Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/entry/entry_64.S
26424 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* linux/arch/x86_64/entry.S
4
*
5
* Copyright (C) 1991, 1992 Linus Torvalds
6
* Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7
* Copyright (C) 2000 Pavel Machek <[email protected]>
8
*
9
* entry.S contains the system-call and fault low-level handling routines.
10
*
11
* Some of this is documented in Documentation/arch/x86/entry_64.rst
12
*
13
* A note on terminology:
14
* - iret frame: Architecture defined interrupt frame from SS to RIP
15
* at the top of the kernel process stack.
16
*
17
* Some macro usage:
18
* - SYM_FUNC_START/END:Define functions in the symbol table.
19
* - idtentry: Define exception entry points.
20
*/
21
#include <linux/export.h>
22
#include <linux/linkage.h>
23
#include <asm/segment.h>
24
#include <asm/cache.h>
25
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
27
#include <asm/msr.h>
28
#include <asm/unistd.h>
29
#include <asm/thread_info.h>
30
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/frame.h>
39
#include <asm/trapnr.h>
40
#include <asm/nospec-branch.h>
41
#include <asm/fsgsbase.h>
42
#include <linux/err.h>
43
44
#include "calling.h"
45
46
.code64
47
.section .entry.text, "ax"
48
49
/*
50
* 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51
*
52
* This is the only entry point used for 64-bit system calls. The
53
* hardware interface is reasonably well designed and the register to
54
* argument mapping Linux uses fits well with the registers that are
55
* available when SYSCALL is used.
56
*
57
* SYSCALL instructions can be found inlined in libc implementations as
58
* well as some other programs and libraries. There are also a handful
59
* of SYSCALL instructions in the vDSO used, for example, as a
60
* clock_gettimeofday fallback.
61
*
62
* 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63
* then loads new ss, cs, and rip from previously programmed MSRs.
64
* rflags gets masked by a value from another MSR (so CLD and CLAC
65
* are not needed). SYSCALL does not save anything on the stack
66
* and does not change rsp.
67
*
68
* Registers on entry:
69
* rax system call number
70
* rcx return address
71
* r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
72
* rdi arg0
73
* rsi arg1
74
* rdx arg2
75
* r10 arg3 (needs to be moved to rcx to conform to C ABI)
76
* r8 arg4
77
* r9 arg5
78
* (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79
*
80
* Only called from user space.
81
*
82
* When user can change pt_regs->foo always force IRET. That is because
83
* it deals with uncanonical addresses better. SYSRET has trouble
84
* with them due to bugs in both AMD and Intel CPUs.
85
*/
86
87
SYM_CODE_START(entry_SYSCALL_64)
88
UNWIND_HINT_ENTRY
89
ENDBR
90
91
swapgs
92
/* tss.sp2 is scratch space. */
93
movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94
SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
96
97
SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98
ANNOTATE_NOENDBR
99
100
/* Construct struct pt_regs on stack */
101
pushq $__USER_DS /* pt_regs->ss */
102
pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
103
pushq %r11 /* pt_regs->flags */
104
pushq $__USER_CS /* pt_regs->cs */
105
pushq %rcx /* pt_regs->ip */
106
SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107
pushq %rax /* pt_regs->orig_ax */
108
109
PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111
/* IRQs are off. */
112
movq %rsp, %rdi
113
/* Sign extend the lower 32bit as syscall numbers are treated as int */
114
movslq %eax, %rsi
115
116
/* clobbers %rax, make sure it is after saving the syscall nr */
117
IBRS_ENTER
118
UNTRAIN_RET
119
CLEAR_BRANCH_HISTORY
120
121
call do_syscall_64 /* returns with IRQs disabled */
122
123
/*
124
* Try to use SYSRET instead of IRET if we're returning to
125
* a completely clean 64-bit userspace context. If we're not,
126
* go to the slow exit path.
127
* In the Xen PV case we must use iret anyway.
128
*/
129
130
ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
131
"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
132
133
/*
134
* We win! This label is here just for ease of understanding
135
* perf profiles. Nothing jumps here.
136
*/
137
syscall_return_via_sysret:
138
IBRS_EXIT
139
POP_REGS pop_rdi=0
140
141
/*
142
* Now all regs are restored except RSP and RDI.
143
* Save old stack pointer and switch to trampoline stack.
144
*/
145
movq %rsp, %rdi
146
movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
147
UNWIND_HINT_END_OF_STACK
148
149
pushq RSP-RDI(%rdi) /* RSP */
150
pushq (%rdi) /* RDI */
151
152
/*
153
* We are on the trampoline stack. All regs except RDI are live.
154
* We can do future final exit work right here.
155
*/
156
STACKLEAK_ERASE_NOCLOBBER
157
158
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
159
160
popq %rdi
161
popq %rsp
162
SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
163
ANNOTATE_NOENDBR
164
swapgs
165
CLEAR_CPU_BUFFERS
166
sysretq
167
SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
168
ANNOTATE_NOENDBR
169
int3
170
SYM_CODE_END(entry_SYSCALL_64)
171
172
/*
173
* %rdi: prev task
174
* %rsi: next task
175
*/
176
.pushsection .text, "ax"
177
SYM_FUNC_START(__switch_to_asm)
178
ANNOTATE_NOENDBR
179
/*
180
* Save callee-saved registers
181
* This must match the order in inactive_task_frame
182
*/
183
pushq %rbp
184
pushq %rbx
185
pushq %r12
186
pushq %r13
187
pushq %r14
188
pushq %r15
189
190
/* switch stack */
191
movq %rsp, TASK_threadsp(%rdi)
192
movq TASK_threadsp(%rsi), %rsp
193
194
#ifdef CONFIG_STACKPROTECTOR
195
movq TASK_stack_canary(%rsi), %rbx
196
movq %rbx, PER_CPU_VAR(__stack_chk_guard)
197
#endif
198
199
/*
200
* When switching from a shallower to a deeper call stack
201
* the RSB may either underflow or use entries populated
202
* with userspace addresses. On CPUs where those concerns
203
* exist, overwrite the RSB with entries which capture
204
* speculative execution to prevent attack.
205
*/
206
FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
207
208
/* restore callee-saved registers */
209
popq %r15
210
popq %r14
211
popq %r13
212
popq %r12
213
popq %rbx
214
popq %rbp
215
216
jmp __switch_to
217
SYM_FUNC_END(__switch_to_asm)
218
.popsection
219
220
/*
221
* A newly forked process directly context switches into this address.
222
*
223
* rax: prev task we switched from
224
* rbx: kernel thread func (NULL for user thread)
225
* r12: kernel thread arg
226
*/
227
.pushsection .text, "ax"
228
SYM_CODE_START(ret_from_fork_asm)
229
/*
230
* This is the start of the kernel stack; even through there's a
231
* register set at the top, the regset isn't necessarily coherent
232
* (consider kthreads) and one cannot unwind further.
233
*
234
* This ensures stack unwinds of kernel threads terminate in a known
235
* good state.
236
*/
237
UNWIND_HINT_END_OF_STACK
238
ANNOTATE_NOENDBR // copy_thread
239
CALL_DEPTH_ACCOUNT
240
241
movq %rax, %rdi /* prev */
242
movq %rsp, %rsi /* regs */
243
movq %rbx, %rdx /* fn */
244
movq %r12, %rcx /* fn_arg */
245
call ret_from_fork
246
247
/*
248
* Set the stack state to what is expected for the target function
249
* -- at this point the register set should be a valid user set
250
* and unwind should work normally.
251
*/
252
UNWIND_HINT_REGS
253
254
#ifdef CONFIG_X86_FRED
255
ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \
256
"jmp asm_fred_exit_user", X86_FEATURE_FRED
257
#else
258
jmp swapgs_restore_regs_and_return_to_usermode
259
#endif
260
SYM_CODE_END(ret_from_fork_asm)
261
.popsection
262
263
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
264
#ifdef CONFIG_DEBUG_ENTRY
265
pushq %rax
266
SAVE_FLAGS
267
testl $X86_EFLAGS_IF, %eax
268
jz .Lokay_\@
269
ud2
270
.Lokay_\@:
271
popq %rax
272
#endif
273
.endm
274
275
SYM_CODE_START(xen_error_entry)
276
ANNOTATE_NOENDBR
277
UNWIND_HINT_FUNC
278
PUSH_AND_CLEAR_REGS save_ret=1
279
ENCODE_FRAME_POINTER 8
280
UNTRAIN_RET_FROM_CALL
281
RET
282
SYM_CODE_END(xen_error_entry)
283
284
/**
285
* idtentry_body - Macro to emit code calling the C function
286
* @cfunc: C function to be called
287
* @has_error_code: Hardware pushed error code on stack
288
*/
289
.macro idtentry_body cfunc has_error_code:req
290
291
/*
292
* Call error_entry() and switch to the task stack if from userspace.
293
*
294
* When in XENPV, it is already in the task stack, and it can't fault
295
* for native_iret() nor native_load_gs_index() since XENPV uses its
296
* own pvops for IRET and load_gs_index(). And it doesn't need to
297
* switch the CR3. So it can skip invoking error_entry().
298
*/
299
ALTERNATIVE "call error_entry; movq %rax, %rsp", \
300
"call xen_error_entry", X86_FEATURE_XENPV
301
302
ENCODE_FRAME_POINTER
303
UNWIND_HINT_REGS
304
305
movq %rsp, %rdi /* pt_regs pointer into 1st argument*/
306
307
.if \has_error_code == 1
308
movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
309
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
310
.endif
311
312
/* For some configurations \cfunc ends up being a noreturn. */
313
ANNOTATE_REACHABLE
314
call \cfunc
315
316
jmp error_return
317
.endm
318
319
/**
320
* idtentry - Macro to generate entry stubs for simple IDT entries
321
* @vector: Vector number
322
* @asmsym: ASM symbol for the entry point
323
* @cfunc: C function to be called
324
* @has_error_code: Hardware pushed error code on stack
325
*
326
* The macro emits code to set up the kernel context for straight forward
327
* and simple IDT entries. No IST stack, no paranoid entry checks.
328
*/
329
.macro idtentry vector asmsym cfunc has_error_code:req
330
SYM_CODE_START(\asmsym)
331
332
.if \vector == X86_TRAP_BP
333
/* #BP advances %rip to the next instruction */
334
UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
335
.else
336
UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
337
.endif
338
339
ENDBR
340
ASM_CLAC
341
cld
342
343
.if \has_error_code == 0
344
pushq $-1 /* ORIG_RAX: no syscall to restart */
345
.endif
346
347
.if \vector == X86_TRAP_BP
348
/*
349
* If coming from kernel space, create a 6-word gap to allow the
350
* int3 handler to emulate a call instruction.
351
*/
352
testb $3, CS-ORIG_RAX(%rsp)
353
jnz .Lfrom_usermode_no_gap_\@
354
.rept 6
355
pushq 5*8(%rsp)
356
.endr
357
UNWIND_HINT_IRET_REGS offset=8
358
.Lfrom_usermode_no_gap_\@:
359
.endif
360
361
idtentry_body \cfunc \has_error_code
362
363
_ASM_NOKPROBE(\asmsym)
364
SYM_CODE_END(\asmsym)
365
.endm
366
367
/*
368
* Interrupt entry/exit.
369
*
370
+ The interrupt stubs push (vector) onto the stack, which is the error_code
371
* position of idtentry exceptions, and jump to one of the two idtentry points
372
* (common/spurious).
373
*
374
* common_interrupt is a hotpath, align it to a cache line
375
*/
376
.macro idtentry_irq vector cfunc
377
.p2align CONFIG_X86_L1_CACHE_SHIFT
378
idtentry \vector asm_\cfunc \cfunc has_error_code=1
379
.endm
380
381
/**
382
* idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
383
* @vector: Vector number
384
* @asmsym: ASM symbol for the entry point
385
* @cfunc: C function to be called
386
*
387
* The macro emits code to set up the kernel context for #MC and #DB
388
*
389
* If the entry comes from user space it uses the normal entry path
390
* including the return to user space work and preemption checks on
391
* exit.
392
*
393
* If hits in kernel mode then it needs to go through the paranoid
394
* entry as the exception can hit any random state. No preemption
395
* check on exit to keep the paranoid path simple.
396
*/
397
.macro idtentry_mce_db vector asmsym cfunc
398
SYM_CODE_START(\asmsym)
399
UNWIND_HINT_IRET_ENTRY
400
ENDBR
401
ASM_CLAC
402
cld
403
404
pushq $-1 /* ORIG_RAX: no syscall to restart */
405
406
/*
407
* If the entry is from userspace, switch stacks and treat it as
408
* a normal entry.
409
*/
410
testb $3, CS-ORIG_RAX(%rsp)
411
jnz .Lfrom_usermode_switch_stack_\@
412
413
/* paranoid_entry returns GS information for paranoid_exit in EBX. */
414
call paranoid_entry
415
416
UNWIND_HINT_REGS
417
418
movq %rsp, %rdi /* pt_regs pointer */
419
420
call \cfunc
421
422
jmp paranoid_exit
423
424
/* Switch to the regular task stack and use the noist entry point */
425
.Lfrom_usermode_switch_stack_\@:
426
idtentry_body noist_\cfunc, has_error_code=0
427
428
_ASM_NOKPROBE(\asmsym)
429
SYM_CODE_END(\asmsym)
430
.endm
431
432
#ifdef CONFIG_AMD_MEM_ENCRYPT
433
/**
434
* idtentry_vc - Macro to generate entry stub for #VC
435
* @vector: Vector number
436
* @asmsym: ASM symbol for the entry point
437
* @cfunc: C function to be called
438
*
439
* The macro emits code to set up the kernel context for #VC. The #VC handler
440
* runs on an IST stack and needs to be able to cause nested #VC exceptions.
441
*
442
* To make this work the #VC entry code tries its best to pretend it doesn't use
443
* an IST stack by switching to the task stack if coming from user-space (which
444
* includes early SYSCALL entry path) or back to the stack in the IRET frame if
445
* entered from kernel-mode.
446
*
447
* If entered from kernel-mode the return stack is validated first, and if it is
448
* not safe to use (e.g. because it points to the entry stack) the #VC handler
449
* will switch to a fall-back stack (VC2) and call a special handler function.
450
*
451
* The macro is only used for one vector, but it is planned to be extended in
452
* the future for the #HV exception.
453
*/
454
.macro idtentry_vc vector asmsym cfunc
455
SYM_CODE_START(\asmsym)
456
UNWIND_HINT_IRET_ENTRY
457
ENDBR
458
ASM_CLAC
459
cld
460
461
/*
462
* If the entry is from userspace, switch stacks and treat it as
463
* a normal entry.
464
*/
465
testb $3, CS-ORIG_RAX(%rsp)
466
jnz .Lfrom_usermode_switch_stack_\@
467
468
/*
469
* paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
470
* EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
471
*/
472
call paranoid_entry
473
474
UNWIND_HINT_REGS
475
476
/*
477
* Switch off the IST stack to make it free for nested exceptions. The
478
* vc_switch_off_ist() function will switch back to the interrupted
479
* stack if it is safe to do so. If not it switches to the VC fall-back
480
* stack.
481
*/
482
movq %rsp, %rdi /* pt_regs pointer */
483
call vc_switch_off_ist
484
movq %rax, %rsp /* Switch to new stack */
485
486
ENCODE_FRAME_POINTER
487
UNWIND_HINT_REGS
488
489
/* Update pt_regs */
490
movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
491
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
492
493
movq %rsp, %rdi /* pt_regs pointer */
494
495
call kernel_\cfunc
496
497
/*
498
* No need to switch back to the IST stack. The current stack is either
499
* identical to the stack in the IRET frame or the VC fall-back stack,
500
* so it is definitely mapped even with PTI enabled.
501
*/
502
jmp paranoid_exit
503
504
/* Switch to the regular task stack */
505
.Lfrom_usermode_switch_stack_\@:
506
idtentry_body user_\cfunc, has_error_code=1
507
508
_ASM_NOKPROBE(\asmsym)
509
SYM_CODE_END(\asmsym)
510
.endm
511
#endif
512
513
/*
514
* Double fault entry. Straight paranoid. No checks from which context
515
* this comes because for the espfix induced #DF this would do the wrong
516
* thing.
517
*/
518
.macro idtentry_df vector asmsym cfunc
519
SYM_CODE_START(\asmsym)
520
UNWIND_HINT_IRET_ENTRY offset=8
521
ENDBR
522
ASM_CLAC
523
cld
524
525
/* paranoid_entry returns GS information for paranoid_exit in EBX. */
526
call paranoid_entry
527
UNWIND_HINT_REGS
528
529
movq %rsp, %rdi /* pt_regs pointer into first argument */
530
movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
531
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
532
533
/* For some configurations \cfunc ends up being a noreturn. */
534
ANNOTATE_REACHABLE
535
call \cfunc
536
537
jmp paranoid_exit
538
539
_ASM_NOKPROBE(\asmsym)
540
SYM_CODE_END(\asmsym)
541
.endm
542
543
/*
544
* Include the defines which emit the idt entries which are shared
545
* shared between 32 and 64 bit and emit the __irqentry_text_* markers
546
* so the stacktrace boundary checks work.
547
*/
548
__ALIGN
549
.globl __irqentry_text_start
550
__irqentry_text_start:
551
552
#include <asm/idtentry.h>
553
554
__ALIGN
555
.globl __irqentry_text_end
556
__irqentry_text_end:
557
ANNOTATE_NOENDBR
558
559
SYM_CODE_START_LOCAL(common_interrupt_return)
560
SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
561
IBRS_EXIT
562
#ifdef CONFIG_XEN_PV
563
ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
564
#endif
565
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
566
ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
567
#endif
568
569
STACKLEAK_ERASE
570
POP_REGS
571
add $8, %rsp /* orig_ax */
572
UNWIND_HINT_IRET_REGS
573
574
.Lswapgs_and_iret:
575
swapgs
576
CLEAR_CPU_BUFFERS
577
/* Assert that the IRET frame indicates user mode. */
578
testb $3, 8(%rsp)
579
jnz .Lnative_iret
580
ud2
581
582
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
583
.Lpti_restore_regs_and_return_to_usermode:
584
POP_REGS pop_rdi=0
585
586
/*
587
* The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
588
* Save old stack pointer and switch to trampoline stack.
589
*/
590
movq %rsp, %rdi
591
movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
592
UNWIND_HINT_END_OF_STACK
593
594
/* Copy the IRET frame to the trampoline stack. */
595
pushq 6*8(%rdi) /* SS */
596
pushq 5*8(%rdi) /* RSP */
597
pushq 4*8(%rdi) /* EFLAGS */
598
pushq 3*8(%rdi) /* CS */
599
pushq 2*8(%rdi) /* RIP */
600
601
/* Push user RDI on the trampoline stack. */
602
pushq (%rdi)
603
604
/*
605
* We are on the trampoline stack. All regs except RDI are live.
606
* We can do future final exit work right here.
607
*/
608
STACKLEAK_ERASE_NOCLOBBER
609
610
push %rax
611
SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
612
pop %rax
613
614
/* Restore RDI. */
615
popq %rdi
616
jmp .Lswapgs_and_iret
617
#endif
618
619
SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
620
#ifdef CONFIG_DEBUG_ENTRY
621
/* Assert that pt_regs indicates kernel mode. */
622
testb $3, CS(%rsp)
623
jz 1f
624
ud2
625
1:
626
#endif
627
POP_REGS
628
addq $8, %rsp /* skip regs->orig_ax */
629
/*
630
* ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
631
* when returning from IPI handler.
632
*/
633
#ifdef CONFIG_XEN_PV
634
SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
635
ANNOTATE_NOENDBR
636
.byte 0xe9
637
.long .Lnative_iret - (. + 4)
638
#endif
639
640
.Lnative_iret:
641
UNWIND_HINT_IRET_REGS
642
/*
643
* Are we returning to a stack segment from the LDT? Note: in
644
* 64-bit mode SS:RSP on the exception stack is always valid.
645
*/
646
#ifdef CONFIG_X86_ESPFIX64
647
testb $4, (SS-RIP)(%rsp)
648
jnz native_irq_return_ldt
649
#endif
650
651
SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
652
ANNOTATE_NOENDBR // exc_double_fault
653
/*
654
* This may fault. Non-paranoid faults on return to userspace are
655
* handled by fixup_bad_iret. These include #SS, #GP, and #NP.
656
* Double-faults due to espfix64 are handled in exc_double_fault.
657
* Other faults here are fatal.
658
*/
659
iretq
660
661
#ifdef CONFIG_X86_ESPFIX64
662
native_irq_return_ldt:
663
/*
664
* We are running with user GSBASE. All GPRs contain their user
665
* values. We have a percpu ESPFIX stack that is eight slots
666
* long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
667
* of the ESPFIX stack.
668
*
669
* We clobber RAX and RDI in this code. We stash RDI on the
670
* normal stack and RAX on the ESPFIX stack.
671
*
672
* The ESPFIX stack layout we set up looks like this:
673
*
674
* --- top of ESPFIX stack ---
675
* SS
676
* RSP
677
* RFLAGS
678
* CS
679
* RIP <-- RSP points here when we're done
680
* RAX <-- espfix_waddr points here
681
* --- bottom of ESPFIX stack ---
682
*/
683
684
pushq %rdi /* Stash user RDI */
685
swapgs /* to kernel GS */
686
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
687
688
movq PER_CPU_VAR(espfix_waddr), %rdi
689
movq %rax, (0*8)(%rdi) /* user RAX */
690
movq (1*8)(%rsp), %rax /* user RIP */
691
movq %rax, (1*8)(%rdi)
692
movq (2*8)(%rsp), %rax /* user CS */
693
movq %rax, (2*8)(%rdi)
694
movq (3*8)(%rsp), %rax /* user RFLAGS */
695
movq %rax, (3*8)(%rdi)
696
movq (5*8)(%rsp), %rax /* user SS */
697
movq %rax, (5*8)(%rdi)
698
movq (4*8)(%rsp), %rax /* user RSP */
699
movq %rax, (4*8)(%rdi)
700
/* Now RAX == RSP. */
701
702
andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
703
704
/*
705
* espfix_stack[31:16] == 0. The page tables are set up such that
706
* (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
707
* espfix_waddr for any X. That is, there are 65536 RO aliases of
708
* the same page. Set up RSP so that RSP[31:16] contains the
709
* respective 16 bits of the /userspace/ RSP and RSP nonetheless
710
* still points to an RO alias of the ESPFIX stack.
711
*/
712
orq PER_CPU_VAR(espfix_stack), %rax
713
714
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
715
swapgs /* to user GS */
716
popq %rdi /* Restore user RDI */
717
718
movq %rax, %rsp
719
UNWIND_HINT_IRET_REGS offset=8
720
721
/*
722
* At this point, we cannot write to the stack any more, but we can
723
* still read.
724
*/
725
popq %rax /* Restore user RAX */
726
727
CLEAR_CPU_BUFFERS
728
729
/*
730
* RSP now points to an ordinary IRET frame, except that the page
731
* is read-only and RSP[31:16] are preloaded with the userspace
732
* values. We can now IRET back to userspace.
733
*/
734
jmp native_irq_return_iret
735
#endif
736
SYM_CODE_END(common_interrupt_return)
737
_ASM_NOKPROBE(common_interrupt_return)
738
739
/*
740
* Reload gs selector with exception handling
741
* di: new selector
742
*
743
* Is in entry.text as it shouldn't be instrumented.
744
*/
745
SYM_FUNC_START(asm_load_gs_index)
746
ANNOTATE_NOENDBR
747
FRAME_BEGIN
748
swapgs
749
.Lgs_change:
750
ANNOTATE_NOENDBR // error_entry
751
movl %edi, %gs
752
2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
753
swapgs
754
FRAME_END
755
RET
756
757
/* running with kernelgs */
758
.Lbad_gs:
759
swapgs /* switch back to user gs */
760
.macro ZAP_GS
761
/* This can't be a string because the preprocessor needs to see it. */
762
movl $__USER_DS, %eax
763
movl %eax, %gs
764
.endm
765
ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
766
xorl %eax, %eax
767
movl %eax, %gs
768
jmp 2b
769
770
_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
771
772
SYM_FUNC_END(asm_load_gs_index)
773
EXPORT_SYMBOL(asm_load_gs_index)
774
775
#ifdef CONFIG_XEN_PV
776
/*
777
* A note on the "critical region" in our callback handler.
778
* We want to avoid stacking callback handlers due to events occurring
779
* during handling of the last event. To do this, we keep events disabled
780
* until we've done all processing. HOWEVER, we must enable events before
781
* popping the stack frame (can't be done atomically) and so it would still
782
* be possible to get enough handler activations to overflow the stack.
783
* Although unlikely, bugs of that kind are hard to track down, so we'd
784
* like to avoid the possibility.
785
* So, on entry to the handler we detect whether we interrupted an
786
* existing activation in its critical region -- if so, we pop the current
787
* activation and restart the handler using the previous one.
788
*
789
* C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
790
*/
791
__FUNC_ALIGN
792
SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
793
794
/*
795
* Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
796
* see the correct pointer to the pt_regs
797
*/
798
UNWIND_HINT_FUNC
799
movq %rdi, %rsp /* we don't return, adjust the stack frame */
800
UNWIND_HINT_REGS
801
802
call xen_pv_evtchn_do_upcall
803
804
jmp error_return
805
SYM_CODE_END(exc_xen_hypervisor_callback)
806
807
/*
808
* Hypervisor uses this for application faults while it executes.
809
* We get here for two reasons:
810
* 1. Fault while reloading DS, ES, FS or GS
811
* 2. Fault while executing IRET
812
* Category 1 we do not need to fix up as Xen has already reloaded all segment
813
* registers that could be reloaded and zeroed the others.
814
* Category 2 we fix up by killing the current process. We cannot use the
815
* normal Linux return path in this case because if we use the IRET hypercall
816
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
817
* We distinguish between categories by comparing each saved segment register
818
* with its current contents: any discrepancy means we in category 1.
819
*/
820
__FUNC_ALIGN
821
SYM_CODE_START_NOALIGN(xen_failsafe_callback)
822
UNWIND_HINT_UNDEFINED
823
ENDBR
824
movl %ds, %ecx
825
cmpw %cx, 0x10(%rsp)
826
jne 1f
827
movl %es, %ecx
828
cmpw %cx, 0x18(%rsp)
829
jne 1f
830
movl %fs, %ecx
831
cmpw %cx, 0x20(%rsp)
832
jne 1f
833
movl %gs, %ecx
834
cmpw %cx, 0x28(%rsp)
835
jne 1f
836
/* All segments match their saved values => Category 2 (Bad IRET). */
837
movq (%rsp), %rcx
838
movq 8(%rsp), %r11
839
addq $0x30, %rsp
840
pushq $0 /* RIP */
841
UNWIND_HINT_IRET_REGS offset=8
842
jmp asm_exc_general_protection
843
1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
844
movq (%rsp), %rcx
845
movq 8(%rsp), %r11
846
addq $0x30, %rsp
847
UNWIND_HINT_IRET_REGS
848
pushq $-1 /* orig_ax = -1 => not a system call */
849
PUSH_AND_CLEAR_REGS
850
ENCODE_FRAME_POINTER
851
jmp error_return
852
SYM_CODE_END(xen_failsafe_callback)
853
#endif /* CONFIG_XEN_PV */
854
855
/*
856
* Save all registers in pt_regs. Return GSBASE related information
857
* in EBX depending on the availability of the FSGSBASE instructions:
858
*
859
* FSGSBASE R/EBX
860
* N 0 -> SWAPGS on exit
861
* 1 -> no SWAPGS on exit
862
*
863
* Y GSBASE value at entry, must be restored in paranoid_exit
864
*
865
* R14 - old CR3
866
* R15 - old SPEC_CTRL
867
*/
868
SYM_CODE_START(paranoid_entry)
869
ANNOTATE_NOENDBR
870
UNWIND_HINT_FUNC
871
PUSH_AND_CLEAR_REGS save_ret=1
872
ENCODE_FRAME_POINTER 8
873
874
/*
875
* Always stash CR3 in %r14. This value will be restored,
876
* verbatim, at exit. Needed if paranoid_entry interrupted
877
* another entry that already switched to the user CR3 value
878
* but has not yet returned to userspace.
879
*
880
* This is also why CS (stashed in the "iret frame" by the
881
* hardware at entry) can not be used: this may be a return
882
* to kernel code, but with a user CR3 value.
883
*
884
* Switching CR3 does not depend on kernel GSBASE so it can
885
* be done before switching to the kernel GSBASE. This is
886
* required for FSGSBASE because the kernel GSBASE has to
887
* be retrieved from a kernel internal table.
888
*/
889
SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
890
891
/*
892
* Handling GSBASE depends on the availability of FSGSBASE.
893
*
894
* Without FSGSBASE the kernel enforces that negative GSBASE
895
* values indicate kernel GSBASE. With FSGSBASE no assumptions
896
* can be made about the GSBASE value when entering from user
897
* space.
898
*/
899
ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
900
901
/*
902
* Read the current GSBASE and store it in %rbx unconditionally,
903
* retrieve and set the current CPUs kernel GSBASE. The stored value
904
* has to be restored in paranoid_exit unconditionally.
905
*
906
* The unconditional write to GS base below ensures that no subsequent
907
* loads based on a mispredicted GS base can happen, therefore no LFENCE
908
* is needed here.
909
*/
910
SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
911
jmp .Lparanoid_gsbase_done
912
913
.Lparanoid_entry_checkgs:
914
/* EBX = 1 -> kernel GSBASE active, no restore required */
915
movl $1, %ebx
916
917
/*
918
* The kernel-enforced convention is a negative GSBASE indicates
919
* a kernel value. No SWAPGS needed on entry and exit.
920
*/
921
movl $MSR_GS_BASE, %ecx
922
rdmsr
923
testl %edx, %edx
924
js .Lparanoid_kernel_gsbase
925
926
/* EBX = 0 -> SWAPGS required on exit */
927
xorl %ebx, %ebx
928
swapgs
929
.Lparanoid_kernel_gsbase:
930
FENCE_SWAPGS_KERNEL_ENTRY
931
.Lparanoid_gsbase_done:
932
933
/*
934
* Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
935
* CR3 above, keep the old value in a callee saved register.
936
*/
937
IBRS_ENTER save_reg=%r15
938
UNTRAIN_RET_FROM_CALL
939
940
RET
941
SYM_CODE_END(paranoid_entry)
942
943
/*
944
* "Paranoid" exit path from exception stack. This is invoked
945
* only on return from non-NMI IST interrupts that came
946
* from kernel space.
947
*
948
* We may be returning to very strange contexts (e.g. very early
949
* in syscall entry), so checking for preemption here would
950
* be complicated. Fortunately, there's no good reason to try
951
* to handle preemption here.
952
*
953
* R/EBX contains the GSBASE related information depending on the
954
* availability of the FSGSBASE instructions:
955
*
956
* FSGSBASE R/EBX
957
* N 0 -> SWAPGS on exit
958
* 1 -> no SWAPGS on exit
959
*
960
* Y User space GSBASE, must be restored unconditionally
961
*
962
* R14 - old CR3
963
* R15 - old SPEC_CTRL
964
*/
965
SYM_CODE_START_LOCAL(paranoid_exit)
966
UNWIND_HINT_REGS
967
968
/*
969
* Must restore IBRS state before both CR3 and %GS since we need access
970
* to the per-CPU x86_spec_ctrl_shadow variable.
971
*/
972
IBRS_EXIT save_reg=%r15
973
974
/*
975
* The order of operations is important. PARANOID_RESTORE_CR3 requires
976
* kernel GSBASE.
977
*
978
* NB to anyone to try to optimize this code: this code does
979
* not execute at all for exceptions from user mode. Those
980
* exceptions go through error_return instead.
981
*/
982
PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14
983
984
/* Handle the three GSBASE cases */
985
ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
986
987
/* With FSGSBASE enabled, unconditionally restore GSBASE */
988
wrgsbase %rbx
989
jmp restore_regs_and_return_to_kernel
990
991
.Lparanoid_exit_checkgs:
992
/* On non-FSGSBASE systems, conditionally do SWAPGS */
993
testl %ebx, %ebx
994
jnz restore_regs_and_return_to_kernel
995
996
/* We are returning to a context with user GSBASE */
997
swapgs
998
jmp restore_regs_and_return_to_kernel
999
SYM_CODE_END(paranoid_exit)
1000
1001
/*
1002
* Switch GS and CR3 if needed.
1003
*/
1004
SYM_CODE_START(error_entry)
1005
ANNOTATE_NOENDBR
1006
UNWIND_HINT_FUNC
1007
1008
PUSH_AND_CLEAR_REGS save_ret=1
1009
ENCODE_FRAME_POINTER 8
1010
1011
testb $3, CS+8(%rsp)
1012
jz .Lerror_kernelspace
1013
1014
/*
1015
* We entered from user mode or we're pretending to have entered
1016
* from user mode due to an IRET fault.
1017
*/
1018
swapgs
1019
FENCE_SWAPGS_USER_ENTRY
1020
/* We have user CR3. Change to kernel CR3. */
1021
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1022
IBRS_ENTER
1023
UNTRAIN_RET_FROM_CALL
1024
1025
leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */
1026
/* Put us onto the real thread stack. */
1027
jmp sync_regs
1028
1029
/*
1030
* There are two places in the kernel that can potentially fault with
1031
* usergs. Handle them here. B stepping K8s sometimes report a
1032
* truncated RIP for IRET exceptions returning to compat mode. Check
1033
* for these here too.
1034
*/
1035
.Lerror_kernelspace:
1036
leaq native_irq_return_iret(%rip), %rcx
1037
cmpq %rcx, RIP+8(%rsp)
1038
je .Lerror_bad_iret
1039
movl %ecx, %eax /* zero extend */
1040
cmpq %rax, RIP+8(%rsp)
1041
je .Lbstep_iret
1042
cmpq $.Lgs_change, RIP+8(%rsp)
1043
jne .Lerror_entry_done_lfence
1044
1045
/*
1046
* hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1047
* gsbase and proceed. We'll fix up the exception and land in
1048
* .Lgs_change's error handler with kernel gsbase.
1049
*/
1050
swapgs
1051
1052
/*
1053
* Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1054
* kernel or user gsbase.
1055
*/
1056
.Lerror_entry_done_lfence:
1057
FENCE_SWAPGS_KERNEL_ENTRY
1058
CALL_DEPTH_ACCOUNT
1059
leaq 8(%rsp), %rax /* return pt_regs pointer */
1060
VALIDATE_UNRET_END
1061
RET
1062
1063
.Lbstep_iret:
1064
/* Fix truncated RIP */
1065
movq %rcx, RIP+8(%rsp)
1066
/* fall through */
1067
1068
.Lerror_bad_iret:
1069
/*
1070
* We came from an IRET to user mode, so we have user
1071
* gsbase and CR3. Switch to kernel gsbase and CR3:
1072
*/
1073
swapgs
1074
FENCE_SWAPGS_USER_ENTRY
1075
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1076
IBRS_ENTER
1077
UNTRAIN_RET_FROM_CALL
1078
1079
/*
1080
* Pretend that the exception came from user mode: set up pt_regs
1081
* as if we faulted immediately after IRET.
1082
*/
1083
leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */
1084
call fixup_bad_iret
1085
mov %rax, %rdi
1086
jmp sync_regs
1087
SYM_CODE_END(error_entry)
1088
1089
SYM_CODE_START_LOCAL(error_return)
1090
UNWIND_HINT_REGS
1091
DEBUG_ENTRY_ASSERT_IRQS_OFF
1092
testb $3, CS(%rsp)
1093
jz restore_regs_and_return_to_kernel
1094
jmp swapgs_restore_regs_and_return_to_usermode
1095
SYM_CODE_END(error_return)
1096
1097
/*
1098
* Runs on exception stack. Xen PV does not go through this path at all,
1099
* so we can use real assembly here.
1100
*
1101
* Registers:
1102
* %r14: Used to save/restore the CR3 of the interrupted context
1103
* when MITIGATION_PAGE_TABLE_ISOLATION is in use. Do not clobber.
1104
*/
1105
SYM_CODE_START(asm_exc_nmi)
1106
UNWIND_HINT_IRET_ENTRY
1107
ENDBR
1108
1109
/*
1110
* We allow breakpoints in NMIs. If a breakpoint occurs, then
1111
* the iretq it performs will take us out of NMI context.
1112
* This means that we can have nested NMIs where the next
1113
* NMI is using the top of the stack of the previous NMI. We
1114
* can't let it execute because the nested NMI will corrupt the
1115
* stack of the previous NMI. NMI handlers are not re-entrant
1116
* anyway.
1117
*
1118
* To handle this case we do the following:
1119
* Check a special location on the stack that contains a
1120
* variable that is set when NMIs are executing.
1121
* The interrupted task's stack is also checked to see if it
1122
* is an NMI stack.
1123
* If the variable is not set and the stack is not the NMI
1124
* stack then:
1125
* o Set the special variable on the stack
1126
* o Copy the interrupt frame into an "outermost" location on the
1127
* stack
1128
* o Copy the interrupt frame into an "iret" location on the stack
1129
* o Continue processing the NMI
1130
* If the variable is set or the previous stack is the NMI stack:
1131
* o Modify the "iret" location to jump to the repeat_nmi
1132
* o return back to the first NMI
1133
*
1134
* Now on exit of the first NMI, we first clear the stack variable
1135
* The NMI stack will tell any nested NMIs at that point that it is
1136
* nested. Then we pop the stack normally with iret, and if there was
1137
* a nested NMI that updated the copy interrupt stack frame, a
1138
* jump will be made to the repeat_nmi code that will handle the second
1139
* NMI.
1140
*
1141
* However, espfix prevents us from directly returning to userspace
1142
* with a single IRET instruction. Similarly, IRET to user mode
1143
* can fault. We therefore handle NMIs from user space like
1144
* other IST entries.
1145
*/
1146
1147
ASM_CLAC
1148
cld
1149
1150
/* Use %rdx as our temp variable throughout */
1151
pushq %rdx
1152
1153
testb $3, CS-RIP+8(%rsp)
1154
jz .Lnmi_from_kernel
1155
1156
/*
1157
* NMI from user mode. We need to run on the thread stack, but we
1158
* can't go through the normal entry paths: NMIs are masked, and
1159
* we don't want to enable interrupts, because then we'll end
1160
* up in an awkward situation in which IRQs are on but NMIs
1161
* are off.
1162
*
1163
* We also must not push anything to the stack before switching
1164
* stacks lest we corrupt the "NMI executing" variable.
1165
*/
1166
1167
swapgs
1168
FENCE_SWAPGS_USER_ENTRY
1169
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1170
movq %rsp, %rdx
1171
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1172
UNWIND_HINT_IRET_REGS base=%rdx offset=8
1173
pushq 5*8(%rdx) /* pt_regs->ss */
1174
pushq 4*8(%rdx) /* pt_regs->rsp */
1175
pushq 3*8(%rdx) /* pt_regs->flags */
1176
pushq 2*8(%rdx) /* pt_regs->cs */
1177
pushq 1*8(%rdx) /* pt_regs->rip */
1178
UNWIND_HINT_IRET_REGS
1179
pushq $-1 /* pt_regs->orig_ax */
1180
PUSH_AND_CLEAR_REGS rdx=(%rdx)
1181
ENCODE_FRAME_POINTER
1182
1183
IBRS_ENTER
1184
UNTRAIN_RET
1185
1186
/*
1187
* At this point we no longer need to worry about stack damage
1188
* due to nesting -- we're on the normal thread stack and we're
1189
* done with the NMI stack.
1190
*/
1191
1192
movq %rsp, %rdi
1193
call exc_nmi
1194
1195
/*
1196
* Return back to user mode. We must *not* do the normal exit
1197
* work, because we don't want to enable interrupts.
1198
*/
1199
jmp swapgs_restore_regs_and_return_to_usermode
1200
1201
.Lnmi_from_kernel:
1202
/*
1203
* Here's what our stack frame will look like:
1204
* +---------------------------------------------------------+
1205
* | original SS |
1206
* | original Return RSP |
1207
* | original RFLAGS |
1208
* | original CS |
1209
* | original RIP |
1210
* +---------------------------------------------------------+
1211
* | temp storage for rdx |
1212
* +---------------------------------------------------------+
1213
* | "NMI executing" variable |
1214
* +---------------------------------------------------------+
1215
* | iret SS } Copied from "outermost" frame |
1216
* | iret Return RSP } on each loop iteration; overwritten |
1217
* | iret RFLAGS } by a nested NMI to force another |
1218
* | iret CS } iteration if needed. |
1219
* | iret RIP } |
1220
* +---------------------------------------------------------+
1221
* | outermost SS } initialized in first_nmi; |
1222
* | outermost Return RSP } will not be changed before |
1223
* | outermost RFLAGS } NMI processing is done. |
1224
* | outermost CS } Copied to "iret" frame on each |
1225
* | outermost RIP } iteration. |
1226
* +---------------------------------------------------------+
1227
* | pt_regs |
1228
* +---------------------------------------------------------+
1229
*
1230
* The "original" frame is used by hardware. Before re-enabling
1231
* NMIs, we need to be done with it, and we need to leave enough
1232
* space for the asm code here.
1233
*
1234
* We return by executing IRET while RSP points to the "iret" frame.
1235
* That will either return for real or it will loop back into NMI
1236
* processing.
1237
*
1238
* The "outermost" frame is copied to the "iret" frame on each
1239
* iteration of the loop, so each iteration starts with the "iret"
1240
* frame pointing to the final return target.
1241
*/
1242
1243
/*
1244
* Determine whether we're a nested NMI.
1245
*
1246
* If we interrupted kernel code between repeat_nmi and
1247
* end_repeat_nmi, then we are a nested NMI. We must not
1248
* modify the "iret" frame because it's being written by
1249
* the outer NMI. That's okay; the outer NMI handler is
1250
* about to call exc_nmi() anyway, so we can just resume
1251
* the outer NMI.
1252
*/
1253
1254
movq $repeat_nmi, %rdx
1255
cmpq 8(%rsp), %rdx
1256
ja 1f
1257
movq $end_repeat_nmi, %rdx
1258
cmpq 8(%rsp), %rdx
1259
ja nested_nmi_out
1260
1:
1261
1262
/*
1263
* Now check "NMI executing". If it's set, then we're nested.
1264
* This will not detect if we interrupted an outer NMI just
1265
* before IRET.
1266
*/
1267
cmpl $1, -8(%rsp)
1268
je nested_nmi
1269
1270
/*
1271
* Now test if the previous stack was an NMI stack. This covers
1272
* the case where we interrupt an outer NMI after it clears
1273
* "NMI executing" but before IRET. We need to be careful, though:
1274
* there is one case in which RSP could point to the NMI stack
1275
* despite there being no NMI active: naughty userspace controls
1276
* RSP at the very beginning of the SYSCALL targets. We can
1277
* pull a fast one on naughty userspace, though: we program
1278
* SYSCALL to mask DF, so userspace cannot cause DF to be set
1279
* if it controls the kernel's RSP. We set DF before we clear
1280
* "NMI executing".
1281
*/
1282
lea 6*8(%rsp), %rdx
1283
/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1284
cmpq %rdx, 4*8(%rsp)
1285
/* If the stack pointer is above the NMI stack, this is a normal NMI */
1286
ja first_nmi
1287
1288
subq $EXCEPTION_STKSZ, %rdx
1289
cmpq %rdx, 4*8(%rsp)
1290
/* If it is below the NMI stack, it is a normal NMI */
1291
jb first_nmi
1292
1293
/* Ah, it is within the NMI stack. */
1294
1295
testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1296
jz first_nmi /* RSP was user controlled. */
1297
1298
/* This is a nested NMI. */
1299
1300
nested_nmi:
1301
/*
1302
* Modify the "iret" frame to point to repeat_nmi, forcing another
1303
* iteration of NMI handling.
1304
*/
1305
subq $8, %rsp
1306
leaq -10*8(%rsp), %rdx
1307
pushq $__KERNEL_DS
1308
pushq %rdx
1309
pushfq
1310
pushq $__KERNEL_CS
1311
pushq $repeat_nmi
1312
1313
/* Put stack back */
1314
addq $(6*8), %rsp
1315
1316
nested_nmi_out:
1317
popq %rdx
1318
1319
/* We are returning to kernel mode, so this cannot result in a fault. */
1320
iretq
1321
1322
first_nmi:
1323
/* Restore rdx. */
1324
movq (%rsp), %rdx
1325
1326
/* Make room for "NMI executing". */
1327
pushq $0
1328
1329
/* Leave room for the "iret" frame */
1330
subq $(5*8), %rsp
1331
1332
/* Copy the "original" frame to the "outermost" frame */
1333
.rept 5
1334
pushq 11*8(%rsp)
1335
.endr
1336
UNWIND_HINT_IRET_REGS
1337
1338
/* Everything up to here is safe from nested NMIs */
1339
1340
#ifdef CONFIG_DEBUG_ENTRY
1341
/*
1342
* For ease of testing, unmask NMIs right away. Disabled by
1343
* default because IRET is very expensive.
1344
*/
1345
pushq $0 /* SS */
1346
pushq %rsp /* RSP (minus 8 because of the previous push) */
1347
addq $8, (%rsp) /* Fix up RSP */
1348
pushfq /* RFLAGS */
1349
pushq $__KERNEL_CS /* CS */
1350
pushq $1f /* RIP */
1351
iretq /* continues at repeat_nmi below */
1352
UNWIND_HINT_IRET_REGS
1353
1:
1354
#endif
1355
1356
repeat_nmi:
1357
ANNOTATE_NOENDBR // this code
1358
/*
1359
* If there was a nested NMI, the first NMI's iret will return
1360
* here. But NMIs are still enabled and we can take another
1361
* nested NMI. The nested NMI checks the interrupted RIP to see
1362
* if it is between repeat_nmi and end_repeat_nmi, and if so
1363
* it will just return, as we are about to repeat an NMI anyway.
1364
* This makes it safe to copy to the stack frame that a nested
1365
* NMI will update.
1366
*
1367
* RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1368
* we're repeating an NMI, gsbase has the same value that it had on
1369
* the first iteration. paranoid_entry will load the kernel
1370
* gsbase if needed before we call exc_nmi(). "NMI executing"
1371
* is zero.
1372
*/
1373
movq $1, 10*8(%rsp) /* Set "NMI executing". */
1374
1375
/*
1376
* Copy the "outermost" frame to the "iret" frame. NMIs that nest
1377
* here must not modify the "iret" frame while we're writing to
1378
* it or it will end up containing garbage.
1379
*/
1380
addq $(10*8), %rsp
1381
.rept 5
1382
pushq -6*8(%rsp)
1383
.endr
1384
subq $(5*8), %rsp
1385
end_repeat_nmi:
1386
ANNOTATE_NOENDBR // this code
1387
1388
/*
1389
* Everything below this point can be preempted by a nested NMI.
1390
* If this happens, then the inner NMI will change the "iret"
1391
* frame to point back to repeat_nmi.
1392
*/
1393
pushq $-1 /* ORIG_RAX: no syscall to restart */
1394
1395
/*
1396
* Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1397
* as we should not be calling schedule in NMI context.
1398
* Even with normal interrupts enabled. An NMI should not be
1399
* setting NEED_RESCHED or anything that normal interrupts and
1400
* exceptions might do.
1401
*/
1402
call paranoid_entry
1403
UNWIND_HINT_REGS
1404
1405
movq %rsp, %rdi
1406
call exc_nmi
1407
1408
/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1409
IBRS_EXIT save_reg=%r15
1410
1411
PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1412
1413
/*
1414
* The above invocation of paranoid_entry stored the GSBASE
1415
* related information in R/EBX depending on the availability
1416
* of FSGSBASE.
1417
*
1418
* If FSGSBASE is enabled, restore the saved GSBASE value
1419
* unconditionally, otherwise take the conditional SWAPGS path.
1420
*/
1421
ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1422
1423
wrgsbase %rbx
1424
jmp nmi_restore
1425
1426
nmi_no_fsgsbase:
1427
/* EBX == 0 -> invoke SWAPGS */
1428
testl %ebx, %ebx
1429
jnz nmi_restore
1430
1431
nmi_swapgs:
1432
swapgs
1433
1434
nmi_restore:
1435
POP_REGS
1436
1437
/*
1438
* Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1439
* at the "iret" frame.
1440
*/
1441
addq $6*8, %rsp
1442
1443
/*
1444
* Clear "NMI executing". Set DF first so that we can easily
1445
* distinguish the remaining code between here and IRET from
1446
* the SYSCALL entry and exit paths.
1447
*
1448
* We arguably should just inspect RIP instead, but I (Andy) wrote
1449
* this code when I had the misapprehension that Xen PV supported
1450
* NMIs, and Xen PV would break that approach.
1451
*/
1452
std
1453
movq $0, 5*8(%rsp) /* clear "NMI executing" */
1454
1455
/*
1456
* Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1457
* NMI in kernel after user state is restored. For an unprivileged user
1458
* these conditions are hard to meet.
1459
*/
1460
1461
/*
1462
* iretq reads the "iret" frame and exits the NMI stack in a
1463
* single instruction. We are returning to kernel mode, so this
1464
* cannot result in a fault. Similarly, we don't need to worry
1465
* about espfix64 on the way back to kernel mode.
1466
*/
1467
iretq
1468
SYM_CODE_END(asm_exc_nmi)
1469
1470
/*
1471
* This handles SYSCALL from 32-bit code. There is no way to program
1472
* MSRs to fully disable 32-bit SYSCALL.
1473
*/
1474
SYM_CODE_START(entry_SYSCALL32_ignore)
1475
UNWIND_HINT_END_OF_STACK
1476
ENDBR
1477
mov $-ENOSYS, %eax
1478
CLEAR_CPU_BUFFERS
1479
sysretl
1480
SYM_CODE_END(entry_SYSCALL32_ignore)
1481
1482
.pushsection .text, "ax"
1483
__FUNC_ALIGN
1484
SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1485
UNWIND_HINT_FUNC
1486
/* Prevent any naive code from trying to unwind to our caller. */
1487
xorl %ebp, %ebp
1488
1489
movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1490
leaq -PTREGS_SIZE(%rax), %rsp
1491
UNWIND_HINT_REGS
1492
1493
call make_task_dead
1494
SYM_CODE_END(rewind_stack_and_make_dead)
1495
.popsection
1496
1497
/*
1498
* This sequence executes branches in order to remove user branch information
1499
* from the branch history tracker in the Branch Predictor, therefore removing
1500
* user influence on subsequent BTB lookups.
1501
*
1502
* It should be used on parts prior to Alder Lake. Newer parts should use the
1503
* BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being
1504
* virtualized on newer hardware the VMM should protect against BHI attacks by
1505
* setting BHI_DIS_S for the guests.
1506
*
1507
* CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging
1508
* and not clearing the branch history. The call tree looks like:
1509
*
1510
* call 1
1511
* call 2
1512
* call 2
1513
* call 2
1514
* call 2
1515
* call 2
1516
* ret
1517
* ret
1518
* ret
1519
* ret
1520
* ret
1521
* ret
1522
*
1523
* This means that the stack is non-constant and ORC can't unwind it with %rsp
1524
* alone. Therefore we unconditionally set up the frame pointer, which allows
1525
* ORC to unwind properly.
1526
*
1527
* The alignment is for performance and not for safety, and may be safely
1528
* refactored in the future if needed. The .skips are for safety, to ensure
1529
* that all RETs are in the second half of a cacheline to mitigate Indirect
1530
* Target Selection, rather than taking the slowpath via its_return_thunk.
1531
*/
1532
SYM_FUNC_START(clear_bhb_loop)
1533
ANNOTATE_NOENDBR
1534
push %rbp
1535
mov %rsp, %rbp
1536
movl $5, %ecx
1537
ANNOTATE_INTRA_FUNCTION_CALL
1538
call 1f
1539
jmp 5f
1540
.align 64, 0xcc
1541
/*
1542
* Shift instructions so that the RET is in the upper half of the
1543
* cacheline and don't take the slowpath to its_return_thunk.
1544
*/
1545
.skip 32 - (.Lret1 - 1f), 0xcc
1546
ANNOTATE_INTRA_FUNCTION_CALL
1547
1: call 2f
1548
.Lret1: RET
1549
.align 64, 0xcc
1550
/*
1551
* As above shift instructions for RET at .Lret2 as well.
1552
*
1553
* This should be ideally be: .skip 32 - (.Lret2 - 2f), 0xcc
1554
* but some Clang versions (e.g. 18) don't like this.
1555
*/
1556
.skip 32 - 18, 0xcc
1557
2: movl $5, %eax
1558
3: jmp 4f
1559
nop
1560
4: sub $1, %eax
1561
jnz 3b
1562
sub $1, %ecx
1563
jnz 1b
1564
.Lret2: RET
1565
5: lfence
1566
pop %rbp
1567
RET
1568
SYM_FUNC_END(clear_bhb_loop)
1569
EXPORT_SYMBOL_GPL(clear_bhb_loop)
1570
STACK_FRAME_NON_STANDARD(clear_bhb_loop)
1571
1572