Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/crypto/camellia-aesni-avx2-asm_64.S
26451 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* x86_64/AVX2/AES-NI assembler implementation of Camellia
4
*
5
* Copyright © 2013 Jussi Kivilinna <[email protected]>
6
*/
7
8
#include <linux/linkage.h>
9
#include <linux/cfi_types.h>
10
#include <asm/frame.h>
11
12
#define CAMELLIA_TABLE_BYTE_LEN 272
13
14
/* struct camellia_ctx: */
15
#define key_table 0
16
#define key_length CAMELLIA_TABLE_BYTE_LEN
17
18
/* register macros */
19
#define CTX %rdi
20
#define RIO %r8
21
22
/**********************************************************************
23
helper macros
24
**********************************************************************/
25
#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
26
vpand x, mask4bit, tmp0; \
27
vpandn x, mask4bit, x; \
28
vpsrld $4, x, x; \
29
\
30
vpshufb tmp0, lo_t, tmp0; \
31
vpshufb x, hi_t, x; \
32
vpxor tmp0, x, x;
33
34
#define ymm0_x xmm0
35
#define ymm1_x xmm1
36
#define ymm2_x xmm2
37
#define ymm3_x xmm3
38
#define ymm4_x xmm4
39
#define ymm5_x xmm5
40
#define ymm6_x xmm6
41
#define ymm7_x xmm7
42
#define ymm8_x xmm8
43
#define ymm9_x xmm9
44
#define ymm10_x xmm10
45
#define ymm11_x xmm11
46
#define ymm12_x xmm12
47
#define ymm13_x xmm13
48
#define ymm14_x xmm14
49
#define ymm15_x xmm15
50
51
/**********************************************************************
52
32-way camellia
53
**********************************************************************/
54
55
/*
56
* IN:
57
* x0..x7: byte-sliced AB state
58
* mem_cd: register pointer storing CD state
59
* key: index for key material
60
* OUT:
61
* x0..x7: new byte-sliced CD state
62
*/
63
#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
64
t7, mem_cd, key) \
65
/* \
66
* S-function with AES subbytes \
67
*/ \
68
vbroadcasti128 .Linv_shift_row(%rip), t4; \
69
vpbroadcastd .L0f0f0f0f(%rip), t7; \
70
vbroadcasti128 .Lpre_tf_lo_s1(%rip), t5; \
71
vbroadcasti128 .Lpre_tf_hi_s1(%rip), t6; \
72
vbroadcasti128 .Lpre_tf_lo_s4(%rip), t2; \
73
vbroadcasti128 .Lpre_tf_hi_s4(%rip), t3; \
74
\
75
/* AES inverse shift rows */ \
76
vpshufb t4, x0, x0; \
77
vpshufb t4, x7, x7; \
78
vpshufb t4, x3, x3; \
79
vpshufb t4, x6, x6; \
80
vpshufb t4, x2, x2; \
81
vpshufb t4, x5, x5; \
82
vpshufb t4, x1, x1; \
83
vpshufb t4, x4, x4; \
84
\
85
/* prefilter sboxes 1, 2 and 3 */ \
86
/* prefilter sbox 4 */ \
87
filter_8bit(x0, t5, t6, t7, t4); \
88
filter_8bit(x7, t5, t6, t7, t4); \
89
vextracti128 $1, x0, t0##_x; \
90
vextracti128 $1, x7, t1##_x; \
91
filter_8bit(x3, t2, t3, t7, t4); \
92
filter_8bit(x6, t2, t3, t7, t4); \
93
vextracti128 $1, x3, t3##_x; \
94
vextracti128 $1, x6, t2##_x; \
95
filter_8bit(x2, t5, t6, t7, t4); \
96
filter_8bit(x5, t5, t6, t7, t4); \
97
filter_8bit(x1, t5, t6, t7, t4); \
98
filter_8bit(x4, t5, t6, t7, t4); \
99
\
100
vpxor t4##_x, t4##_x, t4##_x; \
101
\
102
/* AES subbytes + AES shift rows */ \
103
vextracti128 $1, x2, t6##_x; \
104
vextracti128 $1, x5, t5##_x; \
105
vaesenclast t4##_x, x0##_x, x0##_x; \
106
vaesenclast t4##_x, t0##_x, t0##_x; \
107
vinserti128 $1, t0##_x, x0, x0; \
108
vaesenclast t4##_x, x7##_x, x7##_x; \
109
vaesenclast t4##_x, t1##_x, t1##_x; \
110
vinserti128 $1, t1##_x, x7, x7; \
111
vaesenclast t4##_x, x3##_x, x3##_x; \
112
vaesenclast t4##_x, t3##_x, t3##_x; \
113
vinserti128 $1, t3##_x, x3, x3; \
114
vaesenclast t4##_x, x6##_x, x6##_x; \
115
vaesenclast t4##_x, t2##_x, t2##_x; \
116
vinserti128 $1, t2##_x, x6, x6; \
117
vextracti128 $1, x1, t3##_x; \
118
vextracti128 $1, x4, t2##_x; \
119
vbroadcasti128 .Lpost_tf_lo_s1(%rip), t0; \
120
vbroadcasti128 .Lpost_tf_hi_s1(%rip), t1; \
121
vaesenclast t4##_x, x2##_x, x2##_x; \
122
vaesenclast t4##_x, t6##_x, t6##_x; \
123
vinserti128 $1, t6##_x, x2, x2; \
124
vaesenclast t4##_x, x5##_x, x5##_x; \
125
vaesenclast t4##_x, t5##_x, t5##_x; \
126
vinserti128 $1, t5##_x, x5, x5; \
127
vaesenclast t4##_x, x1##_x, x1##_x; \
128
vaesenclast t4##_x, t3##_x, t3##_x; \
129
vinserti128 $1, t3##_x, x1, x1; \
130
vaesenclast t4##_x, x4##_x, x4##_x; \
131
vaesenclast t4##_x, t2##_x, t2##_x; \
132
vinserti128 $1, t2##_x, x4, x4; \
133
\
134
/* postfilter sboxes 1 and 4 */ \
135
vbroadcasti128 .Lpost_tf_lo_s3(%rip), t2; \
136
vbroadcasti128 .Lpost_tf_hi_s3(%rip), t3; \
137
filter_8bit(x0, t0, t1, t7, t6); \
138
filter_8bit(x7, t0, t1, t7, t6); \
139
filter_8bit(x3, t0, t1, t7, t6); \
140
filter_8bit(x6, t0, t1, t7, t6); \
141
\
142
/* postfilter sbox 3 */ \
143
vbroadcasti128 .Lpost_tf_lo_s2(%rip), t4; \
144
vbroadcasti128 .Lpost_tf_hi_s2(%rip), t5; \
145
filter_8bit(x2, t2, t3, t7, t6); \
146
filter_8bit(x5, t2, t3, t7, t6); \
147
\
148
vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
149
\
150
/* postfilter sbox 2 */ \
151
filter_8bit(x1, t4, t5, t7, t2); \
152
filter_8bit(x4, t4, t5, t7, t2); \
153
vpxor t7, t7, t7; \
154
\
155
vpsrldq $1, t0, t1; \
156
vpsrldq $2, t0, t2; \
157
vpshufb t7, t1, t1; \
158
vpsrldq $3, t0, t3; \
159
\
160
/* P-function */ \
161
vpxor x5, x0, x0; \
162
vpxor x6, x1, x1; \
163
vpxor x7, x2, x2; \
164
vpxor x4, x3, x3; \
165
\
166
vpshufb t7, t2, t2; \
167
vpsrldq $4, t0, t4; \
168
vpshufb t7, t3, t3; \
169
vpsrldq $5, t0, t5; \
170
vpshufb t7, t4, t4; \
171
\
172
vpxor x2, x4, x4; \
173
vpxor x3, x5, x5; \
174
vpxor x0, x6, x6; \
175
vpxor x1, x7, x7; \
176
\
177
vpsrldq $6, t0, t6; \
178
vpshufb t7, t5, t5; \
179
vpshufb t7, t6, t6; \
180
\
181
vpxor x7, x0, x0; \
182
vpxor x4, x1, x1; \
183
vpxor x5, x2, x2; \
184
vpxor x6, x3, x3; \
185
\
186
vpxor x3, x4, x4; \
187
vpxor x0, x5, x5; \
188
vpxor x1, x6, x6; \
189
vpxor x2, x7, x7; /* note: high and low parts swapped */ \
190
\
191
/* Add key material and result to CD (x becomes new CD) */ \
192
\
193
vpxor t6, x1, x1; \
194
vpxor 5 * 32(mem_cd), x1, x1; \
195
\
196
vpsrldq $7, t0, t6; \
197
vpshufb t7, t0, t0; \
198
vpshufb t7, t6, t7; \
199
\
200
vpxor t7, x0, x0; \
201
vpxor 4 * 32(mem_cd), x0, x0; \
202
\
203
vpxor t5, x2, x2; \
204
vpxor 6 * 32(mem_cd), x2, x2; \
205
\
206
vpxor t4, x3, x3; \
207
vpxor 7 * 32(mem_cd), x3, x3; \
208
\
209
vpxor t3, x4, x4; \
210
vpxor 0 * 32(mem_cd), x4, x4; \
211
\
212
vpxor t2, x5, x5; \
213
vpxor 1 * 32(mem_cd), x5, x5; \
214
\
215
vpxor t1, x6, x6; \
216
vpxor 2 * 32(mem_cd), x6, x6; \
217
\
218
vpxor t0, x7, x7; \
219
vpxor 3 * 32(mem_cd), x7, x7;
220
221
/*
222
* Size optimization... with inlined roundsm32 binary would be over 5 times
223
* larger and would only marginally faster.
224
*/
225
SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
226
roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
227
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
228
%rcx, (%r9));
229
RET;
230
SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
231
232
SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
233
roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
234
%ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
235
%rax, (%r9));
236
RET;
237
SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
238
239
/*
240
* IN/OUT:
241
* x0..x7: byte-sliced AB state preloaded
242
* mem_ab: byte-sliced AB state in memory
243
* mem_cb: byte-sliced CD state in memory
244
*/
245
#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
246
y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
247
leaq (key_table + (i) * 8)(CTX), %r9; \
248
call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
249
\
250
vmovdqu x0, 4 * 32(mem_cd); \
251
vmovdqu x1, 5 * 32(mem_cd); \
252
vmovdqu x2, 6 * 32(mem_cd); \
253
vmovdqu x3, 7 * 32(mem_cd); \
254
vmovdqu x4, 0 * 32(mem_cd); \
255
vmovdqu x5, 1 * 32(mem_cd); \
256
vmovdqu x6, 2 * 32(mem_cd); \
257
vmovdqu x7, 3 * 32(mem_cd); \
258
\
259
leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
260
call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
261
\
262
store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
263
264
#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
265
266
#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
267
/* Store new AB state */ \
268
vmovdqu x4, 4 * 32(mem_ab); \
269
vmovdqu x5, 5 * 32(mem_ab); \
270
vmovdqu x6, 6 * 32(mem_ab); \
271
vmovdqu x7, 7 * 32(mem_ab); \
272
vmovdqu x0, 0 * 32(mem_ab); \
273
vmovdqu x1, 1 * 32(mem_ab); \
274
vmovdqu x2, 2 * 32(mem_ab); \
275
vmovdqu x3, 3 * 32(mem_ab);
276
277
#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
278
y6, y7, mem_ab, mem_cd, i) \
279
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
280
y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
281
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
282
y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
283
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
284
y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
285
286
#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
287
y6, y7, mem_ab, mem_cd, i) \
288
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
289
y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
290
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
291
y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
292
two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
293
y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
294
295
/*
296
* IN:
297
* v0..3: byte-sliced 32-bit integers
298
* OUT:
299
* v0..3: (IN <<< 1)
300
*/
301
#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
302
vpcmpgtb v0, zero, t0; \
303
vpaddb v0, v0, v0; \
304
vpabsb t0, t0; \
305
\
306
vpcmpgtb v1, zero, t1; \
307
vpaddb v1, v1, v1; \
308
vpabsb t1, t1; \
309
\
310
vpcmpgtb v2, zero, t2; \
311
vpaddb v2, v2, v2; \
312
vpabsb t2, t2; \
313
\
314
vpor t0, v1, v1; \
315
\
316
vpcmpgtb v3, zero, t0; \
317
vpaddb v3, v3, v3; \
318
vpabsb t0, t0; \
319
\
320
vpor t1, v2, v2; \
321
vpor t2, v3, v3; \
322
vpor t0, v0, v0;
323
324
/*
325
* IN:
326
* r: byte-sliced AB state in memory
327
* l: byte-sliced CD state in memory
328
* OUT:
329
* x0..x7: new byte-sliced CD state
330
*/
331
#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
332
tt1, tt2, tt3, kll, klr, krl, krr) \
333
/* \
334
* t0 = kll; \
335
* t0 &= ll; \
336
* lr ^= rol32(t0, 1); \
337
*/ \
338
vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
339
vpxor tt0, tt0, tt0; \
340
vpshufb tt0, t0, t3; \
341
vpsrldq $1, t0, t0; \
342
vpshufb tt0, t0, t2; \
343
vpsrldq $1, t0, t0; \
344
vpshufb tt0, t0, t1; \
345
vpsrldq $1, t0, t0; \
346
vpshufb tt0, t0, t0; \
347
\
348
vpand l0, t0, t0; \
349
vpand l1, t1, t1; \
350
vpand l2, t2, t2; \
351
vpand l3, t3, t3; \
352
\
353
rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
354
\
355
vpxor l4, t0, l4; \
356
vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
357
vmovdqu l4, 4 * 32(l); \
358
vpxor l5, t1, l5; \
359
vmovdqu l5, 5 * 32(l); \
360
vpxor l6, t2, l6; \
361
vmovdqu l6, 6 * 32(l); \
362
vpxor l7, t3, l7; \
363
vmovdqu l7, 7 * 32(l); \
364
\
365
/* \
366
* t2 = krr; \
367
* t2 |= rr; \
368
* rl ^= t2; \
369
*/ \
370
\
371
vpshufb tt0, t0, t3; \
372
vpsrldq $1, t0, t0; \
373
vpshufb tt0, t0, t2; \
374
vpsrldq $1, t0, t0; \
375
vpshufb tt0, t0, t1; \
376
vpsrldq $1, t0, t0; \
377
vpshufb tt0, t0, t0; \
378
\
379
vpor 4 * 32(r), t0, t0; \
380
vpor 5 * 32(r), t1, t1; \
381
vpor 6 * 32(r), t2, t2; \
382
vpor 7 * 32(r), t3, t3; \
383
\
384
vpxor 0 * 32(r), t0, t0; \
385
vpxor 1 * 32(r), t1, t1; \
386
vpxor 2 * 32(r), t2, t2; \
387
vpxor 3 * 32(r), t3, t3; \
388
vmovdqu t0, 0 * 32(r); \
389
vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
390
vmovdqu t1, 1 * 32(r); \
391
vmovdqu t2, 2 * 32(r); \
392
vmovdqu t3, 3 * 32(r); \
393
\
394
/* \
395
* t2 = krl; \
396
* t2 &= rl; \
397
* rr ^= rol32(t2, 1); \
398
*/ \
399
vpshufb tt0, t0, t3; \
400
vpsrldq $1, t0, t0; \
401
vpshufb tt0, t0, t2; \
402
vpsrldq $1, t0, t0; \
403
vpshufb tt0, t0, t1; \
404
vpsrldq $1, t0, t0; \
405
vpshufb tt0, t0, t0; \
406
\
407
vpand 0 * 32(r), t0, t0; \
408
vpand 1 * 32(r), t1, t1; \
409
vpand 2 * 32(r), t2, t2; \
410
vpand 3 * 32(r), t3, t3; \
411
\
412
rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
413
\
414
vpxor 4 * 32(r), t0, t0; \
415
vpxor 5 * 32(r), t1, t1; \
416
vpxor 6 * 32(r), t2, t2; \
417
vpxor 7 * 32(r), t3, t3; \
418
vmovdqu t0, 4 * 32(r); \
419
vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
420
vmovdqu t1, 5 * 32(r); \
421
vmovdqu t2, 6 * 32(r); \
422
vmovdqu t3, 7 * 32(r); \
423
\
424
/* \
425
* t0 = klr; \
426
* t0 |= lr; \
427
* ll ^= t0; \
428
*/ \
429
\
430
vpshufb tt0, t0, t3; \
431
vpsrldq $1, t0, t0; \
432
vpshufb tt0, t0, t2; \
433
vpsrldq $1, t0, t0; \
434
vpshufb tt0, t0, t1; \
435
vpsrldq $1, t0, t0; \
436
vpshufb tt0, t0, t0; \
437
\
438
vpor l4, t0, t0; \
439
vpor l5, t1, t1; \
440
vpor l6, t2, t2; \
441
vpor l7, t3, t3; \
442
\
443
vpxor l0, t0, l0; \
444
vmovdqu l0, 0 * 32(l); \
445
vpxor l1, t1, l1; \
446
vmovdqu l1, 1 * 32(l); \
447
vpxor l2, t2, l2; \
448
vmovdqu l2, 2 * 32(l); \
449
vpxor l3, t3, l3; \
450
vmovdqu l3, 3 * 32(l);
451
452
#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
453
vpunpckhdq x1, x0, t2; \
454
vpunpckldq x1, x0, x0; \
455
\
456
vpunpckldq x3, x2, t1; \
457
vpunpckhdq x3, x2, x2; \
458
\
459
vpunpckhqdq t1, x0, x1; \
460
vpunpcklqdq t1, x0, x0; \
461
\
462
vpunpckhqdq x2, t2, x3; \
463
vpunpcklqdq x2, t2, x2;
464
465
#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
466
a3, b3, c3, d3, st0, st1) \
467
vmovdqu d2, st0; \
468
vmovdqu d3, st1; \
469
transpose_4x4(a0, a1, a2, a3, d2, d3); \
470
transpose_4x4(b0, b1, b2, b3, d2, d3); \
471
vmovdqu st0, d2; \
472
vmovdqu st1, d3; \
473
\
474
vmovdqu a0, st0; \
475
vmovdqu a1, st1; \
476
transpose_4x4(c0, c1, c2, c3, a0, a1); \
477
transpose_4x4(d0, d1, d2, d3, a0, a1); \
478
\
479
vbroadcasti128 .Lshufb_16x16b(%rip), a0; \
480
vmovdqu st1, a1; \
481
vpshufb a0, a2, a2; \
482
vpshufb a0, a3, a3; \
483
vpshufb a0, b0, b0; \
484
vpshufb a0, b1, b1; \
485
vpshufb a0, b2, b2; \
486
vpshufb a0, b3, b3; \
487
vpshufb a0, a1, a1; \
488
vpshufb a0, c0, c0; \
489
vpshufb a0, c1, c1; \
490
vpshufb a0, c2, c2; \
491
vpshufb a0, c3, c3; \
492
vpshufb a0, d0, d0; \
493
vpshufb a0, d1, d1; \
494
vpshufb a0, d2, d2; \
495
vpshufb a0, d3, d3; \
496
vmovdqu d3, st1; \
497
vmovdqu st0, d3; \
498
vpshufb a0, d3, a0; \
499
vmovdqu d2, st0; \
500
\
501
transpose_4x4(a0, b0, c0, d0, d2, d3); \
502
transpose_4x4(a1, b1, c1, d1, d2, d3); \
503
vmovdqu st0, d2; \
504
vmovdqu st1, d3; \
505
\
506
vmovdqu b0, st0; \
507
vmovdqu b1, st1; \
508
transpose_4x4(a2, b2, c2, d2, b0, b1); \
509
transpose_4x4(a3, b3, c3, d3, b0, b1); \
510
vmovdqu st0, b0; \
511
vmovdqu st1, b1; \
512
/* does not adjust output bytes inside vectors */
513
514
/* load blocks to registers and apply pre-whitening */
515
#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
516
y6, y7, rio, key) \
517
vpbroadcastq key, x0; \
518
vpshufb .Lpack_bswap(%rip), x0, x0; \
519
\
520
vpxor 0 * 32(rio), x0, y7; \
521
vpxor 1 * 32(rio), x0, y6; \
522
vpxor 2 * 32(rio), x0, y5; \
523
vpxor 3 * 32(rio), x0, y4; \
524
vpxor 4 * 32(rio), x0, y3; \
525
vpxor 5 * 32(rio), x0, y2; \
526
vpxor 6 * 32(rio), x0, y1; \
527
vpxor 7 * 32(rio), x0, y0; \
528
vpxor 8 * 32(rio), x0, x7; \
529
vpxor 9 * 32(rio), x0, x6; \
530
vpxor 10 * 32(rio), x0, x5; \
531
vpxor 11 * 32(rio), x0, x4; \
532
vpxor 12 * 32(rio), x0, x3; \
533
vpxor 13 * 32(rio), x0, x2; \
534
vpxor 14 * 32(rio), x0, x1; \
535
vpxor 15 * 32(rio), x0, x0;
536
537
/* byteslice pre-whitened blocks and store to temporary memory */
538
#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
539
y6, y7, mem_ab, mem_cd) \
540
byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
541
y4, y5, y6, y7, (mem_ab), (mem_cd)); \
542
\
543
vmovdqu x0, 0 * 32(mem_ab); \
544
vmovdqu x1, 1 * 32(mem_ab); \
545
vmovdqu x2, 2 * 32(mem_ab); \
546
vmovdqu x3, 3 * 32(mem_ab); \
547
vmovdqu x4, 4 * 32(mem_ab); \
548
vmovdqu x5, 5 * 32(mem_ab); \
549
vmovdqu x6, 6 * 32(mem_ab); \
550
vmovdqu x7, 7 * 32(mem_ab); \
551
vmovdqu y0, 0 * 32(mem_cd); \
552
vmovdqu y1, 1 * 32(mem_cd); \
553
vmovdqu y2, 2 * 32(mem_cd); \
554
vmovdqu y3, 3 * 32(mem_cd); \
555
vmovdqu y4, 4 * 32(mem_cd); \
556
vmovdqu y5, 5 * 32(mem_cd); \
557
vmovdqu y6, 6 * 32(mem_cd); \
558
vmovdqu y7, 7 * 32(mem_cd);
559
560
/* de-byteslice, apply post-whitening and store blocks */
561
#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
562
y5, y6, y7, key, stack_tmp0, stack_tmp1) \
563
byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
564
y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
565
\
566
vmovdqu x0, stack_tmp0; \
567
\
568
vpbroadcastq key, x0; \
569
vpshufb .Lpack_bswap(%rip), x0, x0; \
570
\
571
vpxor x0, y7, y7; \
572
vpxor x0, y6, y6; \
573
vpxor x0, y5, y5; \
574
vpxor x0, y4, y4; \
575
vpxor x0, y3, y3; \
576
vpxor x0, y2, y2; \
577
vpxor x0, y1, y1; \
578
vpxor x0, y0, y0; \
579
vpxor x0, x7, x7; \
580
vpxor x0, x6, x6; \
581
vpxor x0, x5, x5; \
582
vpxor x0, x4, x4; \
583
vpxor x0, x3, x3; \
584
vpxor x0, x2, x2; \
585
vpxor x0, x1, x1; \
586
vpxor stack_tmp0, x0, x0;
587
588
#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
589
y6, y7, rio) \
590
vmovdqu x0, 0 * 32(rio); \
591
vmovdqu x1, 1 * 32(rio); \
592
vmovdqu x2, 2 * 32(rio); \
593
vmovdqu x3, 3 * 32(rio); \
594
vmovdqu x4, 4 * 32(rio); \
595
vmovdqu x5, 5 * 32(rio); \
596
vmovdqu x6, 6 * 32(rio); \
597
vmovdqu x7, 7 * 32(rio); \
598
vmovdqu y0, 8 * 32(rio); \
599
vmovdqu y1, 9 * 32(rio); \
600
vmovdqu y2, 10 * 32(rio); \
601
vmovdqu y3, 11 * 32(rio); \
602
vmovdqu y4, 12 * 32(rio); \
603
vmovdqu y5, 13 * 32(rio); \
604
vmovdqu y6, 14 * 32(rio); \
605
vmovdqu y7, 15 * 32(rio);
606
607
608
.section .rodata.cst32.shufb_16x16b, "aM", @progbits, 32
609
.align 32
610
#define SHUFB_BYTES(idx) \
611
0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
612
.Lshufb_16x16b:
613
.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
614
.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
615
616
.section .rodata.cst32.pack_bswap, "aM", @progbits, 32
617
.align 32
618
.Lpack_bswap:
619
.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
620
.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
621
622
/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
623
.section .rodata.cst16, "aM", @progbits, 16
624
.align 16
625
626
/*
627
* pre-SubByte transform
628
*
629
* pre-lookup for sbox1, sbox2, sbox3:
630
* swap_bitendianness(
631
* isom_map_camellia_to_aes(
632
* camellia_f(
633
* swap_bitendianess(in)
634
* )
635
* )
636
* )
637
*
638
* (note: '⊕ 0xc5' inside camellia_f())
639
*/
640
.Lpre_tf_lo_s1:
641
.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
642
.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
643
.Lpre_tf_hi_s1:
644
.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
645
.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
646
647
/*
648
* pre-SubByte transform
649
*
650
* pre-lookup for sbox4:
651
* swap_bitendianness(
652
* isom_map_camellia_to_aes(
653
* camellia_f(
654
* swap_bitendianess(in <<< 1)
655
* )
656
* )
657
* )
658
*
659
* (note: '⊕ 0xc5' inside camellia_f())
660
*/
661
.Lpre_tf_lo_s4:
662
.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
663
.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
664
.Lpre_tf_hi_s4:
665
.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
666
.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
667
668
/*
669
* post-SubByte transform
670
*
671
* post-lookup for sbox1, sbox4:
672
* swap_bitendianness(
673
* camellia_h(
674
* isom_map_aes_to_camellia(
675
* swap_bitendianness(
676
* aes_inverse_affine_transform(in)
677
* )
678
* )
679
* )
680
* )
681
*
682
* (note: '⊕ 0x6e' inside camellia_h())
683
*/
684
.Lpost_tf_lo_s1:
685
.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
686
.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
687
.Lpost_tf_hi_s1:
688
.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
689
.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
690
691
/*
692
* post-SubByte transform
693
*
694
* post-lookup for sbox2:
695
* swap_bitendianness(
696
* camellia_h(
697
* isom_map_aes_to_camellia(
698
* swap_bitendianness(
699
* aes_inverse_affine_transform(in)
700
* )
701
* )
702
* )
703
* ) <<< 1
704
*
705
* (note: '⊕ 0x6e' inside camellia_h())
706
*/
707
.Lpost_tf_lo_s2:
708
.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
709
.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
710
.Lpost_tf_hi_s2:
711
.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
712
.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
713
714
/*
715
* post-SubByte transform
716
*
717
* post-lookup for sbox3:
718
* swap_bitendianness(
719
* camellia_h(
720
* isom_map_aes_to_camellia(
721
* swap_bitendianness(
722
* aes_inverse_affine_transform(in)
723
* )
724
* )
725
* )
726
* ) >>> 1
727
*
728
* (note: '⊕ 0x6e' inside camellia_h())
729
*/
730
.Lpost_tf_lo_s3:
731
.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
732
.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
733
.Lpost_tf_hi_s3:
734
.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
735
.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
736
737
/* For isolating SubBytes from AESENCLAST, inverse shift row */
738
.Linv_shift_row:
739
.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
740
.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
741
742
.section .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
743
.align 4
744
/* 4-bit mask */
745
.L0f0f0f0f:
746
.long 0x0f0f0f0f
747
748
.text
749
750
SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
751
/* input:
752
* %rdi: ctx, CTX
753
* %rax: temporary storage, 512 bytes
754
* %ymm0..%ymm15: 32 plaintext blocks
755
* output:
756
* %ymm0..%ymm15: 32 encrypted blocks, order swapped:
757
* 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
758
*/
759
FRAME_BEGIN
760
761
leaq 8 * 32(%rax), %rcx;
762
763
inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
764
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
765
%ymm15, %rax, %rcx);
766
767
enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
768
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
769
%ymm15, %rax, %rcx, 0);
770
771
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
772
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
773
%ymm15,
774
((key_table + (8) * 8) + 0)(CTX),
775
((key_table + (8) * 8) + 4)(CTX),
776
((key_table + (8) * 8) + 8)(CTX),
777
((key_table + (8) * 8) + 12)(CTX));
778
779
enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
780
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
781
%ymm15, %rax, %rcx, 8);
782
783
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
784
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
785
%ymm15,
786
((key_table + (16) * 8) + 0)(CTX),
787
((key_table + (16) * 8) + 4)(CTX),
788
((key_table + (16) * 8) + 8)(CTX),
789
((key_table + (16) * 8) + 12)(CTX));
790
791
enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
792
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
793
%ymm15, %rax, %rcx, 16);
794
795
movl $24, %r8d;
796
cmpl $16, key_length(CTX);
797
jne .Lenc_max32;
798
799
.Lenc_done:
800
/* load CD for output */
801
vmovdqu 0 * 32(%rcx), %ymm8;
802
vmovdqu 1 * 32(%rcx), %ymm9;
803
vmovdqu 2 * 32(%rcx), %ymm10;
804
vmovdqu 3 * 32(%rcx), %ymm11;
805
vmovdqu 4 * 32(%rcx), %ymm12;
806
vmovdqu 5 * 32(%rcx), %ymm13;
807
vmovdqu 6 * 32(%rcx), %ymm14;
808
vmovdqu 7 * 32(%rcx), %ymm15;
809
810
outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
811
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
812
%ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
813
814
FRAME_END
815
RET;
816
817
.align 8
818
.Lenc_max32:
819
movl $32, %r8d;
820
821
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
822
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
823
%ymm15,
824
((key_table + (24) * 8) + 0)(CTX),
825
((key_table + (24) * 8) + 4)(CTX),
826
((key_table + (24) * 8) + 8)(CTX),
827
((key_table + (24) * 8) + 12)(CTX));
828
829
enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
830
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
831
%ymm15, %rax, %rcx, 24);
832
833
jmp .Lenc_done;
834
SYM_FUNC_END(__camellia_enc_blk32)
835
836
SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
837
/* input:
838
* %rdi: ctx, CTX
839
* %rax: temporary storage, 512 bytes
840
* %r8d: 24 for 16 byte key, 32 for larger
841
* %ymm0..%ymm15: 16 encrypted blocks
842
* output:
843
* %ymm0..%ymm15: 16 plaintext blocks, order swapped:
844
* 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
845
*/
846
FRAME_BEGIN
847
848
leaq 8 * 32(%rax), %rcx;
849
850
inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
851
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
852
%ymm15, %rax, %rcx);
853
854
cmpl $32, %r8d;
855
je .Ldec_max32;
856
857
.Ldec_max24:
858
dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
859
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
860
%ymm15, %rax, %rcx, 16);
861
862
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
863
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
864
%ymm15,
865
((key_table + (16) * 8) + 8)(CTX),
866
((key_table + (16) * 8) + 12)(CTX),
867
((key_table + (16) * 8) + 0)(CTX),
868
((key_table + (16) * 8) + 4)(CTX));
869
870
dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
871
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
872
%ymm15, %rax, %rcx, 8);
873
874
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
875
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
876
%ymm15,
877
((key_table + (8) * 8) + 8)(CTX),
878
((key_table + (8) * 8) + 12)(CTX),
879
((key_table + (8) * 8) + 0)(CTX),
880
((key_table + (8) * 8) + 4)(CTX));
881
882
dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
883
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
884
%ymm15, %rax, %rcx, 0);
885
886
/* load CD for output */
887
vmovdqu 0 * 32(%rcx), %ymm8;
888
vmovdqu 1 * 32(%rcx), %ymm9;
889
vmovdqu 2 * 32(%rcx), %ymm10;
890
vmovdqu 3 * 32(%rcx), %ymm11;
891
vmovdqu 4 * 32(%rcx), %ymm12;
892
vmovdqu 5 * 32(%rcx), %ymm13;
893
vmovdqu 6 * 32(%rcx), %ymm14;
894
vmovdqu 7 * 32(%rcx), %ymm15;
895
896
outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
897
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
898
%ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
899
900
FRAME_END
901
RET;
902
903
.align 8
904
.Ldec_max32:
905
dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
906
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
907
%ymm15, %rax, %rcx, 24);
908
909
fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
910
%rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
911
%ymm15,
912
((key_table + (24) * 8) + 8)(CTX),
913
((key_table + (24) * 8) + 12)(CTX),
914
((key_table + (24) * 8) + 0)(CTX),
915
((key_table + (24) * 8) + 4)(CTX));
916
917
jmp .Ldec_max24;
918
SYM_FUNC_END(__camellia_dec_blk32)
919
920
SYM_FUNC_START(camellia_ecb_enc_32way)
921
/* input:
922
* %rdi: ctx, CTX
923
* %rsi: dst (32 blocks)
924
* %rdx: src (32 blocks)
925
*/
926
FRAME_BEGIN
927
928
vzeroupper;
929
930
inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
931
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
932
%ymm15, %rdx, (key_table)(CTX));
933
934
/* now dst can be used as temporary buffer (even in src == dst case) */
935
movq %rsi, %rax;
936
937
call __camellia_enc_blk32;
938
939
write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
940
%ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
941
%ymm8, %rsi);
942
943
vzeroupper;
944
945
FRAME_END
946
RET;
947
SYM_FUNC_END(camellia_ecb_enc_32way)
948
949
SYM_FUNC_START(camellia_ecb_dec_32way)
950
/* input:
951
* %rdi: ctx, CTX
952
* %rsi: dst (32 blocks)
953
* %rdx: src (32 blocks)
954
*/
955
FRAME_BEGIN
956
957
vzeroupper;
958
959
cmpl $16, key_length(CTX);
960
movl $32, %r8d;
961
movl $24, %eax;
962
cmovel %eax, %r8d; /* max */
963
964
inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
965
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
966
%ymm15, %rdx, (key_table)(CTX, %r8, 8));
967
968
/* now dst can be used as temporary buffer (even in src == dst case) */
969
movq %rsi, %rax;
970
971
call __camellia_dec_blk32;
972
973
write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
974
%ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
975
%ymm8, %rsi);
976
977
vzeroupper;
978
979
FRAME_END
980
RET;
981
SYM_FUNC_END(camellia_ecb_dec_32way)
982
983
SYM_FUNC_START(camellia_cbc_dec_32way)
984
/* input:
985
* %rdi: ctx, CTX
986
* %rsi: dst (32 blocks)
987
* %rdx: src (32 blocks)
988
*/
989
FRAME_BEGIN
990
subq $(16 * 32), %rsp;
991
992
vzeroupper;
993
994
cmpl $16, key_length(CTX);
995
movl $32, %r8d;
996
movl $24, %eax;
997
cmovel %eax, %r8d; /* max */
998
999
inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1000
%ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1001
%ymm15, %rdx, (key_table)(CTX, %r8, 8));
1002
1003
cmpq %rsi, %rdx;
1004
je .Lcbc_dec_use_stack;
1005
1006
/* dst can be used as temporary storage, src is not overwritten. */
1007
movq %rsi, %rax;
1008
jmp .Lcbc_dec_continue;
1009
1010
.Lcbc_dec_use_stack:
1011
/*
1012
* dst still in-use (because dst == src), so use stack for temporary
1013
* storage.
1014
*/
1015
movq %rsp, %rax;
1016
1017
.Lcbc_dec_continue:
1018
call __camellia_dec_blk32;
1019
1020
vmovdqu %ymm7, (%rax);
1021
vpxor %ymm7, %ymm7, %ymm7;
1022
vinserti128 $1, (%rdx), %ymm7, %ymm7;
1023
vpxor (%rax), %ymm7, %ymm7;
1024
vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1025
vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1026
vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1027
vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1028
vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1029
vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1030
vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1031
vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1032
vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1033
vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1034
vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1035
vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1036
vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1037
vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1038
vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1039
write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1040
%ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1041
%ymm8, %rsi);
1042
1043
vzeroupper;
1044
1045
addq $(16 * 32), %rsp;
1046
FRAME_END
1047
RET;
1048
SYM_FUNC_END(camellia_cbc_dec_32way)
1049
1050