Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/crypto/aes-xts-avx-x86_64.S
26451 views
1
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
2
//
3
// AES-XTS for modern x86_64 CPUs
4
//
5
// Copyright 2024 Google LLC
6
//
7
// Author: Eric Biggers <ebiggers@google.com>
8
//
9
//------------------------------------------------------------------------------
10
//
11
// This file is dual-licensed, meaning that you can use it under your choice of
12
// either of the following two licenses:
13
//
14
// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
15
// of the License at
16
//
17
// http://www.apache.org/licenses/LICENSE-2.0
18
//
19
// Unless required by applicable law or agreed to in writing, software
20
// distributed under the License is distributed on an "AS IS" BASIS,
21
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
// See the License for the specific language governing permissions and
23
// limitations under the License.
24
//
25
// or
26
//
27
// Redistribution and use in source and binary forms, with or without
28
// modification, are permitted provided that the following conditions are met:
29
//
30
// 1. Redistributions of source code must retain the above copyright notice,
31
// this list of conditions and the following disclaimer.
32
//
33
// 2. Redistributions in binary form must reproduce the above copyright
34
// notice, this list of conditions and the following disclaimer in the
35
// documentation and/or other materials provided with the distribution.
36
//
37
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
38
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
41
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
42
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
43
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
44
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
45
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
47
// POSSIBILITY OF SUCH DAMAGE.
48
49
/*
50
* This file implements AES-XTS for modern x86_64 CPUs. To handle the
51
* complexities of coding for x86 SIMD, e.g. where every vector length needs
52
* different code, it uses a macro to generate several implementations that
53
* share similar source code but are targeted at different CPUs, listed below:
54
*
55
* AES-NI && AVX
56
* - 128-bit vectors (1 AES block per vector)
57
* - VEX-coded instructions
58
* - xmm0-xmm15
59
* - This is for older CPUs that lack VAES but do have AVX.
60
*
61
* VAES && VPCLMULQDQ && AVX2
62
* - 256-bit vectors (2 AES blocks per vector)
63
* - VEX-coded instructions
64
* - ymm0-ymm15
65
* - This is for CPUs that have VAES but either lack AVX512 (e.g. Intel's
66
* Alder Lake and AMD's Zen 3) or downclock too eagerly when using zmm
67
* registers (e.g. Intel's Ice Lake).
68
*
69
* VAES && VPCLMULQDQ && AVX512BW && AVX512VL && BMI2
70
* - 512-bit vectors (4 AES blocks per vector)
71
* - EVEX-coded instructions
72
* - zmm0-zmm31
73
* - This is for CPUs that have good AVX512 support.
74
*
75
* This file doesn't have an implementation for AES-NI alone (without AVX), as
76
* the lack of VEX would make all the assembly code different.
77
*
78
* When we use VAES, we also use VPCLMULQDQ to parallelize the computation of
79
* the XTS tweaks. This avoids a bottleneck. Currently there don't seem to be
80
* any CPUs that support VAES but not VPCLMULQDQ. If that changes, we might
81
* need to start also providing an implementation using VAES alone.
82
*
83
* The AES-XTS implementations in this file support everything required by the
84
* crypto API, including support for arbitrary input lengths and multi-part
85
* processing. However, they are most heavily optimized for the common case of
86
* power-of-2 length inputs that are processed in a single part (disk sectors).
87
*/
88
89
#include <linux/linkage.h>
90
#include <linux/cfi_types.h>
91
92
.section .rodata
93
.p2align 4
94
.Lgf_poly:
95
// The low 64 bits of this value represent the polynomial x^7 + x^2 + x
96
// + 1. It is the value that must be XOR'd into the low 64 bits of the
97
// tweak each time a 1 is carried out of the high 64 bits.
98
//
99
// The high 64 bits of this value is just the internal carry bit that
100
// exists when there's a carry out of the low 64 bits of the tweak.
101
.quad 0x87, 1
102
103
// These are the shift amounts that are needed when multiplying by [x^0,
104
// x^1, x^2, x^3] to compute the first vector of tweaks when VL=64.
105
//
106
// The right shifts by 64 are expected to zeroize the destination.
107
// 'vpsrlvq' is indeed defined to do that; i.e. it doesn't truncate the
108
// amount to 64 & 63 = 0 like the 'shr' scalar shift instruction would.
109
.Lrshift_amounts:
110
.byte 64, 64, 63, 63, 62, 62, 61, 61
111
.Llshift_amounts:
112
.byte 0, 0, 1, 1, 2, 2, 3, 3
113
114
// This table contains constants for vpshufb and vpblendvb, used to
115
// handle variable byte shifts and blending during ciphertext stealing
116
// on CPUs that don't support AVX512-style masking.
117
.Lcts_permute_table:
118
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
119
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
120
.byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
121
.byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
122
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
123
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
124
.text
125
126
.macro _define_Vi i
127
.if VL == 16
128
.set V\i, %xmm\i
129
.elseif VL == 32
130
.set V\i, %ymm\i
131
.elseif VL == 64
132
.set V\i, %zmm\i
133
.else
134
.error "Unsupported Vector Length (VL)"
135
.endif
136
.endm
137
138
.macro _define_aliases
139
// Define register aliases V0-V15, or V0-V31 if all 32 SIMD registers
140
// are available, that map to the xmm, ymm, or zmm registers according
141
// to the selected Vector Length (VL).
142
.irp i, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
143
_define_Vi \i
144
.endr
145
.if USE_AVX512
146
.irp i, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
147
_define_Vi \i
148
.endr
149
.endif
150
151
// Function parameters
152
.set KEY, %rdi // Initially points to crypto_aes_ctx, then is
153
// advanced to point to 7th-from-last round key
154
.set SRC, %rsi // Pointer to next source data
155
.set DST, %rdx // Pointer to next destination data
156
.set LEN, %ecx // Remaining length in bytes
157
.set LEN8, %cl
158
.set LEN64, %rcx
159
.set TWEAK, %r8 // Pointer to next tweak
160
161
// %rax holds the AES key length in bytes.
162
.set KEYLEN, %eax
163
.set KEYLEN64, %rax
164
165
// %r9-r11 are available as temporaries.
166
167
// V0-V3 hold the data blocks during the main loop, or temporary values
168
// otherwise. V4-V5 hold temporary values.
169
170
// V6-V9 hold XTS tweaks. Each 128-bit lane holds one tweak.
171
.set TWEAK0_XMM, %xmm6
172
.set TWEAK0, V6
173
.set TWEAK1_XMM, %xmm7
174
.set TWEAK1, V7
175
.set TWEAK2, V8
176
.set TWEAK3, V9
177
178
// V10-V13 are used for computing the next values of TWEAK[0-3].
179
.set NEXT_TWEAK0, V10
180
.set NEXT_TWEAK1, V11
181
.set NEXT_TWEAK2, V12
182
.set NEXT_TWEAK3, V13
183
184
// V14 holds the constant from .Lgf_poly, copied to all 128-bit lanes.
185
.set GF_POLY_XMM, %xmm14
186
.set GF_POLY, V14
187
188
// V15 holds the key for AES "round 0", copied to all 128-bit lanes.
189
.set KEY0_XMM, %xmm15
190
.set KEY0, V15
191
192
// If 32 SIMD registers are available, then V16-V29 hold the remaining
193
// AES round keys, copied to all 128-bit lanes.
194
//
195
// AES-128, AES-192, and AES-256 use different numbers of round keys.
196
// To allow handling all three variants efficiently, we align the round
197
// keys to the *end* of this register range. I.e., AES-128 uses
198
// KEY5-KEY14, AES-192 uses KEY3-KEY14, and AES-256 uses KEY1-KEY14.
199
// (All also use KEY0 for the XOR-only "round" at the beginning.)
200
.if USE_AVX512
201
.set KEY1_XMM, %xmm16
202
.set KEY1, V16
203
.set KEY2_XMM, %xmm17
204
.set KEY2, V17
205
.set KEY3_XMM, %xmm18
206
.set KEY3, V18
207
.set KEY4_XMM, %xmm19
208
.set KEY4, V19
209
.set KEY5_XMM, %xmm20
210
.set KEY5, V20
211
.set KEY6_XMM, %xmm21
212
.set KEY6, V21
213
.set KEY7_XMM, %xmm22
214
.set KEY7, V22
215
.set KEY8_XMM, %xmm23
216
.set KEY8, V23
217
.set KEY9_XMM, %xmm24
218
.set KEY9, V24
219
.set KEY10_XMM, %xmm25
220
.set KEY10, V25
221
.set KEY11_XMM, %xmm26
222
.set KEY11, V26
223
.set KEY12_XMM, %xmm27
224
.set KEY12, V27
225
.set KEY13_XMM, %xmm28
226
.set KEY13, V28
227
.set KEY14_XMM, %xmm29
228
.set KEY14, V29
229
.endif
230
// V30-V31 are currently unused.
231
.endm
232
233
// Move a vector between memory and a register.
234
.macro _vmovdqu src, dst
235
.if VL < 64
236
vmovdqu \src, \dst
237
.else
238
vmovdqu8 \src, \dst
239
.endif
240
.endm
241
242
// Broadcast a 128-bit value into a vector.
243
.macro _vbroadcast128 src, dst
244
.if VL == 16
245
vmovdqu \src, \dst
246
.elseif VL == 32
247
vbroadcasti128 \src, \dst
248
.else
249
vbroadcasti32x4 \src, \dst
250
.endif
251
.endm
252
253
// XOR two vectors together.
254
.macro _vpxor src1, src2, dst
255
.if VL < 64
256
vpxor \src1, \src2, \dst
257
.else
258
vpxord \src1, \src2, \dst
259
.endif
260
.endm
261
262
// XOR three vectors together.
263
.macro _xor3 src1, src2, src3_and_dst
264
.if USE_AVX512
265
// vpternlogd with immediate 0x96 is a three-argument XOR.
266
vpternlogd $0x96, \src1, \src2, \src3_and_dst
267
.else
268
vpxor \src1, \src3_and_dst, \src3_and_dst
269
vpxor \src2, \src3_and_dst, \src3_and_dst
270
.endif
271
.endm
272
273
// Given a 128-bit XTS tweak in the xmm register \src, compute the next tweak
274
// (by multiplying by the polynomial 'x') and write it to \dst.
275
.macro _next_tweak src, tmp, dst
276
vpshufd $0x13, \src, \tmp
277
vpaddq \src, \src, \dst
278
vpsrad $31, \tmp, \tmp
279
.if USE_AVX512
280
vpternlogd $0x78, GF_POLY_XMM, \tmp, \dst
281
.else
282
vpand GF_POLY_XMM, \tmp, \tmp
283
vpxor \tmp, \dst, \dst
284
.endif
285
.endm
286
287
// Given the XTS tweak(s) in the vector \src, compute the next vector of
288
// tweak(s) (by multiplying by the polynomial 'x^(VL/16)') and write it to \dst.
289
//
290
// If VL > 16, then there are multiple tweaks, and we use vpclmulqdq to compute
291
// all tweaks in the vector in parallel. If VL=16, we just do the regular
292
// computation without vpclmulqdq, as it's the faster method for a single tweak.
293
.macro _next_tweakvec src, tmp1, tmp2, dst
294
.if VL == 16
295
_next_tweak \src, \tmp1, \dst
296
.else
297
vpsrlq $64 - VL/16, \src, \tmp1
298
vpclmulqdq $0x01, GF_POLY, \tmp1, \tmp2
299
vpslldq $8, \tmp1, \tmp1
300
vpsllq $VL/16, \src, \dst
301
_xor3 \tmp1, \tmp2, \dst
302
.endif
303
.endm
304
305
// Given the first XTS tweak at (TWEAK), compute the first set of tweaks and
306
// store them in the vector registers TWEAK0-TWEAK3. Clobbers V0-V5.
307
.macro _compute_first_set_of_tweaks
308
.if VL == 16
309
vmovdqu (TWEAK), TWEAK0_XMM
310
vmovdqu .Lgf_poly(%rip), GF_POLY
311
_next_tweak TWEAK0, %xmm0, TWEAK1
312
_next_tweak TWEAK1, %xmm0, TWEAK2
313
_next_tweak TWEAK2, %xmm0, TWEAK3
314
.elseif VL == 32
315
vmovdqu (TWEAK), TWEAK0_XMM
316
vbroadcasti128 .Lgf_poly(%rip), GF_POLY
317
318
// Compute the first vector of tweaks.
319
_next_tweak TWEAK0_XMM, %xmm0, %xmm1
320
vinserti128 $1, %xmm1, TWEAK0, TWEAK0
321
322
// Compute the next three vectors of tweaks:
323
// TWEAK1 = TWEAK0 * [x^2, x^2]
324
// TWEAK2 = TWEAK0 * [x^4, x^4]
325
// TWEAK3 = TWEAK0 * [x^6, x^6]
326
vpsrlq $64 - 2, TWEAK0, V0
327
vpsrlq $64 - 4, TWEAK0, V2
328
vpsrlq $64 - 6, TWEAK0, V4
329
vpclmulqdq $0x01, GF_POLY, V0, V1
330
vpclmulqdq $0x01, GF_POLY, V2, V3
331
vpclmulqdq $0x01, GF_POLY, V4, V5
332
vpslldq $8, V0, V0
333
vpslldq $8, V2, V2
334
vpslldq $8, V4, V4
335
vpsllq $2, TWEAK0, TWEAK1
336
vpsllq $4, TWEAK0, TWEAK2
337
vpsllq $6, TWEAK0, TWEAK3
338
vpxor V0, TWEAK1, TWEAK1
339
vpxor V2, TWEAK2, TWEAK2
340
vpxor V4, TWEAK3, TWEAK3
341
vpxor V1, TWEAK1, TWEAK1
342
vpxor V3, TWEAK2, TWEAK2
343
vpxor V5, TWEAK3, TWEAK3
344
.else
345
vbroadcasti32x4 (TWEAK), TWEAK0
346
vbroadcasti32x4 .Lgf_poly(%rip), GF_POLY
347
348
// Compute the first vector of tweaks:
349
// TWEAK0 = broadcast128(TWEAK) * [x^0, x^1, x^2, x^3]
350
vpmovzxbq .Lrshift_amounts(%rip), V4
351
vpsrlvq V4, TWEAK0, V0
352
vpclmulqdq $0x01, GF_POLY, V0, V1
353
vpmovzxbq .Llshift_amounts(%rip), V4
354
vpslldq $8, V0, V0
355
vpsllvq V4, TWEAK0, TWEAK0
356
vpternlogd $0x96, V0, V1, TWEAK0
357
358
// Compute the next three vectors of tweaks:
359
// TWEAK1 = TWEAK0 * [x^4, x^4, x^4, x^4]
360
// TWEAK2 = TWEAK0 * [x^8, x^8, x^8, x^8]
361
// TWEAK3 = TWEAK0 * [x^12, x^12, x^12, x^12]
362
// x^8 only needs byte-aligned shifts, so optimize accordingly.
363
vpsrlq $64 - 4, TWEAK0, V0
364
vpsrldq $(64 - 8) / 8, TWEAK0, V2
365
vpsrlq $64 - 12, TWEAK0, V4
366
vpclmulqdq $0x01, GF_POLY, V0, V1
367
vpclmulqdq $0x01, GF_POLY, V2, V3
368
vpclmulqdq $0x01, GF_POLY, V4, V5
369
vpslldq $8, V0, V0
370
vpslldq $8, V4, V4
371
vpsllq $4, TWEAK0, TWEAK1
372
vpslldq $8 / 8, TWEAK0, TWEAK2
373
vpsllq $12, TWEAK0, TWEAK3
374
vpternlogd $0x96, V0, V1, TWEAK1
375
vpxord V3, TWEAK2, TWEAK2
376
vpternlogd $0x96, V4, V5, TWEAK3
377
.endif
378
.endm
379
380
// Do one step in computing the next set of tweaks using the method of just
381
// multiplying by x repeatedly (the same method _next_tweak uses).
382
.macro _tweak_step_mulx i
383
.if \i == 0
384
.set PREV_TWEAK, TWEAK3
385
.set NEXT_TWEAK, NEXT_TWEAK0
386
.elseif \i == 5
387
.set PREV_TWEAK, NEXT_TWEAK0
388
.set NEXT_TWEAK, NEXT_TWEAK1
389
.elseif \i == 10
390
.set PREV_TWEAK, NEXT_TWEAK1
391
.set NEXT_TWEAK, NEXT_TWEAK2
392
.elseif \i == 15
393
.set PREV_TWEAK, NEXT_TWEAK2
394
.set NEXT_TWEAK, NEXT_TWEAK3
395
.endif
396
.if \i >= 0 && \i < 20 && \i % 5 == 0
397
vpshufd $0x13, PREV_TWEAK, V5
398
.elseif \i >= 0 && \i < 20 && \i % 5 == 1
399
vpaddq PREV_TWEAK, PREV_TWEAK, NEXT_TWEAK
400
.elseif \i >= 0 && \i < 20 && \i % 5 == 2
401
vpsrad $31, V5, V5
402
.elseif \i >= 0 && \i < 20 && \i % 5 == 3
403
vpand GF_POLY, V5, V5
404
.elseif \i >= 0 && \i < 20 && \i % 5 == 4
405
vpxor V5, NEXT_TWEAK, NEXT_TWEAK
406
.elseif \i == 1000
407
vmovdqa NEXT_TWEAK0, TWEAK0
408
vmovdqa NEXT_TWEAK1, TWEAK1
409
vmovdqa NEXT_TWEAK2, TWEAK2
410
vmovdqa NEXT_TWEAK3, TWEAK3
411
.endif
412
.endm
413
414
// Do one step in computing the next set of tweaks using the VPCLMULQDQ method
415
// (the same method _next_tweakvec uses for VL > 16). This means multiplying
416
// each tweak by x^(4*VL/16) independently.
417
//
418
// Since 4*VL/16 is a multiple of 8 when VL > 16 (which it is here), the needed
419
// shift amounts are byte-aligned, which allows the use of vpsrldq and vpslldq
420
// to do 128-bit wide shifts. The 128-bit left shift (vpslldq) saves
421
// instructions directly. The 128-bit right shift (vpsrldq) performs better
422
// than a 64-bit right shift on Intel CPUs in the context where it is used here,
423
// because it runs on a different execution port from the AES instructions.
424
.macro _tweak_step_pclmul i
425
.if \i == 0
426
vpsrldq $(128 - 4*VL/16) / 8, TWEAK0, NEXT_TWEAK0
427
.elseif \i == 2
428
vpsrldq $(128 - 4*VL/16) / 8, TWEAK1, NEXT_TWEAK1
429
.elseif \i == 4
430
vpsrldq $(128 - 4*VL/16) / 8, TWEAK2, NEXT_TWEAK2
431
.elseif \i == 6
432
vpsrldq $(128 - 4*VL/16) / 8, TWEAK3, NEXT_TWEAK3
433
.elseif \i == 8
434
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK0, NEXT_TWEAK0
435
.elseif \i == 10
436
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK1, NEXT_TWEAK1
437
.elseif \i == 12
438
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK2, NEXT_TWEAK2
439
.elseif \i == 14
440
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK3, NEXT_TWEAK3
441
.elseif \i == 1000
442
vpslldq $(4*VL/16) / 8, TWEAK0, TWEAK0
443
vpslldq $(4*VL/16) / 8, TWEAK1, TWEAK1
444
vpslldq $(4*VL/16) / 8, TWEAK2, TWEAK2
445
vpslldq $(4*VL/16) / 8, TWEAK3, TWEAK3
446
_vpxor NEXT_TWEAK0, TWEAK0, TWEAK0
447
_vpxor NEXT_TWEAK1, TWEAK1, TWEAK1
448
_vpxor NEXT_TWEAK2, TWEAK2, TWEAK2
449
_vpxor NEXT_TWEAK3, TWEAK3, TWEAK3
450
.endif
451
.endm
452
453
// _tweak_step does one step of the computation of the next set of tweaks from
454
// TWEAK[0-3]. To complete all steps, this is invoked with increasing values of
455
// \i that include at least 0 through 19, then 1000 which signals the last step.
456
//
457
// This is used to interleave the computation of the next set of tweaks with the
458
// AES en/decryptions, which increases performance in some cases. Clobbers V5.
459
.macro _tweak_step i
460
.if VL == 16
461
_tweak_step_mulx \i
462
.else
463
_tweak_step_pclmul \i
464
.endif
465
.endm
466
467
.macro _setup_round_keys enc
468
469
// Select either the encryption round keys or the decryption round keys.
470
.if \enc
471
.set OFFS, 0
472
.else
473
.set OFFS, 240
474
.endif
475
476
// Load the round key for "round 0".
477
_vbroadcast128 OFFS(KEY), KEY0
478
479
// Increment KEY to make it so that 7*16(KEY) is the last round key.
480
// For AES-128, increment by 3*16, resulting in the 10 round keys (not
481
// counting the zero-th round key which was just loaded into KEY0) being
482
// -2*16(KEY) through 7*16(KEY). For AES-192, increment by 5*16 and use
483
// 12 round keys -4*16(KEY) through 7*16(KEY). For AES-256, increment
484
// by 7*16 and use 14 round keys -6*16(KEY) through 7*16(KEY).
485
//
486
// This rebasing provides two benefits. First, it makes the offset to
487
// any round key be in the range [-96, 112], fitting in a signed byte.
488
// This shortens VEX-encoded instructions that access the later round
489
// keys which otherwise would need 4-byte offsets. Second, it makes it
490
// easy to do AES-128 and AES-192 by skipping irrelevant rounds at the
491
// beginning. Skipping rounds at the end doesn't work as well because
492
// the last round needs different instructions.
493
//
494
// An alternative approach would be to roll up all the round loops. We
495
// don't do that because (a) it isn't compatible with caching the round
496
// keys in registers which we do when possible (see below), (b) we
497
// interleave the AES rounds with the XTS tweak computation, and (c) it
498
// seems unwise to rely *too* heavily on the CPU's branch predictor.
499
lea OFFS-16(KEY, KEYLEN64, 4), KEY
500
501
// If all 32 SIMD registers are available, cache all the round keys.
502
.if USE_AVX512
503
cmp $24, KEYLEN
504
jl .Laes128\@
505
je .Laes192\@
506
vbroadcasti32x4 -6*16(KEY), KEY1
507
vbroadcasti32x4 -5*16(KEY), KEY2
508
.Laes192\@:
509
vbroadcasti32x4 -4*16(KEY), KEY3
510
vbroadcasti32x4 -3*16(KEY), KEY4
511
.Laes128\@:
512
vbroadcasti32x4 -2*16(KEY), KEY5
513
vbroadcasti32x4 -1*16(KEY), KEY6
514
vbroadcasti32x4 0*16(KEY), KEY7
515
vbroadcasti32x4 1*16(KEY), KEY8
516
vbroadcasti32x4 2*16(KEY), KEY9
517
vbroadcasti32x4 3*16(KEY), KEY10
518
vbroadcasti32x4 4*16(KEY), KEY11
519
vbroadcasti32x4 5*16(KEY), KEY12
520
vbroadcasti32x4 6*16(KEY), KEY13
521
vbroadcasti32x4 7*16(KEY), KEY14
522
.endif
523
.endm
524
525
// Do a single non-last round of AES encryption (if \enc==1) or decryption (if
526
// \enc==0) on the block(s) in \data using the round key(s) in \key. The
527
// register length determines the number of AES blocks en/decrypted.
528
.macro _vaes enc, key, data
529
.if \enc
530
vaesenc \key, \data, \data
531
.else
532
vaesdec \key, \data, \data
533
.endif
534
.endm
535
536
// Same as _vaes, but does the last round.
537
.macro _vaeslast enc, key, data
538
.if \enc
539
vaesenclast \key, \data, \data
540
.else
541
vaesdeclast \key, \data, \data
542
.endif
543
.endm
544
545
// Do a single non-last round of AES en/decryption on the block(s) in \data,
546
// using the same key for all block(s). The round key is loaded from the
547
// appropriate register or memory location for round \i. May clobber \tmp.
548
.macro _vaes_1x enc, i, xmm_suffix, data, tmp
549
.if USE_AVX512
550
_vaes \enc, KEY\i\xmm_suffix, \data
551
.else
552
.ifnb \xmm_suffix
553
_vaes \enc, (\i-7)*16(KEY), \data
554
.else
555
_vbroadcast128 (\i-7)*16(KEY), \tmp
556
_vaes \enc, \tmp, \data
557
.endif
558
.endif
559
.endm
560
561
// Do a single non-last round of AES en/decryption on the blocks in registers
562
// V0-V3, using the same key for all blocks. The round key is loaded from the
563
// appropriate register or memory location for round \i. In addition, does two
564
// steps of the computation of the next set of tweaks. May clobber V4 and V5.
565
.macro _vaes_4x enc, i
566
.if USE_AVX512
567
_tweak_step (2*(\i-5))
568
_vaes \enc, KEY\i, V0
569
_vaes \enc, KEY\i, V1
570
_tweak_step (2*(\i-5) + 1)
571
_vaes \enc, KEY\i, V2
572
_vaes \enc, KEY\i, V3
573
.else
574
_vbroadcast128 (\i-7)*16(KEY), V4
575
_tweak_step (2*(\i-5))
576
_vaes \enc, V4, V0
577
_vaes \enc, V4, V1
578
_tweak_step (2*(\i-5) + 1)
579
_vaes \enc, V4, V2
580
_vaes \enc, V4, V3
581
.endif
582
.endm
583
584
// Do tweaked AES en/decryption (i.e., XOR with \tweak, then AES en/decrypt,
585
// then XOR with \tweak again) of the block(s) in \data. To process a single
586
// block, use xmm registers and set \xmm_suffix=_XMM. To process a vector of
587
// length VL, use V* registers and leave \xmm_suffix empty. Clobbers \tmp.
588
.macro _aes_crypt enc, xmm_suffix, tweak, data, tmp
589
_xor3 KEY0\xmm_suffix, \tweak, \data
590
cmp $24, KEYLEN
591
jl .Laes128\@
592
je .Laes192\@
593
_vaes_1x \enc, 1, \xmm_suffix, \data, tmp=\tmp
594
_vaes_1x \enc, 2, \xmm_suffix, \data, tmp=\tmp
595
.Laes192\@:
596
_vaes_1x \enc, 3, \xmm_suffix, \data, tmp=\tmp
597
_vaes_1x \enc, 4, \xmm_suffix, \data, tmp=\tmp
598
.Laes128\@:
599
.irp i, 5,6,7,8,9,10,11,12,13
600
_vaes_1x \enc, \i, \xmm_suffix, \data, tmp=\tmp
601
.endr
602
.if USE_AVX512
603
vpxord KEY14\xmm_suffix, \tweak, \tmp
604
.else
605
.ifnb \xmm_suffix
606
vpxor 7*16(KEY), \tweak, \tmp
607
.else
608
_vbroadcast128 7*16(KEY), \tmp
609
vpxor \tweak, \tmp, \tmp
610
.endif
611
.endif
612
_vaeslast \enc, \tmp, \data
613
.endm
614
615
.macro _aes_xts_crypt enc
616
_define_aliases
617
618
.if !\enc
619
// When decrypting a message whose length isn't a multiple of the AES
620
// block length, exclude the last full block from the main loop by
621
// subtracting 16 from LEN. This is needed because ciphertext stealing
622
// decryption uses the last two tweaks in reverse order. We'll handle
623
// the last full block and the partial block specially at the end.
624
lea -16(LEN), %eax
625
test $15, LEN8
626
cmovnz %eax, LEN
627
.endif
628
629
// Load the AES key length: 16 (AES-128), 24 (AES-192), or 32 (AES-256).
630
movl 480(KEY), KEYLEN
631
632
// Setup the pointer to the round keys and cache as many as possible.
633
_setup_round_keys \enc
634
635
// Compute the first set of tweaks TWEAK[0-3].
636
_compute_first_set_of_tweaks
637
638
add $-4*VL, LEN // shorter than 'sub 4*VL' when VL=32
639
jl .Lhandle_remainder\@
640
641
.Lmain_loop\@:
642
// This is the main loop, en/decrypting 4*VL bytes per iteration.
643
644
// XOR each source block with its tweak and the zero-th round key.
645
.if USE_AVX512
646
vmovdqu8 0*VL(SRC), V0
647
vmovdqu8 1*VL(SRC), V1
648
vmovdqu8 2*VL(SRC), V2
649
vmovdqu8 3*VL(SRC), V3
650
vpternlogd $0x96, TWEAK0, KEY0, V0
651
vpternlogd $0x96, TWEAK1, KEY0, V1
652
vpternlogd $0x96, TWEAK2, KEY0, V2
653
vpternlogd $0x96, TWEAK3, KEY0, V3
654
.else
655
vpxor 0*VL(SRC), KEY0, V0
656
vpxor 1*VL(SRC), KEY0, V1
657
vpxor 2*VL(SRC), KEY0, V2
658
vpxor 3*VL(SRC), KEY0, V3
659
vpxor TWEAK0, V0, V0
660
vpxor TWEAK1, V1, V1
661
vpxor TWEAK2, V2, V2
662
vpxor TWEAK3, V3, V3
663
.endif
664
cmp $24, KEYLEN
665
jl .Laes128\@
666
je .Laes192\@
667
// Do all the AES rounds on the data blocks, interleaved with
668
// the computation of the next set of tweaks.
669
_vaes_4x \enc, 1
670
_vaes_4x \enc, 2
671
.Laes192\@:
672
_vaes_4x \enc, 3
673
_vaes_4x \enc, 4
674
.Laes128\@:
675
.irp i, 5,6,7,8,9,10,11,12,13
676
_vaes_4x \enc, \i
677
.endr
678
// Do the last AES round, then XOR the results with the tweaks again.
679
// Reduce latency by doing the XOR before the vaesenclast, utilizing the
680
// property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a)
681
// (and likewise for vaesdeclast).
682
.if USE_AVX512
683
_tweak_step 18
684
_tweak_step 19
685
vpxord TWEAK0, KEY14, V4
686
vpxord TWEAK1, KEY14, V5
687
_vaeslast \enc, V4, V0
688
_vaeslast \enc, V5, V1
689
vpxord TWEAK2, KEY14, V4
690
vpxord TWEAK3, KEY14, V5
691
_vaeslast \enc, V4, V2
692
_vaeslast \enc, V5, V3
693
.else
694
_vbroadcast128 7*16(KEY), V4
695
_tweak_step 18 // uses V5
696
_tweak_step 19 // uses V5
697
vpxor TWEAK0, V4, V5
698
_vaeslast \enc, V5, V0
699
vpxor TWEAK1, V4, V5
700
_vaeslast \enc, V5, V1
701
vpxor TWEAK2, V4, V5
702
vpxor TWEAK3, V4, V4
703
_vaeslast \enc, V5, V2
704
_vaeslast \enc, V4, V3
705
.endif
706
707
// Store the destination blocks.
708
_vmovdqu V0, 0*VL(DST)
709
_vmovdqu V1, 1*VL(DST)
710
_vmovdqu V2, 2*VL(DST)
711
_vmovdqu V3, 3*VL(DST)
712
713
// Finish computing the next set of tweaks.
714
_tweak_step 1000
715
716
sub $-4*VL, SRC // shorter than 'add 4*VL' when VL=32
717
sub $-4*VL, DST
718
add $-4*VL, LEN
719
jge .Lmain_loop\@
720
721
// Check for the uncommon case where the data length isn't a multiple of
722
// 4*VL. Handle it out-of-line in order to optimize for the common
723
// case. In the common case, just fall through to the ret.
724
test $4*VL-1, LEN8
725
jnz .Lhandle_remainder\@
726
.Ldone\@:
727
// Store the next tweak back to *TWEAK to support continuation calls.
728
vmovdqu TWEAK0_XMM, (TWEAK)
729
.if VL > 16
730
vzeroupper
731
.endif
732
RET
733
734
.Lhandle_remainder\@:
735
736
// En/decrypt any remaining full blocks, one vector at a time.
737
.if VL > 16
738
add $3*VL, LEN // Undo extra sub of 4*VL, then sub VL.
739
jl .Lvec_at_a_time_done\@
740
.Lvec_at_a_time\@:
741
_vmovdqu (SRC), V0
742
_aes_crypt \enc, , TWEAK0, V0, tmp=V1
743
_vmovdqu V0, (DST)
744
_next_tweakvec TWEAK0, V0, V1, TWEAK0
745
add $VL, SRC
746
add $VL, DST
747
sub $VL, LEN
748
jge .Lvec_at_a_time\@
749
.Lvec_at_a_time_done\@:
750
add $VL-16, LEN // Undo extra sub of VL, then sub 16.
751
.else
752
add $4*VL-16, LEN // Undo extra sub of 4*VL, then sub 16.
753
.endif
754
755
// En/decrypt any remaining full blocks, one at a time.
756
jl .Lblock_at_a_time_done\@
757
.Lblock_at_a_time\@:
758
vmovdqu (SRC), %xmm0
759
_aes_crypt \enc, _XMM, TWEAK0_XMM, %xmm0, tmp=%xmm1
760
vmovdqu %xmm0, (DST)
761
_next_tweak TWEAK0_XMM, %xmm0, TWEAK0_XMM
762
add $16, SRC
763
add $16, DST
764
sub $16, LEN
765
jge .Lblock_at_a_time\@
766
.Lblock_at_a_time_done\@:
767
add $16, LEN // Undo the extra sub of 16.
768
// Now 0 <= LEN <= 15. If LEN is zero, we're done.
769
jz .Ldone\@
770
771
// Otherwise 1 <= LEN <= 15, but the real remaining length is 16 + LEN.
772
// Do ciphertext stealing to process the last 16 + LEN bytes.
773
774
.if \enc
775
// If encrypting, the main loop already encrypted the last full block to
776
// create the CTS intermediate ciphertext. Prepare for the rest of CTS
777
// by rewinding the pointers and loading the intermediate ciphertext.
778
sub $16, SRC
779
sub $16, DST
780
vmovdqu (DST), %xmm0
781
.else
782
// If decrypting, the main loop didn't decrypt the last full block
783
// because CTS decryption uses the last two tweaks in reverse order.
784
// Do it now by advancing the tweak and decrypting the last full block.
785
_next_tweak TWEAK0_XMM, %xmm0, TWEAK1_XMM
786
vmovdqu (SRC), %xmm0
787
_aes_crypt \enc, _XMM, TWEAK1_XMM, %xmm0, tmp=%xmm1
788
.endif
789
790
.if USE_AVX512
791
// Create a mask that has the first LEN bits set.
792
mov $-1, %r9d
793
bzhi LEN, %r9d, %r9d
794
kmovd %r9d, %k1
795
796
// Swap the first LEN bytes of the en/decryption of the last full block
797
// with the partial block. Note that to support in-place en/decryption,
798
// the load from the src partial block must happen before the store to
799
// the dst partial block.
800
vmovdqa %xmm0, %xmm1
801
vmovdqu8 16(SRC), %xmm0{%k1}
802
vmovdqu8 %xmm1, 16(DST){%k1}
803
.else
804
lea .Lcts_permute_table(%rip), %r9
805
806
// Load the src partial block, left-aligned. Note that to support
807
// in-place en/decryption, this must happen before the store to the dst
808
// partial block.
809
vmovdqu (SRC, LEN64, 1), %xmm1
810
811
// Shift the first LEN bytes of the en/decryption of the last full block
812
// to the end of a register, then store it to DST+LEN. This stores the
813
// dst partial block. It also writes to the second part of the dst last
814
// full block, but that part is overwritten later.
815
vpshufb (%r9, LEN64, 1), %xmm0, %xmm2
816
vmovdqu %xmm2, (DST, LEN64, 1)
817
818
// Make xmm3 contain [16-LEN,16-LEN+1,...,14,15,0x80,0x80,...].
819
sub LEN64, %r9
820
vmovdqu 32(%r9), %xmm3
821
822
// Shift the src partial block to the beginning of its register.
823
vpshufb %xmm3, %xmm1, %xmm1
824
825
// Do a blend to generate the src partial block followed by the second
826
// part of the en/decryption of the last full block.
827
vpblendvb %xmm3, %xmm0, %xmm1, %xmm0
828
.endif
829
// En/decrypt again and store the last full block.
830
_aes_crypt \enc, _XMM, TWEAK0_XMM, %xmm0, tmp=%xmm1
831
vmovdqu %xmm0, (DST)
832
jmp .Ldone\@
833
.endm
834
835
// void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
836
// u8 iv[AES_BLOCK_SIZE]);
837
//
838
// Encrypt |iv| using the AES key |tweak_key| to get the first tweak. Assumes
839
// that the CPU supports AES-NI and AVX, but not necessarily VAES or AVX512.
840
SYM_TYPED_FUNC_START(aes_xts_encrypt_iv)
841
.set TWEAK_KEY, %rdi
842
.set IV, %rsi
843
.set KEYLEN, %eax
844
.set KEYLEN64, %rax
845
846
vmovdqu (IV), %xmm0
847
vpxor (TWEAK_KEY), %xmm0, %xmm0
848
movl 480(TWEAK_KEY), KEYLEN
849
lea -16(TWEAK_KEY, KEYLEN64, 4), TWEAK_KEY
850
cmp $24, KEYLEN
851
jl .Lencrypt_iv_aes128
852
je .Lencrypt_iv_aes192
853
vaesenc -6*16(TWEAK_KEY), %xmm0, %xmm0
854
vaesenc -5*16(TWEAK_KEY), %xmm0, %xmm0
855
.Lencrypt_iv_aes192:
856
vaesenc -4*16(TWEAK_KEY), %xmm0, %xmm0
857
vaesenc -3*16(TWEAK_KEY), %xmm0, %xmm0
858
.Lencrypt_iv_aes128:
859
.irp i, -2,-1,0,1,2,3,4,5,6
860
vaesenc \i*16(TWEAK_KEY), %xmm0, %xmm0
861
.endr
862
vaesenclast 7*16(TWEAK_KEY), %xmm0, %xmm0
863
vmovdqu %xmm0, (IV)
864
RET
865
SYM_FUNC_END(aes_xts_encrypt_iv)
866
867
// Below are the actual AES-XTS encryption and decryption functions,
868
// instantiated from the above macro. They all have the following prototype:
869
//
870
// void (*xts_crypt_func)(const struct crypto_aes_ctx *key,
871
// const u8 *src, u8 *dst, int len,
872
// u8 tweak[AES_BLOCK_SIZE]);
873
//
874
// |key| is the data key. |tweak| contains the next tweak; the encryption of
875
// the original IV with the tweak key was already done. This function supports
876
// incremental computation, but |len| must always be >= 16 (AES_BLOCK_SIZE), and
877
// |len| must be a multiple of 16 except on the last call. If |len| is a
878
// multiple of 16, then this function updates |tweak| to contain the next tweak.
879
880
.set VL, 16
881
.set USE_AVX512, 0
882
SYM_TYPED_FUNC_START(aes_xts_encrypt_aesni_avx)
883
_aes_xts_crypt 1
884
SYM_FUNC_END(aes_xts_encrypt_aesni_avx)
885
SYM_TYPED_FUNC_START(aes_xts_decrypt_aesni_avx)
886
_aes_xts_crypt 0
887
SYM_FUNC_END(aes_xts_decrypt_aesni_avx)
888
889
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
890
.set VL, 32
891
.set USE_AVX512, 0
892
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx2)
893
_aes_xts_crypt 1
894
SYM_FUNC_END(aes_xts_encrypt_vaes_avx2)
895
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx2)
896
_aes_xts_crypt 0
897
SYM_FUNC_END(aes_xts_decrypt_vaes_avx2)
898
899
.set VL, 64
900
.set USE_AVX512, 1
901
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx512)
902
_aes_xts_crypt 1
903
SYM_FUNC_END(aes_xts_encrypt_vaes_avx512)
904
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx512)
905
_aes_xts_crypt 0
906
SYM_FUNC_END(aes_xts_decrypt_vaes_avx512)
907
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
908
909