Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/entry/entry_32.S
26439 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Copyright (C) 1991,1992 Linus Torvalds
4
*
5
* entry_32.S contains the system-call and low-level fault and trap handling routines.
6
*
7
* Stack layout while running C code:
8
* ptrace needs to have all registers on the stack.
9
* If the order here is changed, it needs to be
10
* updated in fork.c:copy_process(), signal.c:do_signal(),
11
* ptrace.c and ptrace.h
12
*
13
* 0(%esp) - %ebx
14
* 4(%esp) - %ecx
15
* 8(%esp) - %edx
16
* C(%esp) - %esi
17
* 10(%esp) - %edi
18
* 14(%esp) - %ebp
19
* 18(%esp) - %eax
20
* 1C(%esp) - %ds
21
* 20(%esp) - %es
22
* 24(%esp) - %fs
23
* 28(%esp) - unused -- was %gs on old stackprotector kernels
24
* 2C(%esp) - orig_eax
25
* 30(%esp) - %eip
26
* 34(%esp) - %cs
27
* 38(%esp) - %eflags
28
* 3C(%esp) - %oldesp
29
* 40(%esp) - %oldss
30
*/
31
32
#include <linux/linkage.h>
33
#include <linux/err.h>
34
#include <asm/thread_info.h>
35
#include <asm/irqflags.h>
36
#include <asm/errno.h>
37
#include <asm/segment.h>
38
#include <asm/smp.h>
39
#include <asm/percpu.h>
40
#include <asm/processor-flags.h>
41
#include <asm/irq_vectors.h>
42
#include <asm/cpufeatures.h>
43
#include <asm/alternative.h>
44
#include <asm/asm.h>
45
#include <asm/smap.h>
46
#include <asm/frame.h>
47
#include <asm/trapnr.h>
48
#include <asm/nospec-branch.h>
49
50
#include "calling.h"
51
52
.section .entry.text, "ax"
53
54
#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
55
56
/* Unconditionally switch to user cr3 */
57
.macro SWITCH_TO_USER_CR3 scratch_reg:req
58
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
59
60
movl %cr3, \scratch_reg
61
orl $PTI_SWITCH_MASK, \scratch_reg
62
movl \scratch_reg, %cr3
63
.Lend_\@:
64
.endm
65
66
.macro BUG_IF_WRONG_CR3 no_user_check=0
67
#ifdef CONFIG_DEBUG_ENTRY
68
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
69
.if \no_user_check == 0
70
/* coming from usermode? */
71
testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
72
jz .Lend_\@
73
.endif
74
/* On user-cr3? */
75
movl %cr3, %eax
76
testl $PTI_SWITCH_MASK, %eax
77
jnz .Lend_\@
78
/* From userspace with kernel cr3 - BUG */
79
ud2
80
.Lend_\@:
81
#endif
82
.endm
83
84
/*
85
* Switch to kernel cr3 if not already loaded and return current cr3 in
86
* \scratch_reg
87
*/
88
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
89
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
90
movl %cr3, \scratch_reg
91
/* Test if we are already on kernel CR3 */
92
testl $PTI_SWITCH_MASK, \scratch_reg
93
jz .Lend_\@
94
andl $(~PTI_SWITCH_MASK), \scratch_reg
95
movl \scratch_reg, %cr3
96
/* Return original CR3 in \scratch_reg */
97
orl $PTI_SWITCH_MASK, \scratch_reg
98
.Lend_\@:
99
.endm
100
101
#define CS_FROM_ENTRY_STACK (1 << 31)
102
#define CS_FROM_USER_CR3 (1 << 30)
103
#define CS_FROM_KERNEL (1 << 29)
104
#define CS_FROM_ESPFIX (1 << 28)
105
106
.macro FIXUP_FRAME
107
/*
108
* The high bits of the CS dword (__csh) are used for CS_FROM_*.
109
* Clear them in case hardware didn't do this for us.
110
*/
111
andl $0x0000ffff, 4*4(%esp)
112
113
#ifdef CONFIG_VM86
114
testl $X86_EFLAGS_VM, 5*4(%esp)
115
jnz .Lfrom_usermode_no_fixup_\@
116
#endif
117
testl $USER_SEGMENT_RPL_MASK, 4*4(%esp)
118
jnz .Lfrom_usermode_no_fixup_\@
119
120
orl $CS_FROM_KERNEL, 4*4(%esp)
121
122
/*
123
* When we're here from kernel mode; the (exception) stack looks like:
124
*
125
* 6*4(%esp) - <previous context>
126
* 5*4(%esp) - flags
127
* 4*4(%esp) - cs
128
* 3*4(%esp) - ip
129
* 2*4(%esp) - orig_eax
130
* 1*4(%esp) - gs / function
131
* 0*4(%esp) - fs
132
*
133
* Lets build a 5 entry IRET frame after that, such that struct pt_regs
134
* is complete and in particular regs->sp is correct. This gives us
135
* the original 6 entries as gap:
136
*
137
* 14*4(%esp) - <previous context>
138
* 13*4(%esp) - gap / flags
139
* 12*4(%esp) - gap / cs
140
* 11*4(%esp) - gap / ip
141
* 10*4(%esp) - gap / orig_eax
142
* 9*4(%esp) - gap / gs / function
143
* 8*4(%esp) - gap / fs
144
* 7*4(%esp) - ss
145
* 6*4(%esp) - sp
146
* 5*4(%esp) - flags
147
* 4*4(%esp) - cs
148
* 3*4(%esp) - ip
149
* 2*4(%esp) - orig_eax
150
* 1*4(%esp) - gs / function
151
* 0*4(%esp) - fs
152
*/
153
154
pushl %ss # ss
155
pushl %esp # sp (points at ss)
156
addl $7*4, (%esp) # point sp back at the previous context
157
pushl 7*4(%esp) # flags
158
pushl 7*4(%esp) # cs
159
pushl 7*4(%esp) # ip
160
pushl 7*4(%esp) # orig_eax
161
pushl 7*4(%esp) # gs / function
162
pushl 7*4(%esp) # fs
163
.Lfrom_usermode_no_fixup_\@:
164
.endm
165
166
.macro IRET_FRAME
167
/*
168
* We're called with %ds, %es, %fs, and %gs from the interrupted
169
* frame, so we shouldn't use them. Also, we may be in ESPFIX
170
* mode and therefore have a nonzero SS base and an offset ESP,
171
* so any attempt to access the stack needs to use SS. (except for
172
* accesses through %esp, which automatically use SS.)
173
*/
174
testl $CS_FROM_KERNEL, 1*4(%esp)
175
jz .Lfinished_frame_\@
176
177
/*
178
* Reconstruct the 3 entry IRET frame right after the (modified)
179
* regs->sp without lowering %esp in between, such that an NMI in the
180
* middle doesn't scribble our stack.
181
*/
182
pushl %eax
183
pushl %ecx
184
movl 5*4(%esp), %eax # (modified) regs->sp
185
186
movl 4*4(%esp), %ecx # flags
187
movl %ecx, %ss:-1*4(%eax)
188
189
movl 3*4(%esp), %ecx # cs
190
andl $0x0000ffff, %ecx
191
movl %ecx, %ss:-2*4(%eax)
192
193
movl 2*4(%esp), %ecx # ip
194
movl %ecx, %ss:-3*4(%eax)
195
196
movl 1*4(%esp), %ecx # eax
197
movl %ecx, %ss:-4*4(%eax)
198
199
popl %ecx
200
lea -4*4(%eax), %esp
201
popl %eax
202
.Lfinished_frame_\@:
203
.endm
204
205
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
206
cld
207
.if \skip_gs == 0
208
pushl $0
209
.endif
210
pushl %fs
211
212
pushl %eax
213
movl $(__KERNEL_PERCPU), %eax
214
movl %eax, %fs
215
.if \unwind_espfix > 0
216
UNWIND_ESPFIX_STACK
217
.endif
218
popl %eax
219
220
FIXUP_FRAME
221
pushl %es
222
pushl %ds
223
pushl \pt_regs_ax
224
pushl %ebp
225
pushl %edi
226
pushl %esi
227
pushl %edx
228
pushl %ecx
229
pushl %ebx
230
movl $(__USER_DS), %edx
231
movl %edx, %ds
232
movl %edx, %es
233
/* Switch to kernel stack if necessary */
234
.if \switch_stacks > 0
235
SWITCH_TO_KERNEL_STACK
236
.endif
237
.endm
238
239
.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
240
SAVE_ALL unwind_espfix=\unwind_espfix
241
242
BUG_IF_WRONG_CR3
243
244
/*
245
* Now switch the CR3 when PTI is enabled.
246
*
247
* We can enter with either user or kernel cr3, the code will
248
* store the old cr3 in \cr3_reg and switches to the kernel cr3
249
* if necessary.
250
*/
251
SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
252
253
.Lend_\@:
254
.endm
255
256
.macro RESTORE_INT_REGS
257
popl %ebx
258
popl %ecx
259
popl %edx
260
popl %esi
261
popl %edi
262
popl %ebp
263
popl %eax
264
.endm
265
266
.macro RESTORE_REGS pop=0
267
RESTORE_INT_REGS
268
1: popl %ds
269
2: popl %es
270
3: popl %fs
271
4: addl $(4 + \pop), %esp /* pop the unused "gs" slot */
272
IRET_FRAME
273
274
/*
275
* There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
276
* ASM the registers are known and we can trivially hard-code them.
277
*/
278
_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
279
_ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
280
_ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
281
.endm
282
283
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
284
/*
285
* Now switch the CR3 when PTI is enabled.
286
*
287
* We enter with kernel cr3 and switch the cr3 to the value
288
* stored on \cr3_reg, which is either a user or a kernel cr3.
289
*/
290
ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
291
292
testl $PTI_SWITCH_MASK, \cr3_reg
293
jz .Lswitched_\@
294
295
/* User cr3 in \cr3_reg - write it to hardware cr3 */
296
movl \cr3_reg, %cr3
297
298
.Lswitched_\@:
299
300
BUG_IF_WRONG_CR3
301
302
RESTORE_REGS pop=\pop
303
.endm
304
305
.macro CHECK_AND_APPLY_ESPFIX
306
#ifdef CONFIG_X86_ESPFIX32
307
#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
308
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page + GDT_ESPFIX_OFFSET)
309
310
ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
311
312
movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
313
/*
314
* Warning: PT_OLDSS(%esp) contains the wrong/random values if we
315
* are returning to the kernel.
316
* See comments in process.c:copy_thread() for details.
317
*/
318
movb PT_OLDSS(%esp), %ah
319
movb PT_CS(%esp), %al
320
andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
321
cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
322
jne .Lend_\@ # returning to user-space with LDT SS
323
324
/*
325
* Setup and switch to ESPFIX stack
326
*
327
* We're returning to userspace with a 16 bit stack. The CPU will not
328
* restore the high word of ESP for us on executing iret... This is an
329
* "official" bug of all the x86-compatible CPUs, which we can work
330
* around to make dosemu and wine happy. We do this by preloading the
331
* high word of ESP with the high word of the userspace ESP while
332
* compensating for the offset by changing to the ESPFIX segment with
333
* a base address that matches for the difference.
334
*/
335
mov %esp, %edx /* load kernel esp */
336
mov PT_OLDESP(%esp), %eax /* load userspace esp */
337
mov %dx, %ax /* eax: new kernel esp */
338
sub %eax, %edx /* offset (low word is 0) */
339
shr $16, %edx
340
mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
341
mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
342
pushl $__ESPFIX_SS
343
pushl %eax /* new kernel esp */
344
/*
345
* Disable interrupts, but do not irqtrace this section: we
346
* will soon execute iret and the tracer was already set to
347
* the irqstate after the IRET:
348
*/
349
cli
350
lss (%esp), %esp /* switch to espfix segment */
351
.Lend_\@:
352
#endif /* CONFIG_X86_ESPFIX32 */
353
.endm
354
355
/*
356
* Called with pt_regs fully populated and kernel segments loaded,
357
* so we can access PER_CPU and use the integer registers.
358
*
359
* We need to be very careful here with the %esp switch, because an NMI
360
* can happen everywhere. If the NMI handler finds itself on the
361
* entry-stack, it will overwrite the task-stack and everything we
362
* copied there. So allocate the stack-frame on the task-stack and
363
* switch to it before we do any copying.
364
*/
365
366
.macro SWITCH_TO_KERNEL_STACK
367
368
BUG_IF_WRONG_CR3
369
370
SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
371
372
/*
373
* %eax now contains the entry cr3 and we carry it forward in
374
* that register for the time this macro runs
375
*/
376
377
/* Are we on the entry stack? Bail out if not! */
378
movl PER_CPU_VAR(cpu_entry_area), %ecx
379
addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
380
subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
381
cmpl $SIZEOF_entry_stack, %ecx
382
jae .Lend_\@
383
384
/* Load stack pointer into %esi and %edi */
385
movl %esp, %esi
386
movl %esi, %edi
387
388
/* Move %edi to the top of the entry stack */
389
andl $(MASK_entry_stack), %edi
390
addl $(SIZEOF_entry_stack), %edi
391
392
/* Load top of task-stack into %edi */
393
movl TSS_entry2task_stack(%edi), %edi
394
395
/* Special case - entry from kernel mode via entry stack */
396
#ifdef CONFIG_VM86
397
movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
398
movb PT_CS(%esp), %cl
399
andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
400
#else
401
movl PT_CS(%esp), %ecx
402
andl $SEGMENT_RPL_MASK, %ecx
403
#endif
404
cmpl $USER_RPL, %ecx
405
jb .Lentry_from_kernel_\@
406
407
/* Bytes to copy */
408
movl $PTREGS_SIZE, %ecx
409
410
#ifdef CONFIG_VM86
411
testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
412
jz .Lcopy_pt_regs_\@
413
414
/*
415
* Stack-frame contains 4 additional segment registers when
416
* coming from VM86 mode
417
*/
418
addl $(4 * 4), %ecx
419
420
#endif
421
.Lcopy_pt_regs_\@:
422
423
/* Allocate frame on task-stack */
424
subl %ecx, %edi
425
426
/* Switch to task-stack */
427
movl %edi, %esp
428
429
/*
430
* We are now on the task-stack and can safely copy over the
431
* stack-frame
432
*/
433
shrl $2, %ecx
434
cld
435
rep movsl
436
437
jmp .Lend_\@
438
439
.Lentry_from_kernel_\@:
440
441
/*
442
* This handles the case when we enter the kernel from
443
* kernel-mode and %esp points to the entry-stack. When this
444
* happens we need to switch to the task-stack to run C code,
445
* but switch back to the entry-stack again when we approach
446
* iret and return to the interrupted code-path. This usually
447
* happens when we hit an exception while restoring user-space
448
* segment registers on the way back to user-space or when the
449
* sysenter handler runs with eflags.tf set.
450
*
451
* When we switch to the task-stack here, we can't trust the
452
* contents of the entry-stack anymore, as the exception handler
453
* might be scheduled out or moved to another CPU. Therefore we
454
* copy the complete entry-stack to the task-stack and set a
455
* marker in the iret-frame (bit 31 of the CS dword) to detect
456
* what we've done on the iret path.
457
*
458
* On the iret path we copy everything back and switch to the
459
* entry-stack, so that the interrupted kernel code-path
460
* continues on the same stack it was interrupted with.
461
*
462
* Be aware that an NMI can happen anytime in this code.
463
*
464
* %esi: Entry-Stack pointer (same as %esp)
465
* %edi: Top of the task stack
466
* %eax: CR3 on kernel entry
467
*/
468
469
/* Calculate number of bytes on the entry stack in %ecx */
470
movl %esi, %ecx
471
472
/* %ecx to the top of entry-stack */
473
andl $(MASK_entry_stack), %ecx
474
addl $(SIZEOF_entry_stack), %ecx
475
476
/* Number of bytes on the entry stack to %ecx */
477
sub %esi, %ecx
478
479
/* Mark stackframe as coming from entry stack */
480
orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
481
482
/*
483
* Test the cr3 used to enter the kernel and add a marker
484
* so that we can switch back to it before iret.
485
*/
486
testl $PTI_SWITCH_MASK, %eax
487
jz .Lcopy_pt_regs_\@
488
orl $CS_FROM_USER_CR3, PT_CS(%esp)
489
490
/*
491
* %esi and %edi are unchanged, %ecx contains the number of
492
* bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
493
* the stack-frame on task-stack and copy everything over
494
*/
495
jmp .Lcopy_pt_regs_\@
496
497
.Lend_\@:
498
.endm
499
500
/*
501
* Switch back from the kernel stack to the entry stack.
502
*
503
* The %esp register must point to pt_regs on the task stack. It will
504
* first calculate the size of the stack-frame to copy, depending on
505
* whether we return to VM86 mode or not. With that it uses 'rep movsl'
506
* to copy the contents of the stack over to the entry stack.
507
*
508
* We must be very careful here, as we can't trust the contents of the
509
* task-stack once we switched to the entry-stack. When an NMI happens
510
* while on the entry-stack, the NMI handler will switch back to the top
511
* of the task stack, overwriting our stack-frame we are about to copy.
512
* Therefore we switch the stack only after everything is copied over.
513
*/
514
.macro SWITCH_TO_ENTRY_STACK
515
516
/* Bytes to copy */
517
movl $PTREGS_SIZE, %ecx
518
519
#ifdef CONFIG_VM86
520
testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
521
jz .Lcopy_pt_regs_\@
522
523
/* Additional 4 registers to copy when returning to VM86 mode */
524
addl $(4 * 4), %ecx
525
526
.Lcopy_pt_regs_\@:
527
#endif
528
529
/* Initialize source and destination for movsl */
530
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
531
subl %ecx, %edi
532
movl %esp, %esi
533
534
/* Save future stack pointer in %ebx */
535
movl %edi, %ebx
536
537
/* Copy over the stack-frame */
538
shrl $2, %ecx
539
cld
540
rep movsl
541
542
/*
543
* Switch to entry-stack - needs to happen after everything is
544
* copied because the NMI handler will overwrite the task-stack
545
* when on entry-stack
546
*/
547
movl %ebx, %esp
548
549
.Lend_\@:
550
.endm
551
552
/*
553
* This macro handles the case when we return to kernel-mode on the iret
554
* path and have to switch back to the entry stack and/or user-cr3
555
*
556
* See the comments below the .Lentry_from_kernel_\@ label in the
557
* SWITCH_TO_KERNEL_STACK macro for more details.
558
*/
559
.macro PARANOID_EXIT_TO_KERNEL_MODE
560
561
/*
562
* Test if we entered the kernel with the entry-stack. Most
563
* likely we did not, because this code only runs on the
564
* return-to-kernel path.
565
*/
566
testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
567
jz .Lend_\@
568
569
/* Unlikely slow-path */
570
571
/* Clear marker from stack-frame */
572
andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
573
574
/* Copy the remaining task-stack contents to entry-stack */
575
movl %esp, %esi
576
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
577
578
/* Bytes on the task-stack to ecx */
579
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
580
subl %esi, %ecx
581
582
/* Allocate stack-frame on entry-stack */
583
subl %ecx, %edi
584
585
/*
586
* Save future stack-pointer, we must not switch until the
587
* copy is done, otherwise the NMI handler could destroy the
588
* contents of the task-stack we are about to copy.
589
*/
590
movl %edi, %ebx
591
592
/* Do the copy */
593
shrl $2, %ecx
594
cld
595
rep movsl
596
597
/* Safe to switch to entry-stack now */
598
movl %ebx, %esp
599
600
/*
601
* We came from entry-stack and need to check if we also need to
602
* switch back to user cr3.
603
*/
604
testl $CS_FROM_USER_CR3, PT_CS(%esp)
605
jz .Lend_\@
606
607
/* Clear marker from stack-frame */
608
andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
609
610
SWITCH_TO_USER_CR3 scratch_reg=%eax
611
612
.Lend_\@:
613
.endm
614
615
/**
616
* idtentry - Macro to generate entry stubs for simple IDT entries
617
* @vector: Vector number
618
* @asmsym: ASM symbol for the entry point
619
* @cfunc: C function to be called
620
* @has_error_code: Hardware pushed error code on stack
621
*/
622
.macro idtentry vector asmsym cfunc has_error_code:req
623
SYM_CODE_START(\asmsym)
624
ASM_CLAC
625
cld
626
627
.if \has_error_code == 0
628
pushl $0 /* Clear the error code */
629
.endif
630
631
/* Push the C-function address into the GS slot */
632
pushl $\cfunc
633
/* Invoke the common exception entry */
634
jmp handle_exception
635
SYM_CODE_END(\asmsym)
636
.endm
637
638
.macro idtentry_irq vector cfunc
639
.p2align CONFIG_X86_L1_CACHE_SHIFT
640
SYM_CODE_START_LOCAL(asm_\cfunc)
641
ASM_CLAC
642
SAVE_ALL switch_stacks=1
643
ENCODE_FRAME_POINTER
644
movl %esp, %eax
645
movl PT_ORIG_EAX(%esp), %edx /* get the vector from stack */
646
movl $-1, PT_ORIG_EAX(%esp) /* no syscall to restart */
647
call \cfunc
648
jmp handle_exception_return
649
SYM_CODE_END(asm_\cfunc)
650
.endm
651
652
/*
653
* Include the defines which emit the idt entries which are shared
654
* shared between 32 and 64 bit and emit the __irqentry_text_* markers
655
* so the stacktrace boundary checks work.
656
*/
657
.align 16
658
.globl __irqentry_text_start
659
__irqentry_text_start:
660
661
#include <asm/idtentry.h>
662
663
.align 16
664
.globl __irqentry_text_end
665
__irqentry_text_end:
666
667
/*
668
* %eax: prev task
669
* %edx: next task
670
*/
671
.pushsection .text, "ax"
672
SYM_CODE_START(__switch_to_asm)
673
/*
674
* Save callee-saved registers
675
* This must match the order in struct inactive_task_frame
676
*/
677
pushl %ebp
678
pushl %ebx
679
pushl %edi
680
pushl %esi
681
/*
682
* Flags are saved to prevent AC leakage. This could go
683
* away if objtool would have 32bit support to verify
684
* the STAC/CLAC correctness.
685
*/
686
pushfl
687
688
/* switch stack */
689
movl %esp, TASK_threadsp(%eax)
690
movl TASK_threadsp(%edx), %esp
691
692
#ifdef CONFIG_STACKPROTECTOR
693
movl TASK_stack_canary(%edx), %ebx
694
movl %ebx, PER_CPU_VAR(__stack_chk_guard)
695
#endif
696
697
/*
698
* When switching from a shallower to a deeper call stack
699
* the RSB may either underflow or use entries populated
700
* with userspace addresses. On CPUs where those concerns
701
* exist, overwrite the RSB with entries which capture
702
* speculative execution to prevent attack.
703
*/
704
FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
705
706
/* Restore flags or the incoming task to restore AC state. */
707
popfl
708
/* restore callee-saved registers */
709
popl %esi
710
popl %edi
711
popl %ebx
712
popl %ebp
713
714
jmp __switch_to
715
SYM_CODE_END(__switch_to_asm)
716
.popsection
717
718
/*
719
* A newly forked process directly context switches into this address.
720
*
721
* eax: prev task we switched from
722
* ebx: kernel thread func (NULL for user thread)
723
* edi: kernel thread arg
724
*/
725
.pushsection .text, "ax"
726
SYM_CODE_START(ret_from_fork_asm)
727
movl %esp, %edx /* regs */
728
729
/* return address for the stack unwinder */
730
pushl $.Lsyscall_32_done
731
732
FRAME_BEGIN
733
/* prev already in EAX */
734
movl %ebx, %ecx /* fn */
735
pushl %edi /* fn_arg */
736
call ret_from_fork
737
addl $4, %esp
738
FRAME_END
739
740
RET
741
SYM_CODE_END(ret_from_fork_asm)
742
.popsection
743
744
SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
745
/*
746
* All code from here through __end_SYSENTER_singlestep_region is subject
747
* to being single-stepped if a user program sets TF and executes SYSENTER.
748
* There is absolutely nothing that we can do to prevent this from happening
749
* (thanks Intel!). To keep our handling of this situation as simple as
750
* possible, we handle TF just like AC and NT, except that our #DB handler
751
* will ignore all of the single-step traps generated in this range.
752
*/
753
754
/*
755
* 32-bit SYSENTER entry.
756
*
757
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
758
* if X86_FEATURE_SEP is available. This is the preferred system call
759
* entry on 32-bit systems.
760
*
761
* The SYSENTER instruction, in principle, should *only* occur in the
762
* vDSO. In practice, a small number of Android devices were shipped
763
* with a copy of Bionic that inlined a SYSENTER instruction. This
764
* never happened in any of Google's Bionic versions -- it only happened
765
* in a narrow range of Intel-provided versions.
766
*
767
* SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
768
* IF and VM in RFLAGS are cleared (IOW: interrupts are off).
769
* SYSENTER does not save anything on the stack,
770
* and does not save old EIP (!!!), ESP, or EFLAGS.
771
*
772
* To avoid losing track of EFLAGS.VM (and thus potentially corrupting
773
* user and/or vm86 state), we explicitly disable the SYSENTER
774
* instruction in vm86 mode by reprogramming the MSRs.
775
*
776
* Arguments:
777
* eax system call number
778
* ebx arg1
779
* ecx arg2
780
* edx arg3
781
* esi arg4
782
* edi arg5
783
* ebp user stack
784
* 0(%ebp) arg6
785
*/
786
SYM_FUNC_START(entry_SYSENTER_32)
787
/*
788
* On entry-stack with all userspace-regs live - save and
789
* restore eflags and %eax to use it as scratch-reg for the cr3
790
* switch.
791
*/
792
pushfl
793
pushl %eax
794
BUG_IF_WRONG_CR3 no_user_check=1
795
SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
796
popl %eax
797
popfl
798
799
/* Stack empty again, switch to task stack */
800
movl TSS_entry2task_stack(%esp), %esp
801
802
.Lsysenter_past_esp:
803
pushl $__USER_DS /* pt_regs->ss */
804
pushl $0 /* pt_regs->sp (placeholder) */
805
pushfl /* pt_regs->flags (except IF = 0) */
806
pushl $__USER_CS /* pt_regs->cs */
807
pushl $0 /* pt_regs->ip = 0 (placeholder) */
808
pushl %eax /* pt_regs->orig_ax */
809
SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
810
811
/*
812
* SYSENTER doesn't filter flags, so we need to clear NT, AC
813
* and TF ourselves. To save a few cycles, we can check whether
814
* either was set instead of doing an unconditional popfq.
815
* This needs to happen before enabling interrupts so that
816
* we don't get preempted with NT set.
817
*
818
* If TF is set, we will single-step all the way to here -- do_debug
819
* will ignore all the traps. (Yes, this is slow, but so is
820
* single-stepping in general. This allows us to avoid having
821
* a more complicated code to handle the case where a user program
822
* forces us to single-step through the SYSENTER entry code.)
823
*
824
* NB.: .Lsysenter_fix_flags is a label with the code under it moved
825
* out-of-line as an optimization: NT is unlikely to be set in the
826
* majority of the cases and instead of polluting the I$ unnecessarily,
827
* we're keeping that code behind a branch which will predict as
828
* not-taken and therefore its instructions won't be fetched.
829
*/
830
testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
831
jnz .Lsysenter_fix_flags
832
.Lsysenter_flags_fixed:
833
834
movl %esp, %eax
835
call do_SYSENTER_32
836
testb %al, %al
837
jz .Lsyscall_32_done
838
839
STACKLEAK_ERASE
840
841
/* Opportunistic SYSEXIT */
842
843
/*
844
* Setup entry stack - we keep the pointer in %eax and do the
845
* switch after almost all user-state is restored.
846
*/
847
848
/* Load entry stack pointer and allocate frame for eflags/eax */
849
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
850
subl $(2*4), %eax
851
852
/* Copy eflags and eax to entry stack */
853
movl PT_EFLAGS(%esp), %edi
854
movl PT_EAX(%esp), %esi
855
movl %edi, (%eax)
856
movl %esi, 4(%eax)
857
858
/* Restore user registers and segments */
859
movl PT_EIP(%esp), %edx /* pt_regs->ip */
860
movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
861
1: mov PT_FS(%esp), %fs
862
863
popl %ebx /* pt_regs->bx */
864
addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
865
popl %esi /* pt_regs->si */
866
popl %edi /* pt_regs->di */
867
popl %ebp /* pt_regs->bp */
868
869
/* Switch to entry stack */
870
movl %eax, %esp
871
872
/* Now ready to switch the cr3 */
873
SWITCH_TO_USER_CR3 scratch_reg=%eax
874
/* Clobbers ZF */
875
CLEAR_CPU_BUFFERS
876
877
/*
878
* Restore all flags except IF. (We restore IF separately because
879
* STI gives a one-instruction window in which we won't be interrupted,
880
* whereas POPF does not.)
881
*/
882
btrl $X86_EFLAGS_IF_BIT, (%esp)
883
BUG_IF_WRONG_CR3 no_user_check=1
884
popfl
885
popl %eax
886
887
/*
888
* Return back to the vDSO, which will pop ecx and edx.
889
* Don't bother with DS and ES (they already contain __USER_DS).
890
*/
891
sti
892
sysexit
893
894
2: movl $0, PT_FS(%esp)
895
jmp 1b
896
_ASM_EXTABLE(1b, 2b)
897
898
.Lsysenter_fix_flags:
899
pushl $X86_EFLAGS_FIXED
900
popfl
901
jmp .Lsysenter_flags_fixed
902
SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
903
SYM_FUNC_END(entry_SYSENTER_32)
904
905
/*
906
* 32-bit legacy system call entry.
907
*
908
* 32-bit x86 Linux system calls traditionally used the INT $0x80
909
* instruction. INT $0x80 lands here.
910
*
911
* This entry point can be used by any 32-bit perform system calls.
912
* Instances of INT $0x80 can be found inline in various programs and
913
* libraries. It is also used by the vDSO's __kernel_vsyscall
914
* fallback for hardware that doesn't support a faster entry method.
915
* Restarted 32-bit system calls also fall back to INT $0x80
916
* regardless of what instruction was originally used to do the system
917
* call. (64-bit programs can use INT $0x80 as well, but they can
918
* only run on 64-bit kernels and therefore land in
919
* entry_INT80_compat.)
920
*
921
* This is considered a slow path. It is not used by most libc
922
* implementations on modern hardware except during process startup.
923
*
924
* Arguments:
925
* eax system call number
926
* ebx arg1
927
* ecx arg2
928
* edx arg3
929
* esi arg4
930
* edi arg5
931
* ebp arg6
932
*/
933
SYM_FUNC_START(entry_INT80_32)
934
ASM_CLAC
935
pushl %eax /* pt_regs->orig_ax */
936
937
SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
938
939
movl %esp, %eax
940
call do_int80_syscall_32
941
.Lsyscall_32_done:
942
STACKLEAK_ERASE
943
944
restore_all_switch_stack:
945
SWITCH_TO_ENTRY_STACK
946
CHECK_AND_APPLY_ESPFIX
947
948
/* Switch back to user CR3 */
949
SWITCH_TO_USER_CR3 scratch_reg=%eax
950
951
BUG_IF_WRONG_CR3
952
953
/* Restore user state */
954
RESTORE_REGS pop=4 # skip orig_eax/error_code
955
CLEAR_CPU_BUFFERS
956
.Lirq_return:
957
/*
958
* ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
959
* when returning from IPI handler and when returning from
960
* scheduler to user-space.
961
*/
962
iret
963
964
.Lasm_iret_error:
965
pushl $0 # no error code
966
pushl $iret_error
967
968
#ifdef CONFIG_DEBUG_ENTRY
969
/*
970
* The stack-frame here is the one that iret faulted on, so its a
971
* return-to-user frame. We are on kernel-cr3 because we come here from
972
* the fixup code. This confuses the CR3 checker, so switch to user-cr3
973
* as the checker expects it.
974
*/
975
pushl %eax
976
SWITCH_TO_USER_CR3 scratch_reg=%eax
977
popl %eax
978
#endif
979
980
jmp handle_exception
981
982
_ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
983
SYM_FUNC_END(entry_INT80_32)
984
985
.macro FIXUP_ESPFIX_STACK
986
/*
987
* Switch back for ESPFIX stack to the normal zerobased stack
988
*
989
* We can't call C functions using the ESPFIX stack. This code reads
990
* the high word of the segment base from the GDT and swiches to the
991
* normal stack and adjusts ESP with the matching offset.
992
*
993
* We might be on user CR3 here, so percpu data is not mapped and we can't
994
* access the GDT through the percpu segment. Instead, use SGDT to find
995
* the cpu_entry_area alias of the GDT.
996
*/
997
#ifdef CONFIG_X86_ESPFIX32
998
/* fixup the stack */
999
pushl %ecx
1000
subl $2*4, %esp
1001
sgdt (%esp)
1002
movl 2(%esp), %ecx /* GDT address */
1003
/*
1004
* Careful: ECX is a linear pointer, so we need to force base
1005
* zero. %cs is the only known-linear segment we have right now.
1006
*/
1007
mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */
1008
mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */
1009
shl $16, %eax
1010
addl $2*4, %esp
1011
popl %ecx
1012
addl %esp, %eax /* the adjusted stack pointer */
1013
pushl $__KERNEL_DS
1014
pushl %eax
1015
lss (%esp), %esp /* switch to the normal stack segment */
1016
#endif
1017
.endm
1018
1019
.macro UNWIND_ESPFIX_STACK
1020
/* It's safe to clobber %eax, all other regs need to be preserved */
1021
#ifdef CONFIG_X86_ESPFIX32
1022
movl %ss, %eax
1023
/* see if on espfix stack */
1024
cmpw $__ESPFIX_SS, %ax
1025
jne .Lno_fixup_\@
1026
/* switch to normal stack */
1027
FIXUP_ESPFIX_STACK
1028
.Lno_fixup_\@:
1029
#endif
1030
.endm
1031
1032
SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1033
/* the function address is in %gs's slot on the stack */
1034
SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1035
ENCODE_FRAME_POINTER
1036
1037
movl PT_GS(%esp), %edi # get the function address
1038
1039
/* fixup orig %eax */
1040
movl PT_ORIG_EAX(%esp), %edx # get the error code
1041
movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1042
1043
movl %esp, %eax # pt_regs pointer
1044
CALL_NOSPEC edi
1045
1046
handle_exception_return:
1047
#ifdef CONFIG_VM86
1048
movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
1049
movb PT_CS(%esp), %al
1050
andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1051
#else
1052
/*
1053
* We can be coming here from child spawned by kernel_thread().
1054
*/
1055
movl PT_CS(%esp), %eax
1056
andl $SEGMENT_RPL_MASK, %eax
1057
#endif
1058
cmpl $USER_RPL, %eax # returning to v8086 or userspace ?
1059
jnb ret_to_user
1060
1061
PARANOID_EXIT_TO_KERNEL_MODE
1062
BUG_IF_WRONG_CR3
1063
RESTORE_REGS 4
1064
jmp .Lirq_return
1065
1066
ret_to_user:
1067
movl %esp, %eax
1068
jmp restore_all_switch_stack
1069
SYM_CODE_END(handle_exception)
1070
1071
SYM_CODE_START(asm_exc_double_fault)
1072
1:
1073
/*
1074
* This is a task gate handler, not an interrupt gate handler.
1075
* The error code is on the stack, but the stack is otherwise
1076
* empty. Interrupts are off. Our state is sane with the following
1077
* exceptions:
1078
*
1079
* - CR0.TS is set. "TS" literally means "task switched".
1080
* - EFLAGS.NT is set because we're a "nested task".
1081
* - The doublefault TSS has back_link set and has been marked busy.
1082
* - TR points to the doublefault TSS and the normal TSS is busy.
1083
* - CR3 is the normal kernel PGD. This would be delightful, except
1084
* that the CPU didn't bother to save the old CR3 anywhere. This
1085
* would make it very awkward to return back to the context we came
1086
* from.
1087
*
1088
* The rest of EFLAGS is sanitized for us, so we don't need to
1089
* worry about AC or DF.
1090
*
1091
* Don't even bother popping the error code. It's always zero,
1092
* and ignoring it makes us a bit more robust against buggy
1093
* hypervisor task gate implementations.
1094
*
1095
* We will manually undo the task switch instead of doing a
1096
* task-switching IRET.
1097
*/
1098
1099
clts /* clear CR0.TS */
1100
pushl $X86_EFLAGS_FIXED
1101
popfl /* clear EFLAGS.NT */
1102
1103
call doublefault_shim
1104
1105
/* We don't support returning, so we have no IRET here. */
1106
1:
1107
hlt
1108
jmp 1b
1109
SYM_CODE_END(asm_exc_double_fault)
1110
1111
/*
1112
* NMI is doubly nasty. It can happen on the first instruction of
1113
* entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1114
* of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1115
* switched stacks. We handle both conditions by simply checking whether we
1116
* interrupted kernel code running on the SYSENTER stack.
1117
*/
1118
SYM_CODE_START(asm_exc_nmi)
1119
ASM_CLAC
1120
1121
#ifdef CONFIG_X86_ESPFIX32
1122
/*
1123
* ESPFIX_SS is only ever set on the return to user path
1124
* after we've switched to the entry stack.
1125
*/
1126
pushl %eax
1127
movl %ss, %eax
1128
cmpw $__ESPFIX_SS, %ax
1129
popl %eax
1130
je .Lnmi_espfix_stack
1131
#endif
1132
1133
pushl %eax # pt_regs->orig_ax
1134
SAVE_ALL_NMI cr3_reg=%edi
1135
ENCODE_FRAME_POINTER
1136
xorl %edx, %edx # zero error code
1137
movl %esp, %eax # pt_regs pointer
1138
1139
/* Are we currently on the SYSENTER stack? */
1140
movl PER_CPU_VAR(cpu_entry_area), %ecx
1141
addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1142
subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
1143
cmpl $SIZEOF_entry_stack, %ecx
1144
jb .Lnmi_from_sysenter_stack
1145
1146
/* Not on SYSENTER stack. */
1147
call exc_nmi
1148
jmp .Lnmi_return
1149
1150
.Lnmi_from_sysenter_stack:
1151
/*
1152
* We're on the SYSENTER stack. Switch off. No one (not even debug)
1153
* is using the thread stack right now, so it's safe for us to use it.
1154
*/
1155
movl %esp, %ebx
1156
movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
1157
call exc_nmi
1158
movl %ebx, %esp
1159
1160
.Lnmi_return:
1161
#ifdef CONFIG_X86_ESPFIX32
1162
testl $CS_FROM_ESPFIX, PT_CS(%esp)
1163
jnz .Lnmi_from_espfix
1164
#endif
1165
1166
CHECK_AND_APPLY_ESPFIX
1167
RESTORE_ALL_NMI cr3_reg=%edi pop=4
1168
CLEAR_CPU_BUFFERS
1169
jmp .Lirq_return
1170
1171
#ifdef CONFIG_X86_ESPFIX32
1172
.Lnmi_espfix_stack:
1173
/*
1174
* Create the pointer to LSS back
1175
*/
1176
pushl %ss
1177
pushl %esp
1178
addl $4, (%esp)
1179
1180
/* Copy the (short) IRET frame */
1181
pushl 4*4(%esp) # flags
1182
pushl 4*4(%esp) # cs
1183
pushl 4*4(%esp) # ip
1184
1185
pushl %eax # orig_ax
1186
1187
SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1188
ENCODE_FRAME_POINTER
1189
1190
/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1191
xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1192
1193
xorl %edx, %edx # zero error code
1194
movl %esp, %eax # pt_regs pointer
1195
jmp .Lnmi_from_sysenter_stack
1196
1197
.Lnmi_from_espfix:
1198
RESTORE_ALL_NMI cr3_reg=%edi
1199
/*
1200
* Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1201
* fix up the gap and long frame:
1202
*
1203
* 3 - original frame (exception)
1204
* 2 - ESPFIX block (above)
1205
* 6 - gap (FIXUP_FRAME)
1206
* 5 - long frame (FIXUP_FRAME)
1207
* 1 - orig_ax
1208
*/
1209
lss (1+5+6)*4(%esp), %esp # back to espfix stack
1210
CLEAR_CPU_BUFFERS
1211
jmp .Lirq_return
1212
#endif
1213
SYM_CODE_END(asm_exc_nmi)
1214
1215
.pushsection .text, "ax"
1216
SYM_CODE_START(rewind_stack_and_make_dead)
1217
/* Prevent any naive code from trying to unwind to our caller. */
1218
xorl %ebp, %ebp
1219
1220
movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
1221
leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1222
1223
call make_task_dead
1224
1: jmp 1b
1225
SYM_CODE_END(rewind_stack_and_make_dead)
1226
.popsection
1227
1228