa_width;
333
u64 td_attr;
334
335
/*
336
* TDINFO TDX module call is used to get the TD execution environment
337
* information like GPA width, number of available vcpus, debug mode
338
* information, etc. More details about the ABI can be found in TDX
339
* Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
340
* [TDG.VP.INFO].
341
*/
342
tdcall(TDG_VP_INFO, &args);
343
344
/*
345
* The highest bit of a guest physical address is the "sharing" bit.
346
* Set it for shared pages and clear it for private pages.
347
*
348
* The GPA width that comes out of this call is critical. TDX guests
349
* can not meaningfully run without it.
350
*/
351
gpa_width = args.rcx & GENMASK(5, 0);
352
*cc_mask = BIT_ULL(gpa_width - 1);
353
354
td_attr = args.rdx;
355
356
/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
357
tdg_vm_wr(TDCS_NOTIFY_ENABLES, 0, -1ULL);
358
359
disable_sept_ve(td_attr);
360
361
reduce_unnecessary_ve();
362
}
363
364
/*
365
* The TDX module spec states that #VE may be injected for a limited set of
366
* reasons:
367
*
368
* - Emulation of the architectural #VE injection on EPT violation;
369
*
370
* - As a result of guest TD execution of a disallowed instruction,
371
* a disallowed MSR access, or CPUID virtualization;
372
*
373
* - A notification to the guest TD about anomalous behavior;
374
*
375
* The last one is opt-in and is not used by the kernel.
376
*
377
* The Intel Software Developer's Manual describes cases when instruction
378
* length field can be used in section "Information for VM Exits Due to
379
* Instruction Execution".
380
*
381
* For TDX, it ultimately means GET_VEINFO provides reliable instruction length
382
* information if #VE occurred due to instruction execution, but not for EPT
383
* violations.
384
*/
385
static int ve_instr_len(struct ve_info *ve)
386
{
387
switch (ve->exit_reason) {
388
case EXIT_REASON_HLT:
389
case EXIT_REASON_MSR_READ:
390
case EXIT_REASON_MSR_WRITE:
391
case EXIT_REASON_CPUID:
392
case EXIT_REASON_IO_INSTRUCTION:
393
/* It is safe to use ve->instr_len for #VE due instructions */
394
return ve->instr_len;
395
case EXIT_REASON_EPT_VIOLATION:
396
/*
397
* For EPT violations, ve->insn_len is not defined. For those,
398
* the kernel must decode instructions manually and should not
399
* be using this function.
400
*/
401
WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
402
return 0;
403
default:
404
WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
405
return ve->instr_len;
406
}
407
}
408
409
static u64 __cpuidle __halt(const bool irq_disabled)
410
{
411
struct tdx_module_args args = {
412
.r10 = TDX_HYPERCALL_STANDARD,
413
.r11 = hcall_func(EXIT_REASON_HLT),
414
.r12 = irq_disabled,
415
};
416
417
/*
418
* Emulate HLT operation via hypercall. More info about ABI
419
* can be found in TDX Guest-Host-Communication Interface
420
* (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
421
*
422
* The VMM uses the "IRQ disabled" param to understand IRQ
423
* enabled status (RFLAGS.IF) of the TD guest and to determine
424
* whether or not it should schedule the halted vCPU if an
425
* IRQ becomes pending. E.g. if IRQs are disabled, the VMM
426
* can keep the vCPU in virtual HLT, even if an IRQ is
427
* pending, without hanging/breaking the guest.
428
*/
429
return __tdx_hypercall(&args);
430
}
431
432
static int handle_halt(struct ve_info *ve)
433
{
434
const bool irq_disabled = irqs_disabled();
435
436
/*
437
* HLT with IRQs enabled is unsafe, as an IRQ that is intended to be a
438
* wake event may be consumed before requesting HLT emulation, leaving
439
* the vCPU blocking indefinitely.
440
*/
441
if (WARN_ONCE(!irq_disabled, "HLT emulation with IRQs enabled"))
442
return -EIO;
443
444
if (__halt(irq_disabled))
445
return -EIO;
446
447
return ve_instr_len(ve);
448
}
449
450
void __cpuidle tdx_halt(void)
451
{
452
const bool irq_disabled = false;
453
454
/*
455
* Use WARN_ONCE() to report the failure.
456
*/
457
if (__halt(irq_disabled))
458
WARN_ONCE(1, "HLT instruction emulation failed\n");
459
}
460
461
static void __cpuidle tdx_safe_halt(void)
462
{
463
tdx_halt();
464
/*
465
* "__cpuidle" section doesn't support instrumentation, so stick
466
* with raw_* variant that avoids tracing hooks.
467
*/
468
raw_local_irq_enable();
469
}
470
471
static int read_msr(struct pt_regs *regs, struct ve_info *ve)
472
{
473
struct tdx_module_args args = {
474
.r10 = TDX_HYPERCALL_STANDARD,
475
.r11 = hcall_func(EXIT_REASON_MSR_READ),
476
.r12 = regs->cx,
477
};
478
479
/*
480
* Emulate the MSR read via hypercall. More info about ABI
481
* can be found in TDX Guest-Host-Communication Interface
482
* (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
483
*/
484
if (__tdx_hypercall(&args))
485
return -EIO;
486
487
regs->ax = lower_32_bits(args.r11);
488
regs->dx = upper_32_bits(args.r11);
489
return ve_instr_len(ve);
490
}
491
492
static int write_msr(struct pt_regs *regs, struct ve_info *ve)
493
{
494
struct tdx_module_args args = {
495
.r10 = TDX_HYPERCALL_STANDARD,
496
.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
497
.r12 = regs->cx,
498
.r13 = (u64)regs->dx << 32 | regs->ax,
499
};
500
501
/*
502
* Emulate the MSR write via hypercall. More info about ABI
503
* can be found in TDX Guest-Host-Communication Interface
504
* (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
505
*/
506
if (__tdx_hypercall(&args))
507
return -EIO;
508
509
return ve_instr_len(ve);
510
}
511
512
static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
513
{
514
struct tdx_module_args args = {
515
.r10 = TDX_HYPERCALL_STANDARD,
516
.r11 = hcall_func(EXIT_REASON_CPUID),
517
.r12 = regs->ax,
518
.r13 = regs->cx,
519
};
520
521
/*
522
* Only allow VMM to control range reserved for hypervisor
523
* communication.
524
*
525
* Return all-zeros for any CPUID outside the range. It matches CPU
526
* behaviour for non-supported leaf.
527
*/
528
if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
529
regs->ax = regs->bx = regs->cx = regs->dx = 0;
530
return ve_instr_len(ve);
531
}
532
533
/*
534
* Emulate the CPUID instruction via a hypercall. More info about
535
* ABI can be found in TDX Guest-Host-Communication Interface
536
* (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
537
*/
538
if (__tdx_hypercall(&args))
539
return -EIO;
540
541
/*
542
* As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
543
* EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
544
* So copy the register contents back to pt_regs.
545
*/
546
regs->ax = args.r12;
547
regs->bx = args.r13;
548
regs->cx = args.r14;
549
regs->dx = args.r15;
550
551
return ve_instr_len(ve);
552
}
553
554
static bool mmio_read(int size, unsigned long addr, unsigned long *val)
555
{
556
struct tdx_module_args args = {
557
.r10 = TDX_HYPERCALL_STANDARD,
558
.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
559
.r12 = size,
560
.r13 = EPT_READ,
561
.r14 = addr,
562
};
563
564
if (__tdx_hypercall(&args))
565
return false;
566
567
*val = args.r11;
568
return true;
569
}
570
571
static bool mmio_write(int size, unsigned long addr, unsigned long val)
572
{
573
return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
574
EPT_WRITE, addr, val);
575
}
576
577
static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
578
{
579
unsigned long *reg, val, vaddr;
580
char buffer[MAX_INSN_SIZE];
581
enum insn_mmio_type mmio;
582
struct insn insn = {};
583
int size, extend_size;
584
u8 extend_val = 0;
585
586
/* Only in-kernel MMIO is supported */
587
if (WARN_ON_ONCE(user_mode(regs)))
588
return -EFAULT;
589
590
if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
591
return -EFAULT;
592
593
if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
594
return -EINVAL;
595
596
mmio = insn_decode_mmio(&insn, &size);
597
if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
598
return -EINVAL;
599
600
if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
601
reg = insn_get_modrm_reg_ptr(&insn, regs);
602
if (!reg)
603
return -EINVAL;
604
}
605
606
if (!fault_in_kernel_space(ve->gla)) {
607
WARN_ONCE(1, "Access to userspace address is not supported");
608
return -EINVAL;
609
}
610
611
/*
612
* Reject EPT violation #VEs that split pages.
613
*
614
* MMIO accesses are supposed to be naturally aligned and therefore
615
* never cross page boundaries. Seeing split page accesses indicates
616
* a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
617
*
618
* load_unaligned_zeropad() will recover using exception fixups.
619
*/
620
vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
621
if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
622
return -EFAULT;
623
624
/* Handle writes first */
625
switch (mmio) {
626
case INSN_MMIO_WRITE:
627
memcpy(&val, reg, size);
628
if (!mmio_write(size, ve->gpa, val))
629
return -EIO;
630
return insn.length;
631
case INSN_MMIO_WRITE_IMM:
632
val = insn.immediate.value;
633
if (!mmio_write(size, ve->gpa, val))
634
return -EIO;
635
return insn.length;
636
case INSN_MMIO_READ:
637
case INSN_MMIO_READ_ZERO_EXTEND:
638
case INSN_MMIO_READ_SIGN_EXTEND:
639
/* Reads are handled below */
640
break;
641
case INSN_MMIO_MOVS:
642
case INSN_MMIO_DECODE_FAILED:
643
/*
644
* MMIO was accessed with an instruction that could not be
645
* decoded or handled properly. It was likely not using io.h
646
* helpers or accessed MMIO accidentally.
647
*/
648
return -EINVAL;
649
default:
650
WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
651
return -EINVAL;
652
}
653
654
/* Handle reads */
655
if (!mmio_read(size, ve->gpa, &val))
656
return -EIO;
657
658
switch (mmio) {
659
case INSN_MMIO_READ:
660
/* Zero-extend for 32-bit operation */
661
extend_size = size == 4 ? sizeof(*reg) : 0;
662
break;
663
case INSN_MMIO_READ_ZERO_EXTEND:
664
/* Zero extend based on operand size */
665
extend_size = insn.opnd_bytes;
666
break;
667
case INSN_MMIO_READ_SIGN_EXTEND:
668
/* Sign extend based on operand size */
669
extend_size = insn.opnd_bytes;
670
if (size == 1 && val & BIT(7))
671
extend_val = 0xFF;
672
else if (size > 1 && val & BIT(15))
673
extend_val = 0xFF;
674
break;
675
default:
676
/* All other cases has to be covered with the first switch() */
677
WARN_ON_ONCE(1);
678
return -EINVAL;
679
}
680
681
if (extend_size)
682
memset(reg, extend_val, extend_size);
683
memcpy(reg, &val, size);
684
return insn.length;
685
}
686
687
static bool handle_in(struct pt_regs *regs, int size, int port)
688
{
689
struct tdx_module_args args = {
690
.r10 = TDX_HYPERCALL_STANDARD,
691
.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
692
.r12 = size,
693
.r13 = PORT_READ,
694
.r14 = port,
695
};
696
u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
697
bool success;
698
699
/*
700
* Emulate the I/O read via hypercall. More info about ABI can be found
701
* in TDX Guest-Host-Communication Interface (GHCI) section titled
702
* "TDG.VP.VMCALL<Instruction.IO>".
703
*/
704
success = !__tdx_hypercall(&args);
705
706
/* Update part of the register affected by the emulated instruction */
707
regs->ax &= ~mask;
708
if (success)
709
regs->ax |= args.r11 & mask;
710
711
return success;
712
}
713
714
static bool handle_out(struct pt_regs *regs, int size, int port)
715
{
716
u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
717
718
/*
719
* Emulate the I/O write via hypercall. More info about ABI can be found
720
* in TDX Guest-Host-Communication Interface (GHCI) section titled
721
* "TDG.VP.VMCALL<Instruction.IO>".
722
*/
723
return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
724
PORT_WRITE, port, regs->ax & mask);
725
}
726
727
/*
728
* Emulate I/O using hypercall.
729
*
730
* Assumes the IO instruction was using ax, which is enforced
731
* by the standard io.h macros.
732
*
733
* Return True on success or False on failure.
734
*/
735
static int handle_io(struct pt_regs *regs, struct ve_info *ve)
736
{
737
u32 exit_qual = ve->exit_qual;
738
int size, port;
739
bool in, ret;
740
741
if (VE_IS_IO_STRING(exit_qual))
742
return -EIO;
743
744
in = VE_IS_IO_IN(exit_qual);
745
size = VE_GET_IO_SIZE(exit_qual);
746
port = VE_GET_PORT_NUM(exit_qual);
747
748
749
if (in)
750
ret = handle_in(regs, size, port);
751
else
752
ret = handle_out(regs, size, port);
753
if (!ret)
754
return -EIO;
755
756
return ve_instr_len(ve);
757
}
758
759
/*
760
* Early #VE exception handler. Only handles a subset of port I/O.
761
* Intended only for earlyprintk. If failed, return false.
762
*/
763
__init bool tdx_early_handle_ve(struct pt_regs *regs)
764
{
765
struct ve_info ve;
766
int insn_len;
767
768
tdx_get_ve_info(&ve);
769
770
if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
771
return false;
772
773
insn_len = handle_io(regs, &ve);
774
if (insn_len < 0)
775
return false;
776
777
regs->ip += insn_len;
778
return true;
779
}
780
781
void tdx_get_ve_info(struct ve_info *ve)
782
{
783
struct tdx_module_args args = {};
784
785
/*
786
* Called during #VE handling to retrieve the #VE info from the
787
* TDX module.
788
*
789
* This has to be called early in #VE handling. A "nested" #VE which
790
* occurs before this will raise a #DF and is not recoverable.
791
*
792
* The call retrieves the #VE info from the TDX module, which also
793
* clears the "#VE valid" flag. This must be done before anything else
794
* because any #VE that occurs while the valid flag is set will lead to
795
* #DF.
796
*
797
* Note, the TDX module treats virtual NMIs as inhibited if the #VE
798
* valid flag is set. It means that NMI=>#VE will not result in a #DF.
799
*/
800
tdcall(TDG_VP_VEINFO_GET, &args);
801
802
/* Transfer the output parameters */
803
ve->exit_reason = args.rcx;
804
ve->exit_qual = args.rdx;
805
ve->gla = args.r8;
806
ve->gpa = args.r9;
807
ve->instr_len = lower_32_bits(args.r10);
808
ve->instr_info = upper_32_bits(args.r10);
809
}
810
811
/*
812
* Handle the user initiated #VE.
813
*
814
* On success, returns the number of bytes RIP should be incremented (>=0)
815
* or -errno on error.
816
*/
817
static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
818
{
819
switch (ve->exit_reason) {
820
case EXIT_REASON_CPUID:
821
return handle_cpuid(regs, ve);
822
default:
823
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
824
return -EIO;
825
}
826
}
827
828
static inline bool is_private_gpa(u64 gpa)
829
{
830
return gpa == cc_mkenc(gpa);
831
}
832
833
/*
834
* Handle the kernel #VE.
835
*
836
* On success, returns the number of bytes RIP should be incremented (>=0)
837
* or -errno on error.
838
*/
839
static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
840
{
841
switch (ve->exit_reason) {
842
case EXIT_REASON_HLT:
843
return handle_halt(ve);
844
case EXIT_REASON_MSR_READ:
845
return read_msr(regs, ve);
846
case EXIT_REASON_MSR_WRITE:
847
return write_msr(regs, ve);
848
case EXIT_REASON_CPUID:
849
return handle_cpuid(regs, ve);
850
case EXIT_REASON_EPT_VIOLATION:
851
if (is_private_gpa(ve->gpa))
852
panic("Unexpected EPT-violation on private memory.");
853
return handle_mmio(regs, ve);
854
case EXIT_REASON_IO_INSTRUCTION:
855
return handle_io(regs, ve);
856
default:
857
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
858
return -EIO;
859
}
860
}
861
862
bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
863
{
864
int insn_len;
865
866
if (user_mode(regs))
867
insn_len = virt_exception_user(regs, ve);
868
else
869
insn_len = virt_exception_kernel(regs, ve);
870
if (insn_len < 0)
871
return false;
872
873
/* After successful #VE handling, move the IP */
874
regs->ip += insn_len;
875
876
return true;
877
}
878
879
static bool tdx_tlb_flush_required(bool private)
880
{
881
/*
882
* TDX guest is responsible for flushing TLB on private->shared
883
* transition. VMM is responsible for flushing on shared->private.
884
*
885
* The VMM _can't_ flush private addresses as it can't generate PAs
886
* with the guest's HKID. Shared memory isn't subject to integrity
887
* checking, i.e. the VMM doesn't need to flush for its own protection.
888
*
889
* There's no need to flush when converting from shared to private,
890
* as flushing is the VMM's responsibility in this case, e.g. it must
891
* flush to avoid integrity failures in the face of a buggy or
892
* malicious guest.
893
*/
894
return !private;
895
}
896
897
static bool tdx_cache_flush_required(void)
898
{
899
/*
900
* AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
901
* TDX doesn't have such capability.
902
*
903
* Flush cache unconditionally.
904
*/
905
return true;
906
}
907
908
/*
909
* Notify the VMM about page mapping conversion. More info about ABI
910
* can be found in TDX Guest-Host-Communication Interface (GHCI),
911
* section "TDG.VP.VMCALL<MapGPA>".
912
*/
913
static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc)
914
{
915
/* Retrying the hypercall a second time should succeed; use 3 just in case */
916
const int max_retries_per_page = 3;
917
int retry_count = 0;
918
919
if (!enc) {
920
/* Set the shared (decrypted) bits: */
921
start |= cc_mkdec(0);
922
end |= cc_mkdec(0);
923
}
924
925
while (retry_count < max_retries_per_page) {
926
struct tdx_module_args args = {
927
.r10 = TDX_HYPERCALL_STANDARD,
928
.r11 = TDVMCALL_MAP_GPA,
929
.r12 = start,
930
.r13 = end - start };
931
932
u64 map_fail_paddr;
933
u64 ret = __tdx_hypercall(&args);
934
935
if (ret != TDVMCALL_STATUS_RETRY)
936
return !ret;
937
/*
938
* The guest must retry the operation for the pages in the
939
* region starting at the GPA specified in R11. R11 comes
940
* from the untrusted VMM. Sanity check it.
941
*/
942
map_fail_paddr = args.r11;
943
if (map_fail_paddr < start || map_fail_paddr >= end)
944
return false;
945
946
/* "Consume" a retry without forward progress */
947
if (map_fail_paddr == start) {
948
retry_count++;
949
continue;
950
}
951
952
start = map_fail_paddr;
953
retry_count = 0;
954
}
955
956
return false;
957
}
958
959
/*
960
* Inform the VMM of the guest's intent for this physical page: shared with
961
* the VMM or private to the guest. The VMM is expected to change its mapping
962
* of the page in response.
963
*/
964
static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
965
{
966
phys_addr_t start = __pa(vaddr);
967
phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE);
968
969
if (!tdx_map_gpa(start, end, enc))
970
return false;
971
972
/* shared->private conversion requires memory to be accepted before use */
973
if (enc)
974
return tdx_accept_memory(start, end);
975
976
return true;
977
}
978
979
static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
980
bool enc)
981
{
982
/*
983
* Only handle shared->private conversion here.
984
* See the comment in tdx_early_init().
985
*/
986
if (enc && !tdx_enc_status_changed(vaddr, numpages, enc))
987
return -EIO;
988
989
return 0;
990
}
991
992
static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
993
bool enc)
994
{
995
/*
996
* Only handle private->shared conversion here.
997
* See the comment in tdx_early_init().
998
*/
999
if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc))
1000
return -EIO;
1001
1002
if (enc)
1003
atomic_long_sub(numpages, &nr_shared);
1004
else
1005
atomic_long_add(numpages, &nr_shared);
1006
1007
return 0;
1008
}
1009
1010
/* Stop new private<->shared conversions */
1011
static void tdx_kexec_begin(void)
1012
{
1013
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
1014
return;
1015
1016
/*
1017
* Crash kernel reaches here with interrupts disabled: can't wait for
1018
* conversions to finish.
1019
*
1020
* If race happened, just report and proceed.
1021
*/
1022
if (!set_memory_enc_stop_conversion())
1023
pr_warn("Failed to stop shared<->private conversions\n");
1024
}
1025
1026
/* Walk direct mapping and convert all shared memory back to private */
1027
static void tdx_kexec_finish(void)
1028
{
1029
unsigned long addr, end;
1030
long found = 0, shared;
1031
1032
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
1033
return;
1034
1035
lockdep_assert_irqs_disabled();
1036
1037
addr = PAGE_OFFSET;
1038
end = PAGE_OFFSET + get_max_mapped();
1039
1040
while (addr < end) {
1041
unsigned long size;
1042
unsigned int level;
1043
pte_t *pte;
1044
1045
pte = lookup_address(addr, &level);
1046
size = page_level_size(level);
1047
1048
if (pte && pte_decrypted(*pte)) {
1049
int pages = size / PAGE_SIZE;
1050
1051
/*
1052
* Touching memory with shared bit set triggers implicit
1053
* conversion to shared.
1054
*
1055
* Make sure nobody touches the shared range from
1056
* now on.
1057
*/
1058
set_pte(pte, __pte(0));
1059
1060
/*
1061
* Memory encryption state persists across kexec.
1062
* If tdx_enc_status_changed() fails in the first
1063
* kernel, it leaves memory in an unknown state.
1064
*
1065
* If that memory remains shared, accessing it in the
1066
* *next* kernel through a private mapping will result
1067
* in an unrecoverable guest shutdown.
1068
*
1069
* The kdump kernel boot is not impacted as it uses
1070
* a pre-reserved memory range that is always private.
1071
* However, gathering crash information could lead to
1072
* a crash if it accesses unconverted memory through
1073
* a private mapping which is possible when accessing
1074
* that memory through /proc/vmcore, for example.
1075
*
1076
* In all cases, print error info in order to leave
1077
* enough bread crumbs for debugging.
1078
*/
1079
if (!tdx_enc_status_changed(addr, pages, true)) {
1080
pr_err("Failed to unshare range %#lx-%#lx\n",
1081
addr, addr + size);
1082
}
1083
1084
found += pages;
1085
}
1086
1087
addr += size;
1088
}
1089
1090
__flush_tlb_all();
1091
1092
shared = atomic_long_read(&nr_shared);
1093
if (shared != found) {
1094
pr_err("shared page accounting is off\n");
1095
pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found);
1096
}
1097
}
1098
1099
static __init void tdx_announce(void)
1100
{
1101
struct tdx_module_args args = {};
1102
u64 controls;
1103
1104
pr_info("Guest detected\n");
1105
1106
tdcall(TDG_VP_INFO, &args);
1107
tdx_dump_attributes(args.rdx);
1108
1109
tdg_vm_rd(TDCS_TD_CTLS, &controls);
1110
tdx_dump_td_ctls(controls);
1111
}
1112
1113
void __init tdx_early_init(void)
1114
{
1115
u64 cc_mask;
1116
u32 eax, sig[3];
1117
1118
cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]);
1119
1120
if (memcmp(TDX_IDENT, sig, sizeof(sig)))
1121
return;
1122
1123
setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
1124
1125
/* TSC is the only reliable clock in TDX guest */
1126
setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
1127
1128
cc_vendor = CC_VENDOR_INTEL;
1129
1130
/* Configure the TD */
1131
tdx_setup(&cc_mask);
1132
1133
cc_set_mask(cc_mask);
1134
1135
/*
1136
* All bits above GPA width are reserved and kernel treats shared bit
1137
* as flag, not as part of physical address.
1138
*
1139
* Adjust physical mask to only cover valid GPA bits.
1140
*/
1141
physical_mask &= cc_mask - 1;
1142
1143
/*
1144
* The kernel mapping should match the TDX metadata for the page.
1145
* load_unaligned_zeropad() can touch memory *adjacent* to that which is
1146
* owned by the caller and can catch even _momentary_ mismatches. Bad
1147
* things happen on mismatch:
1148
*
1149
* - Private mapping => Shared Page == Guest shutdown
1150
* - Shared mapping => Private Page == Recoverable #VE
1151
*
1152
* guest.enc_status_change_prepare() converts the page from
1153
* shared=>private before the mapping becomes private.
1154
*
1155
* guest.enc_status_change_finish() converts the page from
1156
* private=>shared after the mapping becomes private.
1157
*
1158
* In both cases there is a temporary shared mapping to a private page,
1159
* which can result in a #VE. But, there is never a private mapping to
1160
* a shared page.
1161
*/
1162
x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
1163
x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish;
1164
1165
x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required;
1166
x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required;
1167
1168
x86_platform.guest.enc_kexec_begin = tdx_kexec_begin;
1169
x86_platform.guest.enc_kexec_finish = tdx_kexec_finish;
1170
1171
/*
1172
* Avoid "sti;hlt" execution in TDX guests as HLT induces a #VE that
1173
* will enable interrupts before HLT TDCALL invocation if executed
1174
* in STI-shadow, possibly resulting in missed wakeup events.
1175
*
1176
* Modify all possible HLT execution paths to use TDX specific routines
1177
* that directly execute TDCALL and toggle the interrupt state as
1178
* needed after TDCALL completion. This also reduces HLT related #VEs
1179
* in addition to having a reliable halt logic execution.
1180
*/
1181
pv_ops.irq.safe_halt = tdx_safe_halt;
1182
pv_ops.irq.halt = tdx_halt;
1183
1184
/*
1185
* TDX intercepts the RDMSR to read the X2APIC ID in the parallel
1186
* bringup low level code. That raises #VE which cannot be handled
1187
* there.
1188
*
1189
* Intel-TDX has a secure RDMSR hypercall, but that needs to be
1190
* implemented separately in the low level startup ASM code.
1191
* Until that is in place, disable parallel bringup for TDX.
1192
*/
1193
x86_cpuinit.parallel_bringup = false;
1194
1195
tdx_announce();
1196
}
1197
1198