Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/events/amd/core.c
26535 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include <linux/perf_event.h>
3
#include <linux/jump_label.h>
4
#include <linux/export.h>
5
#include <linux/types.h>
6
#include <linux/init.h>
7
#include <linux/slab.h>
8
#include <linux/delay.h>
9
#include <linux/jiffies.h>
10
#include <asm/apicdef.h>
11
#include <asm/apic.h>
12
#include <asm/msr.h>
13
#include <asm/nmi.h>
14
15
#include "../perf_event.h"
16
17
static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
18
static unsigned long perf_nmi_window;
19
20
/* AMD Event 0xFFF: Merge. Used with Large Increment per Cycle events */
21
#define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
22
#define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
23
24
/* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
25
static u64 amd_pmu_global_cntr_mask __read_mostly;
26
27
static __initconst const u64 amd_hw_cache_event_ids
28
[PERF_COUNT_HW_CACHE_MAX]
29
[PERF_COUNT_HW_CACHE_OP_MAX]
30
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
31
{
32
[ C(L1D) ] = {
33
[ C(OP_READ) ] = {
34
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
35
[ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
36
},
37
[ C(OP_WRITE) ] = {
38
[ C(RESULT_ACCESS) ] = 0,
39
[ C(RESULT_MISS) ] = 0,
40
},
41
[ C(OP_PREFETCH) ] = {
42
[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
43
[ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
44
},
45
},
46
[ C(L1I ) ] = {
47
[ C(OP_READ) ] = {
48
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
49
[ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
50
},
51
[ C(OP_WRITE) ] = {
52
[ C(RESULT_ACCESS) ] = -1,
53
[ C(RESULT_MISS) ] = -1,
54
},
55
[ C(OP_PREFETCH) ] = {
56
[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
57
[ C(RESULT_MISS) ] = 0,
58
},
59
},
60
[ C(LL ) ] = {
61
[ C(OP_READ) ] = {
62
[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
63
[ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
64
},
65
[ C(OP_WRITE) ] = {
66
[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
67
[ C(RESULT_MISS) ] = 0,
68
},
69
[ C(OP_PREFETCH) ] = {
70
[ C(RESULT_ACCESS) ] = 0,
71
[ C(RESULT_MISS) ] = 0,
72
},
73
},
74
[ C(DTLB) ] = {
75
[ C(OP_READ) ] = {
76
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
77
[ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
78
},
79
[ C(OP_WRITE) ] = {
80
[ C(RESULT_ACCESS) ] = 0,
81
[ C(RESULT_MISS) ] = 0,
82
},
83
[ C(OP_PREFETCH) ] = {
84
[ C(RESULT_ACCESS) ] = 0,
85
[ C(RESULT_MISS) ] = 0,
86
},
87
},
88
[ C(ITLB) ] = {
89
[ C(OP_READ) ] = {
90
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
91
[ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
92
},
93
[ C(OP_WRITE) ] = {
94
[ C(RESULT_ACCESS) ] = -1,
95
[ C(RESULT_MISS) ] = -1,
96
},
97
[ C(OP_PREFETCH) ] = {
98
[ C(RESULT_ACCESS) ] = -1,
99
[ C(RESULT_MISS) ] = -1,
100
},
101
},
102
[ C(BPU ) ] = {
103
[ C(OP_READ) ] = {
104
[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
105
[ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
106
},
107
[ C(OP_WRITE) ] = {
108
[ C(RESULT_ACCESS) ] = -1,
109
[ C(RESULT_MISS) ] = -1,
110
},
111
[ C(OP_PREFETCH) ] = {
112
[ C(RESULT_ACCESS) ] = -1,
113
[ C(RESULT_MISS) ] = -1,
114
},
115
},
116
[ C(NODE) ] = {
117
[ C(OP_READ) ] = {
118
[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
119
[ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
120
},
121
[ C(OP_WRITE) ] = {
122
[ C(RESULT_ACCESS) ] = -1,
123
[ C(RESULT_MISS) ] = -1,
124
},
125
[ C(OP_PREFETCH) ] = {
126
[ C(RESULT_ACCESS) ] = -1,
127
[ C(RESULT_MISS) ] = -1,
128
},
129
},
130
};
131
132
static __initconst const u64 amd_hw_cache_event_ids_f17h
133
[PERF_COUNT_HW_CACHE_MAX]
134
[PERF_COUNT_HW_CACHE_OP_MAX]
135
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
136
[C(L1D)] = {
137
[C(OP_READ)] = {
138
[C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
139
[C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */
140
},
141
[C(OP_WRITE)] = {
142
[C(RESULT_ACCESS)] = 0,
143
[C(RESULT_MISS)] = 0,
144
},
145
[C(OP_PREFETCH)] = {
146
[C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
147
[C(RESULT_MISS)] = 0,
148
},
149
},
150
[C(L1I)] = {
151
[C(OP_READ)] = {
152
[C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */
153
[C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */
154
},
155
[C(OP_WRITE)] = {
156
[C(RESULT_ACCESS)] = -1,
157
[C(RESULT_MISS)] = -1,
158
},
159
[C(OP_PREFETCH)] = {
160
[C(RESULT_ACCESS)] = 0,
161
[C(RESULT_MISS)] = 0,
162
},
163
},
164
[C(LL)] = {
165
[C(OP_READ)] = {
166
[C(RESULT_ACCESS)] = 0,
167
[C(RESULT_MISS)] = 0,
168
},
169
[C(OP_WRITE)] = {
170
[C(RESULT_ACCESS)] = 0,
171
[C(RESULT_MISS)] = 0,
172
},
173
[C(OP_PREFETCH)] = {
174
[C(RESULT_ACCESS)] = 0,
175
[C(RESULT_MISS)] = 0,
176
},
177
},
178
[C(DTLB)] = {
179
[C(OP_READ)] = {
180
[C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
181
[C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */
182
},
183
[C(OP_WRITE)] = {
184
[C(RESULT_ACCESS)] = 0,
185
[C(RESULT_MISS)] = 0,
186
},
187
[C(OP_PREFETCH)] = {
188
[C(RESULT_ACCESS)] = 0,
189
[C(RESULT_MISS)] = 0,
190
},
191
},
192
[C(ITLB)] = {
193
[C(OP_READ)] = {
194
[C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
195
[C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */
196
},
197
[C(OP_WRITE)] = {
198
[C(RESULT_ACCESS)] = -1,
199
[C(RESULT_MISS)] = -1,
200
},
201
[C(OP_PREFETCH)] = {
202
[C(RESULT_ACCESS)] = -1,
203
[C(RESULT_MISS)] = -1,
204
},
205
},
206
[C(BPU)] = {
207
[C(OP_READ)] = {
208
[C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */
209
[C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */
210
},
211
[C(OP_WRITE)] = {
212
[C(RESULT_ACCESS)] = -1,
213
[C(RESULT_MISS)] = -1,
214
},
215
[C(OP_PREFETCH)] = {
216
[C(RESULT_ACCESS)] = -1,
217
[C(RESULT_MISS)] = -1,
218
},
219
},
220
[C(NODE)] = {
221
[C(OP_READ)] = {
222
[C(RESULT_ACCESS)] = 0,
223
[C(RESULT_MISS)] = 0,
224
},
225
[C(OP_WRITE)] = {
226
[C(RESULT_ACCESS)] = -1,
227
[C(RESULT_MISS)] = -1,
228
},
229
[C(OP_PREFETCH)] = {
230
[C(RESULT_ACCESS)] = -1,
231
[C(RESULT_MISS)] = -1,
232
},
233
},
234
};
235
236
/*
237
* AMD Performance Monitor K7 and later, up to and including Family 16h:
238
*/
239
static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
240
{
241
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
242
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
243
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
244
[PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
245
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
246
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
247
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
248
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
249
};
250
251
/*
252
* AMD Performance Monitor Family 17h and later:
253
*/
254
static const u64 amd_zen1_perfmon_event_map[PERF_COUNT_HW_MAX] =
255
{
256
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
257
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
258
[PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
259
[PERF_COUNT_HW_CACHE_MISSES] = 0x0964,
260
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
261
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
262
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
263
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187,
264
};
265
266
static const u64 amd_zen2_perfmon_event_map[PERF_COUNT_HW_MAX] =
267
{
268
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
269
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
270
[PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
271
[PERF_COUNT_HW_CACHE_MISSES] = 0x0964,
272
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
273
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
274
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9,
275
};
276
277
static const u64 amd_zen4_perfmon_event_map[PERF_COUNT_HW_MAX] =
278
{
279
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
280
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
281
[PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
282
[PERF_COUNT_HW_CACHE_MISSES] = 0x0964,
283
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
284
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
285
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9,
286
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x100000120,
287
};
288
289
static u64 amd_pmu_event_map(int hw_event)
290
{
291
if (cpu_feature_enabled(X86_FEATURE_ZEN4) || boot_cpu_data.x86 >= 0x1a)
292
return amd_zen4_perfmon_event_map[hw_event];
293
294
if (cpu_feature_enabled(X86_FEATURE_ZEN2) || boot_cpu_data.x86 >= 0x19)
295
return amd_zen2_perfmon_event_map[hw_event];
296
297
if (cpu_feature_enabled(X86_FEATURE_ZEN1))
298
return amd_zen1_perfmon_event_map[hw_event];
299
300
return amd_perfmon_event_map[hw_event];
301
}
302
303
/*
304
* Previously calculated offsets
305
*/
306
static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
307
static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
308
309
/*
310
* Legacy CPUs:
311
* 4 counters starting at 0xc0010000 each offset by 1
312
*
313
* CPUs with core performance counter extensions:
314
* 6 counters starting at 0xc0010200 each offset by 2
315
*/
316
static inline int amd_pmu_addr_offset(int index, bool eventsel)
317
{
318
int offset;
319
320
if (!index)
321
return index;
322
323
if (eventsel)
324
offset = event_offsets[index];
325
else
326
offset = count_offsets[index];
327
328
if (offset)
329
return offset;
330
331
if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
332
offset = index;
333
else
334
offset = index << 1;
335
336
if (eventsel)
337
event_offsets[index] = offset;
338
else
339
count_offsets[index] = offset;
340
341
return offset;
342
}
343
344
/*
345
* AMD64 events are detected based on their event codes.
346
*/
347
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
348
{
349
return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
350
}
351
352
static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
353
{
354
if (!(x86_pmu.flags & PMU_FL_PAIR))
355
return false;
356
357
switch (amd_get_event_code(hwc)) {
358
case 0x003: return true; /* Retired SSE/AVX FLOPs */
359
default: return false;
360
}
361
}
362
363
DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);
364
365
static int amd_core_hw_config(struct perf_event *event)
366
{
367
if (event->attr.exclude_host && event->attr.exclude_guest)
368
/*
369
* When HO == GO == 1 the hardware treats that as GO == HO == 0
370
* and will count in both modes. We don't want to count in that
371
* case so we emulate no-counting by setting US = OS = 0.
372
*/
373
event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
374
ARCH_PERFMON_EVENTSEL_OS);
375
else if (event->attr.exclude_host)
376
event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
377
else if (event->attr.exclude_guest)
378
event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
379
380
if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
381
event->hw.flags |= PERF_X86_EVENT_PAIR;
382
383
if (has_branch_stack(event))
384
return static_call(amd_pmu_branch_hw_config)(event);
385
386
return 0;
387
}
388
389
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
390
{
391
return (hwc->config & 0xe0) == 0xe0;
392
}
393
394
static inline int amd_has_nb(struct cpu_hw_events *cpuc)
395
{
396
struct amd_nb *nb = cpuc->amd_nb;
397
398
return nb && nb->nb_id != -1;
399
}
400
401
static int amd_pmu_hw_config(struct perf_event *event)
402
{
403
int ret;
404
405
/* pass precise event sampling to ibs: */
406
if (event->attr.precise_ip && get_ibs_caps())
407
return forward_event_to_ibs(event);
408
409
if (has_branch_stack(event) && !x86_pmu.lbr_nr)
410
return -EOPNOTSUPP;
411
412
ret = x86_pmu_hw_config(event);
413
if (ret)
414
return ret;
415
416
if (event->attr.type == PERF_TYPE_RAW)
417
event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
418
419
return amd_core_hw_config(event);
420
}
421
422
static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
423
struct perf_event *event)
424
{
425
struct amd_nb *nb = cpuc->amd_nb;
426
int i;
427
428
/*
429
* need to scan whole list because event may not have
430
* been assigned during scheduling
431
*
432
* no race condition possible because event can only
433
* be removed on one CPU at a time AND PMU is disabled
434
* when we come here
435
*/
436
for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
437
struct perf_event *tmp = event;
438
439
if (try_cmpxchg(nb->owners + i, &tmp, NULL))
440
break;
441
}
442
}
443
444
/*
445
* AMD64 NorthBridge events need special treatment because
446
* counter access needs to be synchronized across all cores
447
* of a package. Refer to BKDG section 3.12
448
*
449
* NB events are events measuring L3 cache, Hypertransport
450
* traffic. They are identified by an event code >= 0xe00.
451
* They measure events on the NorthBride which is shared
452
* by all cores on a package. NB events are counted on a
453
* shared set of counters. When a NB event is programmed
454
* in a counter, the data actually comes from a shared
455
* counter. Thus, access to those counters needs to be
456
* synchronized.
457
*
458
* We implement the synchronization such that no two cores
459
* can be measuring NB events using the same counters. Thus,
460
* we maintain a per-NB allocation table. The available slot
461
* is propagated using the event_constraint structure.
462
*
463
* We provide only one choice for each NB event based on
464
* the fact that only NB events have restrictions. Consequently,
465
* if a counter is available, there is a guarantee the NB event
466
* will be assigned to it. If no slot is available, an empty
467
* constraint is returned and scheduling will eventually fail
468
* for this event.
469
*
470
* Note that all cores attached the same NB compete for the same
471
* counters to host NB events, this is why we use atomic ops. Some
472
* multi-chip CPUs may have more than one NB.
473
*
474
* Given that resources are allocated (cmpxchg), they must be
475
* eventually freed for others to use. This is accomplished by
476
* calling __amd_put_nb_event_constraints()
477
*
478
* Non NB events are not impacted by this restriction.
479
*/
480
static struct event_constraint *
481
__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
482
struct event_constraint *c)
483
{
484
struct hw_perf_event *hwc = &event->hw;
485
struct amd_nb *nb = cpuc->amd_nb;
486
struct perf_event *old;
487
int idx, new = -1;
488
489
if (!c)
490
c = &unconstrained;
491
492
if (cpuc->is_fake)
493
return c;
494
495
/*
496
* detect if already present, if so reuse
497
*
498
* cannot merge with actual allocation
499
* because of possible holes
500
*
501
* event can already be present yet not assigned (in hwc->idx)
502
* because of successive calls to x86_schedule_events() from
503
* hw_perf_group_sched_in() without hw_perf_enable()
504
*/
505
for_each_set_bit(idx, c->idxmsk, x86_pmu_max_num_counters(NULL)) {
506
if (new == -1 || hwc->idx == idx)
507
/* assign free slot, prefer hwc->idx */
508
old = cmpxchg(nb->owners + idx, NULL, event);
509
else if (nb->owners[idx] == event)
510
/* event already present */
511
old = event;
512
else
513
continue;
514
515
if (old && old != event)
516
continue;
517
518
/* reassign to this slot */
519
if (new != -1)
520
cmpxchg(nb->owners + new, event, NULL);
521
new = idx;
522
523
/* already present, reuse */
524
if (old == event)
525
break;
526
}
527
528
if (new == -1)
529
return &emptyconstraint;
530
531
return &nb->event_constraints[new];
532
}
533
534
static struct amd_nb *amd_alloc_nb(int cpu)
535
{
536
struct amd_nb *nb;
537
int i;
538
539
nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
540
if (!nb)
541
return NULL;
542
543
nb->nb_id = -1;
544
545
/*
546
* initialize all possible NB constraints
547
*/
548
for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
549
__set_bit(i, nb->event_constraints[i].idxmsk);
550
nb->event_constraints[i].weight = 1;
551
}
552
return nb;
553
}
554
555
typedef void (amd_pmu_branch_reset_t)(void);
556
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);
557
558
static void amd_pmu_cpu_reset(int cpu)
559
{
560
if (x86_pmu.lbr_nr)
561
static_call(amd_pmu_branch_reset)();
562
563
if (x86_pmu.version < 2)
564
return;
565
566
/* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
567
wrmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
568
569
/*
570
* Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
571
* and PerfCntrGLobalStatus.PerfCntrOvfl
572
*/
573
wrmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
574
GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
575
}
576
577
static int amd_pmu_cpu_prepare(int cpu)
578
{
579
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
580
581
cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
582
cpu_to_node(cpu));
583
if (!cpuc->lbr_sel)
584
return -ENOMEM;
585
586
WARN_ON_ONCE(cpuc->amd_nb);
587
588
if (!x86_pmu.amd_nb_constraints)
589
return 0;
590
591
cpuc->amd_nb = amd_alloc_nb(cpu);
592
if (cpuc->amd_nb)
593
return 0;
594
595
kfree(cpuc->lbr_sel);
596
cpuc->lbr_sel = NULL;
597
598
return -ENOMEM;
599
}
600
601
static void amd_pmu_cpu_starting(int cpu)
602
{
603
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
604
void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
605
struct amd_nb *nb;
606
int i, nb_id;
607
608
cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
609
amd_pmu_cpu_reset(cpu);
610
611
if (!x86_pmu.amd_nb_constraints)
612
return;
613
614
nb_id = topology_amd_node_id(cpu);
615
WARN_ON_ONCE(nb_id == BAD_APICID);
616
617
for_each_online_cpu(i) {
618
nb = per_cpu(cpu_hw_events, i).amd_nb;
619
if (WARN_ON_ONCE(!nb))
620
continue;
621
622
if (nb->nb_id == nb_id) {
623
*onln = cpuc->amd_nb;
624
cpuc->amd_nb = nb;
625
break;
626
}
627
}
628
629
cpuc->amd_nb->nb_id = nb_id;
630
cpuc->amd_nb->refcnt++;
631
}
632
633
static void amd_pmu_cpu_dead(int cpu)
634
{
635
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
636
637
kfree(cpuhw->lbr_sel);
638
cpuhw->lbr_sel = NULL;
639
640
if (!x86_pmu.amd_nb_constraints)
641
return;
642
643
if (cpuhw->amd_nb) {
644
struct amd_nb *nb = cpuhw->amd_nb;
645
646
if (nb->nb_id == -1 || --nb->refcnt == 0)
647
kfree(nb);
648
649
cpuhw->amd_nb = NULL;
650
}
651
}
652
653
static __always_inline void amd_pmu_set_global_ctl(u64 ctl)
654
{
655
wrmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
656
}
657
658
static inline u64 amd_pmu_get_global_status(void)
659
{
660
u64 status;
661
662
/* PerfCntrGlobalStatus is read-only */
663
rdmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
664
665
return status;
666
}
667
668
static inline void amd_pmu_ack_global_status(u64 status)
669
{
670
/*
671
* PerfCntrGlobalStatus is read-only but an overflow acknowledgment
672
* mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
673
* clears the same bit in PerfCntrGlobalStatus
674
*/
675
676
wrmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
677
}
678
679
static bool amd_pmu_test_overflow_topbit(int idx)
680
{
681
u64 counter;
682
683
rdmsrq(x86_pmu_event_addr(idx), counter);
684
685
return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
686
}
687
688
static bool amd_pmu_test_overflow_status(int idx)
689
{
690
return amd_pmu_get_global_status() & BIT_ULL(idx);
691
}
692
693
DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
694
695
/*
696
* When a PMC counter overflows, an NMI is used to process the event and
697
* reset the counter. NMI latency can result in the counter being updated
698
* before the NMI can run, which can result in what appear to be spurious
699
* NMIs. This function is intended to wait for the NMI to run and reset
700
* the counter to avoid possible unhandled NMI messages.
701
*/
702
#define OVERFLOW_WAIT_COUNT 50
703
704
static void amd_pmu_wait_on_overflow(int idx)
705
{
706
unsigned int i;
707
708
/*
709
* Wait for the counter to be reset if it has overflowed. This loop
710
* should exit very, very quickly, but just in case, don't wait
711
* forever...
712
*/
713
for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
714
if (!static_call(amd_pmu_test_overflow)(idx))
715
break;
716
717
/* Might be in IRQ context, so can't sleep */
718
udelay(1);
719
}
720
}
721
722
static void amd_pmu_check_overflow(void)
723
{
724
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
725
int idx;
726
727
/*
728
* This shouldn't be called from NMI context, but add a safeguard here
729
* to return, since if we're in NMI context we can't wait for an NMI
730
* to reset an overflowed counter value.
731
*/
732
if (in_nmi())
733
return;
734
735
/*
736
* Check each counter for overflow and wait for it to be reset by the
737
* NMI if it has overflowed. This relies on the fact that all active
738
* counters are always enabled when this function is called and
739
* ARCH_PERFMON_EVENTSEL_INT is always set.
740
*/
741
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
742
if (!test_bit(idx, cpuc->active_mask))
743
continue;
744
745
amd_pmu_wait_on_overflow(idx);
746
}
747
}
748
749
static void amd_pmu_enable_event(struct perf_event *event)
750
{
751
x86_pmu_enable_event(event);
752
}
753
754
static void amd_pmu_enable_all(int added)
755
{
756
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
757
int idx;
758
759
amd_brs_enable_all();
760
761
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
762
/* only activate events which are marked as active */
763
if (!test_bit(idx, cpuc->active_mask))
764
continue;
765
766
amd_pmu_enable_event(cpuc->events[idx]);
767
}
768
}
769
770
static void amd_pmu_v2_enable_event(struct perf_event *event)
771
{
772
struct hw_perf_event *hwc = &event->hw;
773
774
/*
775
* Testing cpu_hw_events.enabled should be skipped in this case unlike
776
* in x86_pmu_enable_event().
777
*
778
* Since cpu_hw_events.enabled is set only after returning from
779
* x86_pmu_start(), the PMCs must be programmed and kept ready.
780
* Counting starts only after x86_pmu_enable_all() is called.
781
*/
782
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
783
}
784
785
static __always_inline void amd_pmu_core_enable_all(void)
786
{
787
amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
788
}
789
790
static void amd_pmu_v2_enable_all(int added)
791
{
792
amd_pmu_lbr_enable_all();
793
amd_pmu_core_enable_all();
794
}
795
796
static void amd_pmu_disable_event(struct perf_event *event)
797
{
798
x86_pmu_disable_event(event);
799
800
/*
801
* This can be called from NMI context (via x86_pmu_stop). The counter
802
* may have overflowed, but either way, we'll never see it get reset
803
* by the NMI if we're already in the NMI. And the NMI latency support
804
* below will take care of any pending NMI that might have been
805
* generated by the overflow.
806
*/
807
if (in_nmi())
808
return;
809
810
amd_pmu_wait_on_overflow(event->hw.idx);
811
}
812
813
static void amd_pmu_disable_all(void)
814
{
815
amd_brs_disable_all();
816
x86_pmu_disable_all();
817
amd_pmu_check_overflow();
818
}
819
820
static __always_inline void amd_pmu_core_disable_all(void)
821
{
822
amd_pmu_set_global_ctl(0);
823
}
824
825
static void amd_pmu_v2_disable_all(void)
826
{
827
amd_pmu_core_disable_all();
828
amd_pmu_lbr_disable_all();
829
amd_pmu_check_overflow();
830
}
831
832
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);
833
834
static void amd_pmu_add_event(struct perf_event *event)
835
{
836
if (needs_branch_stack(event))
837
static_call(amd_pmu_branch_add)(event);
838
}
839
840
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);
841
842
static void amd_pmu_del_event(struct perf_event *event)
843
{
844
if (needs_branch_stack(event))
845
static_call(amd_pmu_branch_del)(event);
846
}
847
848
/*
849
* Because of NMI latency, if multiple PMC counters are active or other sources
850
* of NMIs are received, the perf NMI handler can handle one or more overflowed
851
* PMC counters outside of the NMI associated with the PMC overflow. If the NMI
852
* doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
853
* back-to-back NMI support won't be active. This PMC handler needs to take into
854
* account that this can occur, otherwise this could result in unknown NMI
855
* messages being issued. Examples of this is PMC overflow while in the NMI
856
* handler when multiple PMCs are active or PMC overflow while handling some
857
* other source of an NMI.
858
*
859
* Attempt to mitigate this by creating an NMI window in which un-handled NMIs
860
* received during this window will be claimed. This prevents extending the
861
* window past when it is possible that latent NMIs should be received. The
862
* per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
863
* handled a counter. When an un-handled NMI is received, it will be claimed
864
* only if arriving within that window.
865
*/
866
static inline int amd_pmu_adjust_nmi_window(int handled)
867
{
868
/*
869
* If a counter was handled, record a timestamp such that un-handled
870
* NMIs will be claimed if arriving within that window.
871
*/
872
if (handled) {
873
this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
874
875
return handled;
876
}
877
878
if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
879
return NMI_DONE;
880
881
return NMI_HANDLED;
882
}
883
884
static int amd_pmu_handle_irq(struct pt_regs *regs)
885
{
886
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
887
int handled;
888
int pmu_enabled;
889
890
/*
891
* Save the PMU state.
892
* It needs to be restored when leaving the handler.
893
*/
894
pmu_enabled = cpuc->enabled;
895
cpuc->enabled = 0;
896
897
amd_brs_disable_all();
898
899
/* Drain BRS is in use (could be inactive) */
900
if (cpuc->lbr_users)
901
amd_brs_drain();
902
903
/* Process any counter overflows */
904
handled = x86_pmu_handle_irq(regs);
905
906
cpuc->enabled = pmu_enabled;
907
if (pmu_enabled)
908
amd_brs_enable_all();
909
910
return amd_pmu_adjust_nmi_window(handled);
911
}
912
913
/*
914
* AMD-specific callback invoked through perf_snapshot_branch_stack static
915
* call, defined in include/linux/perf_event.h. See its definition for API
916
* details. It's up to caller to provide enough space in *entries* to fit all
917
* LBR records, otherwise returned result will be truncated to *cnt* entries.
918
*/
919
static int amd_pmu_v2_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
920
{
921
struct cpu_hw_events *cpuc;
922
unsigned long flags;
923
924
/*
925
* The sequence of steps to freeze LBR should be completely inlined
926
* and contain no branches to minimize contamination of LBR snapshot
927
*/
928
local_irq_save(flags);
929
amd_pmu_core_disable_all();
930
__amd_pmu_lbr_disable();
931
932
cpuc = this_cpu_ptr(&cpu_hw_events);
933
934
amd_pmu_lbr_read();
935
cnt = min(cnt, x86_pmu.lbr_nr);
936
memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
937
938
amd_pmu_v2_enable_all(0);
939
local_irq_restore(flags);
940
941
return cnt;
942
}
943
944
static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
945
{
946
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
947
static atomic64_t status_warned = ATOMIC64_INIT(0);
948
u64 reserved, status, mask, new_bits, prev_bits;
949
struct perf_sample_data data;
950
struct hw_perf_event *hwc;
951
struct perf_event *event;
952
int handled = 0, idx;
953
bool pmu_enabled;
954
955
/*
956
* Save the PMU state as it needs to be restored when leaving the
957
* handler
958
*/
959
pmu_enabled = cpuc->enabled;
960
cpuc->enabled = 0;
961
962
/* Stop counting but do not disable LBR */
963
amd_pmu_core_disable_all();
964
965
status = amd_pmu_get_global_status();
966
967
/* Check if any overflows are pending */
968
if (!status)
969
goto done;
970
971
/* Read branch records */
972
if (x86_pmu.lbr_nr) {
973
amd_pmu_lbr_read();
974
status &= ~GLOBAL_STATUS_LBRS_FROZEN;
975
}
976
977
reserved = status & ~amd_pmu_global_cntr_mask;
978
if (reserved)
979
pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
980
reserved);
981
982
/* Clear any reserved bits set by buggy microcode */
983
status &= amd_pmu_global_cntr_mask;
984
985
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
986
if (!test_bit(idx, cpuc->active_mask))
987
continue;
988
989
event = cpuc->events[idx];
990
hwc = &event->hw;
991
x86_perf_event_update(event);
992
mask = BIT_ULL(idx);
993
994
if (!(status & mask))
995
continue;
996
997
/* Event overflow */
998
handled++;
999
status &= ~mask;
1000
perf_sample_data_init(&data, 0, hwc->last_period);
1001
1002
if (!x86_perf_event_set_period(event))
1003
continue;
1004
1005
perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1006
1007
perf_event_overflow(event, &data, regs);
1008
}
1009
1010
/*
1011
* It should never be the case that some overflows are not handled as
1012
* the corresponding PMCs are expected to be inactive according to the
1013
* active_mask
1014
*/
1015
if (status > 0) {
1016
prev_bits = atomic64_fetch_or(status, &status_warned);
1017
// A new bit was set for the very first time.
1018
new_bits = status & ~prev_bits;
1019
WARN(new_bits, "New overflows for inactive PMCs: %llx\n", new_bits);
1020
}
1021
1022
/* Clear overflow and freeze bits */
1023
amd_pmu_ack_global_status(~status);
1024
1025
/*
1026
* Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
1027
* PMI entry is not set by the local APIC when a PMC overflow occurs
1028
*/
1029
inc_irq_stat(apic_perf_irqs);
1030
1031
done:
1032
cpuc->enabled = pmu_enabled;
1033
1034
/* Resume counting only if PMU is active */
1035
if (pmu_enabled)
1036
amd_pmu_core_enable_all();
1037
1038
return amd_pmu_adjust_nmi_window(handled);
1039
}
1040
1041
static struct event_constraint *
1042
amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1043
struct perf_event *event)
1044
{
1045
/*
1046
* if not NB event or no NB, then no constraints
1047
*/
1048
if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
1049
return &unconstrained;
1050
1051
return __amd_get_nb_event_constraints(cpuc, event, NULL);
1052
}
1053
1054
static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
1055
struct perf_event *event)
1056
{
1057
if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
1058
__amd_put_nb_event_constraints(cpuc, event);
1059
}
1060
1061
PMU_FORMAT_ATTR(event, "config:0-7,32-35");
1062
PMU_FORMAT_ATTR(umask, "config:8-15" );
1063
PMU_FORMAT_ATTR(edge, "config:18" );
1064
PMU_FORMAT_ATTR(inv, "config:23" );
1065
PMU_FORMAT_ATTR(cmask, "config:24-31" );
1066
1067
static struct attribute *amd_format_attr[] = {
1068
&format_attr_event.attr,
1069
&format_attr_umask.attr,
1070
&format_attr_edge.attr,
1071
&format_attr_inv.attr,
1072
&format_attr_cmask.attr,
1073
NULL,
1074
};
1075
1076
/* AMD Family 15h */
1077
1078
#define AMD_EVENT_TYPE_MASK 0x000000F0ULL
1079
1080
#define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
1081
#define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
1082
#define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
1083
#define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
1084
#define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
1085
#define AMD_EVENT_EX_LS 0x000000C0ULL
1086
#define AMD_EVENT_DE 0x000000D0ULL
1087
#define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
1088
1089
/*
1090
* AMD family 15h event code/PMC mappings:
1091
*
1092
* type = event_code & 0x0F0:
1093
*
1094
* 0x000 FP PERF_CTL[5:3]
1095
* 0x010 FP PERF_CTL[5:3]
1096
* 0x020 LS PERF_CTL[5:0]
1097
* 0x030 LS PERF_CTL[5:0]
1098
* 0x040 DC PERF_CTL[5:0]
1099
* 0x050 DC PERF_CTL[5:0]
1100
* 0x060 CU PERF_CTL[2:0]
1101
* 0x070 CU PERF_CTL[2:0]
1102
* 0x080 IC/DE PERF_CTL[2:0]
1103
* 0x090 IC/DE PERF_CTL[2:0]
1104
* 0x0A0 ---
1105
* 0x0B0 ---
1106
* 0x0C0 EX/LS PERF_CTL[5:0]
1107
* 0x0D0 DE PERF_CTL[2:0]
1108
* 0x0E0 NB NB_PERF_CTL[3:0]
1109
* 0x0F0 NB NB_PERF_CTL[3:0]
1110
*
1111
* Exceptions:
1112
*
1113
* 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
1114
* 0x003 FP PERF_CTL[3]
1115
* 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
1116
* 0x00B FP PERF_CTL[3]
1117
* 0x00D FP PERF_CTL[3]
1118
* 0x023 DE PERF_CTL[2:0]
1119
* 0x02D LS PERF_CTL[3]
1120
* 0x02E LS PERF_CTL[3,0]
1121
* 0x031 LS PERF_CTL[2:0] (**)
1122
* 0x043 CU PERF_CTL[2:0]
1123
* 0x045 CU PERF_CTL[2:0]
1124
* 0x046 CU PERF_CTL[2:0]
1125
* 0x054 CU PERF_CTL[2:0]
1126
* 0x055 CU PERF_CTL[2:0]
1127
* 0x08F IC PERF_CTL[0]
1128
* 0x187 DE PERF_CTL[0]
1129
* 0x188 DE PERF_CTL[0]
1130
* 0x0DB EX PERF_CTL[5:0]
1131
* 0x0DC LS PERF_CTL[5:0]
1132
* 0x0DD LS PERF_CTL[5:0]
1133
* 0x0DE LS PERF_CTL[5:0]
1134
* 0x0DF LS PERF_CTL[5:0]
1135
* 0x1C0 EX PERF_CTL[5:3]
1136
* 0x1D6 EX PERF_CTL[5:0]
1137
* 0x1D8 EX PERF_CTL[5:0]
1138
*
1139
* (*) depending on the umask all FPU counters may be used
1140
* (**) only one unitmask enabled at a time
1141
*/
1142
1143
static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
1144
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
1145
static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
1146
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
1147
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
1148
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
1149
1150
static struct event_constraint *
1151
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
1152
struct perf_event *event)
1153
{
1154
struct hw_perf_event *hwc = &event->hw;
1155
unsigned int event_code = amd_get_event_code(hwc);
1156
1157
switch (event_code & AMD_EVENT_TYPE_MASK) {
1158
case AMD_EVENT_FP:
1159
switch (event_code) {
1160
case 0x000:
1161
if (!(hwc->config & 0x0000F000ULL))
1162
break;
1163
if (!(hwc->config & 0x00000F00ULL))
1164
break;
1165
return &amd_f15_PMC3;
1166
case 0x004:
1167
if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1168
break;
1169
return &amd_f15_PMC3;
1170
case 0x003:
1171
case 0x00B:
1172
case 0x00D:
1173
return &amd_f15_PMC3;
1174
}
1175
return &amd_f15_PMC53;
1176
case AMD_EVENT_LS:
1177
case AMD_EVENT_DC:
1178
case AMD_EVENT_EX_LS:
1179
switch (event_code) {
1180
case 0x023:
1181
case 0x043:
1182
case 0x045:
1183
case 0x046:
1184
case 0x054:
1185
case 0x055:
1186
return &amd_f15_PMC20;
1187
case 0x02D:
1188
return &amd_f15_PMC3;
1189
case 0x02E:
1190
return &amd_f15_PMC30;
1191
case 0x031:
1192
if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1193
return &amd_f15_PMC20;
1194
return &emptyconstraint;
1195
case 0x1C0:
1196
return &amd_f15_PMC53;
1197
default:
1198
return &amd_f15_PMC50;
1199
}
1200
case AMD_EVENT_CU:
1201
case AMD_EVENT_IC_DE:
1202
case AMD_EVENT_DE:
1203
switch (event_code) {
1204
case 0x08F:
1205
case 0x187:
1206
case 0x188:
1207
return &amd_f15_PMC0;
1208
case 0x0DB ... 0x0DF:
1209
case 0x1D6:
1210
case 0x1D8:
1211
return &amd_f15_PMC50;
1212
default:
1213
return &amd_f15_PMC20;
1214
}
1215
case AMD_EVENT_NB:
1216
/* moved to uncore.c */
1217
return &emptyconstraint;
1218
default:
1219
return &emptyconstraint;
1220
}
1221
}
1222
1223
static struct event_constraint pair_constraint;
1224
1225
static struct event_constraint *
1226
amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
1227
struct perf_event *event)
1228
{
1229
struct hw_perf_event *hwc = &event->hw;
1230
1231
if (amd_is_pair_event_code(hwc))
1232
return &pair_constraint;
1233
1234
return &unconstrained;
1235
}
1236
1237
static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
1238
struct perf_event *event)
1239
{
1240
struct hw_perf_event *hwc = &event->hw;
1241
1242
if (is_counter_pair(hwc))
1243
--cpuc->n_pair;
1244
}
1245
1246
/*
1247
* Because of the way BRS operates with an inactive and active phases, and
1248
* the link to one counter, it is not possible to have two events using BRS
1249
* scheduled at the same time. There would be an issue with enforcing the
1250
* period of each one and given that the BRS saturates, it would not be possible
1251
* to guarantee correlated content for all events. Therefore, in situations
1252
* where multiple events want to use BRS, the kernel enforces mutual exclusion.
1253
* Exclusion is enforced by choosing only one counter for events using BRS.
1254
* The event scheduling logic will then automatically multiplex the
1255
* events and ensure that at most one event is actively using BRS.
1256
*
1257
* The BRS counter could be any counter, but there is no constraint on Fam19h,
1258
* therefore all counters are equal and thus we pick the first one: PMC0
1259
*/
1260
static struct event_constraint amd_fam19h_brs_cntr0_constraint =
1261
EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
1262
1263
static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
1264
__EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
1265
1266
static struct event_constraint *
1267
amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
1268
struct perf_event *event)
1269
{
1270
struct hw_perf_event *hwc = &event->hw;
1271
bool has_brs = has_amd_brs(hwc);
1272
1273
/*
1274
* In case BRS is used with an event requiring a counter pair,
1275
* the kernel allows it but only on counter 0 & 1 to enforce
1276
* multiplexing requiring to protect BRS in case of multiple
1277
* BRS users
1278
*/
1279
if (amd_is_pair_event_code(hwc)) {
1280
return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
1281
: &pair_constraint;
1282
}
1283
1284
if (has_brs)
1285
return &amd_fam19h_brs_cntr0_constraint;
1286
1287
return &unconstrained;
1288
}
1289
1290
1291
static ssize_t amd_event_sysfs_show(char *page, u64 config)
1292
{
1293
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
1294
(config & AMD64_EVENTSEL_EVENT) >> 24;
1295
1296
return x86_event_sysfs_show(page, config, event);
1297
}
1298
1299
static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
1300
{
1301
/*
1302
* Decrease period by the depth of the BRS feature to get the last N
1303
* taken branches and approximate the desired period
1304
*/
1305
if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
1306
*left -= x86_pmu.lbr_nr;
1307
}
1308
1309
static __initconst const struct x86_pmu amd_pmu = {
1310
.name = "AMD",
1311
.handle_irq = amd_pmu_handle_irq,
1312
.disable_all = amd_pmu_disable_all,
1313
.enable_all = amd_pmu_enable_all,
1314
.enable = amd_pmu_enable_event,
1315
.disable = amd_pmu_disable_event,
1316
.hw_config = amd_pmu_hw_config,
1317
.schedule_events = x86_schedule_events,
1318
.eventsel = MSR_K7_EVNTSEL0,
1319
.perfctr = MSR_K7_PERFCTR0,
1320
.addr_offset = amd_pmu_addr_offset,
1321
.event_map = amd_pmu_event_map,
1322
.max_events = ARRAY_SIZE(amd_perfmon_event_map),
1323
.cntr_mask64 = GENMASK_ULL(AMD64_NUM_COUNTERS - 1, 0),
1324
.add = amd_pmu_add_event,
1325
.del = amd_pmu_del_event,
1326
.cntval_bits = 48,
1327
.cntval_mask = (1ULL << 48) - 1,
1328
.apic = 1,
1329
/* use highest bit to detect overflow */
1330
.max_period = (1ULL << 47) - 1,
1331
.get_event_constraints = amd_get_event_constraints,
1332
.put_event_constraints = amd_put_event_constraints,
1333
1334
.format_attrs = amd_format_attr,
1335
.events_sysfs_show = amd_event_sysfs_show,
1336
1337
.cpu_prepare = amd_pmu_cpu_prepare,
1338
.cpu_starting = amd_pmu_cpu_starting,
1339
.cpu_dead = amd_pmu_cpu_dead,
1340
1341
.amd_nb_constraints = 1,
1342
};
1343
1344
static ssize_t branches_show(struct device *cdev,
1345
struct device_attribute *attr,
1346
char *buf)
1347
{
1348
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
1349
}
1350
1351
static DEVICE_ATTR_RO(branches);
1352
1353
static struct attribute *amd_pmu_branches_attrs[] = {
1354
&dev_attr_branches.attr,
1355
NULL,
1356
};
1357
1358
static umode_t
1359
amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1360
{
1361
return x86_pmu.lbr_nr ? attr->mode : 0;
1362
}
1363
1364
static struct attribute_group group_caps_amd_branches = {
1365
.name = "caps",
1366
.attrs = amd_pmu_branches_attrs,
1367
.is_visible = amd_branches_is_visible,
1368
};
1369
1370
#ifdef CONFIG_PERF_EVENTS_AMD_BRS
1371
1372
EVENT_ATTR_STR(branch-brs, amd_branch_brs,
1373
"event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
1374
1375
static struct attribute *amd_brs_events_attrs[] = {
1376
EVENT_PTR(amd_branch_brs),
1377
NULL,
1378
};
1379
1380
static umode_t
1381
amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1382
{
1383
return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
1384
attr->mode : 0;
1385
}
1386
1387
static struct attribute_group group_events_amd_brs = {
1388
.name = "events",
1389
.attrs = amd_brs_events_attrs,
1390
.is_visible = amd_brs_is_visible,
1391
};
1392
1393
#endif /* CONFIG_PERF_EVENTS_AMD_BRS */
1394
1395
static const struct attribute_group *amd_attr_update[] = {
1396
&group_caps_amd_branches,
1397
#ifdef CONFIG_PERF_EVENTS_AMD_BRS
1398
&group_events_amd_brs,
1399
#endif
1400
NULL,
1401
};
1402
1403
static int __init amd_core_pmu_init(void)
1404
{
1405
union cpuid_0x80000022_ebx ebx;
1406
u64 even_ctr_mask = 0ULL;
1407
int i;
1408
1409
if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1410
return 0;
1411
1412
/* Avoid calculating the value each time in the NMI handler */
1413
perf_nmi_window = msecs_to_jiffies(100);
1414
1415
/*
1416
* If core performance counter extensions exists, we must use
1417
* MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1418
* amd_pmu_addr_offset().
1419
*/
1420
x86_pmu.eventsel = MSR_F15H_PERF_CTL;
1421
x86_pmu.perfctr = MSR_F15H_PERF_CTR;
1422
x86_pmu.cntr_mask64 = GENMASK_ULL(AMD64_NUM_COUNTERS_CORE - 1, 0);
1423
1424
/* Check for Performance Monitoring v2 support */
1425
if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
1426
ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
1427
1428
/* Update PMU version for later usage */
1429
x86_pmu.version = 2;
1430
1431
/* Find the number of available Core PMCs */
1432
x86_pmu.cntr_mask64 = GENMASK_ULL(ebx.split.num_core_pmc - 1, 0);
1433
1434
amd_pmu_global_cntr_mask = x86_pmu.cntr_mask64;
1435
1436
/* Update PMC handling functions */
1437
x86_pmu.enable_all = amd_pmu_v2_enable_all;
1438
x86_pmu.disable_all = amd_pmu_v2_disable_all;
1439
x86_pmu.enable = amd_pmu_v2_enable_event;
1440
x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
1441
static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
1442
}
1443
1444
/*
1445
* AMD Core perfctr has separate MSRs for the NB events, see
1446
* the amd/uncore.c driver.
1447
*/
1448
x86_pmu.amd_nb_constraints = 0;
1449
1450
if (boot_cpu_data.x86 == 0x15) {
1451
pr_cont("Fam15h ");
1452
x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
1453
}
1454
if (boot_cpu_data.x86 >= 0x17) {
1455
pr_cont("Fam17h+ ");
1456
/*
1457
* Family 17h and compatibles have constraints for Large
1458
* Increment per Cycle events: they may only be assigned an
1459
* even numbered counter that has a consecutive adjacent odd
1460
* numbered counter following it.
1461
*/
1462
for (i = 0; i < x86_pmu_max_num_counters(NULL) - 1; i += 2)
1463
even_ctr_mask |= BIT_ULL(i);
1464
1465
pair_constraint = (struct event_constraint)
1466
__EVENT_CONSTRAINT(0, even_ctr_mask, 0,
1467
x86_pmu_max_num_counters(NULL) / 2, 0,
1468
PERF_X86_EVENT_PAIR);
1469
1470
x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
1471
x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
1472
x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
1473
x86_pmu.flags |= PMU_FL_PAIR;
1474
}
1475
1476
/* LBR and BRS are mutually exclusive features */
1477
if (!amd_pmu_lbr_init()) {
1478
/* LBR requires flushing on context switch */
1479
x86_pmu.sched_task = amd_pmu_lbr_sched_task;
1480
static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
1481
static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
1482
static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
1483
static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
1484
1485
/* Only support branch_stack snapshot on perfmon v2 */
1486
if (x86_pmu.handle_irq == amd_pmu_v2_handle_irq)
1487
static_call_update(perf_snapshot_branch_stack, amd_pmu_v2_snapshot_branch_stack);
1488
} else if (!amd_brs_init()) {
1489
/*
1490
* BRS requires special event constraints and flushing on ctxsw.
1491
*/
1492
x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
1493
x86_pmu.sched_task = amd_pmu_brs_sched_task;
1494
x86_pmu.limit_period = amd_pmu_limit_period;
1495
1496
static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
1497
static_call_update(amd_pmu_branch_reset, amd_brs_reset);
1498
static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
1499
static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);
1500
1501
/*
1502
* put_event_constraints callback same as Fam17h, set above
1503
*/
1504
1505
/* branch sampling must be stopped when entering low power */
1506
amd_brs_lopwr_init();
1507
}
1508
1509
x86_pmu.attr_update = amd_attr_update;
1510
1511
pr_cont("core perfctr, ");
1512
return 0;
1513
}
1514
1515
__init int amd_pmu_init(void)
1516
{
1517
int ret;
1518
1519
/* Performance-monitoring supported from K7 and later: */
1520
if (boot_cpu_data.x86 < 6)
1521
return -ENODEV;
1522
1523
x86_pmu = amd_pmu;
1524
1525
ret = amd_core_pmu_init();
1526
if (ret)
1527
return ret;
1528
1529
if (num_possible_cpus() == 1) {
1530
/*
1531
* No point in allocating data structures to serialize
1532
* against other CPUs, when there is only the one CPU.
1533
*/
1534
x86_pmu.amd_nb_constraints = 0;
1535
}
1536
1537
if (boot_cpu_data.x86 >= 0x17)
1538
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1539
else
1540
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1541
1542
return 0;
1543
}
1544
1545
static inline void amd_pmu_reload_virt(void)
1546
{
1547
if (x86_pmu.version >= 2) {
1548
/*
1549
* Clear global enable bits, reprogram the PERF_CTL
1550
* registers with updated perf_ctr_virt_mask and then
1551
* set global enable bits once again
1552
*/
1553
amd_pmu_v2_disable_all();
1554
amd_pmu_enable_all(0);
1555
amd_pmu_v2_enable_all(0);
1556
return;
1557
}
1558
1559
amd_pmu_disable_all();
1560
amd_pmu_enable_all(0);
1561
}
1562
1563
void amd_pmu_enable_virt(void)
1564
{
1565
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1566
1567
cpuc->perf_ctr_virt_mask = 0;
1568
1569
/* Reload all events */
1570
amd_pmu_reload_virt();
1571
}
1572
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1573
1574
void amd_pmu_disable_virt(void)
1575
{
1576
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1577
1578
/*
1579
* We only mask out the Host-only bit so that host-only counting works
1580
* when SVM is disabled. If someone sets up a guest-only counter when
1581
* SVM is disabled the Guest-only bits still gets set and the counter
1582
* will not count anything.
1583
*/
1584
cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1585
1586
/* Reload all events */
1587
amd_pmu_reload_virt();
1588
}
1589
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
1590
1591