Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/crypto/aes-gcm-vaes-avx2.S
38310 views
1
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
2
//
3
// AES-GCM implementation for x86_64 CPUs that support the following CPU
4
// features: VAES && VPCLMULQDQ && AVX2
5
//
6
// Copyright 2025 Google LLC
7
//
8
// Author: Eric Biggers <ebiggers@google.com>
9
//
10
//------------------------------------------------------------------------------
11
//
12
// This file is dual-licensed, meaning that you can use it under your choice of
13
// either of the following two licenses:
14
//
15
// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
16
// of the License at
17
//
18
// http://www.apache.org/licenses/LICENSE-2.0
19
//
20
// Unless required by applicable law or agreed to in writing, software
21
// distributed under the License is distributed on an "AS IS" BASIS,
22
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
23
// See the License for the specific language governing permissions and
24
// limitations under the License.
25
//
26
// or
27
//
28
// Redistribution and use in source and binary forms, with or without
29
// modification, are permitted provided that the following conditions are met:
30
//
31
// 1. Redistributions of source code must retain the above copyright notice,
32
// this list of conditions and the following disclaimer.
33
//
34
// 2. Redistributions in binary form must reproduce the above copyright
35
// notice, this list of conditions and the following disclaimer in the
36
// documentation and/or other materials provided with the distribution.
37
//
38
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
39
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
41
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
42
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
43
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
44
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
45
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
46
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48
// POSSIBILITY OF SUCH DAMAGE.
49
//
50
// -----------------------------------------------------------------------------
51
//
52
// This is similar to aes-gcm-vaes-avx512.S, but it uses AVX2 instead of AVX512.
53
// This means it can only use 16 vector registers instead of 32, the maximum
54
// vector length is 32 bytes, and some instructions such as vpternlogd and
55
// masked loads/stores are unavailable. However, it is able to run on CPUs that
56
// have VAES without AVX512, namely AMD Zen 3 (including "Milan" server CPUs),
57
// various Intel client CPUs such as Alder Lake, and Intel Sierra Forest.
58
//
59
// This implementation also uses Karatsuba multiplication instead of schoolbook
60
// multiplication for GHASH in its main loop. This does not help much on Intel,
61
// but it improves performance by ~5% on AMD Zen 3. Other factors weighing
62
// slightly in favor of Karatsuba multiplication in this implementation are the
63
// lower maximum vector length (which means there are fewer key powers, so we
64
// can cache the halves of each key power XOR'd together and still use less
65
// memory than the AVX512 implementation), and the unavailability of the
66
// vpternlogd instruction (which helped schoolbook a bit more than Karatsuba).
67
68
#include <linux/linkage.h>
69
70
.section .rodata
71
.p2align 4
72
73
// The below three 16-byte values must be in the order that they are, as
74
// they are really two 32-byte tables and a 16-byte value that overlap:
75
//
76
// - The first 32-byte table begins at .Lselect_high_bytes_table.
77
// For 0 <= len <= 16, the 16-byte value at
78
// '.Lselect_high_bytes_table + len' selects the high 'len' bytes of
79
// another 16-byte value when AND'ed with it.
80
//
81
// - The second 32-byte table begins at .Lrshift_and_bswap_table.
82
// For 0 <= len <= 16, the 16-byte value at
83
// '.Lrshift_and_bswap_table + len' is a vpshufb mask that does the
84
// following operation: right-shift by '16 - len' bytes (shifting in
85
// zeroes), then reflect all 16 bytes.
86
//
87
// - The 16-byte value at .Lbswap_mask is a vpshufb mask that reflects
88
// all 16 bytes.
89
.Lselect_high_bytes_table:
90
.octa 0
91
.Lrshift_and_bswap_table:
92
.octa 0xffffffffffffffffffffffffffffffff
93
.Lbswap_mask:
94
.octa 0x000102030405060708090a0b0c0d0e0f
95
96
// Sixteen 0x0f bytes. By XOR'ing an entry of .Lrshift_and_bswap_table
97
// with this, we get a mask that left-shifts by '16 - len' bytes.
98
.Lfifteens:
99
.octa 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f
100
101
// This is the GHASH reducing polynomial without its constant term, i.e.
102
// x^128 + x^7 + x^2 + x, represented using the backwards mapping
103
// between bits and polynomial coefficients.
104
//
105
// Alternatively, it can be interpreted as the naturally-ordered
106
// representation of the polynomial x^127 + x^126 + x^121 + 1, i.e. the
107
// "reversed" GHASH reducing polynomial without its x^128 term.
108
.Lgfpoly:
109
.octa 0xc2000000000000000000000000000001
110
111
// Same as above, but with the (1 << 64) bit set.
112
.Lgfpoly_and_internal_carrybit:
113
.octa 0xc2000000000000010000000000000001
114
115
// Values needed to prepare the initial vector of counter blocks.
116
.Lctr_pattern:
117
.octa 0
118
.octa 1
119
120
// The number of AES blocks per vector, as a 128-bit value.
121
.Linc_2blocks:
122
.octa 2
123
124
// Offsets in struct aes_gcm_key_vaes_avx2
125
#define OFFSETOF_AESKEYLEN 480
126
#define OFFSETOF_H_POWERS 512
127
#define NUM_H_POWERS 8
128
#define OFFSETOFEND_H_POWERS (OFFSETOF_H_POWERS + (NUM_H_POWERS * 16))
129
#define OFFSETOF_H_POWERS_XORED OFFSETOFEND_H_POWERS
130
131
.text
132
133
// Do one step of GHASH-multiplying the 128-bit lanes of \a by the 128-bit lanes
134
// of \b and storing the reduced products in \dst. Uses schoolbook
135
// multiplication.
136
.macro _ghash_mul_step i, a, b, dst, gfpoly, t0, t1, t2
137
.if \i == 0
138
vpclmulqdq $0x00, \a, \b, \t0 // LO = a_L * b_L
139
vpclmulqdq $0x01, \a, \b, \t1 // MI_0 = a_L * b_H
140
.elseif \i == 1
141
vpclmulqdq $0x10, \a, \b, \t2 // MI_1 = a_H * b_L
142
.elseif \i == 2
143
vpxor \t2, \t1, \t1 // MI = MI_0 + MI_1
144
.elseif \i == 3
145
vpclmulqdq $0x01, \t0, \gfpoly, \t2 // LO_L*(x^63 + x^62 + x^57)
146
.elseif \i == 4
147
vpshufd $0x4e, \t0, \t0 // Swap halves of LO
148
.elseif \i == 5
149
vpxor \t0, \t1, \t1 // Fold LO into MI (part 1)
150
vpxor \t2, \t1, \t1 // Fold LO into MI (part 2)
151
.elseif \i == 6
152
vpclmulqdq $0x11, \a, \b, \dst // HI = a_H * b_H
153
.elseif \i == 7
154
vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
155
.elseif \i == 8
156
vpshufd $0x4e, \t1, \t1 // Swap halves of MI
157
.elseif \i == 9
158
vpxor \t1, \dst, \dst // Fold MI into HI (part 1)
159
vpxor \t0, \dst, \dst // Fold MI into HI (part 2)
160
.endif
161
.endm
162
163
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and store
164
// the reduced products in \dst. See _ghash_mul_step for full explanation.
165
.macro _ghash_mul a, b, dst, gfpoly, t0, t1, t2
166
.irp i, 0,1,2,3,4,5,6,7,8,9
167
_ghash_mul_step \i, \a, \b, \dst, \gfpoly, \t0, \t1, \t2
168
.endr
169
.endm
170
171
// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and add the
172
// *unreduced* products to \lo, \mi, and \hi.
173
.macro _ghash_mul_noreduce a, b, lo, mi, hi, t0
174
vpclmulqdq $0x00, \a, \b, \t0 // a_L * b_L
175
vpxor \t0, \lo, \lo
176
vpclmulqdq $0x01, \a, \b, \t0 // a_L * b_H
177
vpxor \t0, \mi, \mi
178
vpclmulqdq $0x10, \a, \b, \t0 // a_H * b_L
179
vpxor \t0, \mi, \mi
180
vpclmulqdq $0x11, \a, \b, \t0 // a_H * b_H
181
vpxor \t0, \hi, \hi
182
.endm
183
184
// Reduce the unreduced products from \lo, \mi, and \hi and store the 128-bit
185
// reduced products in \hi. See _ghash_mul_step for explanation of reduction.
186
.macro _ghash_reduce lo, mi, hi, gfpoly, t0
187
vpclmulqdq $0x01, \lo, \gfpoly, \t0
188
vpshufd $0x4e, \lo, \lo
189
vpxor \lo, \mi, \mi
190
vpxor \t0, \mi, \mi
191
vpclmulqdq $0x01, \mi, \gfpoly, \t0
192
vpshufd $0x4e, \mi, \mi
193
vpxor \mi, \hi, \hi
194
vpxor \t0, \hi, \hi
195
.endm
196
197
// This is a specialized version of _ghash_mul that computes \a * \a, i.e. it
198
// squares \a. It skips computing MI = (a_L * a_H) + (a_H * a_L) = 0.
199
.macro _ghash_square a, dst, gfpoly, t0, t1
200
vpclmulqdq $0x00, \a, \a, \t0 // LO = a_L * a_L
201
vpclmulqdq $0x11, \a, \a, \dst // HI = a_H * a_H
202
vpclmulqdq $0x01, \t0, \gfpoly, \t1 // LO_L*(x^63 + x^62 + x^57)
203
vpshufd $0x4e, \t0, \t0 // Swap halves of LO
204
vpxor \t0, \t1, \t1 // Fold LO into MI
205
vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
206
vpshufd $0x4e, \t1, \t1 // Swap halves of MI
207
vpxor \t1, \dst, \dst // Fold MI into HI (part 1)
208
vpxor \t0, \dst, \dst // Fold MI into HI (part 2)
209
.endm
210
211
// void aes_gcm_precompute_vaes_avx2(struct aes_gcm_key_vaes_avx2 *key);
212
//
213
// Given the expanded AES key |key->base.aes_key|, derive the GHASH subkey and
214
// initialize |key->h_powers| and |key->h_powers_xored|.
215
//
216
// We use h_powers[0..7] to store H^8 through H^1, and h_powers_xored[0..7] to
217
// store the 64-bit halves of the key powers XOR'd together (for Karatsuba
218
// multiplication) in the order 8,6,7,5,4,2,3,1.
219
SYM_FUNC_START(aes_gcm_precompute_vaes_avx2)
220
221
// Function arguments
222
.set KEY, %rdi
223
224
// Additional local variables
225
.set POWERS_PTR, %rsi
226
.set RNDKEYLAST_PTR, %rdx
227
.set TMP0, %ymm0
228
.set TMP0_XMM, %xmm0
229
.set TMP1, %ymm1
230
.set TMP1_XMM, %xmm1
231
.set TMP2, %ymm2
232
.set TMP2_XMM, %xmm2
233
.set H_CUR, %ymm3
234
.set H_CUR_XMM, %xmm3
235
.set H_CUR2, %ymm4
236
.set H_INC, %ymm5
237
.set H_INC_XMM, %xmm5
238
.set GFPOLY, %ymm6
239
.set GFPOLY_XMM, %xmm6
240
241
// Encrypt an all-zeroes block to get the raw hash subkey.
242
movl OFFSETOF_AESKEYLEN(KEY), %eax
243
lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR
244
vmovdqu (KEY), H_CUR_XMM // Zero-th round key XOR all-zeroes block
245
lea 16(KEY), %rax
246
1:
247
vaesenc (%rax), H_CUR_XMM, H_CUR_XMM
248
add $16, %rax
249
cmp %rax, RNDKEYLAST_PTR
250
jne 1b
251
vaesenclast (RNDKEYLAST_PTR), H_CUR_XMM, H_CUR_XMM
252
253
// Reflect the bytes of the raw hash subkey.
254
vpshufb .Lbswap_mask(%rip), H_CUR_XMM, H_CUR_XMM
255
256
// Finish preprocessing the byte-reflected hash subkey by multiplying it
257
// by x^-1 ("standard" interpretation of polynomial coefficients) or
258
// equivalently x^1 (natural interpretation). This gets the key into a
259
// format that avoids having to bit-reflect the data blocks later.
260
vpshufd $0xd3, H_CUR_XMM, TMP0_XMM
261
vpsrad $31, TMP0_XMM, TMP0_XMM
262
vpaddq H_CUR_XMM, H_CUR_XMM, H_CUR_XMM
263
vpand .Lgfpoly_and_internal_carrybit(%rip), TMP0_XMM, TMP0_XMM
264
vpxor TMP0_XMM, H_CUR_XMM, H_CUR_XMM
265
266
// Load the gfpoly constant.
267
vbroadcasti128 .Lgfpoly(%rip), GFPOLY
268
269
// Square H^1 to get H^2.
270
_ghash_square H_CUR_XMM, H_INC_XMM, GFPOLY_XMM, TMP0_XMM, TMP1_XMM
271
272
// Create H_CUR = [H^2, H^1] and H_INC = [H^2, H^2].
273
vinserti128 $1, H_CUR_XMM, H_INC, H_CUR
274
vinserti128 $1, H_INC_XMM, H_INC, H_INC
275
276
// Compute H_CUR2 = [H^4, H^3].
277
_ghash_mul H_INC, H_CUR, H_CUR2, GFPOLY, TMP0, TMP1, TMP2
278
279
// Store [H^2, H^1] and [H^4, H^3].
280
vmovdqu H_CUR, OFFSETOF_H_POWERS+3*32(KEY)
281
vmovdqu H_CUR2, OFFSETOF_H_POWERS+2*32(KEY)
282
283
// For Karatsuba multiplication: compute and store the two 64-bit halves
284
// of each key power XOR'd together. Order is 4,2,3,1.
285
vpunpcklqdq H_CUR, H_CUR2, TMP0
286
vpunpckhqdq H_CUR, H_CUR2, TMP1
287
vpxor TMP1, TMP0, TMP0
288
vmovdqu TMP0, OFFSETOF_H_POWERS_XORED+32(KEY)
289
290
// Compute and store H_CUR = [H^6, H^5] and H_CUR2 = [H^8, H^7].
291
_ghash_mul H_INC, H_CUR2, H_CUR, GFPOLY, TMP0, TMP1, TMP2
292
_ghash_mul H_INC, H_CUR, H_CUR2, GFPOLY, TMP0, TMP1, TMP2
293
vmovdqu H_CUR, OFFSETOF_H_POWERS+1*32(KEY)
294
vmovdqu H_CUR2, OFFSETOF_H_POWERS+0*32(KEY)
295
296
// Again, compute and store the two 64-bit halves of each key power
297
// XOR'd together. Order is 8,6,7,5.
298
vpunpcklqdq H_CUR, H_CUR2, TMP0
299
vpunpckhqdq H_CUR, H_CUR2, TMP1
300
vpxor TMP1, TMP0, TMP0
301
vmovdqu TMP0, OFFSETOF_H_POWERS_XORED(KEY)
302
303
vzeroupper
304
RET
305
SYM_FUNC_END(aes_gcm_precompute_vaes_avx2)
306
307
// Do one step of the GHASH update of four vectors of data blocks.
308
// \i: the step to do, 0 through 9
309
// \ghashdata_ptr: pointer to the data blocks (ciphertext or AAD)
310
// KEY: pointer to struct aes_gcm_key_vaes_avx2
311
// BSWAP_MASK: mask for reflecting the bytes of blocks
312
// H_POW[2-1]_XORED: cached values from KEY->h_powers_xored
313
// TMP[0-2]: temporary registers. TMP[1-2] must be preserved across steps.
314
// LO, MI: working state for this macro that must be preserved across steps
315
// GHASH_ACC: the GHASH accumulator (input/output)
316
.macro _ghash_step_4x i, ghashdata_ptr
317
.set HI, GHASH_ACC # alias
318
.set HI_XMM, GHASH_ACC_XMM
319
.if \i == 0
320
// First vector
321
vmovdqu 0*32(\ghashdata_ptr), TMP1
322
vpshufb BSWAP_MASK, TMP1, TMP1
323
vmovdqu OFFSETOF_H_POWERS+0*32(KEY), TMP2
324
vpxor GHASH_ACC, TMP1, TMP1
325
vpclmulqdq $0x00, TMP2, TMP1, LO
326
vpclmulqdq $0x11, TMP2, TMP1, HI
327
vpunpckhqdq TMP1, TMP1, TMP0
328
vpxor TMP1, TMP0, TMP0
329
vpclmulqdq $0x00, H_POW2_XORED, TMP0, MI
330
.elseif \i == 1
331
.elseif \i == 2
332
// Second vector
333
vmovdqu 1*32(\ghashdata_ptr), TMP1
334
vpshufb BSWAP_MASK, TMP1, TMP1
335
vmovdqu OFFSETOF_H_POWERS+1*32(KEY), TMP2
336
vpclmulqdq $0x00, TMP2, TMP1, TMP0
337
vpxor TMP0, LO, LO
338
vpclmulqdq $0x11, TMP2, TMP1, TMP0
339
vpxor TMP0, HI, HI
340
vpunpckhqdq TMP1, TMP1, TMP0
341
vpxor TMP1, TMP0, TMP0
342
vpclmulqdq $0x10, H_POW2_XORED, TMP0, TMP0
343
vpxor TMP0, MI, MI
344
.elseif \i == 3
345
// Third vector
346
vmovdqu 2*32(\ghashdata_ptr), TMP1
347
vpshufb BSWAP_MASK, TMP1, TMP1
348
vmovdqu OFFSETOF_H_POWERS+2*32(KEY), TMP2
349
.elseif \i == 4
350
vpclmulqdq $0x00, TMP2, TMP1, TMP0
351
vpxor TMP0, LO, LO
352
vpclmulqdq $0x11, TMP2, TMP1, TMP0
353
vpxor TMP0, HI, HI
354
.elseif \i == 5
355
vpunpckhqdq TMP1, TMP1, TMP0
356
vpxor TMP1, TMP0, TMP0
357
vpclmulqdq $0x00, H_POW1_XORED, TMP0, TMP0
358
vpxor TMP0, MI, MI
359
360
// Fourth vector
361
vmovdqu 3*32(\ghashdata_ptr), TMP1
362
vpshufb BSWAP_MASK, TMP1, TMP1
363
.elseif \i == 6
364
vmovdqu OFFSETOF_H_POWERS+3*32(KEY), TMP2
365
vpclmulqdq $0x00, TMP2, TMP1, TMP0
366
vpxor TMP0, LO, LO
367
vpclmulqdq $0x11, TMP2, TMP1, TMP0
368
vpxor TMP0, HI, HI
369
vpunpckhqdq TMP1, TMP1, TMP0
370
vpxor TMP1, TMP0, TMP0
371
vpclmulqdq $0x10, H_POW1_XORED, TMP0, TMP0
372
vpxor TMP0, MI, MI
373
.elseif \i == 7
374
// Finalize 'mi' following Karatsuba multiplication.
375
vpxor LO, MI, MI
376
vpxor HI, MI, MI
377
378
// Fold lo into mi.
379
vbroadcasti128 .Lgfpoly(%rip), TMP2
380
vpclmulqdq $0x01, LO, TMP2, TMP0
381
vpshufd $0x4e, LO, LO
382
vpxor LO, MI, MI
383
vpxor TMP0, MI, MI
384
.elseif \i == 8
385
// Fold mi into hi.
386
vpclmulqdq $0x01, MI, TMP2, TMP0
387
vpshufd $0x4e, MI, MI
388
vpxor MI, HI, HI
389
vpxor TMP0, HI, HI
390
.elseif \i == 9
391
vextracti128 $1, HI, TMP0_XMM
392
vpxor TMP0_XMM, HI_XMM, GHASH_ACC_XMM
393
.endif
394
.endm
395
396
// Update GHASH with four vectors of data blocks. See _ghash_step_4x for full
397
// explanation.
398
.macro _ghash_4x ghashdata_ptr
399
.irp i, 0,1,2,3,4,5,6,7,8,9
400
_ghash_step_4x \i, \ghashdata_ptr
401
.endr
402
.endm
403
404
// Load 1 <= %ecx <= 16 bytes from the pointer \src into the xmm register \dst
405
// and zeroize any remaining bytes. Clobbers %rax, %rcx, and \tmp{64,32}.
406
.macro _load_partial_block src, dst, tmp64, tmp32
407
sub $8, %ecx // LEN - 8
408
jle .Lle8\@
409
410
// Load 9 <= LEN <= 16 bytes.
411
vmovq (\src), \dst // Load first 8 bytes
412
mov (\src, %rcx), %rax // Load last 8 bytes
413
neg %ecx
414
shl $3, %ecx
415
shr %cl, %rax // Discard overlapping bytes
416
vpinsrq $1, %rax, \dst, \dst
417
jmp .Ldone\@
418
419
.Lle8\@:
420
add $4, %ecx // LEN - 4
421
jl .Llt4\@
422
423
// Load 4 <= LEN <= 8 bytes.
424
mov (\src), %eax // Load first 4 bytes
425
mov (\src, %rcx), \tmp32 // Load last 4 bytes
426
jmp .Lcombine\@
427
428
.Llt4\@:
429
// Load 1 <= LEN <= 3 bytes.
430
add $2, %ecx // LEN - 2
431
movzbl (\src), %eax // Load first byte
432
jl .Lmovq\@
433
movzwl (\src, %rcx), \tmp32 // Load last 2 bytes
434
.Lcombine\@:
435
shl $3, %ecx
436
shl %cl, \tmp64
437
or \tmp64, %rax // Combine the two parts
438
.Lmovq\@:
439
vmovq %rax, \dst
440
.Ldone\@:
441
.endm
442
443
// Store 1 <= %ecx <= 16 bytes from the xmm register \src to the pointer \dst.
444
// Clobbers %rax, %rcx, and \tmp{64,32}.
445
.macro _store_partial_block src, dst, tmp64, tmp32
446
sub $8, %ecx // LEN - 8
447
jl .Llt8\@
448
449
// Store 8 <= LEN <= 16 bytes.
450
vpextrq $1, \src, %rax
451
mov %ecx, \tmp32
452
shl $3, %ecx
453
ror %cl, %rax
454
mov %rax, (\dst, \tmp64) // Store last LEN - 8 bytes
455
vmovq \src, (\dst) // Store first 8 bytes
456
jmp .Ldone\@
457
458
.Llt8\@:
459
add $4, %ecx // LEN - 4
460
jl .Llt4\@
461
462
// Store 4 <= LEN <= 7 bytes.
463
vpextrd $1, \src, %eax
464
mov %ecx, \tmp32
465
shl $3, %ecx
466
ror %cl, %eax
467
mov %eax, (\dst, \tmp64) // Store last LEN - 4 bytes
468
vmovd \src, (\dst) // Store first 4 bytes
469
jmp .Ldone\@
470
471
.Llt4\@:
472
// Store 1 <= LEN <= 3 bytes.
473
vpextrb $0, \src, 0(\dst)
474
cmp $-2, %ecx // LEN - 4 == -2, i.e. LEN == 2?
475
jl .Ldone\@
476
vpextrb $1, \src, 1(\dst)
477
je .Ldone\@
478
vpextrb $2, \src, 2(\dst)
479
.Ldone\@:
480
.endm
481
482
// void aes_gcm_aad_update_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
483
// u8 ghash_acc[16],
484
// const u8 *aad, int aadlen);
485
//
486
// This function processes the AAD (Additional Authenticated Data) in GCM.
487
// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the
488
// data given by |aad| and |aadlen|. On the first call, |ghash_acc| must be all
489
// zeroes. |aadlen| must be a multiple of 16, except on the last call where it
490
// can be any length. The caller must do any buffering needed to ensure this.
491
//
492
// This handles large amounts of AAD efficiently, while also keeping overhead
493
// low for small amounts which is the common case. TLS and IPsec use less than
494
// one block of AAD, but (uncommonly) other use cases may use much more.
495
SYM_FUNC_START(aes_gcm_aad_update_vaes_avx2)
496
497
// Function arguments
498
.set KEY, %rdi
499
.set GHASH_ACC_PTR, %rsi
500
.set AAD, %rdx
501
.set AADLEN, %ecx // Must be %ecx for _load_partial_block
502
.set AADLEN64, %rcx // Zero-extend AADLEN before using!
503
504
// Additional local variables.
505
// %rax and %r8 are used as temporary registers.
506
.set TMP0, %ymm0
507
.set TMP0_XMM, %xmm0
508
.set TMP1, %ymm1
509
.set TMP1_XMM, %xmm1
510
.set TMP2, %ymm2
511
.set TMP2_XMM, %xmm2
512
.set LO, %ymm3
513
.set LO_XMM, %xmm3
514
.set MI, %ymm4
515
.set MI_XMM, %xmm4
516
.set GHASH_ACC, %ymm5
517
.set GHASH_ACC_XMM, %xmm5
518
.set BSWAP_MASK, %ymm6
519
.set BSWAP_MASK_XMM, %xmm6
520
.set GFPOLY, %ymm7
521
.set GFPOLY_XMM, %xmm7
522
.set H_POW2_XORED, %ymm8
523
.set H_POW1_XORED, %ymm9
524
525
// Load the bswap_mask and gfpoly constants. Since AADLEN is usually
526
// small, usually only 128-bit vectors will be used. So as an
527
// optimization, don't broadcast these constants to both 128-bit lanes
528
// quite yet.
529
vmovdqu .Lbswap_mask(%rip), BSWAP_MASK_XMM
530
vmovdqu .Lgfpoly(%rip), GFPOLY_XMM
531
532
// Load the GHASH accumulator.
533
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
534
535
// Check for the common case of AADLEN <= 16, as well as AADLEN == 0.
536
test AADLEN, AADLEN
537
jz .Laad_done
538
cmp $16, AADLEN
539
jle .Laad_lastblock
540
541
// AADLEN > 16, so we'll operate on full vectors. Broadcast bswap_mask
542
// and gfpoly to both 128-bit lanes.
543
vinserti128 $1, BSWAP_MASK_XMM, BSWAP_MASK, BSWAP_MASK
544
vinserti128 $1, GFPOLY_XMM, GFPOLY, GFPOLY
545
546
// If AADLEN >= 128, update GHASH with 128 bytes of AAD at a time.
547
add $-128, AADLEN // 128 is 4 bytes, -128 is 1 byte
548
jl .Laad_loop_4x_done
549
vmovdqu OFFSETOF_H_POWERS_XORED(KEY), H_POW2_XORED
550
vmovdqu OFFSETOF_H_POWERS_XORED+32(KEY), H_POW1_XORED
551
.Laad_loop_4x:
552
_ghash_4x AAD
553
sub $-128, AAD
554
add $-128, AADLEN
555
jge .Laad_loop_4x
556
.Laad_loop_4x_done:
557
558
// If AADLEN >= 32, update GHASH with 32 bytes of AAD at a time.
559
add $96, AADLEN
560
jl .Laad_loop_1x_done
561
.Laad_loop_1x:
562
vmovdqu (AAD), TMP0
563
vpshufb BSWAP_MASK, TMP0, TMP0
564
vpxor TMP0, GHASH_ACC, GHASH_ACC
565
vmovdqu OFFSETOFEND_H_POWERS-32(KEY), TMP0
566
_ghash_mul TMP0, GHASH_ACC, GHASH_ACC, GFPOLY, TMP1, TMP2, LO
567
vextracti128 $1, GHASH_ACC, TMP0_XMM
568
vpxor TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
569
add $32, AAD
570
sub $32, AADLEN
571
jge .Laad_loop_1x
572
.Laad_loop_1x_done:
573
add $32, AADLEN
574
// Now 0 <= AADLEN < 32.
575
576
jz .Laad_done
577
cmp $16, AADLEN
578
jle .Laad_lastblock
579
580
// Update GHASH with the remaining 17 <= AADLEN <= 31 bytes of AAD.
581
mov AADLEN, AADLEN // Zero-extend AADLEN to AADLEN64.
582
vmovdqu (AAD), TMP0_XMM
583
vmovdqu -16(AAD, AADLEN64), TMP1_XMM
584
vpshufb BSWAP_MASK_XMM, TMP0_XMM, TMP0_XMM
585
vpxor TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
586
lea .Lrshift_and_bswap_table(%rip), %rax
587
vpshufb -16(%rax, AADLEN64), TMP1_XMM, TMP1_XMM
588
vinserti128 $1, TMP1_XMM, GHASH_ACC, GHASH_ACC
589
vmovdqu OFFSETOFEND_H_POWERS-32(KEY), TMP0
590
_ghash_mul TMP0, GHASH_ACC, GHASH_ACC, GFPOLY, TMP1, TMP2, LO
591
vextracti128 $1, GHASH_ACC, TMP0_XMM
592
vpxor TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
593
jmp .Laad_done
594
595
.Laad_lastblock:
596
// Update GHASH with the remaining 1 <= AADLEN <= 16 bytes of AAD.
597
_load_partial_block AAD, TMP0_XMM, %r8, %r8d
598
vpshufb BSWAP_MASK_XMM, TMP0_XMM, TMP0_XMM
599
vpxor TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
600
vmovdqu OFFSETOFEND_H_POWERS-16(KEY), TMP0_XMM
601
_ghash_mul TMP0_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM, GFPOLY_XMM, \
602
TMP1_XMM, TMP2_XMM, LO_XMM
603
604
.Laad_done:
605
// Store the updated GHASH accumulator back to memory.
606
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
607
608
vzeroupper
609
RET
610
SYM_FUNC_END(aes_gcm_aad_update_vaes_avx2)
611
612
// Do one non-last round of AES encryption on the blocks in the given AESDATA
613
// vectors using the round key that has been broadcast to all 128-bit lanes of
614
// \round_key.
615
.macro _vaesenc round_key, vecs:vararg
616
.irp i, \vecs
617
vaesenc \round_key, AESDATA\i, AESDATA\i
618
.endr
619
.endm
620
621
// Generate counter blocks in the given AESDATA vectors, then do the zero-th AES
622
// round on them. Clobbers TMP0.
623
.macro _ctr_begin vecs:vararg
624
vbroadcasti128 .Linc_2blocks(%rip), TMP0
625
.irp i, \vecs
626
vpshufb BSWAP_MASK, LE_CTR, AESDATA\i
627
vpaddd TMP0, LE_CTR, LE_CTR
628
.endr
629
.irp i, \vecs
630
vpxor RNDKEY0, AESDATA\i, AESDATA\i
631
.endr
632
.endm
633
634
// Generate and encrypt counter blocks in the given AESDATA vectors, excluding
635
// the last AES round. Clobbers %rax and TMP0.
636
.macro _aesenc_loop vecs:vararg
637
_ctr_begin \vecs
638
lea 16(KEY), %rax
639
.Laesenc_loop\@:
640
vbroadcasti128 (%rax), TMP0
641
_vaesenc TMP0, \vecs
642
add $16, %rax
643
cmp %rax, RNDKEYLAST_PTR
644
jne .Laesenc_loop\@
645
.endm
646
647
// Finalize the keystream blocks in the given AESDATA vectors by doing the last
648
// AES round, then XOR those keystream blocks with the corresponding data.
649
// Reduce latency by doing the XOR before the vaesenclast, utilizing the
650
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a). Clobbers TMP0.
651
.macro _aesenclast_and_xor vecs:vararg
652
.irp i, \vecs
653
vpxor \i*32(SRC), RNDKEYLAST, TMP0
654
vaesenclast TMP0, AESDATA\i, AESDATA\i
655
.endr
656
.irp i, \vecs
657
vmovdqu AESDATA\i, \i*32(DST)
658
.endr
659
.endm
660
661
// void aes_gcm_{enc,dec}_update_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
662
// const u32 le_ctr[4], u8 ghash_acc[16],
663
// const u8 *src, u8 *dst, int datalen);
664
//
665
// This macro generates a GCM encryption or decryption update function with the
666
// above prototype (with \enc selecting which one). The function computes the
667
// next portion of the CTR keystream, XOR's it with |datalen| bytes from |src|,
668
// and writes the resulting encrypted or decrypted data to |dst|. It also
669
// updates the GHASH accumulator |ghash_acc| using the next |datalen| ciphertext
670
// bytes.
671
//
672
// |datalen| must be a multiple of 16, except on the last call where it can be
673
// any length. The caller must do any buffering needed to ensure this. Both
674
// in-place and out-of-place en/decryption are supported.
675
//
676
// |le_ctr| must give the current counter in little-endian format. This
677
// function loads the counter from |le_ctr| and increments the loaded counter as
678
// needed, but it does *not* store the updated counter back to |le_ctr|. The
679
// caller must update |le_ctr| if any more data segments follow. Internally,
680
// only the low 32-bit word of the counter is incremented, following the GCM
681
// standard.
682
.macro _aes_gcm_update enc
683
684
// Function arguments
685
.set KEY, %rdi
686
.set LE_CTR_PTR, %rsi
687
.set LE_CTR_PTR32, %esi
688
.set GHASH_ACC_PTR, %rdx
689
.set SRC, %rcx // Assumed to be %rcx.
690
// See .Ltail_xor_and_ghash_1to16bytes
691
.set DST, %r8
692
.set DATALEN, %r9d
693
.set DATALEN64, %r9 // Zero-extend DATALEN before using!
694
695
// Additional local variables
696
697
// %rax is used as a temporary register. LE_CTR_PTR is also available
698
// as a temporary register after the counter is loaded.
699
700
// AES key length in bytes
701
.set AESKEYLEN, %r10d
702
.set AESKEYLEN64, %r10
703
704
// Pointer to the last AES round key for the chosen AES variant
705
.set RNDKEYLAST_PTR, %r11
706
707
// BSWAP_MASK is the shuffle mask for byte-reflecting 128-bit values
708
// using vpshufb, copied to all 128-bit lanes.
709
.set BSWAP_MASK, %ymm0
710
.set BSWAP_MASK_XMM, %xmm0
711
712
// GHASH_ACC is the accumulator variable for GHASH. When fully reduced,
713
// only the lowest 128-bit lane can be nonzero. When not fully reduced,
714
// more than one lane may be used, and they need to be XOR'd together.
715
.set GHASH_ACC, %ymm1
716
.set GHASH_ACC_XMM, %xmm1
717
718
// TMP[0-2] are temporary registers.
719
.set TMP0, %ymm2
720
.set TMP0_XMM, %xmm2
721
.set TMP1, %ymm3
722
.set TMP1_XMM, %xmm3
723
.set TMP2, %ymm4
724
.set TMP2_XMM, %xmm4
725
726
// LO and MI are used to accumulate unreduced GHASH products.
727
.set LO, %ymm5
728
.set LO_XMM, %xmm5
729
.set MI, %ymm6
730
.set MI_XMM, %xmm6
731
732
// H_POW[2-1]_XORED contain cached values from KEY->h_powers_xored. The
733
// descending numbering reflects the order of the key powers.
734
.set H_POW2_XORED, %ymm7
735
.set H_POW2_XORED_XMM, %xmm7
736
.set H_POW1_XORED, %ymm8
737
738
// RNDKEY0 caches the zero-th round key, and RNDKEYLAST the last one.
739
.set RNDKEY0, %ymm9
740
.set RNDKEYLAST, %ymm10
741
742
// LE_CTR contains the next set of little-endian counter blocks.
743
.set LE_CTR, %ymm11
744
745
// AESDATA[0-3] hold the counter blocks that are being encrypted by AES.
746
.set AESDATA0, %ymm12
747
.set AESDATA0_XMM, %xmm12
748
.set AESDATA1, %ymm13
749
.set AESDATA1_XMM, %xmm13
750
.set AESDATA2, %ymm14
751
.set AESDATA3, %ymm15
752
753
.if \enc
754
.set GHASHDATA_PTR, DST
755
.else
756
.set GHASHDATA_PTR, SRC
757
.endif
758
759
vbroadcasti128 .Lbswap_mask(%rip), BSWAP_MASK
760
761
// Load the GHASH accumulator and the starting counter.
762
vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
763
vbroadcasti128 (LE_CTR_PTR), LE_CTR
764
765
// Load the AES key length in bytes.
766
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
767
768
// Make RNDKEYLAST_PTR point to the last AES round key. This is the
769
// round key with index 10, 12, or 14 for AES-128, AES-192, or AES-256
770
// respectively. Then load the zero-th and last round keys.
771
lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR
772
vbroadcasti128 (KEY), RNDKEY0
773
vbroadcasti128 (RNDKEYLAST_PTR), RNDKEYLAST
774
775
// Finish initializing LE_CTR by adding 1 to the second block.
776
vpaddd .Lctr_pattern(%rip), LE_CTR, LE_CTR
777
778
// If there are at least 128 bytes of data, then continue into the loop
779
// that processes 128 bytes of data at a time. Otherwise skip it.
780
add $-128, DATALEN // 128 is 4 bytes, -128 is 1 byte
781
jl .Lcrypt_loop_4x_done\@
782
783
vmovdqu OFFSETOF_H_POWERS_XORED(KEY), H_POW2_XORED
784
vmovdqu OFFSETOF_H_POWERS_XORED+32(KEY), H_POW1_XORED
785
786
// Main loop: en/decrypt and hash 4 vectors (128 bytes) at a time.
787
788
.if \enc
789
// Encrypt the first 4 vectors of plaintext blocks.
790
_aesenc_loop 0,1,2,3
791
_aesenclast_and_xor 0,1,2,3
792
sub $-128, SRC // 128 is 4 bytes, -128 is 1 byte
793
add $-128, DATALEN
794
jl .Lghash_last_ciphertext_4x\@
795
.endif
796
797
.align 16
798
.Lcrypt_loop_4x\@:
799
800
// Start the AES encryption of the counter blocks.
801
_ctr_begin 0,1,2,3
802
cmp $24, AESKEYLEN
803
jl 128f // AES-128?
804
je 192f // AES-192?
805
// AES-256
806
vbroadcasti128 -13*16(RNDKEYLAST_PTR), TMP0
807
_vaesenc TMP0, 0,1,2,3
808
vbroadcasti128 -12*16(RNDKEYLAST_PTR), TMP0
809
_vaesenc TMP0, 0,1,2,3
810
192:
811
vbroadcasti128 -11*16(RNDKEYLAST_PTR), TMP0
812
_vaesenc TMP0, 0,1,2,3
813
vbroadcasti128 -10*16(RNDKEYLAST_PTR), TMP0
814
_vaesenc TMP0, 0,1,2,3
815
128:
816
817
// Finish the AES encryption of the counter blocks in AESDATA[0-3],
818
// interleaved with the GHASH update of the ciphertext blocks.
819
.irp i, 9,8,7,6,5,4,3,2,1
820
_ghash_step_4x (9 - \i), GHASHDATA_PTR
821
vbroadcasti128 -\i*16(RNDKEYLAST_PTR), TMP0
822
_vaesenc TMP0, 0,1,2,3
823
.endr
824
_ghash_step_4x 9, GHASHDATA_PTR
825
.if \enc
826
sub $-128, DST // 128 is 4 bytes, -128 is 1 byte
827
.endif
828
_aesenclast_and_xor 0,1,2,3
829
sub $-128, SRC
830
.if !\enc
831
sub $-128, DST
832
.endif
833
add $-128, DATALEN
834
jge .Lcrypt_loop_4x\@
835
836
.if \enc
837
.Lghash_last_ciphertext_4x\@:
838
// Update GHASH with the last set of ciphertext blocks.
839
_ghash_4x DST
840
sub $-128, DST
841
.endif
842
843
.Lcrypt_loop_4x_done\@:
844
845
// Undo the extra subtraction by 128 and check whether data remains.
846
sub $-128, DATALEN // 128 is 4 bytes, -128 is 1 byte
847
jz .Ldone\@
848
849
// The data length isn't a multiple of 128 bytes. Process the remaining
850
// data of length 1 <= DATALEN < 128.
851
//
852
// Since there are enough key powers available for all remaining data,
853
// there is no need to do a GHASH reduction after each iteration.
854
// Instead, multiply each remaining block by its own key power, and only
855
// do a GHASH reduction at the very end.
856
857
// Make POWERS_PTR point to the key powers [H^N, H^(N-1), ...] where N
858
// is the number of blocks that remain.
859
.set POWERS_PTR, LE_CTR_PTR // LE_CTR_PTR is free to be reused.
860
.set POWERS_PTR32, LE_CTR_PTR32
861
mov DATALEN, %eax
862
neg %rax
863
and $~15, %rax // -round_up(DATALEN, 16)
864
lea OFFSETOFEND_H_POWERS(KEY,%rax), POWERS_PTR
865
866
// Start collecting the unreduced GHASH intermediate value LO, MI, HI.
867
.set HI, H_POW2_XORED // H_POW2_XORED is free to be reused.
868
.set HI_XMM, H_POW2_XORED_XMM
869
vpxor LO_XMM, LO_XMM, LO_XMM
870
vpxor MI_XMM, MI_XMM, MI_XMM
871
vpxor HI_XMM, HI_XMM, HI_XMM
872
873
// 1 <= DATALEN < 128. Generate 2 or 4 more vectors of keystream blocks
874
// excluding the last AES round, depending on the remaining DATALEN.
875
cmp $64, DATALEN
876
jg .Ltail_gen_4_keystream_vecs\@
877
_aesenc_loop 0,1
878
cmp $32, DATALEN
879
jge .Ltail_xor_and_ghash_full_vec_loop\@
880
jmp .Ltail_xor_and_ghash_partial_vec\@
881
.Ltail_gen_4_keystream_vecs\@:
882
_aesenc_loop 0,1,2,3
883
884
// XOR the remaining data and accumulate the unreduced GHASH products
885
// for DATALEN >= 32, starting with one full 32-byte vector at a time.
886
.Ltail_xor_and_ghash_full_vec_loop\@:
887
.if \enc
888
_aesenclast_and_xor 0
889
vpshufb BSWAP_MASK, AESDATA0, AESDATA0
890
.else
891
vmovdqu (SRC), TMP1
892
vpxor TMP1, RNDKEYLAST, TMP0
893
vaesenclast TMP0, AESDATA0, AESDATA0
894
vmovdqu AESDATA0, (DST)
895
vpshufb BSWAP_MASK, TMP1, AESDATA0
896
.endif
897
// The ciphertext blocks (i.e. GHASH input data) are now in AESDATA0.
898
vpxor GHASH_ACC, AESDATA0, AESDATA0
899
vmovdqu (POWERS_PTR), TMP2
900
_ghash_mul_noreduce TMP2, AESDATA0, LO, MI, HI, TMP0
901
vmovdqa AESDATA1, AESDATA0
902
vmovdqa AESDATA2, AESDATA1
903
vmovdqa AESDATA3, AESDATA2
904
vpxor GHASH_ACC_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
905
add $32, SRC
906
add $32, DST
907
add $32, POWERS_PTR
908
sub $32, DATALEN
909
cmp $32, DATALEN
910
jge .Ltail_xor_and_ghash_full_vec_loop\@
911
test DATALEN, DATALEN
912
jz .Ltail_ghash_reduce\@
913
914
.Ltail_xor_and_ghash_partial_vec\@:
915
// XOR the remaining data and accumulate the unreduced GHASH products,
916
// for 1 <= DATALEN < 32.
917
vaesenclast RNDKEYLAST, AESDATA0, AESDATA0
918
cmp $16, DATALEN
919
jle .Ltail_xor_and_ghash_1to16bytes\@
920
921
// Handle 17 <= DATALEN < 32.
922
923
// Load a vpshufb mask that will right-shift by '32 - DATALEN' bytes
924
// (shifting in zeroes), then reflect all 16 bytes.
925
lea .Lrshift_and_bswap_table(%rip), %rax
926
vmovdqu -16(%rax, DATALEN64), TMP2_XMM
927
928
// Move the second keystream block to its own register and left-align it
929
vextracti128 $1, AESDATA0, AESDATA1_XMM
930
vpxor .Lfifteens(%rip), TMP2_XMM, TMP0_XMM
931
vpshufb TMP0_XMM, AESDATA1_XMM, AESDATA1_XMM
932
933
// Using overlapping loads and stores, XOR the source data with the
934
// keystream and write the destination data. Then prepare the GHASH
935
// input data: the full ciphertext block and the zero-padded partial
936
// ciphertext block, both byte-reflected, in AESDATA0.
937
.if \enc
938
vpxor -16(SRC, DATALEN64), AESDATA1_XMM, AESDATA1_XMM
939
vpxor (SRC), AESDATA0_XMM, AESDATA0_XMM
940
vmovdqu AESDATA1_XMM, -16(DST, DATALEN64)
941
vmovdqu AESDATA0_XMM, (DST)
942
vpshufb TMP2_XMM, AESDATA1_XMM, AESDATA1_XMM
943
vpshufb BSWAP_MASK_XMM, AESDATA0_XMM, AESDATA0_XMM
944
.else
945
vmovdqu -16(SRC, DATALEN64), TMP1_XMM
946
vmovdqu (SRC), TMP0_XMM
947
vpxor TMP1_XMM, AESDATA1_XMM, AESDATA1_XMM
948
vpxor TMP0_XMM, AESDATA0_XMM, AESDATA0_XMM
949
vmovdqu AESDATA1_XMM, -16(DST, DATALEN64)
950
vmovdqu AESDATA0_XMM, (DST)
951
vpshufb TMP2_XMM, TMP1_XMM, AESDATA1_XMM
952
vpshufb BSWAP_MASK_XMM, TMP0_XMM, AESDATA0_XMM
953
.endif
954
vpxor GHASH_ACC_XMM, AESDATA0_XMM, AESDATA0_XMM
955
vinserti128 $1, AESDATA1_XMM, AESDATA0, AESDATA0
956
vmovdqu (POWERS_PTR), TMP2
957
jmp .Ltail_ghash_last_vec\@
958
959
.Ltail_xor_and_ghash_1to16bytes\@:
960
// Handle 1 <= DATALEN <= 16. Carefully load and store the
961
// possibly-partial block, which we mustn't access out of bounds.
962
vmovdqu (POWERS_PTR), TMP2_XMM
963
mov SRC, KEY // Free up %rcx, assuming SRC == %rcx
964
mov DATALEN, %ecx
965
_load_partial_block KEY, TMP0_XMM, POWERS_PTR, POWERS_PTR32
966
vpxor TMP0_XMM, AESDATA0_XMM, AESDATA0_XMM
967
mov DATALEN, %ecx
968
_store_partial_block AESDATA0_XMM, DST, POWERS_PTR, POWERS_PTR32
969
.if \enc
970
lea .Lselect_high_bytes_table(%rip), %rax
971
vpshufb BSWAP_MASK_XMM, AESDATA0_XMM, AESDATA0_XMM
972
vpand (%rax, DATALEN64), AESDATA0_XMM, AESDATA0_XMM
973
.else
974
vpshufb BSWAP_MASK_XMM, TMP0_XMM, AESDATA0_XMM
975
.endif
976
vpxor GHASH_ACC_XMM, AESDATA0_XMM, AESDATA0_XMM
977
978
.Ltail_ghash_last_vec\@:
979
// Accumulate the unreduced GHASH products for the last 1-2 blocks. The
980
// GHASH input data is in AESDATA0. If only one block remains, then the
981
// second block in AESDATA0 is zero and does not affect the result.
982
_ghash_mul_noreduce TMP2, AESDATA0, LO, MI, HI, TMP0
983
984
.Ltail_ghash_reduce\@:
985
// Finally, do the GHASH reduction.
986
vbroadcasti128 .Lgfpoly(%rip), TMP0
987
_ghash_reduce LO, MI, HI, TMP0, TMP1
988
vextracti128 $1, HI, GHASH_ACC_XMM
989
vpxor HI_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
990
991
.Ldone\@:
992
// Store the updated GHASH accumulator back to memory.
993
vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
994
995
vzeroupper
996
RET
997
.endm
998
999
// void aes_gcm_enc_final_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
1000
// const u32 le_ctr[4], u8 ghash_acc[16],
1001
// u64 total_aadlen, u64 total_datalen);
1002
// bool aes_gcm_dec_final_vaes_avx2(const struct aes_gcm_key_vaes_avx2 *key,
1003
// const u32 le_ctr[4], const u8 ghash_acc[16],
1004
// u64 total_aadlen, u64 total_datalen,
1005
// const u8 tag[16], int taglen);
1006
//
1007
// This macro generates one of the above two functions (with \enc selecting
1008
// which one). Both functions finish computing the GCM authentication tag by
1009
// updating GHASH with the lengths block and encrypting the GHASH accumulator.
1010
// |total_aadlen| and |total_datalen| must be the total length of the additional
1011
// authenticated data and the en/decrypted data in bytes, respectively.
1012
//
1013
// The encryption function then stores the full-length (16-byte) computed
1014
// authentication tag to |ghash_acc|. The decryption function instead loads the
1015
// expected authentication tag (the one that was transmitted) from the 16-byte
1016
// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the
1017
// computed tag in constant time, and returns true if and only if they match.
1018
.macro _aes_gcm_final enc
1019
1020
// Function arguments
1021
.set KEY, %rdi
1022
.set LE_CTR_PTR, %rsi
1023
.set GHASH_ACC_PTR, %rdx
1024
.set TOTAL_AADLEN, %rcx
1025
.set TOTAL_DATALEN, %r8
1026
.set TAG, %r9
1027
.set TAGLEN, %r10d // Originally at 8(%rsp)
1028
.set TAGLEN64, %r10
1029
1030
// Additional local variables.
1031
// %rax and %xmm0-%xmm3 are used as temporary registers.
1032
.set AESKEYLEN, %r11d
1033
.set AESKEYLEN64, %r11
1034
.set GFPOLY, %xmm4
1035
.set BSWAP_MASK, %xmm5
1036
.set LE_CTR, %xmm6
1037
.set GHASH_ACC, %xmm7
1038
.set H_POW1, %xmm8
1039
1040
// Load some constants.
1041
vmovdqa .Lgfpoly(%rip), GFPOLY
1042
vmovdqa .Lbswap_mask(%rip), BSWAP_MASK
1043
1044
// Load the AES key length in bytes.
1045
movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
1046
1047
// Set up a counter block with 1 in the low 32-bit word. This is the
1048
// counter that produces the ciphertext needed to encrypt the auth tag.
1049
// GFPOLY has 1 in the low word, so grab the 1 from there using a blend.
1050
vpblendd $0xe, (LE_CTR_PTR), GFPOLY, LE_CTR
1051
1052
// Build the lengths block and XOR it with the GHASH accumulator.
1053
// Although the lengths block is defined as the AAD length followed by
1054
// the en/decrypted data length, both in big-endian byte order, a byte
1055
// reflection of the full block is needed because of the way we compute
1056
// GHASH (see _ghash_mul_step). By using little-endian values in the
1057
// opposite order, we avoid having to reflect any bytes here.
1058
vmovq TOTAL_DATALEN, %xmm0
1059
vpinsrq $1, TOTAL_AADLEN, %xmm0, %xmm0
1060
vpsllq $3, %xmm0, %xmm0 // Bytes to bits
1061
vpxor (GHASH_ACC_PTR), %xmm0, GHASH_ACC
1062
1063
// Load the first hash key power (H^1), which is stored last.
1064
vmovdqu OFFSETOFEND_H_POWERS-16(KEY), H_POW1
1065
1066
// Load TAGLEN if decrypting.
1067
.if !\enc
1068
movl 8(%rsp), TAGLEN
1069
.endif
1070
1071
// Make %rax point to the last AES round key for the chosen AES variant.
1072
lea 6*16(KEY,AESKEYLEN64,4), %rax
1073
1074
// Start the AES encryption of the counter block by swapping the counter
1075
// block to big-endian and XOR-ing it with the zero-th AES round key.
1076
vpshufb BSWAP_MASK, LE_CTR, %xmm0
1077
vpxor (KEY), %xmm0, %xmm0
1078
1079
// Complete the AES encryption and multiply GHASH_ACC by H^1.
1080
// Interleave the AES and GHASH instructions to improve performance.
1081
cmp $24, AESKEYLEN
1082
jl 128f // AES-128?
1083
je 192f // AES-192?
1084
// AES-256
1085
vaesenc -13*16(%rax), %xmm0, %xmm0
1086
vaesenc -12*16(%rax), %xmm0, %xmm0
1087
192:
1088
vaesenc -11*16(%rax), %xmm0, %xmm0
1089
vaesenc -10*16(%rax), %xmm0, %xmm0
1090
128:
1091
.irp i, 0,1,2,3,4,5,6,7,8
1092
_ghash_mul_step \i, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
1093
%xmm1, %xmm2, %xmm3
1094
vaesenc (\i-9)*16(%rax), %xmm0, %xmm0
1095
.endr
1096
_ghash_mul_step 9, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
1097
%xmm1, %xmm2, %xmm3
1098
1099
// Undo the byte reflection of the GHASH accumulator.
1100
vpshufb BSWAP_MASK, GHASH_ACC, GHASH_ACC
1101
1102
// Do the last AES round and XOR the resulting keystream block with the
1103
// GHASH accumulator to produce the full computed authentication tag.
1104
//
1105
// Reduce latency by taking advantage of the property vaesenclast(key,
1106
// a) ^ b == vaesenclast(key ^ b, a). I.e., XOR GHASH_ACC into the last
1107
// round key, instead of XOR'ing the final AES output with GHASH_ACC.
1108
//
1109
// enc_final then returns the computed auth tag, while dec_final
1110
// compares it with the transmitted one and returns a bool. To compare
1111
// the tags, dec_final XORs them together and uses vptest to check
1112
// whether the result is all-zeroes. This should be constant-time.
1113
// dec_final applies the vaesenclast optimization to this additional
1114
// value XOR'd too.
1115
.if \enc
1116
vpxor (%rax), GHASH_ACC, %xmm1
1117
vaesenclast %xmm1, %xmm0, GHASH_ACC
1118
vmovdqu GHASH_ACC, (GHASH_ACC_PTR)
1119
.else
1120
vpxor (TAG), GHASH_ACC, GHASH_ACC
1121
vpxor (%rax), GHASH_ACC, GHASH_ACC
1122
vaesenclast GHASH_ACC, %xmm0, %xmm0
1123
lea .Lselect_high_bytes_table(%rip), %rax
1124
vmovdqu (%rax, TAGLEN64), %xmm1
1125
vpshufb BSWAP_MASK, %xmm1, %xmm1 // select low bytes, not high
1126
xor %eax, %eax
1127
vptest %xmm1, %xmm0
1128
sete %al
1129
.endif
1130
// No need for vzeroupper here, since only used xmm registers were used.
1131
RET
1132
.endm
1133
1134
SYM_FUNC_START(aes_gcm_enc_update_vaes_avx2)
1135
_aes_gcm_update 1
1136
SYM_FUNC_END(aes_gcm_enc_update_vaes_avx2)
1137
SYM_FUNC_START(aes_gcm_dec_update_vaes_avx2)
1138
_aes_gcm_update 0
1139
SYM_FUNC_END(aes_gcm_dec_update_vaes_avx2)
1140
1141
SYM_FUNC_START(aes_gcm_enc_final_vaes_avx2)
1142
_aes_gcm_final 1
1143
SYM_FUNC_END(aes_gcm_enc_final_vaes_avx2)
1144
SYM_FUNC_START(aes_gcm_dec_final_vaes_avx2)
1145
_aes_gcm_final 0
1146
SYM_FUNC_END(aes_gcm_dec_final_vaes_avx2)
1147
1148