Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/events/core.c
50389 views
1
/*
2
* Performance events x86 architecture code
3
*
4
* Copyright (C) 2008 Linutronix GmbH, Thomas Gleixner <[email protected]>
5
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6
* Copyright (C) 2009 Jaswinder Singh Rajput
7
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9
* Copyright (C) 2009 Intel Corporation, <[email protected]>
10
* Copyright (C) 2009 Google, Inc., Stephane Eranian
11
*
12
* For licencing details see kernel-base/COPYING
13
*/
14
15
#include <linux/perf_event.h>
16
#include <linux/capability.h>
17
#include <linux/notifier.h>
18
#include <linux/hardirq.h>
19
#include <linux/kprobes.h>
20
#include <linux/export.h>
21
#include <linux/init.h>
22
#include <linux/kdebug.h>
23
#include <linux/kvm_types.h>
24
#include <linux/sched/mm.h>
25
#include <linux/sched/clock.h>
26
#include <linux/uaccess.h>
27
#include <linux/slab.h>
28
#include <linux/cpu.h>
29
#include <linux/bitops.h>
30
#include <linux/device.h>
31
#include <linux/nospec.h>
32
#include <linux/static_call.h>
33
#include <linux/kvm_types.h>
34
35
#include <asm/apic.h>
36
#include <asm/stacktrace.h>
37
#include <asm/msr.h>
38
#include <asm/nmi.h>
39
#include <asm/smp.h>
40
#include <asm/alternative.h>
41
#include <asm/mmu_context.h>
42
#include <asm/tlbflush.h>
43
#include <asm/timer.h>
44
#include <asm/desc.h>
45
#include <asm/ldt.h>
46
#include <asm/unwind.h>
47
#include <asm/uprobes.h>
48
#include <asm/ibt.h>
49
50
#include "perf_event.h"
51
52
struct x86_pmu x86_pmu __read_mostly;
53
static struct pmu pmu;
54
55
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
56
.enabled = 1,
57
.pmu = &pmu,
58
};
59
60
static DEFINE_PER_CPU(bool, guest_lvtpc_loaded);
61
62
DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
63
DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
64
DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
65
66
/*
67
* This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
68
* from just a typename, as opposed to an actual function.
69
*/
70
DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
71
DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
72
DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
73
DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
74
DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
75
76
DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
77
78
DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
79
DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
80
DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
81
82
DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period);
83
DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update);
84
DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
85
86
DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
87
DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
88
DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
89
90
DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
91
DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
92
DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
93
94
DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
95
96
DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
97
DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
98
99
DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
100
101
DEFINE_STATIC_CALL_NULL(x86_pmu_late_setup, *x86_pmu.late_setup);
102
103
DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_enable, *x86_pmu.pebs_enable);
104
DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_disable, *x86_pmu.pebs_disable);
105
DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_enable_all, *x86_pmu.pebs_enable_all);
106
DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_disable_all, *x86_pmu.pebs_disable_all);
107
108
/*
109
* This one is magic, it will get called even when PMU init fails (because
110
* there is no PMU), in which case it should simply return NULL.
111
*/
112
DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
113
114
u64 __read_mostly hw_cache_event_ids
115
[PERF_COUNT_HW_CACHE_MAX]
116
[PERF_COUNT_HW_CACHE_OP_MAX]
117
[PERF_COUNT_HW_CACHE_RESULT_MAX];
118
u64 __read_mostly hw_cache_extra_regs
119
[PERF_COUNT_HW_CACHE_MAX]
120
[PERF_COUNT_HW_CACHE_OP_MAX]
121
[PERF_COUNT_HW_CACHE_RESULT_MAX];
122
123
/*
124
* Propagate event elapsed time into the generic event.
125
* Can only be executed on the CPU where the event is active.
126
* Returns the delta events processed.
127
*/
128
u64 x86_perf_event_update(struct perf_event *event)
129
{
130
struct hw_perf_event *hwc = &event->hw;
131
int shift = 64 - x86_pmu.cntval_bits;
132
u64 prev_raw_count, new_raw_count;
133
u64 delta;
134
135
if (unlikely(!hwc->event_base))
136
return 0;
137
138
/*
139
* Careful: an NMI might modify the previous event value.
140
*
141
* Our tactic to handle this is to first atomically read and
142
* exchange a new raw count - then add that new-prev delta
143
* count to the generic event atomically:
144
*/
145
prev_raw_count = local64_read(&hwc->prev_count);
146
do {
147
new_raw_count = rdpmc(hwc->event_base_rdpmc);
148
} while (!local64_try_cmpxchg(&hwc->prev_count,
149
&prev_raw_count, new_raw_count));
150
151
/*
152
* Now we have the new raw value and have updated the prev
153
* timestamp already. We can now calculate the elapsed delta
154
* (event-)time and add that to the generic event.
155
*
156
* Careful, not all hw sign-extends above the physical width
157
* of the count.
158
*/
159
delta = (new_raw_count << shift) - (prev_raw_count << shift);
160
delta >>= shift;
161
162
local64_add(delta, &event->count);
163
local64_sub(delta, &hwc->period_left);
164
165
return new_raw_count;
166
}
167
168
/*
169
* Find and validate any extra registers to set up.
170
*/
171
static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
172
{
173
struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
174
struct hw_perf_event_extra *reg;
175
struct extra_reg *er;
176
177
reg = &event->hw.extra_reg;
178
179
if (!extra_regs)
180
return 0;
181
182
for (er = extra_regs; er->msr; er++) {
183
if (er->event != (config & er->config_mask))
184
continue;
185
if (event->attr.config1 & ~er->valid_mask)
186
return -EINVAL;
187
/* Check if the extra msrs can be safely accessed*/
188
if (!er->extra_msr_access)
189
return -ENXIO;
190
191
reg->idx = er->idx;
192
reg->config = event->attr.config1;
193
reg->reg = er->msr;
194
break;
195
}
196
return 0;
197
}
198
199
static atomic_t active_events;
200
static atomic_t pmc_refcount;
201
static DEFINE_MUTEX(pmc_reserve_mutex);
202
203
#ifdef CONFIG_X86_LOCAL_APIC
204
205
static inline u64 get_possible_counter_mask(void)
206
{
207
u64 cntr_mask = x86_pmu.cntr_mask64;
208
int i;
209
210
if (!is_hybrid())
211
return cntr_mask;
212
213
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
214
cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
215
216
return cntr_mask;
217
}
218
219
static bool reserve_pmc_hardware(void)
220
{
221
u64 cntr_mask = get_possible_counter_mask();
222
int i, end;
223
224
for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
225
if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
226
goto perfctr_fail;
227
}
228
229
for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
230
if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
231
goto eventsel_fail;
232
}
233
234
return true;
235
236
eventsel_fail:
237
end = i;
238
for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
239
release_evntsel_nmi(x86_pmu_config_addr(i));
240
i = X86_PMC_IDX_MAX;
241
242
perfctr_fail:
243
end = i;
244
for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
245
release_perfctr_nmi(x86_pmu_event_addr(i));
246
247
return false;
248
}
249
250
static void release_pmc_hardware(void)
251
{
252
u64 cntr_mask = get_possible_counter_mask();
253
int i;
254
255
for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
256
release_perfctr_nmi(x86_pmu_event_addr(i));
257
release_evntsel_nmi(x86_pmu_config_addr(i));
258
}
259
}
260
261
#else
262
263
static bool reserve_pmc_hardware(void) { return true; }
264
static void release_pmc_hardware(void) {}
265
266
#endif
267
268
bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
269
unsigned long *fixed_cntr_mask)
270
{
271
u64 val, val_fail = -1, val_new= ~0;
272
int i, reg, reg_fail = -1, ret = 0;
273
int bios_fail = 0;
274
int reg_safe = -1;
275
276
/*
277
* Check to see if the BIOS enabled any of the counters, if so
278
* complain and bail.
279
*/
280
for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
281
reg = x86_pmu_config_addr(i);
282
ret = rdmsrq_safe(reg, &val);
283
if (ret)
284
goto msr_fail;
285
if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
286
bios_fail = 1;
287
val_fail = val;
288
reg_fail = reg;
289
} else {
290
reg_safe = i;
291
}
292
}
293
294
if (*(u64 *)fixed_cntr_mask) {
295
reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
296
ret = rdmsrq_safe(reg, &val);
297
if (ret)
298
goto msr_fail;
299
for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
300
if (fixed_counter_disabled(i, pmu))
301
continue;
302
if (val & (0x03ULL << i*4)) {
303
bios_fail = 1;
304
val_fail = val;
305
reg_fail = reg;
306
}
307
}
308
}
309
310
/*
311
* If all the counters are enabled, the below test will always
312
* fail. The tools will also become useless in this scenario.
313
* Just fail and disable the hardware counters.
314
*/
315
316
if (reg_safe == -1) {
317
reg = reg_safe;
318
goto msr_fail;
319
}
320
321
/*
322
* Read the current value, change it and read it back to see if it
323
* matches, this is needed to detect certain hardware emulators
324
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
325
*/
326
reg = x86_pmu_event_addr(reg_safe);
327
if (rdmsrq_safe(reg, &val))
328
goto msr_fail;
329
val ^= 0xffffUL;
330
ret = wrmsrq_safe(reg, val);
331
ret |= rdmsrq_safe(reg, &val_new);
332
if (ret || val != val_new)
333
goto msr_fail;
334
335
/*
336
* We still allow the PMU driver to operate:
337
*/
338
if (bios_fail) {
339
pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
340
pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
341
reg_fail, val_fail);
342
}
343
344
return true;
345
346
msr_fail:
347
if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
348
pr_cont("PMU not available due to virtualization, using software events only.\n");
349
} else {
350
pr_cont("Broken PMU hardware detected, using software events only.\n");
351
pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
352
reg, val_new);
353
}
354
355
return false;
356
}
357
358
static void hw_perf_event_destroy(struct perf_event *event)
359
{
360
x86_release_hardware();
361
atomic_dec(&active_events);
362
}
363
364
void hw_perf_lbr_event_destroy(struct perf_event *event)
365
{
366
hw_perf_event_destroy(event);
367
368
/* undo the lbr/bts event accounting */
369
x86_del_exclusive(x86_lbr_exclusive_lbr);
370
}
371
372
static inline int x86_pmu_initialized(void)
373
{
374
return x86_pmu.handle_irq != NULL;
375
}
376
377
static inline int
378
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
379
{
380
struct perf_event_attr *attr = &event->attr;
381
unsigned int cache_type, cache_op, cache_result;
382
u64 config, val;
383
384
config = attr->config;
385
386
cache_type = (config >> 0) & 0xff;
387
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
388
return -EINVAL;
389
cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
390
391
cache_op = (config >> 8) & 0xff;
392
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
393
return -EINVAL;
394
cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
395
396
cache_result = (config >> 16) & 0xff;
397
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
398
return -EINVAL;
399
cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
400
401
val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
402
if (val == 0)
403
return -ENOENT;
404
405
if (val == -1)
406
return -EINVAL;
407
408
hwc->config |= val;
409
attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
410
return x86_pmu_extra_regs(val, event);
411
}
412
413
int x86_reserve_hardware(void)
414
{
415
int err = 0;
416
417
if (!atomic_inc_not_zero(&pmc_refcount)) {
418
mutex_lock(&pmc_reserve_mutex);
419
if (atomic_read(&pmc_refcount) == 0) {
420
if (!reserve_pmc_hardware()) {
421
err = -EBUSY;
422
} else {
423
reserve_ds_buffers();
424
reserve_lbr_buffers();
425
}
426
}
427
if (!err)
428
atomic_inc(&pmc_refcount);
429
mutex_unlock(&pmc_reserve_mutex);
430
}
431
432
return err;
433
}
434
435
void x86_release_hardware(void)
436
{
437
if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
438
release_pmc_hardware();
439
release_ds_buffers();
440
release_lbr_buffers();
441
mutex_unlock(&pmc_reserve_mutex);
442
}
443
}
444
445
/*
446
* Check if we can create event of a certain type (that no conflicting events
447
* are present).
448
*/
449
int x86_add_exclusive(unsigned int what)
450
{
451
int i;
452
453
/*
454
* When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
455
* LBR and BTS are still mutually exclusive.
456
*/
457
if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
458
goto out;
459
460
if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
461
mutex_lock(&pmc_reserve_mutex);
462
for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
463
if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
464
goto fail_unlock;
465
}
466
atomic_inc(&x86_pmu.lbr_exclusive[what]);
467
mutex_unlock(&pmc_reserve_mutex);
468
}
469
470
out:
471
atomic_inc(&active_events);
472
return 0;
473
474
fail_unlock:
475
mutex_unlock(&pmc_reserve_mutex);
476
return -EBUSY;
477
}
478
479
void x86_del_exclusive(unsigned int what)
480
{
481
atomic_dec(&active_events);
482
483
/*
484
* See the comment in x86_add_exclusive().
485
*/
486
if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
487
return;
488
489
atomic_dec(&x86_pmu.lbr_exclusive[what]);
490
}
491
492
int x86_setup_perfctr(struct perf_event *event)
493
{
494
struct perf_event_attr *attr = &event->attr;
495
struct hw_perf_event *hwc = &event->hw;
496
u64 config;
497
498
if (!is_sampling_event(event)) {
499
hwc->sample_period = x86_pmu.max_period;
500
hwc->last_period = hwc->sample_period;
501
local64_set(&hwc->period_left, hwc->sample_period);
502
}
503
504
if (attr->type == event->pmu->type)
505
return x86_pmu_extra_regs(event->attr.config, event);
506
507
if (attr->type == PERF_TYPE_HW_CACHE)
508
return set_ext_hw_attr(hwc, event);
509
510
if (attr->config >= x86_pmu.max_events)
511
return -EINVAL;
512
513
attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
514
515
/*
516
* The generic map:
517
*/
518
config = x86_pmu.event_map(attr->config);
519
520
if (config == 0)
521
return -ENOENT;
522
523
if (config == -1LL)
524
return -EINVAL;
525
526
hwc->config |= config;
527
528
return 0;
529
}
530
531
/*
532
* check that branch_sample_type is compatible with
533
* settings needed for precise_ip > 1 which implies
534
* using the LBR to capture ALL taken branches at the
535
* priv levels of the measurement
536
*/
537
static inline int precise_br_compat(struct perf_event *event)
538
{
539
u64 m = event->attr.branch_sample_type;
540
u64 b = 0;
541
542
/* must capture all branches */
543
if (!(m & PERF_SAMPLE_BRANCH_ANY))
544
return 0;
545
546
m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
547
548
if (!event->attr.exclude_user)
549
b |= PERF_SAMPLE_BRANCH_USER;
550
551
if (!event->attr.exclude_kernel)
552
b |= PERF_SAMPLE_BRANCH_KERNEL;
553
554
/*
555
* ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
556
*/
557
558
return m == b;
559
}
560
561
int x86_pmu_max_precise(struct pmu *pmu)
562
{
563
int precise = 0;
564
565
if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
566
/* arch PEBS */
567
if (x86_pmu.arch_pebs) {
568
precise = 2;
569
if (hybrid(pmu, arch_pebs_cap).pdists)
570
precise++;
571
572
return precise;
573
}
574
575
/* legacy PEBS - support for constant skid */
576
precise++;
577
/* Support for IP fixup */
578
if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
579
precise++;
580
581
if (x86_pmu.pebs_prec_dist)
582
precise++;
583
}
584
585
return precise;
586
}
587
588
int x86_pmu_hw_config(struct perf_event *event)
589
{
590
if (event->attr.precise_ip) {
591
int precise = x86_pmu_max_precise(event->pmu);
592
593
if (event->attr.precise_ip > precise)
594
return -EOPNOTSUPP;
595
596
/* There's no sense in having PEBS for non sampling events: */
597
if (!is_sampling_event(event))
598
return -EINVAL;
599
}
600
/*
601
* check that PEBS LBR correction does not conflict with
602
* whatever the user is asking with attr->branch_sample_type
603
*/
604
if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
605
u64 *br_type = &event->attr.branch_sample_type;
606
607
if (has_branch_stack(event)) {
608
if (!precise_br_compat(event))
609
return -EOPNOTSUPP;
610
611
/* branch_sample_type is compatible */
612
613
} else {
614
/*
615
* user did not specify branch_sample_type
616
*
617
* For PEBS fixups, we capture all
618
* the branches at the priv level of the
619
* event.
620
*/
621
*br_type = PERF_SAMPLE_BRANCH_ANY;
622
623
if (!event->attr.exclude_user)
624
*br_type |= PERF_SAMPLE_BRANCH_USER;
625
626
if (!event->attr.exclude_kernel)
627
*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
628
}
629
}
630
631
if (branch_sample_call_stack(event))
632
event->attach_state |= PERF_ATTACH_TASK_DATA;
633
634
/*
635
* Generate PMC IRQs:
636
* (keep 'enabled' bit clear for now)
637
*/
638
event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
639
640
/*
641
* Count user and OS events unless requested not to
642
*/
643
if (!event->attr.exclude_user)
644
event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
645
if (!event->attr.exclude_kernel)
646
event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
647
648
if (event->attr.type == event->pmu->type)
649
event->hw.config |= x86_pmu_get_event_config(event);
650
651
if (is_sampling_event(event) && !event->attr.freq && x86_pmu.limit_period) {
652
s64 left = event->attr.sample_period;
653
x86_pmu.limit_period(event, &left);
654
if (left > event->attr.sample_period)
655
return -EINVAL;
656
}
657
658
/* sample_regs_user never support XMM registers */
659
if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
660
return -EINVAL;
661
/*
662
* Besides the general purpose registers, XMM registers may
663
* be collected in PEBS on some platforms, e.g. Icelake
664
*/
665
if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
666
if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
667
return -EINVAL;
668
669
if (!event->attr.precise_ip)
670
return -EINVAL;
671
}
672
673
return x86_setup_perfctr(event);
674
}
675
676
/*
677
* Setup the hardware configuration for a given attr_type
678
*/
679
static int __x86_pmu_event_init(struct perf_event *event)
680
{
681
int err;
682
683
if (!x86_pmu_initialized())
684
return -ENODEV;
685
686
err = x86_reserve_hardware();
687
if (err)
688
return err;
689
690
atomic_inc(&active_events);
691
event->destroy = hw_perf_event_destroy;
692
693
event->hw.idx = -1;
694
event->hw.last_cpu = -1;
695
event->hw.last_tag = ~0ULL;
696
event->hw.dyn_constraint = ~0ULL;
697
698
/* mark unused */
699
event->hw.extra_reg.idx = EXTRA_REG_NONE;
700
event->hw.branch_reg.idx = EXTRA_REG_NONE;
701
702
return x86_pmu.hw_config(event);
703
}
704
705
void x86_pmu_disable_all(void)
706
{
707
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
708
int idx;
709
710
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
711
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
712
u64 val;
713
714
if (!test_bit(idx, cpuc->active_mask))
715
continue;
716
rdmsrq(x86_pmu_config_addr(idx), val);
717
if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
718
continue;
719
val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
720
wrmsrq(x86_pmu_config_addr(idx), val);
721
if (is_counter_pair(hwc))
722
wrmsrq(x86_pmu_config_addr(idx + 1), 0);
723
}
724
}
725
726
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
727
{
728
return static_call(x86_pmu_guest_get_msrs)(nr, data);
729
}
730
EXPORT_SYMBOL_FOR_KVM(perf_guest_get_msrs);
731
732
/*
733
* There may be PMI landing after enabled=0. The PMI hitting could be before or
734
* after disable_all.
735
*
736
* If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
737
* It will not be re-enabled in the NMI handler again, because enabled=0. After
738
* handling the NMI, disable_all will be called, which will not change the
739
* state either. If PMI hits after disable_all, the PMU is already disabled
740
* before entering NMI handler. The NMI handler will not change the state
741
* either.
742
*
743
* So either situation is harmless.
744
*/
745
static void x86_pmu_disable(struct pmu *pmu)
746
{
747
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
748
749
if (!x86_pmu_initialized())
750
return;
751
752
if (!cpuc->enabled)
753
return;
754
755
cpuc->n_added = 0;
756
cpuc->enabled = 0;
757
barrier();
758
759
static_call(x86_pmu_disable_all)();
760
}
761
762
void x86_pmu_enable_all(int added)
763
{
764
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
765
int idx;
766
767
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
768
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
769
770
if (!test_bit(idx, cpuc->active_mask))
771
continue;
772
773
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
774
}
775
}
776
777
int is_x86_event(struct perf_event *event)
778
{
779
/*
780
* For a non-hybrid platforms, the type of X86 pmu is
781
* always PERF_TYPE_RAW.
782
* For a hybrid platform, the PERF_PMU_CAP_EXTENDED_HW_TYPE
783
* is a unique capability for the X86 PMU.
784
* Use them to detect a X86 event.
785
*/
786
if (event->pmu->type == PERF_TYPE_RAW ||
787
event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)
788
return true;
789
790
return false;
791
}
792
793
struct pmu *x86_get_pmu(unsigned int cpu)
794
{
795
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
796
797
/*
798
* All CPUs of the hybrid type have been offline.
799
* The x86_get_pmu() should not be invoked.
800
*/
801
if (WARN_ON_ONCE(!cpuc->pmu))
802
return &pmu;
803
804
return cpuc->pmu;
805
}
806
/*
807
* Event scheduler state:
808
*
809
* Assign events iterating over all events and counters, beginning
810
* with events with least weights first. Keep the current iterator
811
* state in struct sched_state.
812
*/
813
struct sched_state {
814
int weight;
815
int event; /* event index */
816
int counter; /* counter index */
817
int unassigned; /* number of events to be assigned left */
818
int nr_gp; /* number of GP counters used */
819
u64 used;
820
};
821
822
/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
823
#define SCHED_STATES_MAX 2
824
825
struct perf_sched {
826
int max_weight;
827
int max_events;
828
int max_gp;
829
int saved_states;
830
struct event_constraint **constraints;
831
struct sched_state state;
832
struct sched_state saved[SCHED_STATES_MAX];
833
};
834
835
/*
836
* Initialize iterator that runs through all events and counters.
837
*/
838
static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
839
int num, int wmin, int wmax, int gpmax)
840
{
841
int idx;
842
843
memset(sched, 0, sizeof(*sched));
844
sched->max_events = num;
845
sched->max_weight = wmax;
846
sched->max_gp = gpmax;
847
sched->constraints = constraints;
848
849
for (idx = 0; idx < num; idx++) {
850
if (constraints[idx]->weight == wmin)
851
break;
852
}
853
854
sched->state.event = idx; /* start with min weight */
855
sched->state.weight = wmin;
856
sched->state.unassigned = num;
857
}
858
859
static void perf_sched_save_state(struct perf_sched *sched)
860
{
861
if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
862
return;
863
864
sched->saved[sched->saved_states] = sched->state;
865
sched->saved_states++;
866
}
867
868
static bool perf_sched_restore_state(struct perf_sched *sched)
869
{
870
if (!sched->saved_states)
871
return false;
872
873
sched->saved_states--;
874
sched->state = sched->saved[sched->saved_states];
875
876
/* this assignment didn't work out */
877
/* XXX broken vs EVENT_PAIR */
878
sched->state.used &= ~BIT_ULL(sched->state.counter);
879
880
/* try the next one */
881
sched->state.counter++;
882
883
return true;
884
}
885
886
/*
887
* Select a counter for the current event to schedule. Return true on
888
* success.
889
*/
890
static bool __perf_sched_find_counter(struct perf_sched *sched)
891
{
892
struct event_constraint *c;
893
int idx;
894
895
if (!sched->state.unassigned)
896
return false;
897
898
if (sched->state.event >= sched->max_events)
899
return false;
900
901
c = sched->constraints[sched->state.event];
902
/* Prefer fixed purpose counters */
903
if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
904
idx = INTEL_PMC_IDX_FIXED;
905
for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
906
u64 mask = BIT_ULL(idx);
907
908
if (sched->state.used & mask)
909
continue;
910
911
sched->state.used |= mask;
912
goto done;
913
}
914
}
915
916
/* Grab the first unused counter starting with idx */
917
idx = sched->state.counter;
918
for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
919
u64 mask = BIT_ULL(idx);
920
921
if (c->flags & PERF_X86_EVENT_PAIR)
922
mask |= mask << 1;
923
924
if (sched->state.used & mask)
925
continue;
926
927
if (sched->state.nr_gp++ >= sched->max_gp)
928
return false;
929
930
sched->state.used |= mask;
931
goto done;
932
}
933
934
return false;
935
936
done:
937
sched->state.counter = idx;
938
939
if (c->overlap)
940
perf_sched_save_state(sched);
941
942
return true;
943
}
944
945
static bool perf_sched_find_counter(struct perf_sched *sched)
946
{
947
while (!__perf_sched_find_counter(sched)) {
948
if (!perf_sched_restore_state(sched))
949
return false;
950
}
951
952
return true;
953
}
954
955
/*
956
* Go through all unassigned events and find the next one to schedule.
957
* Take events with the least weight first. Return true on success.
958
*/
959
static bool perf_sched_next_event(struct perf_sched *sched)
960
{
961
struct event_constraint *c;
962
963
if (!sched->state.unassigned || !--sched->state.unassigned)
964
return false;
965
966
do {
967
/* next event */
968
sched->state.event++;
969
if (sched->state.event >= sched->max_events) {
970
/* next weight */
971
sched->state.event = 0;
972
sched->state.weight++;
973
if (sched->state.weight > sched->max_weight)
974
return false;
975
}
976
c = sched->constraints[sched->state.event];
977
} while (c->weight != sched->state.weight);
978
979
sched->state.counter = 0; /* start with first counter */
980
981
return true;
982
}
983
984
/*
985
* Assign a counter for each event.
986
*/
987
int perf_assign_events(struct event_constraint **constraints, int n,
988
int wmin, int wmax, int gpmax, int *assign)
989
{
990
struct perf_sched sched;
991
992
perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
993
994
do {
995
if (!perf_sched_find_counter(&sched))
996
break; /* failed */
997
if (assign)
998
assign[sched.state.event] = sched.state.counter;
999
} while (perf_sched_next_event(&sched));
1000
1001
return sched.state.unassigned;
1002
}
1003
EXPORT_SYMBOL_GPL(perf_assign_events);
1004
1005
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1006
{
1007
struct event_constraint *c;
1008
struct perf_event *e;
1009
int n0, i, wmin, wmax, unsched = 0;
1010
struct hw_perf_event *hwc;
1011
u64 used_mask = 0;
1012
1013
/*
1014
* Compute the number of events already present; see x86_pmu_add(),
1015
* validate_group() and x86_pmu_commit_txn(). For the former two
1016
* cpuc->n_events hasn't been updated yet, while for the latter
1017
* cpuc->n_txn contains the number of events added in the current
1018
* transaction.
1019
*/
1020
n0 = cpuc->n_events;
1021
if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1022
n0 -= cpuc->n_txn;
1023
1024
static_call_cond(x86_pmu_start_scheduling)(cpuc);
1025
1026
for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1027
c = cpuc->event_constraint[i];
1028
1029
/*
1030
* Previously scheduled events should have a cached constraint,
1031
* while new events should not have one.
1032
*/
1033
WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1034
1035
/*
1036
* Request constraints for new events; or for those events that
1037
* have a dynamic constraint -- for those the constraint can
1038
* change due to external factors (sibling state, allow_tfa).
1039
*/
1040
if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1041
c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1042
cpuc->event_constraint[i] = c;
1043
}
1044
1045
wmin = min(wmin, c->weight);
1046
wmax = max(wmax, c->weight);
1047
}
1048
1049
/*
1050
* fastpath, try to reuse previous register
1051
*/
1052
for (i = 0; i < n; i++) {
1053
u64 mask;
1054
1055
hwc = &cpuc->event_list[i]->hw;
1056
c = cpuc->event_constraint[i];
1057
1058
/* never assigned */
1059
if (hwc->idx == -1)
1060
break;
1061
1062
/* constraint still honored */
1063
if (!test_bit(hwc->idx, c->idxmsk))
1064
break;
1065
1066
mask = BIT_ULL(hwc->idx);
1067
if (is_counter_pair(hwc))
1068
mask |= mask << 1;
1069
1070
/* not already used */
1071
if (used_mask & mask)
1072
break;
1073
1074
used_mask |= mask;
1075
1076
if (assign)
1077
assign[i] = hwc->idx;
1078
}
1079
1080
/* slow path */
1081
if (i != n) {
1082
int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1083
1084
/*
1085
* Do not allow scheduling of more than half the available
1086
* generic counters.
1087
*
1088
* This helps avoid counter starvation of sibling thread by
1089
* ensuring at most half the counters cannot be in exclusive
1090
* mode. There is no designated counters for the limits. Any
1091
* N/2 counters can be used. This helps with events with
1092
* specific counter constraints.
1093
*/
1094
if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1095
READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1096
gpmax /= 2;
1097
1098
/*
1099
* Reduce the amount of available counters to allow fitting
1100
* the extra Merge events needed by large increment events.
1101
*/
1102
if (x86_pmu.flags & PMU_FL_PAIR) {
1103
gpmax -= cpuc->n_pair;
1104
WARN_ON(gpmax <= 0);
1105
}
1106
1107
unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1108
wmax, gpmax, assign);
1109
}
1110
1111
/*
1112
* In case of success (unsched = 0), mark events as committed,
1113
* so we do not put_constraint() in case new events are added
1114
* and fail to be scheduled
1115
*
1116
* We invoke the lower level commit callback to lock the resource
1117
*
1118
* We do not need to do all of this in case we are called to
1119
* validate an event group (assign == NULL)
1120
*/
1121
if (!unsched && assign) {
1122
for (i = 0; i < n; i++)
1123
static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1124
} else {
1125
for (i = n0; i < n; i++) {
1126
e = cpuc->event_list[i];
1127
1128
/*
1129
* release events that failed scheduling
1130
*/
1131
static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1132
1133
cpuc->event_constraint[i] = NULL;
1134
}
1135
}
1136
1137
static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1138
1139
return unsched ? -EINVAL : 0;
1140
}
1141
1142
static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1143
struct perf_event *event)
1144
{
1145
if (is_metric_event(event)) {
1146
if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1147
return -EINVAL;
1148
cpuc->n_metric++;
1149
cpuc->n_txn_metric++;
1150
}
1151
1152
return 0;
1153
}
1154
1155
static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1156
struct perf_event *event)
1157
{
1158
if (is_metric_event(event))
1159
cpuc->n_metric--;
1160
}
1161
1162
static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1163
int max_count, int n)
1164
{
1165
union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1166
1167
if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1168
return -EINVAL;
1169
1170
if (n >= max_count + cpuc->n_metric)
1171
return -EINVAL;
1172
1173
cpuc->event_list[n] = event;
1174
if (is_counter_pair(&event->hw)) {
1175
cpuc->n_pair++;
1176
cpuc->n_txn_pair++;
1177
}
1178
1179
return 0;
1180
}
1181
1182
/*
1183
* dogrp: true if must collect siblings events (group)
1184
* returns total number of events and error code
1185
*/
1186
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1187
{
1188
struct perf_event *event;
1189
int n, max_count;
1190
1191
max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1192
1193
/* current number of events already accepted */
1194
n = cpuc->n_events;
1195
if (!cpuc->n_events)
1196
cpuc->pebs_output = 0;
1197
1198
if (!cpuc->is_fake && leader->attr.precise_ip) {
1199
/*
1200
* For PEBS->PT, if !aux_event, the group leader (PT) went
1201
* away, the group was broken down and this singleton event
1202
* can't schedule any more.
1203
*/
1204
if (is_pebs_pt(leader) && !leader->aux_event)
1205
return -EINVAL;
1206
1207
/*
1208
* pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1209
*/
1210
if (cpuc->pebs_output &&
1211
cpuc->pebs_output != is_pebs_pt(leader) + 1)
1212
return -EINVAL;
1213
1214
cpuc->pebs_output = is_pebs_pt(leader) + 1;
1215
}
1216
1217
if (is_x86_event(leader)) {
1218
if (collect_event(cpuc, leader, max_count, n))
1219
return -EINVAL;
1220
n++;
1221
}
1222
1223
if (!dogrp)
1224
return n;
1225
1226
for_each_sibling_event(event, leader) {
1227
if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1228
continue;
1229
1230
if (collect_event(cpuc, event, max_count, n))
1231
return -EINVAL;
1232
1233
n++;
1234
}
1235
return n;
1236
}
1237
1238
static inline void x86_assign_hw_event(struct perf_event *event,
1239
struct cpu_hw_events *cpuc, int i)
1240
{
1241
struct hw_perf_event *hwc = &event->hw;
1242
int idx;
1243
1244
idx = hwc->idx = cpuc->assign[i];
1245
hwc->last_cpu = smp_processor_id();
1246
hwc->last_tag = ++cpuc->tags[i];
1247
1248
static_call_cond(x86_pmu_assign)(event, idx);
1249
1250
switch (hwc->idx) {
1251
case INTEL_PMC_IDX_FIXED_BTS:
1252
case INTEL_PMC_IDX_FIXED_VLBR:
1253
hwc->config_base = 0;
1254
hwc->event_base = 0;
1255
break;
1256
1257
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1258
/* All the metric events are mapped onto the fixed counter 3. */
1259
idx = INTEL_PMC_IDX_FIXED_SLOTS;
1260
fallthrough;
1261
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1262
hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1263
hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1264
hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1265
INTEL_PMC_FIXED_RDPMC_BASE;
1266
break;
1267
1268
default:
1269
hwc->config_base = x86_pmu_config_addr(hwc->idx);
1270
hwc->event_base = x86_pmu_event_addr(hwc->idx);
1271
hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1272
break;
1273
}
1274
}
1275
1276
/**
1277
* x86_perf_rdpmc_index - Return PMC counter used for event
1278
* @event: the perf_event to which the PMC counter was assigned
1279
*
1280
* The counter assigned to this performance event may change if interrupts
1281
* are enabled. This counter should thus never be used while interrupts are
1282
* enabled. Before this function is used to obtain the assigned counter the
1283
* event should be checked for validity using, for example,
1284
* perf_event_read_local(), within the same interrupt disabled section in
1285
* which this counter is planned to be used.
1286
*
1287
* Return: The index of the performance monitoring counter assigned to
1288
* @perf_event.
1289
*/
1290
int x86_perf_rdpmc_index(struct perf_event *event)
1291
{
1292
lockdep_assert_irqs_disabled();
1293
1294
return event->hw.event_base_rdpmc;
1295
}
1296
1297
static inline int match_prev_assignment(struct hw_perf_event *hwc,
1298
struct cpu_hw_events *cpuc,
1299
int i)
1300
{
1301
return hwc->idx == cpuc->assign[i] &&
1302
hwc->last_cpu == smp_processor_id() &&
1303
hwc->last_tag == cpuc->tags[i];
1304
}
1305
1306
static void x86_pmu_start(struct perf_event *event, int flags);
1307
1308
static void x86_pmu_enable(struct pmu *pmu)
1309
{
1310
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1311
struct perf_event *event;
1312
struct hw_perf_event *hwc;
1313
int i, added = cpuc->n_added;
1314
1315
if (!x86_pmu_initialized())
1316
return;
1317
1318
if (cpuc->enabled)
1319
return;
1320
1321
if (cpuc->n_added) {
1322
int n_running = cpuc->n_events - cpuc->n_added;
1323
1324
/*
1325
* The late setup (after counters are scheduled)
1326
* is required for some cases, e.g., PEBS counters
1327
* snapshotting. Because an accurate counter index
1328
* is needed.
1329
*/
1330
static_call_cond(x86_pmu_late_setup)();
1331
1332
/*
1333
* apply assignment obtained either from
1334
* hw_perf_group_sched_in() or x86_pmu_enable()
1335
*
1336
* step1: save events moving to new counters
1337
*/
1338
for (i = 0; i < n_running; i++) {
1339
event = cpuc->event_list[i];
1340
hwc = &event->hw;
1341
1342
/*
1343
* we can avoid reprogramming counter if:
1344
* - assigned same counter as last time
1345
* - running on same CPU as last time
1346
* - no other event has used the counter since
1347
*/
1348
if (hwc->idx == -1 ||
1349
match_prev_assignment(hwc, cpuc, i))
1350
continue;
1351
1352
/*
1353
* Ensure we don't accidentally enable a stopped
1354
* counter simply because we rescheduled.
1355
*/
1356
if (hwc->state & PERF_HES_STOPPED)
1357
hwc->state |= PERF_HES_ARCH;
1358
1359
x86_pmu_stop(event, PERF_EF_UPDATE);
1360
cpuc->events[hwc->idx] = NULL;
1361
}
1362
1363
/*
1364
* step2: reprogram moved events into new counters
1365
*/
1366
for (i = 0; i < cpuc->n_events; i++) {
1367
event = cpuc->event_list[i];
1368
hwc = &event->hw;
1369
1370
if (!match_prev_assignment(hwc, cpuc, i))
1371
x86_assign_hw_event(event, cpuc, i);
1372
else if (i < n_running)
1373
continue;
1374
1375
if (hwc->state & PERF_HES_ARCH)
1376
continue;
1377
1378
/*
1379
* if cpuc->enabled = 0, then no wrmsr as
1380
* per x86_pmu_enable_event()
1381
*/
1382
cpuc->events[hwc->idx] = event;
1383
x86_pmu_start(event, PERF_EF_RELOAD);
1384
}
1385
cpuc->n_added = 0;
1386
perf_events_lapic_init();
1387
}
1388
1389
cpuc->enabled = 1;
1390
barrier();
1391
1392
static_call(x86_pmu_enable_all)(added);
1393
}
1394
1395
DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1396
1397
/*
1398
* Set the next IRQ period, based on the hwc->period_left value.
1399
* To be called with the event disabled in hw:
1400
*/
1401
int x86_perf_event_set_period(struct perf_event *event)
1402
{
1403
struct hw_perf_event *hwc = &event->hw;
1404
s64 left = local64_read(&hwc->period_left);
1405
s64 period = hwc->sample_period;
1406
int ret = 0, idx = hwc->idx;
1407
1408
if (unlikely(!hwc->event_base))
1409
return 0;
1410
1411
/*
1412
* If we are way outside a reasonable range then just skip forward:
1413
*/
1414
if (unlikely(left <= -period)) {
1415
left = period;
1416
local64_set(&hwc->period_left, left);
1417
hwc->last_period = period;
1418
ret = 1;
1419
}
1420
1421
if (unlikely(left <= 0)) {
1422
left += period;
1423
local64_set(&hwc->period_left, left);
1424
hwc->last_period = period;
1425
ret = 1;
1426
}
1427
/*
1428
* Quirk: certain CPUs dont like it if just 1 hw_event is left:
1429
*/
1430
if (unlikely(left < 2))
1431
left = 2;
1432
1433
if (left > x86_pmu.max_period)
1434
left = x86_pmu.max_period;
1435
1436
static_call_cond(x86_pmu_limit_period)(event, &left);
1437
1438
this_cpu_write(pmc_prev_left[idx], left);
1439
1440
/*
1441
* The hw event starts counting from this event offset,
1442
* mark it to be able to extra future deltas:
1443
*/
1444
local64_set(&hwc->prev_count, (u64)-left);
1445
1446
wrmsrq(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1447
1448
/*
1449
* Sign extend the Merge event counter's upper 16 bits since
1450
* we currently declare a 48-bit counter width
1451
*/
1452
if (is_counter_pair(hwc))
1453
wrmsrq(x86_pmu_event_addr(idx + 1), 0xffff);
1454
1455
perf_event_update_userpage(event);
1456
1457
return ret;
1458
}
1459
1460
void x86_pmu_enable_event(struct perf_event *event)
1461
{
1462
if (__this_cpu_read(cpu_hw_events.enabled))
1463
__x86_pmu_enable_event(&event->hw,
1464
ARCH_PERFMON_EVENTSEL_ENABLE);
1465
}
1466
1467
/*
1468
* Add a single event to the PMU.
1469
*
1470
* The event is added to the group of enabled events
1471
* but only if it can be scheduled with existing events.
1472
*/
1473
static int x86_pmu_add(struct perf_event *event, int flags)
1474
{
1475
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1476
struct hw_perf_event *hwc;
1477
int assign[X86_PMC_IDX_MAX];
1478
int n, n0, ret;
1479
1480
hwc = &event->hw;
1481
1482
n0 = cpuc->n_events;
1483
ret = n = collect_events(cpuc, event, false);
1484
if (ret < 0)
1485
goto out;
1486
1487
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1488
if (!(flags & PERF_EF_START))
1489
hwc->state |= PERF_HES_ARCH;
1490
1491
/*
1492
* If group events scheduling transaction was started,
1493
* skip the schedulability test here, it will be performed
1494
* at commit time (->commit_txn) as a whole.
1495
*
1496
* If commit fails, we'll call ->del() on all events
1497
* for which ->add() was called.
1498
*/
1499
if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1500
goto done_collect;
1501
1502
ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1503
if (ret)
1504
goto out;
1505
/*
1506
* copy new assignment, now we know it is possible
1507
* will be used by hw_perf_enable()
1508
*/
1509
memcpy(cpuc->assign, assign, n*sizeof(int));
1510
1511
done_collect:
1512
/*
1513
* Commit the collect_events() state. See x86_pmu_del() and
1514
* x86_pmu_*_txn().
1515
*/
1516
cpuc->n_events = n;
1517
cpuc->n_added += n - n0;
1518
cpuc->n_txn += n - n0;
1519
1520
/*
1521
* This is before x86_pmu_enable() will call x86_pmu_start(),
1522
* so we enable LBRs before an event needs them etc..
1523
*/
1524
static_call_cond(x86_pmu_add)(event);
1525
1526
ret = 0;
1527
out:
1528
return ret;
1529
}
1530
1531
static void x86_pmu_start(struct perf_event *event, int flags)
1532
{
1533
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1534
int idx = event->hw.idx;
1535
1536
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1537
return;
1538
1539
if (WARN_ON_ONCE(idx == -1))
1540
return;
1541
1542
if (flags & PERF_EF_RELOAD) {
1543
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1544
static_call(x86_pmu_set_period)(event);
1545
}
1546
1547
event->hw.state = 0;
1548
1549
__set_bit(idx, cpuc->active_mask);
1550
static_call(x86_pmu_enable)(event);
1551
perf_event_update_userpage(event);
1552
}
1553
1554
void perf_event_print_debug(void)
1555
{
1556
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1557
unsigned long *cntr_mask, *fixed_cntr_mask;
1558
struct event_constraint *pebs_constraints;
1559
struct cpu_hw_events *cpuc;
1560
u64 pebs, debugctl;
1561
int cpu, idx;
1562
1563
guard(irqsave)();
1564
1565
cpu = smp_processor_id();
1566
cpuc = &per_cpu(cpu_hw_events, cpu);
1567
cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1568
fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1569
pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1570
1571
if (!*(u64 *)cntr_mask)
1572
return;
1573
1574
if (x86_pmu.version >= 2) {
1575
rdmsrq(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1576
rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status);
1577
rdmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1578
rdmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1579
1580
pr_info("\n");
1581
pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1582
pr_info("CPU#%d: status: %016llx\n", cpu, status);
1583
pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1584
pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1585
if (pebs_constraints) {
1586
rdmsrq(MSR_IA32_PEBS_ENABLE, pebs);
1587
pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1588
}
1589
if (x86_pmu.lbr_nr) {
1590
rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
1591
pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1592
}
1593
}
1594
pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1595
1596
for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1597
rdmsrq(x86_pmu_config_addr(idx), pmc_ctrl);
1598
rdmsrq(x86_pmu_event_addr(idx), pmc_count);
1599
1600
prev_left = per_cpu(pmc_prev_left[idx], cpu);
1601
1602
pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1603
cpu, idx, pmc_ctrl);
1604
pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1605
cpu, idx, pmc_count);
1606
pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1607
cpu, idx, prev_left);
1608
}
1609
for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1610
if (fixed_counter_disabled(idx, cpuc->pmu))
1611
continue;
1612
rdmsrq(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1613
1614
pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1615
cpu, idx, pmc_count);
1616
}
1617
}
1618
1619
void x86_pmu_stop(struct perf_event *event, int flags)
1620
{
1621
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1622
struct hw_perf_event *hwc = &event->hw;
1623
1624
if (test_bit(hwc->idx, cpuc->active_mask)) {
1625
static_call(x86_pmu_disable)(event);
1626
__clear_bit(hwc->idx, cpuc->active_mask);
1627
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1628
hwc->state |= PERF_HES_STOPPED;
1629
}
1630
1631
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1632
/*
1633
* Drain the remaining delta count out of a event
1634
* that we are disabling:
1635
*/
1636
static_call(x86_pmu_update)(event);
1637
hwc->state |= PERF_HES_UPTODATE;
1638
}
1639
}
1640
1641
static void x86_pmu_del(struct perf_event *event, int flags)
1642
{
1643
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1644
union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1645
int i;
1646
1647
/*
1648
* If we're called during a txn, we only need to undo x86_pmu.add.
1649
* The events never got scheduled and ->cancel_txn will truncate
1650
* the event_list.
1651
*
1652
* XXX assumes any ->del() called during a TXN will only be on
1653
* an event added during that same TXN.
1654
*/
1655
if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1656
goto do_del;
1657
1658
__set_bit(event->hw.idx, cpuc->dirty);
1659
1660
/*
1661
* Not a TXN, therefore cleanup properly.
1662
*/
1663
x86_pmu_stop(event, PERF_EF_UPDATE);
1664
cpuc->events[event->hw.idx] = NULL;
1665
1666
for (i = 0; i < cpuc->n_events; i++) {
1667
if (event == cpuc->event_list[i])
1668
break;
1669
}
1670
1671
if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1672
return;
1673
1674
/* If we have a newly added event; make sure to decrease n_added. */
1675
if (i >= cpuc->n_events - cpuc->n_added)
1676
--cpuc->n_added;
1677
1678
static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1679
1680
/* Delete the array entry. */
1681
while (++i < cpuc->n_events) {
1682
cpuc->event_list[i-1] = cpuc->event_list[i];
1683
cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1684
cpuc->assign[i-1] = cpuc->assign[i];
1685
}
1686
cpuc->event_constraint[i-1] = NULL;
1687
--cpuc->n_events;
1688
if (intel_cap.perf_metrics)
1689
del_nr_metric_event(cpuc, event);
1690
1691
perf_event_update_userpage(event);
1692
1693
do_del:
1694
1695
/*
1696
* This is after x86_pmu_stop(); so we disable LBRs after any
1697
* event can need them etc..
1698
*/
1699
static_call_cond(x86_pmu_del)(event);
1700
}
1701
1702
int x86_pmu_handle_irq(struct pt_regs *regs)
1703
{
1704
struct perf_sample_data data;
1705
struct cpu_hw_events *cpuc;
1706
struct perf_event *event;
1707
int idx, handled = 0;
1708
u64 last_period;
1709
u64 val;
1710
1711
cpuc = this_cpu_ptr(&cpu_hw_events);
1712
1713
/*
1714
* Some chipsets need to unmask the LVTPC in a particular spot
1715
* inside the nmi handler. As a result, the unmasking was pushed
1716
* into all the nmi handlers.
1717
*
1718
* This generic handler doesn't seem to have any issues where the
1719
* unmasking occurs so it was left at the top.
1720
*/
1721
apic_write(APIC_LVTPC, APIC_DM_NMI);
1722
1723
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1724
if (!test_bit(idx, cpuc->active_mask))
1725
continue;
1726
1727
event = cpuc->events[idx];
1728
last_period = event->hw.last_period;
1729
1730
val = static_call(x86_pmu_update)(event);
1731
if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1732
continue;
1733
1734
/*
1735
* event overflow
1736
*/
1737
handled++;
1738
1739
if (!static_call(x86_pmu_set_period)(event))
1740
continue;
1741
1742
perf_sample_data_init(&data, 0, last_period);
1743
1744
perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1745
1746
perf_event_overflow(event, &data, regs);
1747
}
1748
1749
if (handled)
1750
inc_irq_stat(apic_perf_irqs);
1751
1752
return handled;
1753
}
1754
1755
void perf_events_lapic_init(void)
1756
{
1757
if (!x86_pmu.apic || !x86_pmu_initialized())
1758
return;
1759
1760
/*
1761
* Always use NMI for PMU
1762
*/
1763
apic_write(APIC_LVTPC, APIC_DM_NMI);
1764
}
1765
1766
#ifdef CONFIG_PERF_GUEST_MEDIATED_PMU
1767
void perf_load_guest_lvtpc(u32 guest_lvtpc)
1768
{
1769
u32 masked = guest_lvtpc & APIC_LVT_MASKED;
1770
1771
apic_write(APIC_LVTPC,
1772
APIC_DM_FIXED | PERF_GUEST_MEDIATED_PMI_VECTOR | masked);
1773
this_cpu_write(guest_lvtpc_loaded, true);
1774
}
1775
EXPORT_SYMBOL_FOR_KVM(perf_load_guest_lvtpc);
1776
1777
void perf_put_guest_lvtpc(void)
1778
{
1779
this_cpu_write(guest_lvtpc_loaded, false);
1780
apic_write(APIC_LVTPC, APIC_DM_NMI);
1781
}
1782
EXPORT_SYMBOL_FOR_KVM(perf_put_guest_lvtpc);
1783
#endif /* CONFIG_PERF_GUEST_MEDIATED_PMU */
1784
1785
static int
1786
perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1787
{
1788
u64 start_clock;
1789
u64 finish_clock;
1790
int ret;
1791
1792
/*
1793
* Ignore all NMIs when the CPU's LVTPC is configured to route PMIs to
1794
* PERF_GUEST_MEDIATED_PMI_VECTOR, i.e. when an NMI time can't be due
1795
* to a PMI. Attempting to handle a PMI while the guest's context is
1796
* loaded will generate false positives and clobber guest state. Note,
1797
* the LVTPC is switched to/from the dedicated mediated PMI IRQ vector
1798
* while host events are quiesced.
1799
*/
1800
if (this_cpu_read(guest_lvtpc_loaded))
1801
return NMI_DONE;
1802
1803
/*
1804
* All PMUs/events that share this PMI handler should make sure to
1805
* increment active_events for their events.
1806
*/
1807
if (!atomic_read(&active_events))
1808
return NMI_DONE;
1809
1810
start_clock = sched_clock();
1811
ret = static_call(x86_pmu_handle_irq)(regs);
1812
finish_clock = sched_clock();
1813
1814
perf_sample_event_took(finish_clock - start_clock);
1815
1816
return ret;
1817
}
1818
NOKPROBE_SYMBOL(perf_event_nmi_handler);
1819
1820
struct event_constraint emptyconstraint;
1821
struct event_constraint unconstrained;
1822
1823
static int x86_pmu_prepare_cpu(unsigned int cpu)
1824
{
1825
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1826
int i;
1827
1828
for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1829
cpuc->kfree_on_online[i] = NULL;
1830
if (x86_pmu.cpu_prepare)
1831
return x86_pmu.cpu_prepare(cpu);
1832
return 0;
1833
}
1834
1835
static int x86_pmu_dead_cpu(unsigned int cpu)
1836
{
1837
if (x86_pmu.cpu_dead)
1838
x86_pmu.cpu_dead(cpu);
1839
return 0;
1840
}
1841
1842
static int x86_pmu_online_cpu(unsigned int cpu)
1843
{
1844
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1845
int i;
1846
1847
for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1848
kfree(cpuc->kfree_on_online[i]);
1849
cpuc->kfree_on_online[i] = NULL;
1850
}
1851
return 0;
1852
}
1853
1854
static int x86_pmu_starting_cpu(unsigned int cpu)
1855
{
1856
if (x86_pmu.cpu_starting)
1857
x86_pmu.cpu_starting(cpu);
1858
return 0;
1859
}
1860
1861
static int x86_pmu_dying_cpu(unsigned int cpu)
1862
{
1863
if (x86_pmu.cpu_dying)
1864
x86_pmu.cpu_dying(cpu);
1865
return 0;
1866
}
1867
1868
static void __init pmu_check_apic(void)
1869
{
1870
if (boot_cpu_has(X86_FEATURE_APIC))
1871
return;
1872
1873
x86_pmu.apic = 0;
1874
pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1875
pr_info("no hardware sampling interrupt available.\n");
1876
1877
/*
1878
* If we have a PMU initialized but no APIC
1879
* interrupts, we cannot sample hardware
1880
* events (user-space has to fall back and
1881
* sample via a hrtimer based software event):
1882
*/
1883
pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1884
1885
}
1886
1887
static struct attribute_group x86_pmu_format_group __ro_after_init = {
1888
.name = "format",
1889
.attrs = NULL,
1890
};
1891
1892
ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1893
{
1894
struct perf_pmu_events_attr *pmu_attr =
1895
container_of(attr, struct perf_pmu_events_attr, attr);
1896
u64 config = 0;
1897
1898
if (pmu_attr->id < x86_pmu.max_events)
1899
config = x86_pmu.event_map(pmu_attr->id);
1900
1901
/* string trumps id */
1902
if (pmu_attr->event_str)
1903
return sprintf(page, "%s\n", pmu_attr->event_str);
1904
1905
return x86_pmu.events_sysfs_show(page, config);
1906
}
1907
EXPORT_SYMBOL_GPL(events_sysfs_show);
1908
1909
ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1910
char *page)
1911
{
1912
struct perf_pmu_events_ht_attr *pmu_attr =
1913
container_of(attr, struct perf_pmu_events_ht_attr, attr);
1914
1915
/*
1916
* Report conditional events depending on Hyper-Threading.
1917
*
1918
* This is overly conservative as usually the HT special
1919
* handling is not needed if the other CPU thread is idle.
1920
*
1921
* Note this does not (and cannot) handle the case when thread
1922
* siblings are invisible, for example with virtualization
1923
* if they are owned by some other guest. The user tool
1924
* has to re-read when a thread sibling gets onlined later.
1925
*/
1926
return sprintf(page, "%s",
1927
topology_max_smt_threads() > 1 ?
1928
pmu_attr->event_str_ht :
1929
pmu_attr->event_str_noht);
1930
}
1931
1932
ssize_t events_hybrid_sysfs_show(struct device *dev,
1933
struct device_attribute *attr,
1934
char *page)
1935
{
1936
struct perf_pmu_events_hybrid_attr *pmu_attr =
1937
container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1938
struct x86_hybrid_pmu *pmu;
1939
const char *str, *next_str;
1940
int i;
1941
1942
if (hweight64(pmu_attr->pmu_type) == 1)
1943
return sprintf(page, "%s", pmu_attr->event_str);
1944
1945
/*
1946
* Hybrid PMUs may support the same event name, but with different
1947
* event encoding, e.g., the mem-loads event on an Atom PMU has
1948
* different event encoding from a Core PMU.
1949
*
1950
* The event_str includes all event encodings. Each event encoding
1951
* is divided by ";". The order of the event encodings must follow
1952
* the order of the hybrid PMU index.
1953
*/
1954
pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1955
1956
str = pmu_attr->event_str;
1957
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1958
if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1959
continue;
1960
if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1961
next_str = strchr(str, ';');
1962
if (next_str)
1963
return snprintf(page, next_str - str + 1, "%s", str);
1964
else
1965
return sprintf(page, "%s", str);
1966
}
1967
str = strchr(str, ';');
1968
str++;
1969
}
1970
1971
return 0;
1972
}
1973
EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1974
1975
EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1976
EVENT_ATTR(instructions, INSTRUCTIONS );
1977
EVENT_ATTR(cache-references, CACHE_REFERENCES );
1978
EVENT_ATTR(cache-misses, CACHE_MISSES );
1979
EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1980
EVENT_ATTR(branch-misses, BRANCH_MISSES );
1981
EVENT_ATTR(bus-cycles, BUS_CYCLES );
1982
EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1983
EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1984
EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1985
1986
static struct attribute *empty_attrs;
1987
1988
static struct attribute *events_attr[] = {
1989
EVENT_PTR(CPU_CYCLES),
1990
EVENT_PTR(INSTRUCTIONS),
1991
EVENT_PTR(CACHE_REFERENCES),
1992
EVENT_PTR(CACHE_MISSES),
1993
EVENT_PTR(BRANCH_INSTRUCTIONS),
1994
EVENT_PTR(BRANCH_MISSES),
1995
EVENT_PTR(BUS_CYCLES),
1996
EVENT_PTR(STALLED_CYCLES_FRONTEND),
1997
EVENT_PTR(STALLED_CYCLES_BACKEND),
1998
EVENT_PTR(REF_CPU_CYCLES),
1999
NULL,
2000
};
2001
2002
/*
2003
* Remove all undefined events (x86_pmu.event_map(id) == 0)
2004
* out of events_attr attributes.
2005
*/
2006
static umode_t
2007
is_visible(struct kobject *kobj, struct attribute *attr, int idx)
2008
{
2009
struct perf_pmu_events_attr *pmu_attr;
2010
2011
if (idx >= x86_pmu.max_events)
2012
return 0;
2013
2014
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
2015
/* str trumps id */
2016
return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
2017
}
2018
2019
static struct attribute_group x86_pmu_events_group __ro_after_init = {
2020
.name = "events",
2021
.attrs = events_attr,
2022
.is_visible = is_visible,
2023
};
2024
2025
ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
2026
{
2027
u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
2028
u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
2029
bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
2030
bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
2031
bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
2032
bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
2033
ssize_t ret;
2034
2035
/*
2036
* We have whole page size to spend and just little data
2037
* to write, so we can safely use sprintf.
2038
*/
2039
ret = sprintf(page, "event=0x%02llx", event);
2040
2041
if (umask)
2042
ret += sprintf(page + ret, ",umask=0x%02llx", umask);
2043
2044
if (edge)
2045
ret += sprintf(page + ret, ",edge");
2046
2047
if (pc)
2048
ret += sprintf(page + ret, ",pc");
2049
2050
if (any)
2051
ret += sprintf(page + ret, ",any");
2052
2053
if (inv)
2054
ret += sprintf(page + ret, ",inv");
2055
2056
if (cmask)
2057
ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
2058
2059
ret += sprintf(page + ret, "\n");
2060
2061
return ret;
2062
}
2063
2064
static struct attribute_group x86_pmu_attr_group;
2065
static struct attribute_group x86_pmu_caps_group;
2066
2067
static void x86_pmu_static_call_update(void)
2068
{
2069
static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2070
static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2071
static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2072
static_call_update(x86_pmu_enable, x86_pmu.enable);
2073
static_call_update(x86_pmu_disable, x86_pmu.disable);
2074
2075
static_call_update(x86_pmu_assign, x86_pmu.assign);
2076
2077
static_call_update(x86_pmu_add, x86_pmu.add);
2078
static_call_update(x86_pmu_del, x86_pmu.del);
2079
static_call_update(x86_pmu_read, x86_pmu.read);
2080
2081
static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2082
static_call_update(x86_pmu_update, x86_pmu.update);
2083
static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2084
2085
static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2086
static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2087
static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2088
2089
static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2090
static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2091
static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2092
2093
static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2094
2095
static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2096
static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2097
2098
static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2099
static_call_update(x86_pmu_filter, x86_pmu.filter);
2100
2101
static_call_update(x86_pmu_late_setup, x86_pmu.late_setup);
2102
2103
static_call_update(x86_pmu_pebs_enable, x86_pmu.pebs_enable);
2104
static_call_update(x86_pmu_pebs_disable, x86_pmu.pebs_disable);
2105
static_call_update(x86_pmu_pebs_enable_all, x86_pmu.pebs_enable_all);
2106
static_call_update(x86_pmu_pebs_disable_all, x86_pmu.pebs_disable_all);
2107
}
2108
2109
static void _x86_pmu_read(struct perf_event *event)
2110
{
2111
static_call(x86_pmu_update)(event);
2112
}
2113
2114
void x86_pmu_show_pmu_cap(struct pmu *pmu)
2115
{
2116
pr_info("... version: %d\n", x86_pmu.version);
2117
pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
2118
pr_info("... generic counters: %d\n", x86_pmu_num_counters(pmu));
2119
pr_info("... generic bitmap: %016llx\n", hybrid(pmu, cntr_mask64));
2120
pr_info("... fixed-purpose counters: %d\n", x86_pmu_num_counters_fixed(pmu));
2121
pr_info("... fixed-purpose bitmap: %016llx\n", hybrid(pmu, fixed_cntr_mask64));
2122
pr_info("... value mask: %016llx\n", x86_pmu.cntval_mask);
2123
pr_info("... max period: %016llx\n", x86_pmu.max_period);
2124
pr_info("... global_ctrl mask: %016llx\n", hybrid(pmu, intel_ctrl));
2125
}
2126
2127
static int __init init_hw_perf_events(void)
2128
{
2129
struct x86_pmu_quirk *quirk;
2130
int err;
2131
2132
pr_info("Performance Events: ");
2133
2134
switch (boot_cpu_data.x86_vendor) {
2135
case X86_VENDOR_INTEL:
2136
err = intel_pmu_init();
2137
break;
2138
case X86_VENDOR_AMD:
2139
err = amd_pmu_init();
2140
break;
2141
case X86_VENDOR_HYGON:
2142
err = amd_pmu_init();
2143
x86_pmu.name = "HYGON";
2144
break;
2145
case X86_VENDOR_ZHAOXIN:
2146
case X86_VENDOR_CENTAUR:
2147
err = zhaoxin_pmu_init();
2148
break;
2149
default:
2150
err = -ENOTSUPP;
2151
}
2152
if (err != 0) {
2153
pr_cont("no PMU driver, software events only.\n");
2154
err = 0;
2155
goto out_bad_pmu;
2156
}
2157
2158
pmu_check_apic();
2159
2160
/* sanity check that the hardware exists or is emulated */
2161
if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2162
goto out_bad_pmu;
2163
2164
pr_cont("%s PMU driver.\n", x86_pmu.name);
2165
2166
/* enable userspace RDPMC usage by default */
2167
x86_pmu.attr_rdpmc = X86_USER_RDPMC_CONDITIONAL_ENABLE;
2168
2169
for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2170
quirk->func();
2171
2172
if (!x86_pmu.intel_ctrl)
2173
x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2174
2175
if (!x86_pmu.config_mask)
2176
x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2177
2178
perf_events_lapic_init();
2179
register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2180
2181
unconstrained = (struct event_constraint)
2182
__EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2183
0, x86_pmu_num_counters(NULL), 0, 0);
2184
2185
x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2186
2187
if (!x86_pmu.events_sysfs_show)
2188
x86_pmu_events_group.attrs = &empty_attrs;
2189
2190
pmu.attr_update = x86_pmu.attr_update;
2191
2192
if (!is_hybrid())
2193
x86_pmu_show_pmu_cap(NULL);
2194
2195
if (!x86_pmu.read)
2196
x86_pmu.read = _x86_pmu_read;
2197
2198
if (!x86_pmu.guest_get_msrs)
2199
x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2200
2201
if (!x86_pmu.set_period)
2202
x86_pmu.set_period = x86_perf_event_set_period;
2203
2204
if (!x86_pmu.update)
2205
x86_pmu.update = x86_perf_event_update;
2206
2207
x86_pmu_static_call_update();
2208
2209
/*
2210
* Install callbacks. Core will call them for each online
2211
* cpu.
2212
*/
2213
err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2214
x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2215
if (err)
2216
return err;
2217
2218
err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2219
"perf/x86:starting", x86_pmu_starting_cpu,
2220
x86_pmu_dying_cpu);
2221
if (err)
2222
goto out;
2223
2224
err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2225
x86_pmu_online_cpu, NULL);
2226
if (err)
2227
goto out1;
2228
2229
if (!is_hybrid()) {
2230
err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2231
if (err)
2232
goto out2;
2233
} else {
2234
struct x86_hybrid_pmu *hybrid_pmu;
2235
int i, j;
2236
2237
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2238
hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2239
2240
hybrid_pmu->pmu = pmu;
2241
hybrid_pmu->pmu.type = -1;
2242
hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2243
hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2244
2245
err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2246
(hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2247
if (err)
2248
break;
2249
}
2250
2251
if (i < x86_pmu.num_hybrid_pmus) {
2252
for (j = 0; j < i; j++)
2253
perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2254
pr_warn("Failed to register hybrid PMUs\n");
2255
kfree(x86_pmu.hybrid_pmu);
2256
x86_pmu.hybrid_pmu = NULL;
2257
x86_pmu.num_hybrid_pmus = 0;
2258
goto out2;
2259
}
2260
}
2261
2262
return 0;
2263
2264
out2:
2265
cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2266
out1:
2267
cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2268
out:
2269
cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2270
out_bad_pmu:
2271
memset(&x86_pmu, 0, sizeof(x86_pmu));
2272
return err;
2273
}
2274
early_initcall(init_hw_perf_events);
2275
2276
static void x86_pmu_read(struct perf_event *event)
2277
{
2278
static_call(x86_pmu_read)(event);
2279
}
2280
2281
/*
2282
* Start group events scheduling transaction
2283
* Set the flag to make pmu::enable() not perform the
2284
* schedulability test, it will be performed at commit time
2285
*
2286
* We only support PERF_PMU_TXN_ADD transactions. Save the
2287
* transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2288
* transactions.
2289
*/
2290
static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2291
{
2292
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2293
2294
WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
2295
2296
cpuc->txn_flags = txn_flags;
2297
if (txn_flags & ~PERF_PMU_TXN_ADD)
2298
return;
2299
2300
perf_pmu_disable(pmu);
2301
__this_cpu_write(cpu_hw_events.n_txn, 0);
2302
__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2303
__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2304
}
2305
2306
/*
2307
* Stop group events scheduling transaction
2308
* Clear the flag and pmu::enable() will perform the
2309
* schedulability test.
2310
*/
2311
static void x86_pmu_cancel_txn(struct pmu *pmu)
2312
{
2313
unsigned int txn_flags;
2314
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2315
2316
WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2317
2318
txn_flags = cpuc->txn_flags;
2319
cpuc->txn_flags = 0;
2320
if (txn_flags & ~PERF_PMU_TXN_ADD)
2321
return;
2322
2323
/*
2324
* Truncate collected array by the number of events added in this
2325
* transaction. See x86_pmu_add() and x86_pmu_*_txn().
2326
*/
2327
__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2328
__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2329
__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2330
__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2331
perf_pmu_enable(pmu);
2332
}
2333
2334
/*
2335
* Commit group events scheduling transaction
2336
* Perform the group schedulability test as a whole
2337
* Return 0 if success
2338
*
2339
* Does not cancel the transaction on failure; expects the caller to do this.
2340
*/
2341
static int x86_pmu_commit_txn(struct pmu *pmu)
2342
{
2343
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2344
int assign[X86_PMC_IDX_MAX];
2345
int n, ret;
2346
2347
WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2348
2349
if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2350
cpuc->txn_flags = 0;
2351
return 0;
2352
}
2353
2354
n = cpuc->n_events;
2355
2356
if (!x86_pmu_initialized())
2357
return -EAGAIN;
2358
2359
ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2360
if (ret)
2361
return ret;
2362
2363
/*
2364
* copy new assignment, now we know it is possible
2365
* will be used by hw_perf_enable()
2366
*/
2367
memcpy(cpuc->assign, assign, n*sizeof(int));
2368
2369
cpuc->txn_flags = 0;
2370
perf_pmu_enable(pmu);
2371
return 0;
2372
}
2373
/*
2374
* a fake_cpuc is used to validate event groups. Due to
2375
* the extra reg logic, we need to also allocate a fake
2376
* per_core and per_cpu structure. Otherwise, group events
2377
* using extra reg may conflict without the kernel being
2378
* able to catch this when the last event gets added to
2379
* the group.
2380
*/
2381
static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2382
{
2383
intel_cpuc_finish(cpuc);
2384
kfree(cpuc);
2385
}
2386
2387
static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2388
{
2389
struct cpu_hw_events *cpuc;
2390
int cpu;
2391
2392
cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2393
if (!cpuc)
2394
return ERR_PTR(-ENOMEM);
2395
cpuc->is_fake = 1;
2396
2397
if (is_hybrid()) {
2398
struct x86_hybrid_pmu *h_pmu;
2399
2400
h_pmu = hybrid_pmu(event_pmu);
2401
if (cpumask_empty(&h_pmu->supported_cpus))
2402
goto error;
2403
cpu = cpumask_first(&h_pmu->supported_cpus);
2404
} else
2405
cpu = raw_smp_processor_id();
2406
cpuc->pmu = event_pmu;
2407
2408
if (intel_cpuc_prepare(cpuc, cpu))
2409
goto error;
2410
2411
return cpuc;
2412
error:
2413
free_fake_cpuc(cpuc);
2414
return ERR_PTR(-ENOMEM);
2415
}
2416
2417
/*
2418
* validate that we can schedule this event
2419
*/
2420
static int validate_event(struct perf_event *event)
2421
{
2422
struct cpu_hw_events *fake_cpuc;
2423
struct event_constraint *c;
2424
int ret = 0;
2425
2426
fake_cpuc = allocate_fake_cpuc(event->pmu);
2427
if (IS_ERR(fake_cpuc))
2428
return PTR_ERR(fake_cpuc);
2429
2430
c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2431
2432
if (!c || !c->weight)
2433
ret = -EINVAL;
2434
2435
if (x86_pmu.put_event_constraints)
2436
x86_pmu.put_event_constraints(fake_cpuc, event);
2437
2438
free_fake_cpuc(fake_cpuc);
2439
2440
return ret;
2441
}
2442
2443
/*
2444
* validate a single event group
2445
*
2446
* validation include:
2447
* - check events are compatible which each other
2448
* - events do not compete for the same counter
2449
* - number of events <= number of counters
2450
*
2451
* validation ensures the group can be loaded onto the
2452
* PMU if it was the only group available.
2453
*/
2454
static int validate_group(struct perf_event *event)
2455
{
2456
struct perf_event *leader = event->group_leader;
2457
struct cpu_hw_events *fake_cpuc;
2458
int ret = -EINVAL, n;
2459
2460
/*
2461
* Reject events from different hybrid PMUs.
2462
*/
2463
if (is_hybrid()) {
2464
struct perf_event *sibling;
2465
struct pmu *pmu = NULL;
2466
2467
if (is_x86_event(leader))
2468
pmu = leader->pmu;
2469
2470
for_each_sibling_event(sibling, leader) {
2471
if (!is_x86_event(sibling))
2472
continue;
2473
if (!pmu)
2474
pmu = sibling->pmu;
2475
else if (pmu != sibling->pmu)
2476
return ret;
2477
}
2478
}
2479
2480
fake_cpuc = allocate_fake_cpuc(event->pmu);
2481
if (IS_ERR(fake_cpuc))
2482
return PTR_ERR(fake_cpuc);
2483
/*
2484
* the event is not yet connected with its
2485
* siblings therefore we must first collect
2486
* existing siblings, then add the new event
2487
* before we can simulate the scheduling
2488
*/
2489
n = collect_events(fake_cpuc, leader, true);
2490
if (n < 0)
2491
goto out;
2492
2493
fake_cpuc->n_events = n;
2494
n = collect_events(fake_cpuc, event, false);
2495
if (n < 0)
2496
goto out;
2497
2498
fake_cpuc->n_events = 0;
2499
ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2500
2501
out:
2502
free_fake_cpuc(fake_cpuc);
2503
return ret;
2504
}
2505
2506
static int x86_pmu_event_init(struct perf_event *event)
2507
{
2508
struct x86_hybrid_pmu *pmu = NULL;
2509
int err;
2510
2511
if ((event->attr.type != event->pmu->type) &&
2512
(event->attr.type != PERF_TYPE_HARDWARE) &&
2513
(event->attr.type != PERF_TYPE_HW_CACHE))
2514
return -ENOENT;
2515
2516
if (is_hybrid() && (event->cpu != -1)) {
2517
pmu = hybrid_pmu(event->pmu);
2518
if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2519
return -ENOENT;
2520
}
2521
2522
err = __x86_pmu_event_init(event);
2523
if (!err) {
2524
if (event->group_leader != event)
2525
err = validate_group(event);
2526
else
2527
err = validate_event(event);
2528
}
2529
if (err) {
2530
if (event->destroy)
2531
event->destroy(event);
2532
event->destroy = NULL;
2533
}
2534
2535
if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2536
!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2537
event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2538
2539
return err;
2540
}
2541
2542
void perf_clear_dirty_counters(void)
2543
{
2544
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2545
int i;
2546
2547
/* Don't need to clear the assigned counter. */
2548
for (i = 0; i < cpuc->n_events; i++)
2549
__clear_bit(cpuc->assign[i], cpuc->dirty);
2550
2551
if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2552
return;
2553
2554
for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2555
if (i >= INTEL_PMC_IDX_FIXED) {
2556
/* Metrics and fake events don't have corresponding HW counters. */
2557
if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2558
continue;
2559
2560
wrmsrq(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2561
} else {
2562
wrmsrq(x86_pmu_event_addr(i), 0);
2563
}
2564
}
2565
2566
bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2567
}
2568
2569
static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2570
{
2571
if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2572
return;
2573
2574
/*
2575
* This function relies on not being called concurrently in two
2576
* tasks in the same mm. Otherwise one task could observe
2577
* perf_rdpmc_allowed > 1 and return all the way back to
2578
* userspace with CR4.PCE clear while another task is still
2579
* doing on_each_cpu_mask() to propagate CR4.PCE.
2580
*
2581
* For now, this can't happen because all callers hold mmap_lock
2582
* for write. If this changes, we'll need a different solution.
2583
*/
2584
mmap_assert_write_locked(mm);
2585
2586
if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2587
on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2588
}
2589
2590
static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2591
{
2592
if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2593
return;
2594
2595
if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2596
on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2597
}
2598
2599
static int x86_pmu_event_idx(struct perf_event *event)
2600
{
2601
struct hw_perf_event *hwc = &event->hw;
2602
2603
if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2604
return 0;
2605
2606
if (is_metric_idx(hwc->idx))
2607
return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2608
else
2609
return hwc->event_base_rdpmc + 1;
2610
}
2611
2612
static ssize_t get_attr_rdpmc(struct device *cdev,
2613
struct device_attribute *attr,
2614
char *buf)
2615
{
2616
return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2617
}
2618
2619
/*
2620
* Behaviors of rdpmc value:
2621
* - rdpmc = 0
2622
* global user space rdpmc and counter level's user space rdpmc of all
2623
* counters are both disabled.
2624
* - rdpmc = 1
2625
* global user space rdpmc is enabled in mmap enabled time window and
2626
* counter level's user space rdpmc is enabled for only non system-wide
2627
* events. Counter level's user space rdpmc of system-wide events is
2628
* still disabled by default. This won't introduce counter data leak for
2629
* non system-wide events since their count data would be cleared when
2630
* context switches.
2631
* - rdpmc = 2
2632
* global user space rdpmc and counter level's user space rdpmc of all
2633
* counters are enabled unconditionally.
2634
*
2635
* Suppose the rdpmc value won't be changed frequently, don't dynamically
2636
* reschedule events to make the new rpdmc value take effect on active perf
2637
* events immediately, the new rdpmc value would only impact the new
2638
* activated perf events. This makes code simpler and cleaner.
2639
*/
2640
static ssize_t set_attr_rdpmc(struct device *cdev,
2641
struct device_attribute *attr,
2642
const char *buf, size_t count)
2643
{
2644
static DEFINE_MUTEX(rdpmc_mutex);
2645
unsigned long val;
2646
ssize_t ret;
2647
2648
ret = kstrtoul(buf, 0, &val);
2649
if (ret)
2650
return ret;
2651
2652
if (val > 2)
2653
return -EINVAL;
2654
2655
if (x86_pmu.attr_rdpmc_broken)
2656
return -ENOTSUPP;
2657
2658
guard(mutex)(&rdpmc_mutex);
2659
2660
if (val != x86_pmu.attr_rdpmc) {
2661
/*
2662
* Changing into or out of never available or always available,
2663
* aka perf-event-bypassing mode. This path is extremely slow,
2664
* but only root can trigger it, so it's okay.
2665
*/
2666
if (val == 0)
2667
static_branch_inc(&rdpmc_never_available_key);
2668
else if (x86_pmu.attr_rdpmc == X86_USER_RDPMC_NEVER_ENABLE)
2669
static_branch_dec(&rdpmc_never_available_key);
2670
2671
if (val == 2)
2672
static_branch_inc(&rdpmc_always_available_key);
2673
else if (x86_pmu.attr_rdpmc == X86_USER_RDPMC_ALWAYS_ENABLE)
2674
static_branch_dec(&rdpmc_always_available_key);
2675
2676
on_each_cpu(cr4_update_pce, NULL, 1);
2677
x86_pmu.attr_rdpmc = val;
2678
}
2679
2680
return count;
2681
}
2682
2683
static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2684
2685
static struct attribute *x86_pmu_attrs[] = {
2686
&dev_attr_rdpmc.attr,
2687
NULL,
2688
};
2689
2690
static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2691
.attrs = x86_pmu_attrs,
2692
};
2693
2694
static ssize_t max_precise_show(struct device *cdev,
2695
struct device_attribute *attr,
2696
char *buf)
2697
{
2698
struct pmu *pmu = dev_get_drvdata(cdev);
2699
2700
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise(pmu));
2701
}
2702
2703
static DEVICE_ATTR_RO(max_precise);
2704
2705
static struct attribute *x86_pmu_caps_attrs[] = {
2706
&dev_attr_max_precise.attr,
2707
NULL
2708
};
2709
2710
static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2711
.name = "caps",
2712
.attrs = x86_pmu_caps_attrs,
2713
};
2714
2715
static const struct attribute_group *x86_pmu_attr_groups[] = {
2716
&x86_pmu_attr_group,
2717
&x86_pmu_format_group,
2718
&x86_pmu_events_group,
2719
&x86_pmu_caps_group,
2720
NULL,
2721
};
2722
2723
static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
2724
struct task_struct *task, bool sched_in)
2725
{
2726
static_call_cond(x86_pmu_sched_task)(pmu_ctx, task, sched_in);
2727
}
2728
2729
void perf_check_microcode(void)
2730
{
2731
if (x86_pmu.check_microcode)
2732
x86_pmu.check_microcode();
2733
}
2734
2735
static int x86_pmu_check_period(struct perf_event *event, u64 value)
2736
{
2737
if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2738
return -EINVAL;
2739
2740
if (value && x86_pmu.limit_period) {
2741
s64 left = value;
2742
x86_pmu.limit_period(event, &left);
2743
if (left > value)
2744
return -EINVAL;
2745
}
2746
2747
return 0;
2748
}
2749
2750
static int x86_pmu_aux_output_match(struct perf_event *event)
2751
{
2752
if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2753
return 0;
2754
2755
if (x86_pmu.aux_output_match)
2756
return x86_pmu.aux_output_match(event);
2757
2758
return 0;
2759
}
2760
2761
static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2762
{
2763
bool ret = false;
2764
2765
static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2766
2767
return ret;
2768
}
2769
2770
static struct pmu pmu = {
2771
.pmu_enable = x86_pmu_enable,
2772
.pmu_disable = x86_pmu_disable,
2773
2774
.attr_groups = x86_pmu_attr_groups,
2775
2776
.event_init = x86_pmu_event_init,
2777
2778
.event_mapped = x86_pmu_event_mapped,
2779
.event_unmapped = x86_pmu_event_unmapped,
2780
2781
.add = x86_pmu_add,
2782
.del = x86_pmu_del,
2783
.start = x86_pmu_start,
2784
.stop = x86_pmu_stop,
2785
.read = x86_pmu_read,
2786
2787
.start_txn = x86_pmu_start_txn,
2788
.cancel_txn = x86_pmu_cancel_txn,
2789
.commit_txn = x86_pmu_commit_txn,
2790
2791
.event_idx = x86_pmu_event_idx,
2792
.sched_task = x86_pmu_sched_task,
2793
.check_period = x86_pmu_check_period,
2794
2795
.aux_output_match = x86_pmu_aux_output_match,
2796
2797
.filter = x86_pmu_filter,
2798
};
2799
2800
void arch_perf_update_userpage(struct perf_event *event,
2801
struct perf_event_mmap_page *userpg, u64 now)
2802
{
2803
struct cyc2ns_data data;
2804
u64 offset;
2805
2806
userpg->cap_user_time = 0;
2807
userpg->cap_user_time_zero = 0;
2808
userpg->cap_user_rdpmc =
2809
!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2810
userpg->pmc_width = x86_pmu.cntval_bits;
2811
2812
if (!using_native_sched_clock() || !sched_clock_stable())
2813
return;
2814
2815
cyc2ns_read_begin(&data);
2816
2817
offset = data.cyc2ns_offset + __sched_clock_offset;
2818
2819
/*
2820
* Internal timekeeping for enabled/running/stopped times
2821
* is always in the local_clock domain.
2822
*/
2823
userpg->cap_user_time = 1;
2824
userpg->time_mult = data.cyc2ns_mul;
2825
userpg->time_shift = data.cyc2ns_shift;
2826
userpg->time_offset = offset - now;
2827
2828
/*
2829
* cap_user_time_zero doesn't make sense when we're using a different
2830
* time base for the records.
2831
*/
2832
if (!event->attr.use_clockid) {
2833
userpg->cap_user_time_zero = 1;
2834
userpg->time_zero = offset;
2835
}
2836
2837
cyc2ns_read_end();
2838
}
2839
2840
/*
2841
* Determine whether the regs were taken from an irq/exception handler rather
2842
* than from perf_arch_fetch_caller_regs().
2843
*/
2844
static bool perf_hw_regs(struct pt_regs *regs)
2845
{
2846
return regs->flags & X86_EFLAGS_FIXED;
2847
}
2848
2849
void
2850
perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2851
{
2852
struct unwind_state state;
2853
unsigned long addr;
2854
2855
if (perf_guest_state()) {
2856
/* TODO: We don't support guest os callchain now */
2857
return;
2858
}
2859
2860
if (perf_hw_regs(regs)) {
2861
if (perf_callchain_store(entry, regs->ip))
2862
return;
2863
unwind_start(&state, current, regs, NULL);
2864
} else {
2865
unwind_start(&state, current, NULL, (void *)regs->sp);
2866
}
2867
2868
for (; !unwind_done(&state); unwind_next_frame(&state)) {
2869
addr = unwind_get_return_address(&state);
2870
if (!addr || perf_callchain_store(entry, addr))
2871
return;
2872
}
2873
}
2874
2875
static inline int
2876
valid_user_frame(const void __user *fp, unsigned long size)
2877
{
2878
return __access_ok(fp, size);
2879
}
2880
2881
static unsigned long get_segment_base(unsigned int segment)
2882
{
2883
struct desc_struct *desc;
2884
unsigned int idx = segment >> 3;
2885
2886
if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2887
#ifdef CONFIG_MODIFY_LDT_SYSCALL
2888
struct ldt_struct *ldt;
2889
2890
/*
2891
* If we're not in a valid context with a real (not just lazy)
2892
* user mm, then don't even try.
2893
*/
2894
if (!nmi_uaccess_okay())
2895
return 0;
2896
2897
/* IRQs are off, so this synchronizes with smp_store_release */
2898
ldt = smp_load_acquire(&current->mm->context.ldt);
2899
if (!ldt || idx >= ldt->nr_entries)
2900
return 0;
2901
2902
desc = &ldt->entries[idx];
2903
#else
2904
return 0;
2905
#endif
2906
} else {
2907
if (idx >= GDT_ENTRIES)
2908
return 0;
2909
2910
desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2911
}
2912
2913
return get_desc_base(desc);
2914
}
2915
2916
#ifdef CONFIG_IA32_EMULATION
2917
2918
#include <linux/compat.h>
2919
2920
static inline int
2921
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2922
{
2923
/* 32-bit process in 64-bit kernel. */
2924
unsigned long ss_base, cs_base;
2925
struct stack_frame_ia32 frame;
2926
const struct stack_frame_ia32 __user *fp;
2927
u32 ret_addr;
2928
2929
if (user_64bit_mode(regs))
2930
return 0;
2931
2932
cs_base = get_segment_base(regs->cs);
2933
ss_base = get_segment_base(regs->ss);
2934
2935
fp = compat_ptr(ss_base + regs->bp);
2936
pagefault_disable();
2937
2938
/* see perf_callchain_user() below for why we do this */
2939
if (is_uprobe_at_func_entry(regs) &&
2940
!get_user(ret_addr, (const u32 __user *)regs->sp))
2941
perf_callchain_store(entry, ret_addr);
2942
2943
while (entry->nr < entry->max_stack) {
2944
if (!valid_user_frame(fp, sizeof(frame)))
2945
break;
2946
2947
if (__get_user(frame.next_frame, &fp->next_frame))
2948
break;
2949
if (__get_user(frame.return_address, &fp->return_address))
2950
break;
2951
2952
perf_callchain_store(entry, cs_base + frame.return_address);
2953
fp = compat_ptr(ss_base + frame.next_frame);
2954
}
2955
pagefault_enable();
2956
return 1;
2957
}
2958
#else
2959
static inline int
2960
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2961
{
2962
return 0;
2963
}
2964
#endif
2965
2966
void
2967
perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2968
{
2969
struct stack_frame frame;
2970
const struct stack_frame __user *fp;
2971
unsigned long ret_addr;
2972
2973
if (perf_guest_state()) {
2974
/* TODO: We don't support guest os callchain now */
2975
return;
2976
}
2977
2978
/*
2979
* We don't know what to do with VM86 stacks.. ignore them for now.
2980
*/
2981
if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2982
return;
2983
2984
fp = (void __user *)regs->bp;
2985
2986
perf_callchain_store(entry, regs->ip);
2987
2988
if (!nmi_uaccess_okay())
2989
return;
2990
2991
if (perf_callchain_user32(regs, entry))
2992
return;
2993
2994
pagefault_disable();
2995
2996
/*
2997
* If we are called from uprobe handler, and we are indeed at the very
2998
* entry to user function (which is normally a `push %rbp` instruction,
2999
* under assumption of application being compiled with frame pointers),
3000
* we should read return address from *regs->sp before proceeding
3001
* to follow frame pointers, otherwise we'll skip immediate caller
3002
* as %rbp is not yet setup.
3003
*/
3004
if (is_uprobe_at_func_entry(regs) &&
3005
!get_user(ret_addr, (const unsigned long __user *)regs->sp))
3006
perf_callchain_store(entry, ret_addr);
3007
3008
while (entry->nr < entry->max_stack) {
3009
if (!valid_user_frame(fp, sizeof(frame)))
3010
break;
3011
3012
if (__get_user(frame.next_frame, &fp->next_frame))
3013
break;
3014
if (__get_user(frame.return_address, &fp->return_address))
3015
break;
3016
3017
perf_callchain_store(entry, frame.return_address);
3018
fp = (void __user *)frame.next_frame;
3019
}
3020
pagefault_enable();
3021
}
3022
3023
/*
3024
* Deal with code segment offsets for the various execution modes:
3025
*
3026
* VM86 - the good olde 16 bit days, where the linear address is
3027
* 20 bits and we use regs->ip + 0x10 * regs->cs.
3028
*
3029
* IA32 - Where we need to look at GDT/LDT segment descriptor tables
3030
* to figure out what the 32bit base address is.
3031
*
3032
* X32 - has TIF_X32 set, but is running in x86_64
3033
*
3034
* X86_64 - CS,DS,SS,ES are all zero based.
3035
*/
3036
static unsigned long code_segment_base(struct pt_regs *regs)
3037
{
3038
/*
3039
* For IA32 we look at the GDT/LDT segment base to convert the
3040
* effective IP to a linear address.
3041
*/
3042
3043
#ifdef CONFIG_X86_32
3044
/*
3045
* If we are in VM86 mode, add the segment offset to convert to a
3046
* linear address.
3047
*/
3048
if (regs->flags & X86_VM_MASK)
3049
return 0x10 * regs->cs;
3050
3051
if (user_mode(regs) && regs->cs != __USER_CS)
3052
return get_segment_base(regs->cs);
3053
#else
3054
if (user_mode(regs) && !user_64bit_mode(regs) &&
3055
regs->cs != __USER32_CS)
3056
return get_segment_base(regs->cs);
3057
#endif
3058
return 0;
3059
}
3060
3061
unsigned long perf_arch_instruction_pointer(struct pt_regs *regs)
3062
{
3063
return regs->ip + code_segment_base(regs);
3064
}
3065
3066
static unsigned long common_misc_flags(struct pt_regs *regs)
3067
{
3068
if (regs->flags & PERF_EFLAGS_EXACT)
3069
return PERF_RECORD_MISC_EXACT_IP;
3070
3071
return 0;
3072
}
3073
3074
static unsigned long guest_misc_flags(struct pt_regs *regs)
3075
{
3076
unsigned long guest_state = perf_guest_state();
3077
3078
if (!(guest_state & PERF_GUEST_ACTIVE))
3079
return 0;
3080
3081
if (guest_state & PERF_GUEST_USER)
3082
return PERF_RECORD_MISC_GUEST_USER;
3083
else
3084
return PERF_RECORD_MISC_GUEST_KERNEL;
3085
3086
}
3087
3088
static unsigned long host_misc_flags(struct pt_regs *regs)
3089
{
3090
if (user_mode(regs))
3091
return PERF_RECORD_MISC_USER;
3092
else
3093
return PERF_RECORD_MISC_KERNEL;
3094
}
3095
3096
unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
3097
{
3098
unsigned long flags = common_misc_flags(regs);
3099
3100
flags |= guest_misc_flags(regs);
3101
3102
return flags;
3103
}
3104
3105
unsigned long perf_arch_misc_flags(struct pt_regs *regs)
3106
{
3107
unsigned long flags = common_misc_flags(regs);
3108
3109
flags |= host_misc_flags(regs);
3110
3111
return flags;
3112
}
3113
3114
void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3115
{
3116
/* This API doesn't currently support enumerating hybrid PMUs. */
3117
if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3118
!x86_pmu_initialized()) {
3119
memset(cap, 0, sizeof(*cap));
3120
return;
3121
}
3122
3123
/*
3124
* Note, hybrid CPU models get tracked as having hybrid PMUs even when
3125
* all E-cores are disabled via BIOS. When E-cores are disabled, the
3126
* base PMU holds the correct number of counters for P-cores.
3127
*/
3128
cap->version = x86_pmu.version;
3129
cap->num_counters_gp = x86_pmu_num_counters(NULL);
3130
cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL);
3131
cap->bit_width_gp = cap->num_counters_gp ? x86_pmu.cntval_bits : 0;
3132
cap->bit_width_fixed = cap->num_counters_fixed ? x86_pmu.cntval_bits : 0;
3133
cap->events_mask = (unsigned int)x86_pmu.events_maskl;
3134
cap->events_mask_len = x86_pmu.events_mask_len;
3135
cap->pebs_ept = x86_pmu.pebs_ept;
3136
cap->mediated = !!(pmu.capabilities & PERF_PMU_CAP_MEDIATED_VPMU);
3137
}
3138
EXPORT_SYMBOL_FOR_KVM(perf_get_x86_pmu_capability);
3139
3140
u64 perf_get_hw_event_config(int hw_event)
3141
{
3142
int max = x86_pmu.max_events;
3143
3144
if (hw_event < max)
3145
return x86_pmu.event_map(array_index_nospec(hw_event, max));
3146
3147
return 0;
3148
}
3149
EXPORT_SYMBOL_FOR_KVM(perf_get_hw_event_config);
3150
3151