Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/crypto/aes-gcm-aesni-x86_64.S
26451 views
1
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
2
//
3
// AES-NI optimized AES-GCM for x86_64
4
//
5
// Copyright 2024 Google LLC
6
//
7
// Author: Eric Biggers <ebiggers@google.com>
8
//
9
//------------------------------------------------------------------------------
10
//
11
// This file is dual-licensed, meaning that you can use it under your choice of
12
// either of the following two licenses:
13
//
14
// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
15
// of the License at
16
//
17
// http://www.apache.org/licenses/LICENSE-2.0
18
//
19
// Unless required by applicable law or agreed to in writing, software
20
// distributed under the License is distributed on an "AS IS" BASIS,
21
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
// See the License for the specific language governing permissions and
23
// limitations under the License.
24
//
25
// or
26
//
27
// Redistribution and use in source and binary forms, with or without
28
// modification, are permitted provided that the following conditions are met:
29
//
30
// 1. Redistributions of source code must retain the above copyright notice,
31
// this list of conditions and the following disclaimer.
32
//
33
// 2. Redistributions in binary form must reproduce the above copyright
34
// notice, this list of conditions and the following disclaimer in the
35
// documentation and/or other materials provided with the distribution.
36
//
37
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
38
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
41
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
42
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
43
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
44
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
45
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
47
// POSSIBILITY OF SUCH DAMAGE.
48
//
49
//------------------------------------------------------------------------------
50
//
51
// This file implements AES-GCM (Galois/Counter Mode) for x86_64 CPUs that
52
// support the original set of AES instructions, i.e. AES-NI. Two
53
// implementations are provided, one that uses AVX and one that doesn't. They
54
// are very similar, being generated by the same macros. The only difference is
55
// that the AVX implementation takes advantage of VEX-coded instructions in some
56
// places to avoid some 'movdqu' and 'movdqa' instructions. The AVX
57
// implementation does *not* use 256-bit vectors, as AES is not supported on
58
// 256-bit vectors until the VAES feature (which this file doesn't target).
59
//
60
// The specific CPU feature prerequisites are AES-NI and PCLMULQDQ, plus SSE4.1
61
// for the *_aesni functions or AVX for the *_aesni_avx ones. (But it seems
62
// there are no CPUs that support AES-NI without also PCLMULQDQ and SSE4.1.)
63
//
64
// The design generally follows that of aes-gcm-avx10-x86_64.S, and that file is
65
// more thoroughly commented. This file has the following notable changes:
66
//
67
// - The vector length is fixed at 128-bit, i.e. xmm registers. This means
68
// there is only one AES block (and GHASH block) per register.
69
//
70
// - Without AVX512 / AVX10, only 16 SIMD registers are available instead of
71
// 32. We work around this by being much more careful about using
72
// registers, relying heavily on loads to load values as they are needed.
73
//
74
// - Masking is not available either. We work around this by implementing
75
// partial block loads and stores using overlapping scalar loads and stores
76
// combined with shifts and SSE4.1 insertion and extraction instructions.
77
//
78
// - The main loop is organized differently due to the different design
79
// constraints. First, with just one AES block per SIMD register, on some
80
// CPUs 4 registers don't saturate the 'aesenc' throughput. We therefore
81
// do an 8-register wide loop. Considering that and the fact that we have
82
// just 16 SIMD registers to work with, it's not feasible to cache AES
83
// round keys and GHASH key powers in registers across loop iterations.
84
// That's not ideal, but also not actually that bad, since loads can run in
85
// parallel with other instructions. Significantly, this also makes it
86
// possible to roll up the inner loops, relying on hardware loop unrolling
87
// instead of software loop unrolling, greatly reducing code size.
88
//
89
// - We implement the GHASH multiplications in the main loop using Karatsuba
90
// multiplication instead of schoolbook multiplication. This saves one
91
// pclmulqdq instruction per block, at the cost of one 64-bit load, one
92
// pshufd, and 0.25 pxors per block. (This is without the three-argument
93
// XOR support that would be provided by AVX512 / AVX10, which would be
94
// more beneficial to schoolbook than Karatsuba.)
95
//
96
// As a rough approximation, we can assume that Karatsuba multiplication is
97
// faster than schoolbook multiplication in this context if one pshufd and
98
// 0.25 pxors are cheaper than a pclmulqdq. (We assume that the 64-bit
99
// load is "free" due to running in parallel with arithmetic instructions.)
100
// This is true on AMD CPUs, including all that support pclmulqdq up to at
101
// least Zen 3. It's also true on older Intel CPUs: Westmere through
102
// Haswell on the Core side, and Silvermont through Goldmont Plus on the
103
// low-power side. On some of these CPUs, pclmulqdq is quite slow, and the
104
// benefit of Karatsuba should be substantial. On newer Intel CPUs,
105
// schoolbook multiplication should be faster, but only marginally.
106
//
107
// Not all these CPUs were available to be tested. However, benchmarks on
108
// available CPUs suggest that this approximation is plausible. Switching
109
// to Karatsuba showed negligible change (< 1%) on Intel Broadwell,
110
// Skylake, and Cascade Lake, but it improved AMD Zen 1-3 by 6-7%.
111
// Considering that and the fact that Karatsuba should be even more
112
// beneficial on older Intel CPUs, it seems like the right choice here.
113
//
114
// An additional 0.25 pclmulqdq per block (2 per 8 blocks) could be
115
// saved by using a multiplication-less reduction method. We don't do that
116
// because it would require a large number of shift and xor instructions,
117
// making it less worthwhile and likely harmful on newer CPUs.
118
//
119
// It does make sense to sometimes use a different reduction optimization
120
// that saves a pclmulqdq, though: precompute the hash key times x^64, and
121
// multiply the low half of the data block by the hash key with the extra
122
// factor of x^64. This eliminates one step of the reduction. However,
123
// this is incompatible with Karatsuba multiplication. Therefore, for
124
// multi-block processing we use Karatsuba multiplication with a regular
125
// reduction. For single-block processing, we use the x^64 optimization.
126
127
#include <linux/linkage.h>
128
129
.section .rodata
130
.p2align 4
131
.Lbswap_mask:
132
.octa 0x000102030405060708090a0b0c0d0e0f
133
.Lgfpoly:
134
.quad 0xc200000000000000
135
.Lone:
136
.quad 1
137
.Lgfpoly_and_internal_carrybit:
138
.octa 0xc2000000000000010000000000000001
139
// Loading 16 bytes from '.Lzeropad_mask + 16 - len' produces a mask of
140
// 'len' 0xff bytes and the rest zeroes.
141
.Lzeropad_mask:
142
.octa 0xffffffffffffffffffffffffffffffff
143
.octa 0
144
145
// Offsets in struct aes_gcm_key_aesni
146
#define OFFSETOF_AESKEYLEN 480
147
#define OFFSETOF_H_POWERS 496
148
#define OFFSETOF_H_POWERS_XORED 624
149
#define OFFSETOF_H_TIMES_X64 688
150
151
.text
152
153
// Do a vpclmulqdq, or fall back to a movdqa and a pclmulqdq. The fallback
154
// assumes that all operands are distinct and that any mem operand is aligned.
155
.macro _vpclmulqdq imm, src1, src2, dst
156
.if USE_AVX
157
vpclmulqdq \imm, \src1, \src2, \dst
158
.else
159
movdqa \src2, \dst
160
pclmulqdq \imm, \src1, \dst
161
.endif
162
.endm
163
164
// Do a vpshufb, or fall back to a movdqa and a pshufb. The fallback assumes
165
// that all operands are distinct and that any mem operand is aligned.
166
.macro _vpshufb src1, src2, dst
167
.if USE_AVX
168
vpshufb \src1, \src2, \dst
169
.else
170
movdqa \src2, \dst
171
pshufb \src1, \dst
172
.endif
173
.endm
174
175
// Do a vpand, or fall back to a movdqu and a pand. The fallback assumes that
176
// all operands are distinct.
177
.macro _vpand src1, src2, dst
178
.if USE_AVX
179
vpand \src1, \src2, \dst
180
.else
181
movdqu \src1, \dst
182
pand \src2, \dst
183
.endif
184
.endm
185
186
// XOR the unaligned memory operand \mem into the xmm register \reg. \tmp must
187
// be a temporary xmm register.
188
.macro _xor_mem_to_reg mem, reg, tmp
189
.if USE_AVX
190
vpxor \mem, \reg, \reg
191
.else
192
movdqu \mem, \tmp
193
pxor \tmp, \reg
194
.endif
195
.endm
196
197
// Test the unaligned memory operand \mem against the xmm register \reg. \tmp
198
// must be a temporary xmm register.
199
.macro _test_mem mem, reg, tmp
200
.if USE_AVX
201
vptest \mem, \reg
202
.else
203
movdqu \mem, \tmp
204
ptest \tmp, \reg
205
.endif
206
.endm
207
208
// Load 1 <= %ecx <= 15 bytes from the pointer \src into the xmm register \dst
209
// and zeroize any remaining bytes. Clobbers %rax, %rcx, and \tmp{64,32}.
210
.macro _load_partial_block src, dst, tmp64, tmp32
211
sub $8, %ecx // LEN - 8
212
jle .Lle8\@
213
214
// Load 9 <= LEN <= 15 bytes.
215
movq (\src), \dst // Load first 8 bytes
216
mov (\src, %rcx), %rax // Load last 8 bytes
217
neg %ecx
218
shl $3, %ecx
219
shr %cl, %rax // Discard overlapping bytes
220
pinsrq $1, %rax, \dst
221
jmp .Ldone\@
222
223
.Lle8\@:
224
add $4, %ecx // LEN - 4
225
jl .Llt4\@
226
227
// Load 4 <= LEN <= 8 bytes.
228
mov (\src), %eax // Load first 4 bytes
229
mov (\src, %rcx), \tmp32 // Load last 4 bytes
230
jmp .Lcombine\@
231
232
.Llt4\@:
233
// Load 1 <= LEN <= 3 bytes.
234
add $2, %ecx // LEN - 2
235
movzbl (\src), %eax // Load first byte
236
jl .Lmovq\@
237
movzwl (\src, %rcx), \tmp32 // Load last 2 bytes
238
.Lcombine\@:
239
shl $3, %ecx
240
shl %cl, \tmp64
241
or \tmp64, %rax // Combine the two parts
242
.Lmovq\@:
243
movq %rax, \dst
244
.Ldone\@:
245
.endm
246
247
// Store 1 <= %ecx <= 15 bytes from the xmm register \src to the pointer \dst.
248
// Clobbers %rax, %rcx, and %rsi.
249
.macro _store_partial_block src, dst
250
sub $8, %ecx // LEN - 8
251
jl .Llt8\@
252
253
// Store 8 <= LEN <= 15 bytes.
254
pextrq $1, \src, %rax
255
mov %ecx, %esi
256
shl $3, %ecx
257
ror %cl, %rax
258
mov %rax, (\dst, %rsi) // Store last LEN - 8 bytes
259
movq \src, (\dst) // Store first 8 bytes
260
jmp .Ldone\@
261
262
.Llt8\@:
263
add $4, %ecx // LEN - 4
264
jl .Llt4\@
265
266
// Store 4 <= LEN <= 7 bytes.
267
pextrd $1, \src, %eax
268
mov %ecx, %esi
269
shl $3, %ecx
270
ror %cl, %eax
271
mov %eax, (\dst, %rsi) // Store last LEN - 4 bytes
272
movd \src, (\dst) // Store first 4 bytes
273
jmp .Ldone\@
274
275
.Llt4\@:
276
// Store 1 <= LEN <= 3 bytes.
277
pextrb $0, \src, 0(\dst)
278
cmp $-2, %ecx // LEN - 4 == -2, i.e. LEN == 2?
279
jl .Ldone\@
280
pextrb $1, \src, 1(\dst)
281
je .Ldone\@
282
pextrb $2, \src, 2(\dst)
283
.Ldone\@:
284
.endm
285
286
// Do one step of GHASH-multiplying \a by \b and storing the reduced product in
287
// \b. To complete all steps, this must be invoked with \i=0 through \i=9.
288
// \a_times_x64 must contain \a * x^64 in reduced form, \gfpoly must contain the
289
// .Lgfpoly constant, and \t0-\t1 must be temporary registers.
290
.macro _ghash_mul_step i, a, a_times_x64, b, gfpoly, t0, t1
291
292
// MI = (a_L * b_H) + ((a*x^64)_L * b_L)
293
.if \i == 0
294
_vpclmulqdq $0x01, \a, \b, \t0
295
.elseif \i == 1
296
_vpclmulqdq $0x00, \a_times_x64, \b, \t1
297
.elseif \i == 2
298
pxor \t1, \t0
299
300
// HI = (a_H * b_H) + ((a*x^64)_H * b_L)
301
.elseif \i == 3
302
_vpclmulqdq $0x11, \a, \b, \t1
303
.elseif \i == 4
304
pclmulqdq $0x10, \a_times_x64, \b
305
.elseif \i == 5
306
pxor \t1, \b
307
.elseif \i == 6
308
309
// Fold MI into HI.
310
pshufd $0x4e, \t0, \t1 // Swap halves of MI
311
.elseif \i == 7
312
pclmulqdq $0x00, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
313
.elseif \i == 8
314
pxor \t1, \b
315
.elseif \i == 9
316
pxor \t0, \b
317
.endif
318
.endm
319
320
// GHASH-multiply \a by \b and store the reduced product in \b.
321
// See _ghash_mul_step for details.
322
.macro _ghash_mul a, a_times_x64, b, gfpoly, t0, t1
323
.irp i, 0,1,2,3,4,5,6,7,8,9
324
_ghash_mul_step \i, \a, \a_times_x64, \b, \gfpoly, \t0, \t1
325
.endr
326
.endm
327
328
// GHASH-multiply \a by \b and add the unreduced product to \lo, \mi, and \hi.
329
// This does Karatsuba multiplication and must be paired with _ghash_reduce. On
330
// the first call, \lo, \mi, and \hi must be zero. \a_xored must contain the
331
// two halves of \a XOR'd together, i.e. a_L + a_H. \b is clobbered.
332
.macro _ghash_mul_noreduce a, a_xored, b, lo, mi, hi, t0
333
334
// LO += a_L * b_L
335
_vpclmulqdq $0x00, \a, \b, \t0
336
pxor \t0, \lo
337
338
// b_L + b_H
339
pshufd $0x4e, \b, \t0
340
pxor \b, \t0
341
342
// HI += a_H * b_H
343
pclmulqdq $0x11, \a, \b
344
pxor \b, \hi
345
346
// MI += (a_L + a_H) * (b_L + b_H)
347
pclmulqdq $0x00, \a_xored, \t0
348
pxor \t0, \mi
349
.endm
350
351
// Reduce the product from \lo, \mi, and \hi, and store the result in \dst.
352
// This assumes that _ghash_mul_noreduce was used.
353
.macro _ghash_reduce lo, mi, hi, dst, t0
354
355
movq .Lgfpoly(%rip), \t0
356
357
// MI += LO + HI (needed because we used Karatsuba multiplication)
358
pxor \lo, \mi
359
pxor \hi, \mi
360
361
// Fold LO into MI.
362
pshufd $0x4e, \lo, \dst
363
pclmulqdq $0x00, \t0, \lo
364
pxor \dst, \mi
365
pxor \lo, \mi
366
367
// Fold MI into HI.
368
pshufd $0x4e, \mi, \dst
369
pclmulqdq $0x00, \t0, \mi
370
pxor \hi, \dst
371
pxor \mi, \dst
372
.endm
373
374
// Do the first step of the GHASH update of a set of 8 ciphertext blocks.
375
//
376
// The whole GHASH update does:
377
//
378
// GHASH_ACC = (blk0+GHASH_ACC)*H^8 + blk1*H^7 + blk2*H^6 + blk3*H^5 +
379
// blk4*H^4 + blk5*H^3 + blk6*H^2 + blk7*H^1
380
//
381
// This macro just does the first step: it does the unreduced multiplication
382
// (blk0+GHASH_ACC)*H^8 and starts gathering the unreduced product in the xmm
383
// registers LO, MI, and GHASH_ACC a.k.a. HI. It also zero-initializes the
384
// inner block counter in %rax, which is a value that counts up by 8 for each
385
// block in the set of 8 and is used later to index by 8*blknum and 16*blknum.
386
//
387
// To reduce the number of pclmulqdq instructions required, both this macro and
388
// _ghash_update_continue_8x use Karatsuba multiplication instead of schoolbook
389
// multiplication. See the file comment for more details about this choice.
390
//
391
// Both macros expect the ciphertext blocks blk[0-7] to be available at DST if
392
// encrypting, or SRC if decrypting. They also expect the precomputed hash key
393
// powers H^i and their XOR'd-together halves to be available in the struct
394
// pointed to by KEY. Both macros clobber TMP[0-2].
395
.macro _ghash_update_begin_8x enc
396
397
// Initialize the inner block counter.
398
xor %eax, %eax
399
400
// Load the highest hash key power, H^8.
401
movdqa OFFSETOF_H_POWERS(KEY), TMP0
402
403
// Load the first ciphertext block and byte-reflect it.
404
.if \enc
405
movdqu (DST), TMP1
406
.else
407
movdqu (SRC), TMP1
408
.endif
409
pshufb BSWAP_MASK, TMP1
410
411
// Add the GHASH accumulator to the ciphertext block to get the block
412
// 'b' that needs to be multiplied with the hash key power 'a'.
413
pxor TMP1, GHASH_ACC
414
415
// b_L + b_H
416
pshufd $0x4e, GHASH_ACC, MI
417
pxor GHASH_ACC, MI
418
419
// LO = a_L * b_L
420
_vpclmulqdq $0x00, TMP0, GHASH_ACC, LO
421
422
// HI = a_H * b_H
423
pclmulqdq $0x11, TMP0, GHASH_ACC
424
425
// MI = (a_L + a_H) * (b_L + b_H)
426
pclmulqdq $0x00, OFFSETOF_H_POWERS_XORED(KEY), MI
427
.endm
428
429
// Continue the GHASH update of 8 ciphertext blocks as described above by doing
430
// an unreduced multiplication of the next ciphertext block by the next lowest
431
// key power and accumulating the result into LO, MI, and GHASH_ACC a.k.a. HI.
432
.macro _ghash_update_continue_8x enc
433
add $8, %eax
434
435
// Load the next lowest key power.
436
movdqa OFFSETOF_H_POWERS(KEY,%rax,2), TMP0
437
438
// Load the next ciphertext block and byte-reflect it.
439
.if \enc
440
movdqu (DST,%rax,2), TMP1
441
.else
442
movdqu (SRC,%rax,2), TMP1
443
.endif
444
pshufb BSWAP_MASK, TMP1
445
446
// LO += a_L * b_L
447
_vpclmulqdq $0x00, TMP0, TMP1, TMP2
448
pxor TMP2, LO
449
450
// b_L + b_H
451
pshufd $0x4e, TMP1, TMP2
452
pxor TMP1, TMP2
453
454
// HI += a_H * b_H
455
pclmulqdq $0x11, TMP0, TMP1
456
pxor TMP1, GHASH_ACC
457
458
// MI += (a_L + a_H) * (b_L + b_H)
459
movq OFFSETOF_H_POWERS_XORED(KEY,%rax), TMP1
460
pclmulqdq $0x00, TMP1, TMP2
461
pxor TMP2, MI
462
.endm
463
464
// Reduce LO, MI, and GHASH_ACC a.k.a. HI into GHASH_ACC. This is similar to
465
// _ghash_reduce, but it's hardcoded to use the registers of the main loop and
466
// it uses the same register for HI and the destination. It's also divided into
467
// two steps. TMP1 must be preserved across steps.
468
//
469
// One pshufd could be saved by shuffling MI and XOR'ing LO into it, instead of
470
// shuffling LO, XOR'ing LO into MI, and shuffling MI. However, this would
471
// increase the critical path length, and it seems to slightly hurt performance.
472
.macro _ghash_update_end_8x_step i
473
.if \i == 0
474
movq .Lgfpoly(%rip), TMP1
475
pxor LO, MI
476
pxor GHASH_ACC, MI
477
pshufd $0x4e, LO, TMP2
478
pclmulqdq $0x00, TMP1, LO
479
pxor TMP2, MI
480
pxor LO, MI
481
.elseif \i == 1
482
pshufd $0x4e, MI, TMP2
483
pclmulqdq $0x00, TMP1, MI
484
pxor TMP2, GHASH_ACC
485
pxor MI, GHASH_ACC
486
.endif
487
.endm
488
489
// void aes_gcm_precompute_##suffix(struct aes_gcm_key_aesni *key);
490
//
491
// Given the expanded AES key, derive the GHASH subkey and initialize the GHASH
492
// related fields in the key struct.
493
.macro _aes_gcm_precompute
494
495
// Function arguments
496
.set KEY, %rdi
497
498
// Additional local variables.
499
// %xmm0-%xmm1 and %rax are used as temporaries.
500
.set RNDKEYLAST_PTR, %rsi
501
.set H_CUR, %xmm2
502
.set H_POW1, %xmm3 // H^1
503
.set H_POW1_X64, %xmm4 // H^1 * x^64
504
.set GFPOLY, %xmm5
505
506
// Encrypt an all-zeroes block to get the raw hash subkey.
507
movl OFFSETOF_AESKEYLEN(KEY), %eax
508
lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR
509
movdqa (KEY), H_POW1 // Zero-th round key XOR all-zeroes block
510
lea 16(KEY), %rax
511
1:
512
aesenc (%rax), H_POW1
513
add $16, %rax
514
cmp %rax, RNDKEYLAST_PTR
515
jne 1b
516
aesenclast (RNDKEYLAST_PTR), H_POW1
517
518
// Preprocess the raw hash subkey as needed to operate on GHASH's
519
// bit-reflected values directly: reflect its bytes, then multiply it by
520
// x^-1 (using the backwards interpretation of polynomial coefficients
521
// from the GCM spec) or equivalently x^1 (using the alternative,
522
// natural interpretation of polynomial coefficients).
523
pshufb .Lbswap_mask(%rip), H_POW1
524
movdqa H_POW1, %xmm0
525
pshufd $0xd3, %xmm0, %xmm0
526
psrad $31, %xmm0
527
paddq H_POW1, H_POW1
528
pand .Lgfpoly_and_internal_carrybit(%rip), %xmm0
529
pxor %xmm0, H_POW1
530
531
// Store H^1.
532
movdqa H_POW1, OFFSETOF_H_POWERS+7*16(KEY)
533
534
// Compute and store H^1 * x^64.
535
movq .Lgfpoly(%rip), GFPOLY
536
pshufd $0x4e, H_POW1, %xmm0
537
_vpclmulqdq $0x00, H_POW1, GFPOLY, H_POW1_X64
538
pxor %xmm0, H_POW1_X64
539
movdqa H_POW1_X64, OFFSETOF_H_TIMES_X64(KEY)
540
541
// Compute and store the halves of H^1 XOR'd together.
542
pxor H_POW1, %xmm0
543
movq %xmm0, OFFSETOF_H_POWERS_XORED+7*8(KEY)
544
545
// Compute and store the remaining key powers H^2 through H^8.
546
movdqa H_POW1, H_CUR
547
mov $6*8, %eax
548
.Lprecompute_next\@:
549
// Compute H^i = H^{i-1} * H^1.
550
_ghash_mul H_POW1, H_POW1_X64, H_CUR, GFPOLY, %xmm0, %xmm1
551
// Store H^i.
552
movdqa H_CUR, OFFSETOF_H_POWERS(KEY,%rax,2)
553
// Compute and store the halves of H^i XOR'd together.
554
pshufd $0x4e, H_CUR, %xmm0
555
pxor H_CUR, %xmm0
556
movq %xmm0, OFFSETOF_H_POWERS_XORED(KEY,%rax)
557
sub $8, %eax
558
jge .Lprecompute_next\@
559
560
RET
561
.endm
562
563
// void aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key,
564
// u8 ghash_acc[16], const u8 *aad, int aadlen);
565
//
566
// This function processes the AAD (Additional Authenticated Data) in GCM.
567
// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the
568
// data given by |aad| and |aadlen|. On the first call, |ghash_acc| must be all
569
// zeroes. |aadlen| must be a multiple of 16, except on the last call where it
570
// can be any length. The caller must do any buffering needed to ensure this.
571
.macro _aes_gcm_aad_update
572
573
// Function arguments
574
.set KEY, %rdi
575
.set GHASH_ACC_PTR, %rsi
576
.set AAD, %rdx
577
.set AADLEN, %ecx
578
// Note: _load_partial_block relies on AADLEN being in %ecx.
579
580
// Additional local variables.
581
// %rax, %r10, and %xmm0-%xmm1 are used as temporary registers.
582
.set BSWAP_MASK, %xmm2
583
.set GHASH_ACC, %xmm3
584
.set H_POW1, %xmm4 // H^1
585
.set H_POW1_X64, %xmm5 // H^1 * x^64
586
.set GFPOLY, %xmm6
587
588
movdqa .Lbswap_mask(%rip), BSWAP_MASK
589
movdqu (GHASH_ACC_PTR), GHASH_ACC
590
movdqa OFFSETOF_H_POWERS+7*16(KEY), H_POW1
591
movdqa OFFSETOF_H_TIMES_X64(KEY), H_POW1_X64
592
movq .Lgfpoly(%rip), GFPOLY
593
594
// Process the AAD one full block at a time.
595
sub $16, AADLEN
596
jl .Laad_loop_1x_done\@
597
.Laad_loop_1x\@:
598
movdqu (AAD), %xmm0
599
pshufb BSWAP_MASK, %xmm0
600
pxor %xmm0, GHASH_ACC
601
_ghash_mul H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm0, %xmm1
602
add $16, AAD
603
sub $16, AADLEN
604
jge .Laad_loop_1x\@
605
.Laad_loop_1x_done\@:
606
// Check whether there is a partial block at the end.
607
add $16, AADLEN
608
jz .Laad_done\@
609
610
// Process a partial block of length 1 <= AADLEN <= 15.
611
// _load_partial_block assumes that %ecx contains AADLEN.
612
_load_partial_block AAD, %xmm0, %r10, %r10d
613
pshufb BSWAP_MASK, %xmm0
614
pxor %xmm0, GHASH_ACC
615
_ghash_mul H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm0, %xmm1
616
617
.Laad_done\@:
618
movdqu GHASH_ACC, (GHASH_ACC_PTR)
619
RET
620
.endm
621
622
// Increment LE_CTR eight times to generate eight little-endian counter blocks,
623
// swap each to big-endian, and store them in AESDATA[0-7]. Also XOR them with
624
// the zero-th AES round key. Clobbers TMP0 and TMP1.
625
.macro _ctr_begin_8x
626
movq .Lone(%rip), TMP0
627
movdqa (KEY), TMP1 // zero-th round key
628
.irp i, 0,1,2,3,4,5,6,7
629
_vpshufb BSWAP_MASK, LE_CTR, AESDATA\i
630
pxor TMP1, AESDATA\i
631
paddd TMP0, LE_CTR
632
.endr
633
.endm
634
635
// Do a non-last round of AES on AESDATA[0-7] using \round_key.
636
.macro _aesenc_8x round_key
637
.irp i, 0,1,2,3,4,5,6,7
638
aesenc \round_key, AESDATA\i
639
.endr
640
.endm
641
642
// Do the last round of AES on AESDATA[0-7] using \round_key.
643
.macro _aesenclast_8x round_key
644
.irp i, 0,1,2,3,4,5,6,7
645
aesenclast \round_key, AESDATA\i
646
.endr
647
.endm
648
649
// XOR eight blocks from SRC with the keystream blocks in AESDATA[0-7], and
650
// store the result to DST. Clobbers TMP0.
651
.macro _xor_data_8x
652
.irp i, 0,1,2,3,4,5,6,7
653
_xor_mem_to_reg \i*16(SRC), AESDATA\i, tmp=TMP0
654
.endr
655
.irp i, 0,1,2,3,4,5,6,7
656
movdqu AESDATA\i, \i*16(DST)
657
.endr
658
.endm
659
660
// void aes_gcm_{enc,dec}_update_##suffix(const struct aes_gcm_key_aesni *key,
661
// const u32 le_ctr[4], u8 ghash_acc[16],
662
// const u8 *src, u8 *dst, int datalen);
663
//
664
// This macro generates a GCM encryption or decryption update function with the
665
// above prototype (with \enc selecting which one).
666
//
667
// This function computes the next portion of the CTR keystream, XOR's it with
668
// |datalen| bytes from |src|, and writes the resulting encrypted or decrypted
669
// data to |dst|. It also updates the GHASH accumulator |ghash_acc| using the
670
// next |datalen| ciphertext bytes.
671
//
672
// |datalen| must be a multiple of 16, except on the last call where it can be
673
// any length. The caller must do any buffering needed to ensure this. Both
674
// in-place and out-of-place en/decryption are supported.
675
//
676
// |le_ctr| must give the current counter in little-endian format. For a new
677
// message, the low word of the counter must be 2. This function loads the
678
// counter from |le_ctr| and increments the loaded counter as needed, but it
679
// does *not* store the updated counter back to |le_ctr|. The caller must
680
// update |le_ctr| if any more data segments follow. Internally, only the low
681
// 32-bit word of the counter is incremented, following the GCM standard.
682
.macro _aes_gcm_update enc
683
684
// Function arguments
685
.set KEY, %rdi
686
.set LE_CTR_PTR, %rsi // Note: overlaps with usage as temp reg
687
.set GHASH_ACC_PTR, %rdx
688
.set SRC, %rcx
689
.set DST, %r8
690
.set DATALEN, %r9d
691
.set DATALEN64, %r9 // Zero-extend DATALEN before using!
692
// Note: the code setting up for _load_partial_block assumes that SRC is
693
// in %rcx (and that DATALEN is *not* in %rcx).
694
695
// Additional local variables
696
697
// %rax and %rsi are used as temporary registers. Note: %rsi overlaps
698
// with LE_CTR_PTR, which is used only at the beginning.
699
700
.set AESKEYLEN, %r10d // AES key length in bytes
701
.set AESKEYLEN64, %r10
702
.set RNDKEYLAST_PTR, %r11 // Pointer to last AES round key
703
704
// Put the most frequently used values in %xmm0-%xmm7 to reduce code
705
// size. (%xmm0-%xmm7 take fewer bytes to encode than %xmm8-%xmm15.)
706
.set TMP0, %xmm0
707
.set TMP1, %xmm1
708
.set TMP2, %xmm2
709
.set LO, %xmm3 // Low part of unreduced product
710
.set MI, %xmm4 // Middle part of unreduced product
711
.set GHASH_ACC, %xmm5 // GHASH accumulator; in main loop also
712
// the high part of unreduced product
713
.set BSWAP_MASK, %xmm6 // Shuffle mask for reflecting bytes
714
.set LE_CTR, %xmm7 // Little-endian counter value
715
.set AESDATA0, %xmm8
716
.set AESDATA1, %xmm9
717
.set AESDATA2, %xmm10
718
.set AESDATA3, %xmm11
719
.set AESDATA4, %xmm12
720
.set AESDATA5, %xmm13
721
.set AESDATA6, %xmm14
722
.set AESDATA7, %xmm15
723
724
movdqa .Lbswap_mask(%rip), BSWAP_MASK
725
movdqu (GHASH_ACC_PTR), GHASH_ACC
726
movdqu (LE_CTR_PTR), LE_CTR
727
728
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
729
lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR
730
731
// If there are at least 8*16 bytes of data, then continue into the main
732
// loop, which processes 8*16 bytes of data per iteration.
733
//
734
// The main loop interleaves AES and GHASH to improve performance on
735
// CPUs that can execute these instructions in parallel. When
736
// decrypting, the GHASH input (the ciphertext) is immediately
737
// available. When encrypting, we instead encrypt a set of 8 blocks
738
// first and then GHASH those blocks while encrypting the next set of 8,
739
// repeat that as needed, and finally GHASH the last set of 8 blocks.
740
//
741
// Code size optimization: Prefer adding or subtracting -8*16 over 8*16,
742
// as this makes the immediate fit in a signed byte, saving 3 bytes.
743
add $-8*16, DATALEN
744
jl .Lcrypt_loop_8x_done\@
745
.if \enc
746
// Encrypt the first 8 plaintext blocks.
747
_ctr_begin_8x
748
lea 16(KEY), %rsi
749
.p2align 4
750
1:
751
movdqa (%rsi), TMP0
752
_aesenc_8x TMP0
753
add $16, %rsi
754
cmp %rsi, RNDKEYLAST_PTR
755
jne 1b
756
movdqa (%rsi), TMP0
757
_aesenclast_8x TMP0
758
_xor_data_8x
759
// Don't increment DST until the ciphertext blocks have been hashed.
760
sub $-8*16, SRC
761
add $-8*16, DATALEN
762
jl .Lghash_last_ciphertext_8x\@
763
.endif
764
765
.p2align 4
766
.Lcrypt_loop_8x\@:
767
768
// Generate the next set of 8 counter blocks and start encrypting them.
769
_ctr_begin_8x
770
lea 16(KEY), %rsi
771
772
// Do a round of AES, and start the GHASH update of 8 ciphertext blocks
773
// by doing the unreduced multiplication for the first ciphertext block.
774
movdqa (%rsi), TMP0
775
add $16, %rsi
776
_aesenc_8x TMP0
777
_ghash_update_begin_8x \enc
778
779
// Do 7 more rounds of AES, and continue the GHASH update by doing the
780
// unreduced multiplication for the remaining ciphertext blocks.
781
.p2align 4
782
1:
783
movdqa (%rsi), TMP0
784
add $16, %rsi
785
_aesenc_8x TMP0
786
_ghash_update_continue_8x \enc
787
cmp $7*8, %eax
788
jne 1b
789
790
// Do the remaining AES rounds.
791
.p2align 4
792
1:
793
movdqa (%rsi), TMP0
794
add $16, %rsi
795
_aesenc_8x TMP0
796
cmp %rsi, RNDKEYLAST_PTR
797
jne 1b
798
799
// Do the GHASH reduction and the last round of AES.
800
movdqa (RNDKEYLAST_PTR), TMP0
801
_ghash_update_end_8x_step 0
802
_aesenclast_8x TMP0
803
_ghash_update_end_8x_step 1
804
805
// XOR the data with the AES-CTR keystream blocks.
806
.if \enc
807
sub $-8*16, DST
808
.endif
809
_xor_data_8x
810
sub $-8*16, SRC
811
.if !\enc
812
sub $-8*16, DST
813
.endif
814
add $-8*16, DATALEN
815
jge .Lcrypt_loop_8x\@
816
817
.if \enc
818
.Lghash_last_ciphertext_8x\@:
819
// Update GHASH with the last set of 8 ciphertext blocks.
820
_ghash_update_begin_8x \enc
821
.p2align 4
822
1:
823
_ghash_update_continue_8x \enc
824
cmp $7*8, %eax
825
jne 1b
826
_ghash_update_end_8x_step 0
827
_ghash_update_end_8x_step 1
828
sub $-8*16, DST
829
.endif
830
831
.Lcrypt_loop_8x_done\@:
832
833
sub $-8*16, DATALEN
834
jz .Ldone\@
835
836
// Handle the remainder of length 1 <= DATALEN < 8*16 bytes. We keep
837
// things simple and keep the code size down by just going one block at
838
// a time, again taking advantage of hardware loop unrolling. Since
839
// there are enough key powers available for all remaining data, we do
840
// the GHASH multiplications unreduced, and only reduce at the very end.
841
842
.set HI, TMP2
843
.set H_POW, AESDATA0
844
.set H_POW_XORED, AESDATA1
845
.set ONE, AESDATA2
846
847
movq .Lone(%rip), ONE
848
849
// Start collecting the unreduced GHASH intermediate value LO, MI, HI.
850
pxor LO, LO
851
pxor MI, MI
852
pxor HI, HI
853
854
// Set up a block counter %rax to contain 8*(8-n), where n is the number
855
// of blocks that remain, counting any partial block. This will be used
856
// to access the key powers H^n through H^1.
857
mov DATALEN, %eax
858
neg %eax
859
and $~15, %eax
860
sar $1, %eax
861
add $64, %eax
862
863
sub $16, DATALEN
864
jl .Lcrypt_loop_1x_done\@
865
866
// Process the data one full block at a time.
867
.Lcrypt_loop_1x\@:
868
869
// Encrypt the next counter block.
870
_vpshufb BSWAP_MASK, LE_CTR, TMP0
871
paddd ONE, LE_CTR
872
pxor (KEY), TMP0
873
lea -6*16(RNDKEYLAST_PTR), %rsi // Reduce code size
874
cmp $24, AESKEYLEN
875
jl 128f // AES-128?
876
je 192f // AES-192?
877
// AES-256
878
aesenc -7*16(%rsi), TMP0
879
aesenc -6*16(%rsi), TMP0
880
192:
881
aesenc -5*16(%rsi), TMP0
882
aesenc -4*16(%rsi), TMP0
883
128:
884
.irp i, -3,-2,-1,0,1,2,3,4,5
885
aesenc \i*16(%rsi), TMP0
886
.endr
887
aesenclast (RNDKEYLAST_PTR), TMP0
888
889
// Load the next key power H^i.
890
movdqa OFFSETOF_H_POWERS(KEY,%rax,2), H_POW
891
movq OFFSETOF_H_POWERS_XORED(KEY,%rax), H_POW_XORED
892
893
// XOR the keystream block that was just generated in TMP0 with the next
894
// source data block and store the resulting en/decrypted data to DST.
895
.if \enc
896
_xor_mem_to_reg (SRC), TMP0, tmp=TMP1
897
movdqu TMP0, (DST)
898
.else
899
movdqu (SRC), TMP1
900
pxor TMP1, TMP0
901
movdqu TMP0, (DST)
902
.endif
903
904
// Update GHASH with the ciphertext block.
905
.if \enc
906
pshufb BSWAP_MASK, TMP0
907
pxor TMP0, GHASH_ACC
908
.else
909
pshufb BSWAP_MASK, TMP1
910
pxor TMP1, GHASH_ACC
911
.endif
912
_ghash_mul_noreduce H_POW, H_POW_XORED, GHASH_ACC, LO, MI, HI, TMP0
913
pxor GHASH_ACC, GHASH_ACC
914
915
add $8, %eax
916
add $16, SRC
917
add $16, DST
918
sub $16, DATALEN
919
jge .Lcrypt_loop_1x\@
920
.Lcrypt_loop_1x_done\@:
921
// Check whether there is a partial block at the end.
922
add $16, DATALEN
923
jz .Lghash_reduce\@
924
925
// Process a partial block of length 1 <= DATALEN <= 15.
926
927
// Encrypt a counter block for the last time.
928
pshufb BSWAP_MASK, LE_CTR
929
pxor (KEY), LE_CTR
930
lea 16(KEY), %rsi
931
1:
932
aesenc (%rsi), LE_CTR
933
add $16, %rsi
934
cmp %rsi, RNDKEYLAST_PTR
935
jne 1b
936
aesenclast (RNDKEYLAST_PTR), LE_CTR
937
938
// Load the lowest key power, H^1.
939
movdqa OFFSETOF_H_POWERS(KEY,%rax,2), H_POW
940
movq OFFSETOF_H_POWERS_XORED(KEY,%rax), H_POW_XORED
941
942
// Load and zero-pad 1 <= DATALEN <= 15 bytes of data from SRC. SRC is
943
// in %rcx, but _load_partial_block needs DATALEN in %rcx instead.
944
// RNDKEYLAST_PTR is no longer needed, so reuse it for SRC.
945
mov SRC, RNDKEYLAST_PTR
946
mov DATALEN, %ecx
947
_load_partial_block RNDKEYLAST_PTR, TMP0, %rsi, %esi
948
949
// XOR the keystream block that was just generated in LE_CTR with the
950
// source data block and store the resulting en/decrypted data to DST.
951
pxor TMP0, LE_CTR
952
mov DATALEN, %ecx
953
_store_partial_block LE_CTR, DST
954
955
// If encrypting, zero-pad the final ciphertext block for GHASH. (If
956
// decrypting, this was already done by _load_partial_block.)
957
.if \enc
958
lea .Lzeropad_mask+16(%rip), %rax
959
sub DATALEN64, %rax
960
_vpand (%rax), LE_CTR, TMP0
961
.endif
962
963
// Update GHASH with the final ciphertext block.
964
pshufb BSWAP_MASK, TMP0
965
pxor TMP0, GHASH_ACC
966
_ghash_mul_noreduce H_POW, H_POW_XORED, GHASH_ACC, LO, MI, HI, TMP0
967
968
.Lghash_reduce\@:
969
// Finally, do the GHASH reduction.
970
_ghash_reduce LO, MI, HI, GHASH_ACC, TMP0
971
972
.Ldone\@:
973
// Store the updated GHASH accumulator back to memory.
974
movdqu GHASH_ACC, (GHASH_ACC_PTR)
975
976
RET
977
.endm
978
979
// void aes_gcm_enc_final_##suffix(const struct aes_gcm_key_aesni *key,
980
// const u32 le_ctr[4], u8 ghash_acc[16],
981
// u64 total_aadlen, u64 total_datalen);
982
// bool aes_gcm_dec_final_##suffix(const struct aes_gcm_key_aesni *key,
983
// const u32 le_ctr[4], const u8 ghash_acc[16],
984
// u64 total_aadlen, u64 total_datalen,
985
// const u8 tag[16], int taglen);
986
//
987
// This macro generates one of the above two functions (with \enc selecting
988
// which one). Both functions finish computing the GCM authentication tag by
989
// updating GHASH with the lengths block and encrypting the GHASH accumulator.
990
// |total_aadlen| and |total_datalen| must be the total length of the additional
991
// authenticated data and the en/decrypted data in bytes, respectively.
992
//
993
// The encryption function then stores the full-length (16-byte) computed
994
// authentication tag to |ghash_acc|. The decryption function instead loads the
995
// expected authentication tag (the one that was transmitted) from the 16-byte
996
// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the
997
// computed tag in constant time, and returns true if and only if they match.
998
.macro _aes_gcm_final enc
999
1000
// Function arguments
1001
.set KEY, %rdi
1002
.set LE_CTR_PTR, %rsi
1003
.set GHASH_ACC_PTR, %rdx
1004
.set TOTAL_AADLEN, %rcx
1005
.set TOTAL_DATALEN, %r8
1006
.set TAG, %r9
1007
.set TAGLEN, %r10d // Originally at 8(%rsp)
1008
.set TAGLEN64, %r10
1009
1010
// Additional local variables.
1011
// %rax and %xmm0-%xmm2 are used as temporary registers.
1012
.set AESKEYLEN, %r11d
1013
.set AESKEYLEN64, %r11
1014
.set BSWAP_MASK, %xmm3
1015
.set GHASH_ACC, %xmm4
1016
.set H_POW1, %xmm5 // H^1
1017
.set H_POW1_X64, %xmm6 // H^1 * x^64
1018
.set GFPOLY, %xmm7
1019
1020
movdqa .Lbswap_mask(%rip), BSWAP_MASK
1021
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
1022
1023
// Set up a counter block with 1 in the low 32-bit word. This is the
1024
// counter that produces the ciphertext needed to encrypt the auth tag.
1025
movdqu (LE_CTR_PTR), %xmm0
1026
mov $1, %eax
1027
pinsrd $0, %eax, %xmm0
1028
1029
// Build the lengths block and XOR it into the GHASH accumulator.
1030
movq TOTAL_DATALEN, GHASH_ACC
1031
pinsrq $1, TOTAL_AADLEN, GHASH_ACC
1032
psllq $3, GHASH_ACC // Bytes to bits
1033
_xor_mem_to_reg (GHASH_ACC_PTR), GHASH_ACC, %xmm1
1034
1035
movdqa OFFSETOF_H_POWERS+7*16(KEY), H_POW1
1036
movdqa OFFSETOF_H_TIMES_X64(KEY), H_POW1_X64
1037
movq .Lgfpoly(%rip), GFPOLY
1038
1039
// Make %rax point to the 6th from last AES round key. (Using signed
1040
// byte offsets -7*16 through 6*16 decreases code size.)
1041
lea (KEY,AESKEYLEN64,4), %rax
1042
1043
// AES-encrypt the counter block and also multiply GHASH_ACC by H^1.
1044
// Interleave the AES and GHASH instructions to improve performance.
1045
pshufb BSWAP_MASK, %xmm0
1046
pxor (KEY), %xmm0
1047
cmp $24, AESKEYLEN
1048
jl 128f // AES-128?
1049
je 192f // AES-192?
1050
// AES-256
1051
aesenc -7*16(%rax), %xmm0
1052
aesenc -6*16(%rax), %xmm0
1053
192:
1054
aesenc -5*16(%rax), %xmm0
1055
aesenc -4*16(%rax), %xmm0
1056
128:
1057
.irp i, 0,1,2,3,4,5,6,7,8
1058
aesenc (\i-3)*16(%rax), %xmm0
1059
_ghash_mul_step \i, H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm1, %xmm2
1060
.endr
1061
aesenclast 6*16(%rax), %xmm0
1062
_ghash_mul_step 9, H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm1, %xmm2
1063
1064
// Undo the byte reflection of the GHASH accumulator.
1065
pshufb BSWAP_MASK, GHASH_ACC
1066
1067
// Encrypt the GHASH accumulator.
1068
pxor %xmm0, GHASH_ACC
1069
1070
.if \enc
1071
// Return the computed auth tag.
1072
movdqu GHASH_ACC, (GHASH_ACC_PTR)
1073
.else
1074
.set ZEROPAD_MASK_PTR, TOTAL_AADLEN // Reusing TOTAL_AADLEN!
1075
1076
// Verify the auth tag in constant time by XOR'ing the transmitted and
1077
// computed auth tags together and using the ptest instruction to check
1078
// whether the first TAGLEN bytes of the result are zero.
1079
_xor_mem_to_reg (TAG), GHASH_ACC, tmp=%xmm0
1080
movl 8(%rsp), TAGLEN
1081
lea .Lzeropad_mask+16(%rip), ZEROPAD_MASK_PTR
1082
sub TAGLEN64, ZEROPAD_MASK_PTR
1083
xor %eax, %eax
1084
_test_mem (ZEROPAD_MASK_PTR), GHASH_ACC, tmp=%xmm0
1085
sete %al
1086
.endif
1087
RET
1088
.endm
1089
1090
.set USE_AVX, 0
1091
SYM_FUNC_START(aes_gcm_precompute_aesni)
1092
_aes_gcm_precompute
1093
SYM_FUNC_END(aes_gcm_precompute_aesni)
1094
SYM_FUNC_START(aes_gcm_aad_update_aesni)
1095
_aes_gcm_aad_update
1096
SYM_FUNC_END(aes_gcm_aad_update_aesni)
1097
SYM_FUNC_START(aes_gcm_enc_update_aesni)
1098
_aes_gcm_update 1
1099
SYM_FUNC_END(aes_gcm_enc_update_aesni)
1100
SYM_FUNC_START(aes_gcm_dec_update_aesni)
1101
_aes_gcm_update 0
1102
SYM_FUNC_END(aes_gcm_dec_update_aesni)
1103
SYM_FUNC_START(aes_gcm_enc_final_aesni)
1104
_aes_gcm_final 1
1105
SYM_FUNC_END(aes_gcm_enc_final_aesni)
1106
SYM_FUNC_START(aes_gcm_dec_final_aesni)
1107
_aes_gcm_final 0
1108
SYM_FUNC_END(aes_gcm_dec_final_aesni)
1109
1110
.set USE_AVX, 1
1111
SYM_FUNC_START(aes_gcm_precompute_aesni_avx)
1112
_aes_gcm_precompute
1113
SYM_FUNC_END(aes_gcm_precompute_aesni_avx)
1114
SYM_FUNC_START(aes_gcm_aad_update_aesni_avx)
1115
_aes_gcm_aad_update
1116
SYM_FUNC_END(aes_gcm_aad_update_aesni_avx)
1117
SYM_FUNC_START(aes_gcm_enc_update_aesni_avx)
1118
_aes_gcm_update 1
1119
SYM_FUNC_END(aes_gcm_enc_update_aesni_avx)
1120
SYM_FUNC_START(aes_gcm_dec_update_aesni_avx)
1121
_aes_gcm_update 0
1122
SYM_FUNC_END(aes_gcm_dec_update_aesni_avx)
1123
SYM_FUNC_START(aes_gcm_enc_final_aesni_avx)
1124
_aes_gcm_final 1
1125
SYM_FUNC_END(aes_gcm_enc_final_aesni_avx)
1126
SYM_FUNC_START(aes_gcm_dec_final_aesni_avx)
1127
_aes_gcm_final 0
1128
SYM_FUNC_END(aes_gcm_dec_final_aesni_avx)
1129
1130