Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/crypto/camellia-aesni-avx-asm_64.S
26451 views
1
/*
2
* x86_64/AVX/AES-NI assembler implementation of Camellia
3
*
4
* Copyright © 2012-2013 Jussi Kivilinna <[email protected]>
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License as published by
8
* the Free Software Foundation; either version 2 of the License, or
9
* (at your option) any later version.
10
*
11
*/
12
13
/*
14
* Version licensed under 2-clause BSD License is available at:
15
* http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
16
*/
17
18
#include <linux/linkage.h>
19
#include <linux/cfi_types.h>
20
#include <asm/frame.h>
21
22
#define CAMELLIA_TABLE_BYTE_LEN 272
23
24
/* struct camellia_ctx: */
25
#define key_table 0
26
#define key_length CAMELLIA_TABLE_BYTE_LEN
27
28
/* register macros */
29
#define CTX %rdi
30
31
/**********************************************************************
32
16-way camellia
33
**********************************************************************/
34
#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
35
vpand x, mask4bit, tmp0; \
36
vpandn x, mask4bit, x; \
37
vpsrld $4, x, x; \
38
\
39
vpshufb tmp0, lo_t, tmp0; \
40
vpshufb x, hi_t, x; \
41
vpxor tmp0, x, x;
42
43
/*
44
* IN:
45
* x0..x7: byte-sliced AB state
46
* mem_cd: register pointer storing CD state
47
* key: index for key material
48
* OUT:
49
* x0..x7: new byte-sliced CD state
50
*/
51
#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
52
t7, mem_cd, key) \
53
/* \
54
* S-function with AES subbytes \
55
*/ \
56
vmovdqa .Linv_shift_row(%rip), t4; \
57
vbroadcastss .L0f0f0f0f(%rip), t7; \
58
vmovdqa .Lpre_tf_lo_s1(%rip), t0; \
59
vmovdqa .Lpre_tf_hi_s1(%rip), t1; \
60
\
61
/* AES inverse shift rows */ \
62
vpshufb t4, x0, x0; \
63
vpshufb t4, x7, x7; \
64
vpshufb t4, x1, x1; \
65
vpshufb t4, x4, x4; \
66
vpshufb t4, x2, x2; \
67
vpshufb t4, x5, x5; \
68
vpshufb t4, x3, x3; \
69
vpshufb t4, x6, x6; \
70
\
71
/* prefilter sboxes 1, 2 and 3 */ \
72
vmovdqa .Lpre_tf_lo_s4(%rip), t2; \
73
vmovdqa .Lpre_tf_hi_s4(%rip), t3; \
74
filter_8bit(x0, t0, t1, t7, t6); \
75
filter_8bit(x7, t0, t1, t7, t6); \
76
filter_8bit(x1, t0, t1, t7, t6); \
77
filter_8bit(x4, t0, t1, t7, t6); \
78
filter_8bit(x2, t0, t1, t7, t6); \
79
filter_8bit(x5, t0, t1, t7, t6); \
80
\
81
/* prefilter sbox 4 */ \
82
vpxor t4, t4, t4; \
83
filter_8bit(x3, t2, t3, t7, t6); \
84
filter_8bit(x6, t2, t3, t7, t6); \
85
\
86
/* AES subbytes + AES shift rows */ \
87
vmovdqa .Lpost_tf_lo_s1(%rip), t0; \
88
vmovdqa .Lpost_tf_hi_s1(%rip), t1; \
89
vaesenclast t4, x0, x0; \
90
vaesenclast t4, x7, x7; \
91
vaesenclast t4, x1, x1; \
92
vaesenclast t4, x4, x4; \
93
vaesenclast t4, x2, x2; \
94
vaesenclast t4, x5, x5; \
95
vaesenclast t4, x3, x3; \
96
vaesenclast t4, x6, x6; \
97
\
98
/* postfilter sboxes 1 and 4 */ \
99
vmovdqa .Lpost_tf_lo_s3(%rip), t2; \
100
vmovdqa .Lpost_tf_hi_s3(%rip), t3; \
101
filter_8bit(x0, t0, t1, t7, t6); \
102
filter_8bit(x7, t0, t1, t7, t6); \
103
filter_8bit(x3, t0, t1, t7, t6); \
104
filter_8bit(x6, t0, t1, t7, t6); \
105
\
106
/* postfilter sbox 3 */ \
107
vmovdqa .Lpost_tf_lo_s2(%rip), t4; \
108
vmovdqa .Lpost_tf_hi_s2(%rip), t5; \
109
filter_8bit(x2, t2, t3, t7, t6); \
110
filter_8bit(x5, t2, t3, t7, t6); \
111
\
112
vpxor t6, t6, t6; \
113
vmovq key, t0; \
114
\
115
/* postfilter sbox 2 */ \
116
filter_8bit(x1, t4, t5, t7, t2); \
117
filter_8bit(x4, t4, t5, t7, t2); \
118
\
119
vpsrldq $5, t0, t5; \
120
vpsrldq $1, t0, t1; \
121
vpsrldq $2, t0, t2; \
122
vpsrldq $3, t0, t3; \
123
vpsrldq $4, t0, t4; \
124
vpshufb t6, t0, t0; \
125
vpshufb t6, t1, t1; \
126
vpshufb t6, t2, t2; \
127
vpshufb t6, t3, t3; \
128
vpshufb t6, t4, t4; \
129
vpsrldq $2, t5, t7; \
130
vpshufb t6, t7, t7; \
131
\
132
/* \
133
* P-function \
134
*/ \
135
vpxor x5, x0, x0; \
136
vpxor x6, x1, x1; \
137
vpxor x7, x2, x2; \
138
vpxor x4, x3, x3; \
139
\
140
vpxor x2, x4, x4; \
141
vpxor x3, x5, x5; \
142
vpxor x0, x6, x6; \
143
vpxor x1, x7, x7; \
144
\
145
vpxor x7, x0, x0; \
146
vpxor x4, x1, x1; \
147
vpxor x5, x2, x2; \
148
vpxor x6, x3, x3; \
149
\
150
vpxor x3, x4, x4; \
151
vpxor x0, x5, x5; \
152
vpxor x1, x6, x6; \
153
vpxor x2, x7, x7; /* note: high and low parts swapped */ \
154
\
155
/* \
156
* Add key material and result to CD (x becomes new CD) \
157
*/ \
158
\
159
vpxor t3, x4, x4; \
160
vpxor 0 * 16(mem_cd), x4, x4; \
161
\
162
vpxor t2, x5, x5; \
163
vpxor 1 * 16(mem_cd), x5, x5; \
164
\
165
vpsrldq $1, t5, t3; \
166
vpshufb t6, t5, t5; \
167
vpshufb t6, t3, t6; \
168
\
169
vpxor t1, x6, x6; \
170
vpxor 2 * 16(mem_cd), x6, x6; \
171
\
172
vpxor t0, x7, x7; \
173
vpxor 3 * 16(mem_cd), x7, x7; \
174
\
175
vpxor t7, x0, x0; \
176
vpxor 4 * 16(mem_cd), x0, x0; \
177
\
178
vpxor t6, x1, x1; \
179
vpxor 5 * 16(mem_cd), x1, x1; \
180
\
181
vpxor t5, x2, x2; \
182
vpxor 6 * 16(mem_cd), x2, x2; \
183
\
184
vpxor t4, x3, x3; \
185
vpxor 7 * 16(mem_cd), x3, x3;
186
187
/*
188
* Size optimization... with inlined roundsm16, binary would be over 5 times
189
* larger and would only be 0.5% faster (on sandy-bridge).
190
*/
191
.align 8
192
SYM_FUNC_START_LOCAL(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
193
roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
194
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
195
%rcx, (%r9));
196
RET;
197
SYM_FUNC_END(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
198
199
.align 8
200
SYM_FUNC_START_LOCAL(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
201
roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
202
%xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
203
%rax, (%r9));
204
RET;
205
SYM_FUNC_END(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
206
207
/*
208
* IN/OUT:
209
* x0..x7: byte-sliced AB state preloaded
210
* mem_ab: byte-sliced AB state in memory
211
* mem_cb: byte-sliced CD state in memory
212
*/
213
#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
214
y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
215
leaq (key_table + (i) * 8)(CTX), %r9; \
216
call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
217
\
218
vmovdqu x4, 0 * 16(mem_cd); \
219
vmovdqu x5, 1 * 16(mem_cd); \
220
vmovdqu x6, 2 * 16(mem_cd); \
221
vmovdqu x7, 3 * 16(mem_cd); \
222
vmovdqu x0, 4 * 16(mem_cd); \
223
vmovdqu x1, 5 * 16(mem_cd); \
224
vmovdqu x2, 6 * 16(mem_cd); \
225
vmovdqu x3, 7 * 16(mem_cd); \
226
\
227
leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
228
call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
229
\
230
store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
231
232
#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
233
234
#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
235
/* Store new AB state */ \
236
vmovdqu x0, 0 * 16(mem_ab); \
237
vmovdqu x1, 1 * 16(mem_ab); \
238
vmovdqu x2, 2 * 16(mem_ab); \
239
vmovdqu x3, 3 * 16(mem_ab); \
240
vmovdqu x4, 4 * 16(mem_ab); \
241
vmovdqu x5, 5 * 16(mem_ab); \
242
vmovdqu x6, 6 * 16(mem_ab); \
243
vmovdqu x7, 7 * 16(mem_ab);
244
245
#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
246
y6, y7, mem_ab, mem_cd, i) \
247
two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
248
y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
249
two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
250
y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
251
two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
252
y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
253
254
#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
255
y6, y7, mem_ab, mem_cd, i) \
256
two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
257
y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
258
two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
259
y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
260
two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
261
y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
262
263
/*
264
* IN:
265
* v0..3: byte-sliced 32-bit integers
266
* OUT:
267
* v0..3: (IN <<< 1)
268
*/
269
#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
270
vpcmpgtb v0, zero, t0; \
271
vpaddb v0, v0, v0; \
272
vpabsb t0, t0; \
273
\
274
vpcmpgtb v1, zero, t1; \
275
vpaddb v1, v1, v1; \
276
vpabsb t1, t1; \
277
\
278
vpcmpgtb v2, zero, t2; \
279
vpaddb v2, v2, v2; \
280
vpabsb t2, t2; \
281
\
282
vpor t0, v1, v1; \
283
\
284
vpcmpgtb v3, zero, t0; \
285
vpaddb v3, v3, v3; \
286
vpabsb t0, t0; \
287
\
288
vpor t1, v2, v2; \
289
vpor t2, v3, v3; \
290
vpor t0, v0, v0;
291
292
/*
293
* IN:
294
* r: byte-sliced AB state in memory
295
* l: byte-sliced CD state in memory
296
* OUT:
297
* x0..x7: new byte-sliced CD state
298
*/
299
#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
300
tt1, tt2, tt3, kll, klr, krl, krr) \
301
/* \
302
* t0 = kll; \
303
* t0 &= ll; \
304
* lr ^= rol32(t0, 1); \
305
*/ \
306
vpxor tt0, tt0, tt0; \
307
vmovd kll, t0; \
308
vpshufb tt0, t0, t3; \
309
vpsrldq $1, t0, t0; \
310
vpshufb tt0, t0, t2; \
311
vpsrldq $1, t0, t0; \
312
vpshufb tt0, t0, t1; \
313
vpsrldq $1, t0, t0; \
314
vpshufb tt0, t0, t0; \
315
\
316
vpand l0, t0, t0; \
317
vpand l1, t1, t1; \
318
vpand l2, t2, t2; \
319
vpand l3, t3, t3; \
320
\
321
rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
322
\
323
vpxor l4, t0, l4; \
324
vmovdqu l4, 4 * 16(l); \
325
vpxor l5, t1, l5; \
326
vmovdqu l5, 5 * 16(l); \
327
vpxor l6, t2, l6; \
328
vmovdqu l6, 6 * 16(l); \
329
vpxor l7, t3, l7; \
330
vmovdqu l7, 7 * 16(l); \
331
\
332
/* \
333
* t2 = krr; \
334
* t2 |= rr; \
335
* rl ^= t2; \
336
*/ \
337
\
338
vmovd krr, t0; \
339
vpshufb tt0, t0, t3; \
340
vpsrldq $1, t0, t0; \
341
vpshufb tt0, t0, t2; \
342
vpsrldq $1, t0, t0; \
343
vpshufb tt0, t0, t1; \
344
vpsrldq $1, t0, t0; \
345
vpshufb tt0, t0, t0; \
346
\
347
vpor 4 * 16(r), t0, t0; \
348
vpor 5 * 16(r), t1, t1; \
349
vpor 6 * 16(r), t2, t2; \
350
vpor 7 * 16(r), t3, t3; \
351
\
352
vpxor 0 * 16(r), t0, t0; \
353
vpxor 1 * 16(r), t1, t1; \
354
vpxor 2 * 16(r), t2, t2; \
355
vpxor 3 * 16(r), t3, t3; \
356
vmovdqu t0, 0 * 16(r); \
357
vmovdqu t1, 1 * 16(r); \
358
vmovdqu t2, 2 * 16(r); \
359
vmovdqu t3, 3 * 16(r); \
360
\
361
/* \
362
* t2 = krl; \
363
* t2 &= rl; \
364
* rr ^= rol32(t2, 1); \
365
*/ \
366
vmovd krl, t0; \
367
vpshufb tt0, t0, t3; \
368
vpsrldq $1, t0, t0; \
369
vpshufb tt0, t0, t2; \
370
vpsrldq $1, t0, t0; \
371
vpshufb tt0, t0, t1; \
372
vpsrldq $1, t0, t0; \
373
vpshufb tt0, t0, t0; \
374
\
375
vpand 0 * 16(r), t0, t0; \
376
vpand 1 * 16(r), t1, t1; \
377
vpand 2 * 16(r), t2, t2; \
378
vpand 3 * 16(r), t3, t3; \
379
\
380
rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
381
\
382
vpxor 4 * 16(r), t0, t0; \
383
vpxor 5 * 16(r), t1, t1; \
384
vpxor 6 * 16(r), t2, t2; \
385
vpxor 7 * 16(r), t3, t3; \
386
vmovdqu t0, 4 * 16(r); \
387
vmovdqu t1, 5 * 16(r); \
388
vmovdqu t2, 6 * 16(r); \
389
vmovdqu t3, 7 * 16(r); \
390
\
391
/* \
392
* t0 = klr; \
393
* t0 |= lr; \
394
* ll ^= t0; \
395
*/ \
396
\
397
vmovd klr, t0; \
398
vpshufb tt0, t0, t3; \
399
vpsrldq $1, t0, t0; \
400
vpshufb tt0, t0, t2; \
401
vpsrldq $1, t0, t0; \
402
vpshufb tt0, t0, t1; \
403
vpsrldq $1, t0, t0; \
404
vpshufb tt0, t0, t0; \
405
\
406
vpor l4, t0, t0; \
407
vpor l5, t1, t1; \
408
vpor l6, t2, t2; \
409
vpor l7, t3, t3; \
410
\
411
vpxor l0, t0, l0; \
412
vmovdqu l0, 0 * 16(l); \
413
vpxor l1, t1, l1; \
414
vmovdqu l1, 1 * 16(l); \
415
vpxor l2, t2, l2; \
416
vmovdqu l2, 2 * 16(l); \
417
vpxor l3, t3, l3; \
418
vmovdqu l3, 3 * 16(l);
419
420
#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
421
vpunpckhdq x1, x0, t2; \
422
vpunpckldq x1, x0, x0; \
423
\
424
vpunpckldq x3, x2, t1; \
425
vpunpckhdq x3, x2, x2; \
426
\
427
vpunpckhqdq t1, x0, x1; \
428
vpunpcklqdq t1, x0, x0; \
429
\
430
vpunpckhqdq x2, t2, x3; \
431
vpunpcklqdq x2, t2, x2;
432
433
#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
434
b3, c3, d3, st0, st1) \
435
vmovdqu d2, st0; \
436
vmovdqu d3, st1; \
437
transpose_4x4(a0, a1, a2, a3, d2, d3); \
438
transpose_4x4(b0, b1, b2, b3, d2, d3); \
439
vmovdqu st0, d2; \
440
vmovdqu st1, d3; \
441
\
442
vmovdqu a0, st0; \
443
vmovdqu a1, st1; \
444
transpose_4x4(c0, c1, c2, c3, a0, a1); \
445
transpose_4x4(d0, d1, d2, d3, a0, a1); \
446
\
447
vmovdqu .Lshufb_16x16b(%rip), a0; \
448
vmovdqu st1, a1; \
449
vpshufb a0, a2, a2; \
450
vpshufb a0, a3, a3; \
451
vpshufb a0, b0, b0; \
452
vpshufb a0, b1, b1; \
453
vpshufb a0, b2, b2; \
454
vpshufb a0, b3, b3; \
455
vpshufb a0, a1, a1; \
456
vpshufb a0, c0, c0; \
457
vpshufb a0, c1, c1; \
458
vpshufb a0, c2, c2; \
459
vpshufb a0, c3, c3; \
460
vpshufb a0, d0, d0; \
461
vpshufb a0, d1, d1; \
462
vpshufb a0, d2, d2; \
463
vpshufb a0, d3, d3; \
464
vmovdqu d3, st1; \
465
vmovdqu st0, d3; \
466
vpshufb a0, d3, a0; \
467
vmovdqu d2, st0; \
468
\
469
transpose_4x4(a0, b0, c0, d0, d2, d3); \
470
transpose_4x4(a1, b1, c1, d1, d2, d3); \
471
vmovdqu st0, d2; \
472
vmovdqu st1, d3; \
473
\
474
vmovdqu b0, st0; \
475
vmovdqu b1, st1; \
476
transpose_4x4(a2, b2, c2, d2, b0, b1); \
477
transpose_4x4(a3, b3, c3, d3, b0, b1); \
478
vmovdqu st0, b0; \
479
vmovdqu st1, b1; \
480
/* does not adjust output bytes inside vectors */
481
482
/* load blocks to registers and apply pre-whitening */
483
#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
484
y6, y7, rio, key) \
485
vmovq key, x0; \
486
vpshufb .Lpack_bswap(%rip), x0, x0; \
487
\
488
vpxor 0 * 16(rio), x0, y7; \
489
vpxor 1 * 16(rio), x0, y6; \
490
vpxor 2 * 16(rio), x0, y5; \
491
vpxor 3 * 16(rio), x0, y4; \
492
vpxor 4 * 16(rio), x0, y3; \
493
vpxor 5 * 16(rio), x0, y2; \
494
vpxor 6 * 16(rio), x0, y1; \
495
vpxor 7 * 16(rio), x0, y0; \
496
vpxor 8 * 16(rio), x0, x7; \
497
vpxor 9 * 16(rio), x0, x6; \
498
vpxor 10 * 16(rio), x0, x5; \
499
vpxor 11 * 16(rio), x0, x4; \
500
vpxor 12 * 16(rio), x0, x3; \
501
vpxor 13 * 16(rio), x0, x2; \
502
vpxor 14 * 16(rio), x0, x1; \
503
vpxor 15 * 16(rio), x0, x0;
504
505
/* byteslice pre-whitened blocks and store to temporary memory */
506
#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
507
y6, y7, mem_ab, mem_cd) \
508
byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
509
y5, y6, y7, (mem_ab), (mem_cd)); \
510
\
511
vmovdqu x0, 0 * 16(mem_ab); \
512
vmovdqu x1, 1 * 16(mem_ab); \
513
vmovdqu x2, 2 * 16(mem_ab); \
514
vmovdqu x3, 3 * 16(mem_ab); \
515
vmovdqu x4, 4 * 16(mem_ab); \
516
vmovdqu x5, 5 * 16(mem_ab); \
517
vmovdqu x6, 6 * 16(mem_ab); \
518
vmovdqu x7, 7 * 16(mem_ab); \
519
vmovdqu y0, 0 * 16(mem_cd); \
520
vmovdqu y1, 1 * 16(mem_cd); \
521
vmovdqu y2, 2 * 16(mem_cd); \
522
vmovdqu y3, 3 * 16(mem_cd); \
523
vmovdqu y4, 4 * 16(mem_cd); \
524
vmovdqu y5, 5 * 16(mem_cd); \
525
vmovdqu y6, 6 * 16(mem_cd); \
526
vmovdqu y7, 7 * 16(mem_cd);
527
528
/* de-byteslice, apply post-whitening and store blocks */
529
#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
530
y5, y6, y7, key, stack_tmp0, stack_tmp1) \
531
byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
532
y7, x3, x7, stack_tmp0, stack_tmp1); \
533
\
534
vmovdqu x0, stack_tmp0; \
535
\
536
vmovq key, x0; \
537
vpshufb .Lpack_bswap(%rip), x0, x0; \
538
\
539
vpxor x0, y7, y7; \
540
vpxor x0, y6, y6; \
541
vpxor x0, y5, y5; \
542
vpxor x0, y4, y4; \
543
vpxor x0, y3, y3; \
544
vpxor x0, y2, y2; \
545
vpxor x0, y1, y1; \
546
vpxor x0, y0, y0; \
547
vpxor x0, x7, x7; \
548
vpxor x0, x6, x6; \
549
vpxor x0, x5, x5; \
550
vpxor x0, x4, x4; \
551
vpxor x0, x3, x3; \
552
vpxor x0, x2, x2; \
553
vpxor x0, x1, x1; \
554
vpxor stack_tmp0, x0, x0;
555
556
#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
557
y6, y7, rio) \
558
vmovdqu x0, 0 * 16(rio); \
559
vmovdqu x1, 1 * 16(rio); \
560
vmovdqu x2, 2 * 16(rio); \
561
vmovdqu x3, 3 * 16(rio); \
562
vmovdqu x4, 4 * 16(rio); \
563
vmovdqu x5, 5 * 16(rio); \
564
vmovdqu x6, 6 * 16(rio); \
565
vmovdqu x7, 7 * 16(rio); \
566
vmovdqu y0, 8 * 16(rio); \
567
vmovdqu y1, 9 * 16(rio); \
568
vmovdqu y2, 10 * 16(rio); \
569
vmovdqu y3, 11 * 16(rio); \
570
vmovdqu y4, 12 * 16(rio); \
571
vmovdqu y5, 13 * 16(rio); \
572
vmovdqu y6, 14 * 16(rio); \
573
vmovdqu y7, 15 * 16(rio);
574
575
576
/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
577
.section .rodata.cst16, "aM", @progbits, 16
578
.align 16
579
580
#define SHUFB_BYTES(idx) \
581
0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
582
583
.Lshufb_16x16b:
584
.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
585
586
.Lpack_bswap:
587
.long 0x00010203
588
.long 0x04050607
589
.long 0x80808080
590
.long 0x80808080
591
592
/*
593
* pre-SubByte transform
594
*
595
* pre-lookup for sbox1, sbox2, sbox3:
596
* swap_bitendianness(
597
* isom_map_camellia_to_aes(
598
* camellia_f(
599
* swap_bitendianess(in)
600
* )
601
* )
602
* )
603
*
604
* (note: '⊕ 0xc5' inside camellia_f())
605
*/
606
.Lpre_tf_lo_s1:
607
.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
608
.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
609
.Lpre_tf_hi_s1:
610
.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
611
.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
612
613
/*
614
* pre-SubByte transform
615
*
616
* pre-lookup for sbox4:
617
* swap_bitendianness(
618
* isom_map_camellia_to_aes(
619
* camellia_f(
620
* swap_bitendianess(in <<< 1)
621
* )
622
* )
623
* )
624
*
625
* (note: '⊕ 0xc5' inside camellia_f())
626
*/
627
.Lpre_tf_lo_s4:
628
.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
629
.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
630
.Lpre_tf_hi_s4:
631
.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
632
.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
633
634
/*
635
* post-SubByte transform
636
*
637
* post-lookup for sbox1, sbox4:
638
* swap_bitendianness(
639
* camellia_h(
640
* isom_map_aes_to_camellia(
641
* swap_bitendianness(
642
* aes_inverse_affine_transform(in)
643
* )
644
* )
645
* )
646
* )
647
*
648
* (note: '⊕ 0x6e' inside camellia_h())
649
*/
650
.Lpost_tf_lo_s1:
651
.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
652
.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
653
.Lpost_tf_hi_s1:
654
.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
655
.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
656
657
/*
658
* post-SubByte transform
659
*
660
* post-lookup for sbox2:
661
* swap_bitendianness(
662
* camellia_h(
663
* isom_map_aes_to_camellia(
664
* swap_bitendianness(
665
* aes_inverse_affine_transform(in)
666
* )
667
* )
668
* )
669
* ) <<< 1
670
*
671
* (note: '⊕ 0x6e' inside camellia_h())
672
*/
673
.Lpost_tf_lo_s2:
674
.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
675
.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
676
.Lpost_tf_hi_s2:
677
.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
678
.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
679
680
/*
681
* post-SubByte transform
682
*
683
* post-lookup for sbox3:
684
* swap_bitendianness(
685
* camellia_h(
686
* isom_map_aes_to_camellia(
687
* swap_bitendianness(
688
* aes_inverse_affine_transform(in)
689
* )
690
* )
691
* )
692
* ) >>> 1
693
*
694
* (note: '⊕ 0x6e' inside camellia_h())
695
*/
696
.Lpost_tf_lo_s3:
697
.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
698
.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
699
.Lpost_tf_hi_s3:
700
.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
701
.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
702
703
/* For isolating SubBytes from AESENCLAST, inverse shift row */
704
.Linv_shift_row:
705
.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
706
.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
707
708
/* 4-bit mask */
709
.section .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
710
.align 4
711
.L0f0f0f0f:
712
.long 0x0f0f0f0f
713
714
.text
715
716
SYM_FUNC_START_LOCAL(__camellia_enc_blk16)
717
/* input:
718
* %rdi: ctx, CTX
719
* %rax: temporary storage, 256 bytes
720
* %xmm0..%xmm15: 16 plaintext blocks
721
* output:
722
* %xmm0..%xmm15: 16 encrypted blocks, order swapped:
723
* 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
724
*/
725
FRAME_BEGIN
726
727
leaq 8 * 16(%rax), %rcx;
728
729
inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
730
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
731
%xmm15, %rax, %rcx);
732
733
enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
734
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
735
%xmm15, %rax, %rcx, 0);
736
737
fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
738
%rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
739
%xmm15,
740
((key_table + (8) * 8) + 0)(CTX),
741
((key_table + (8) * 8) + 4)(CTX),
742
((key_table + (8) * 8) + 8)(CTX),
743
((key_table + (8) * 8) + 12)(CTX));
744
745
enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
746
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
747
%xmm15, %rax, %rcx, 8);
748
749
fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
750
%rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
751
%xmm15,
752
((key_table + (16) * 8) + 0)(CTX),
753
((key_table + (16) * 8) + 4)(CTX),
754
((key_table + (16) * 8) + 8)(CTX),
755
((key_table + (16) * 8) + 12)(CTX));
756
757
enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
758
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
759
%xmm15, %rax, %rcx, 16);
760
761
movl $24, %r8d;
762
cmpl $16, key_length(CTX);
763
jne .Lenc_max32;
764
765
.Lenc_done:
766
/* load CD for output */
767
vmovdqu 0 * 16(%rcx), %xmm8;
768
vmovdqu 1 * 16(%rcx), %xmm9;
769
vmovdqu 2 * 16(%rcx), %xmm10;
770
vmovdqu 3 * 16(%rcx), %xmm11;
771
vmovdqu 4 * 16(%rcx), %xmm12;
772
vmovdqu 5 * 16(%rcx), %xmm13;
773
vmovdqu 6 * 16(%rcx), %xmm14;
774
vmovdqu 7 * 16(%rcx), %xmm15;
775
776
outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
777
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
778
%xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
779
780
FRAME_END
781
RET;
782
783
.align 8
784
.Lenc_max32:
785
movl $32, %r8d;
786
787
fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
788
%rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
789
%xmm15,
790
((key_table + (24) * 8) + 0)(CTX),
791
((key_table + (24) * 8) + 4)(CTX),
792
((key_table + (24) * 8) + 8)(CTX),
793
((key_table + (24) * 8) + 12)(CTX));
794
795
enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
796
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
797
%xmm15, %rax, %rcx, 24);
798
799
jmp .Lenc_done;
800
SYM_FUNC_END(__camellia_enc_blk16)
801
802
SYM_FUNC_START_LOCAL(__camellia_dec_blk16)
803
/* input:
804
* %rdi: ctx, CTX
805
* %rax: temporary storage, 256 bytes
806
* %r8d: 24 for 16 byte key, 32 for larger
807
* %xmm0..%xmm15: 16 encrypted blocks
808
* output:
809
* %xmm0..%xmm15: 16 plaintext blocks, order swapped:
810
* 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
811
*/
812
FRAME_BEGIN
813
814
leaq 8 * 16(%rax), %rcx;
815
816
inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
817
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
818
%xmm15, %rax, %rcx);
819
820
cmpl $32, %r8d;
821
je .Ldec_max32;
822
823
.Ldec_max24:
824
dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
825
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
826
%xmm15, %rax, %rcx, 16);
827
828
fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
829
%rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
830
%xmm15,
831
((key_table + (16) * 8) + 8)(CTX),
832
((key_table + (16) * 8) + 12)(CTX),
833
((key_table + (16) * 8) + 0)(CTX),
834
((key_table + (16) * 8) + 4)(CTX));
835
836
dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
837
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
838
%xmm15, %rax, %rcx, 8);
839
840
fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
841
%rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
842
%xmm15,
843
((key_table + (8) * 8) + 8)(CTX),
844
((key_table + (8) * 8) + 12)(CTX),
845
((key_table + (8) * 8) + 0)(CTX),
846
((key_table + (8) * 8) + 4)(CTX));
847
848
dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
849
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
850
%xmm15, %rax, %rcx, 0);
851
852
/* load CD for output */
853
vmovdqu 0 * 16(%rcx), %xmm8;
854
vmovdqu 1 * 16(%rcx), %xmm9;
855
vmovdqu 2 * 16(%rcx), %xmm10;
856
vmovdqu 3 * 16(%rcx), %xmm11;
857
vmovdqu 4 * 16(%rcx), %xmm12;
858
vmovdqu 5 * 16(%rcx), %xmm13;
859
vmovdqu 6 * 16(%rcx), %xmm14;
860
vmovdqu 7 * 16(%rcx), %xmm15;
861
862
outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
863
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
864
%xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
865
866
FRAME_END
867
RET;
868
869
.align 8
870
.Ldec_max32:
871
dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
872
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
873
%xmm15, %rax, %rcx, 24);
874
875
fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
876
%rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
877
%xmm15,
878
((key_table + (24) * 8) + 8)(CTX),
879
((key_table + (24) * 8) + 12)(CTX),
880
((key_table + (24) * 8) + 0)(CTX),
881
((key_table + (24) * 8) + 4)(CTX));
882
883
jmp .Ldec_max24;
884
SYM_FUNC_END(__camellia_dec_blk16)
885
886
SYM_TYPED_FUNC_START(camellia_ecb_enc_16way)
887
/* input:
888
* %rdi: ctx, CTX
889
* %rsi: dst (16 blocks)
890
* %rdx: src (16 blocks)
891
*/
892
FRAME_BEGIN
893
894
inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
895
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
896
%xmm15, %rdx, (key_table)(CTX));
897
898
/* now dst can be used as temporary buffer (even in src == dst case) */
899
movq %rsi, %rax;
900
901
call __camellia_enc_blk16;
902
903
write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
904
%xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
905
%xmm8, %rsi);
906
907
FRAME_END
908
RET;
909
SYM_FUNC_END(camellia_ecb_enc_16way)
910
911
SYM_TYPED_FUNC_START(camellia_ecb_dec_16way)
912
/* input:
913
* %rdi: ctx, CTX
914
* %rsi: dst (16 blocks)
915
* %rdx: src (16 blocks)
916
*/
917
FRAME_BEGIN
918
919
cmpl $16, key_length(CTX);
920
movl $32, %r8d;
921
movl $24, %eax;
922
cmovel %eax, %r8d; /* max */
923
924
inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
925
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
926
%xmm15, %rdx, (key_table)(CTX, %r8, 8));
927
928
/* now dst can be used as temporary buffer (even in src == dst case) */
929
movq %rsi, %rax;
930
931
call __camellia_dec_blk16;
932
933
write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
934
%xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
935
%xmm8, %rsi);
936
937
FRAME_END
938
RET;
939
SYM_FUNC_END(camellia_ecb_dec_16way)
940
941
SYM_TYPED_FUNC_START(camellia_cbc_dec_16way)
942
/* input:
943
* %rdi: ctx, CTX
944
* %rsi: dst (16 blocks)
945
* %rdx: src (16 blocks)
946
*/
947
FRAME_BEGIN
948
949
cmpl $16, key_length(CTX);
950
movl $32, %r8d;
951
movl $24, %eax;
952
cmovel %eax, %r8d; /* max */
953
954
inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
955
%xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
956
%xmm15, %rdx, (key_table)(CTX, %r8, 8));
957
958
/*
959
* dst might still be in-use (in case dst == src), so use stack for
960
* temporary storage.
961
*/
962
subq $(16 * 16), %rsp;
963
movq %rsp, %rax;
964
965
call __camellia_dec_blk16;
966
967
addq $(16 * 16), %rsp;
968
969
vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
970
vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
971
vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
972
vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
973
vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
974
vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
975
vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
976
vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
977
vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
978
vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
979
vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
980
vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
981
vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
982
vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
983
vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
984
write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
985
%xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
986
%xmm8, %rsi);
987
988
FRAME_END
989
RET;
990
SYM_FUNC_END(camellia_cbc_dec_16way)
991
992