Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/crypto/polyval-clmulni_asm.S
26424 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Copyright 2021 Google LLC
4
*/
5
/*
6
* This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
7
* instructions. It works on 8 blocks at a time, by precomputing the first 8
8
* keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
9
* allows us to split finite field multiplication into two steps.
10
*
11
* In the first step, we consider h^i, m_i as normal polynomials of degree less
12
* than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
13
* is simply polynomial multiplication.
14
*
15
* In the second step, we compute the reduction of p(x) modulo the finite field
16
* modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
17
*
18
* This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
19
* multiplication is finite field multiplication. The advantage is that the
20
* two-step process only requires 1 finite field reduction for every 8
21
* polynomial multiplications. Further parallelism is gained by interleaving the
22
* multiplications and polynomial reductions.
23
*/
24
25
#include <linux/linkage.h>
26
#include <asm/frame.h>
27
28
#define STRIDE_BLOCKS 8
29
30
#define GSTAR %xmm7
31
#define PL %xmm8
32
#define PH %xmm9
33
#define TMP_XMM %xmm11
34
#define LO %xmm12
35
#define HI %xmm13
36
#define MI %xmm14
37
#define SUM %xmm15
38
39
#define KEY_POWERS %rdi
40
#define MSG %rsi
41
#define BLOCKS_LEFT %rdx
42
#define ACCUMULATOR %rcx
43
#define TMP %rax
44
45
.section .rodata.cst16.gstar, "aM", @progbits, 16
46
.align 16
47
48
.Lgstar:
49
.quad 0xc200000000000000, 0xc200000000000000
50
51
.text
52
53
/*
54
* Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
55
* count pointed to by MSG and KEY_POWERS.
56
*/
57
.macro schoolbook1 count
58
.set i, 0
59
.rept (\count)
60
schoolbook1_iteration i 0
61
.set i, (i +1)
62
.endr
63
.endm
64
65
/*
66
* Computes the product of two 128-bit polynomials at the memory locations
67
* specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
68
* the 256-bit product into LO, MI, HI.
69
*
70
* Given:
71
* X = [X_1 : X_0]
72
* Y = [Y_1 : Y_0]
73
*
74
* We compute:
75
* LO += X_0 * Y_0
76
* MI += X_0 * Y_1 + X_1 * Y_0
77
* HI += X_1 * Y_1
78
*
79
* Later, the 256-bit result can be extracted as:
80
* [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
81
* This step is done when computing the polynomial reduction for efficiency
82
* reasons.
83
*
84
* If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an
85
* extra multiplication of SUM and h^8.
86
*/
87
.macro schoolbook1_iteration i xor_sum
88
movups (16*\i)(MSG), %xmm0
89
.if (\i == 0 && \xor_sum == 1)
90
pxor SUM, %xmm0
91
.endif
92
vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
93
vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
94
vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
95
vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
96
vpxor %xmm2, MI, MI
97
vpxor %xmm1, LO, LO
98
vpxor %xmm4, HI, HI
99
vpxor %xmm3, MI, MI
100
.endm
101
102
/*
103
* Performs the same computation as schoolbook1_iteration, except we expect the
104
* arguments to already be loaded into xmm0 and xmm1 and we set the result
105
* registers LO, MI, and HI directly rather than XOR'ing into them.
106
*/
107
.macro schoolbook1_noload
108
vpclmulqdq $0x01, %xmm0, %xmm1, MI
109
vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
110
vpclmulqdq $0x00, %xmm0, %xmm1, LO
111
vpclmulqdq $0x11, %xmm0, %xmm1, HI
112
vpxor %xmm2, MI, MI
113
.endm
114
115
/*
116
* Computes the 256-bit polynomial represented by LO, HI, MI. Stores
117
* the result in PL, PH.
118
* [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
119
*/
120
.macro schoolbook2
121
vpslldq $8, MI, PL
122
vpsrldq $8, MI, PH
123
pxor LO, PL
124
pxor HI, PH
125
.endm
126
127
/*
128
* Computes the 128-bit reduction of PH : PL. Stores the result in dest.
129
*
130
* This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
131
* x^128 + x^127 + x^126 + x^121 + 1.
132
*
133
* We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
134
* product of two 128-bit polynomials in Montgomery form. We need to reduce it
135
* mod g(x). Also, since polynomials in Montgomery form have an "extra" factor
136
* of x^128, this product has two extra factors of x^128. To get it back into
137
* Montgomery form, we need to remove one of these factors by dividing by x^128.
138
*
139
* To accomplish both of these goals, we add multiples of g(x) that cancel out
140
* the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
141
* bits are zero, the polynomial division by x^128 can be done by right shifting.
142
*
143
* Since the only nonzero term in the low 64 bits of g(x) is the constant term,
144
* the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can
145
* only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
146
* x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
147
* the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
148
* = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191.
149
*
150
* Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
151
* 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
152
* + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
153
* x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
154
* P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
155
*
156
* So our final computation is:
157
* T = T_1 : T_0 = g*(x) * P_0
158
* V = V_1 : V_0 = g*(x) * (P_1 + T_0)
159
* p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
160
*
161
* The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
162
* + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
163
* T_1 into dest. This allows us to reuse P_1 + T_0 when computing V.
164
*/
165
.macro montgomery_reduction dest
166
vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x)
167
pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1
168
pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1
169
pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
170
pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
171
vpxor TMP_XMM, PH, \dest
172
.endm
173
174
/*
175
* Compute schoolbook multiplication for 8 blocks
176
* m_0h^8 + ... + m_7h^1
177
*
178
* If reduce is set, also computes the montgomery reduction of the
179
* previous full_stride call and XORs with the first message block.
180
* (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
181
* I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
182
*/
183
.macro full_stride reduce
184
pxor LO, LO
185
pxor HI, HI
186
pxor MI, MI
187
188
schoolbook1_iteration 7 0
189
.if \reduce
190
vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
191
.endif
192
193
schoolbook1_iteration 6 0
194
.if \reduce
195
pshufd $0b01001110, TMP_XMM, TMP_XMM
196
.endif
197
198
schoolbook1_iteration 5 0
199
.if \reduce
200
pxor PL, TMP_XMM
201
.endif
202
203
schoolbook1_iteration 4 0
204
.if \reduce
205
pxor TMP_XMM, PH
206
.endif
207
208
schoolbook1_iteration 3 0
209
.if \reduce
210
pclmulqdq $0x11, GSTAR, TMP_XMM
211
.endif
212
213
schoolbook1_iteration 2 0
214
.if \reduce
215
vpxor TMP_XMM, PH, SUM
216
.endif
217
218
schoolbook1_iteration 1 0
219
220
schoolbook1_iteration 0 1
221
222
addq $(8*16), MSG
223
schoolbook2
224
.endm
225
226
/*
227
* Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
228
*/
229
.macro partial_stride
230
mov BLOCKS_LEFT, TMP
231
shlq $4, TMP
232
addq $(16*STRIDE_BLOCKS), KEY_POWERS
233
subq TMP, KEY_POWERS
234
235
movups (MSG), %xmm0
236
pxor SUM, %xmm0
237
movaps (KEY_POWERS), %xmm1
238
schoolbook1_noload
239
dec BLOCKS_LEFT
240
addq $16, MSG
241
addq $16, KEY_POWERS
242
243
test $4, BLOCKS_LEFT
244
jz .Lpartial4BlocksDone
245
schoolbook1 4
246
addq $(4*16), MSG
247
addq $(4*16), KEY_POWERS
248
.Lpartial4BlocksDone:
249
test $2, BLOCKS_LEFT
250
jz .Lpartial2BlocksDone
251
schoolbook1 2
252
addq $(2*16), MSG
253
addq $(2*16), KEY_POWERS
254
.Lpartial2BlocksDone:
255
test $1, BLOCKS_LEFT
256
jz .LpartialDone
257
schoolbook1 1
258
.LpartialDone:
259
schoolbook2
260
montgomery_reduction SUM
261
.endm
262
263
/*
264
* Perform montgomery multiplication in GF(2^128) and store result in op1.
265
*
266
* Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
267
* If op1, op2 are in montgomery form, this computes the montgomery
268
* form of op1*op2.
269
*
270
* void clmul_polyval_mul(u8 *op1, const u8 *op2);
271
*/
272
SYM_FUNC_START(clmul_polyval_mul)
273
FRAME_BEGIN
274
vmovdqa .Lgstar(%rip), GSTAR
275
movups (%rdi), %xmm0
276
movups (%rsi), %xmm1
277
schoolbook1_noload
278
schoolbook2
279
montgomery_reduction SUM
280
movups SUM, (%rdi)
281
FRAME_END
282
RET
283
SYM_FUNC_END(clmul_polyval_mul)
284
285
/*
286
* Perform polynomial evaluation as specified by POLYVAL. This computes:
287
* h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
288
* where n=nblocks, h is the hash key, and m_i are the message blocks.
289
*
290
* rdi - pointer to precomputed key powers h^8 ... h^1
291
* rsi - pointer to message blocks
292
* rdx - number of blocks to hash
293
* rcx - pointer to the accumulator
294
*
295
* void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
296
* const u8 *in, size_t nblocks, u8 *accumulator);
297
*/
298
SYM_FUNC_START(clmul_polyval_update)
299
FRAME_BEGIN
300
vmovdqa .Lgstar(%rip), GSTAR
301
movups (ACCUMULATOR), SUM
302
subq $STRIDE_BLOCKS, BLOCKS_LEFT
303
js .LstrideLoopExit
304
full_stride 0
305
subq $STRIDE_BLOCKS, BLOCKS_LEFT
306
js .LstrideLoopExitReduce
307
.LstrideLoop:
308
full_stride 1
309
subq $STRIDE_BLOCKS, BLOCKS_LEFT
310
jns .LstrideLoop
311
.LstrideLoopExitReduce:
312
montgomery_reduction SUM
313
.LstrideLoopExit:
314
add $STRIDE_BLOCKS, BLOCKS_LEFT
315
jz .LskipPartial
316
partial_stride
317
.LskipPartial:
318
movups SUM, (ACCUMULATOR)
319
FRAME_END
320
RET
321
SYM_FUNC_END(clmul_polyval_update)
322
323