Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/events/intel/core.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Per core/cpu state
4
*
5
* Used to coordinate shared registers between HT threads or
6
* among events on a single PMU.
7
*/
8
9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11
#include <linux/stddef.h>
12
#include <linux/types.h>
13
#include <linux/init.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16
#include <linux/nmi.h>
17
#include <linux/kvm_host.h>
18
19
#include <asm/cpufeature.h>
20
#include <asm/debugreg.h>
21
#include <asm/hardirq.h>
22
#include <asm/intel-family.h>
23
#include <asm/intel_pt.h>
24
#include <asm/apic.h>
25
#include <asm/cpu_device_id.h>
26
#include <asm/msr.h>
27
28
#include "../perf_event.h"
29
30
/*
31
* Intel PerfMon, used on Core and later.
32
*/
33
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
34
{
35
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
36
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
37
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
38
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
39
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
40
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
41
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
42
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
43
};
44
45
static struct event_constraint intel_core_event_constraints[] __read_mostly =
46
{
47
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
48
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
49
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
50
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
51
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
52
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
53
EVENT_CONSTRAINT_END
54
};
55
56
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
57
{
58
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
59
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
60
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
61
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
62
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
63
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
64
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
65
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
66
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
67
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
68
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
69
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
70
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
71
EVENT_CONSTRAINT_END
72
};
73
74
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
75
{
76
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
77
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
78
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
79
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
80
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
81
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
82
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
83
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
84
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
85
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
86
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
87
EVENT_CONSTRAINT_END
88
};
89
90
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
91
{
92
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
93
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
94
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
95
EVENT_EXTRA_END
96
};
97
98
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
99
{
100
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
101
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
102
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
103
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
104
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
105
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
106
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
107
EVENT_CONSTRAINT_END
108
};
109
110
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
111
{
112
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
113
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
114
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
115
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
117
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
119
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
120
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
121
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
122
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
123
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
124
125
/*
126
* When HT is off these events can only run on the bottom 4 counters
127
* When HT is on, they are impacted by the HT bug and require EXCL access
128
*/
129
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
130
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
131
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
132
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
133
134
EVENT_CONSTRAINT_END
135
};
136
137
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
138
{
139
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
140
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
141
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
142
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
143
INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
144
INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
145
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
146
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
147
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
148
INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
149
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
150
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
151
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
152
153
/*
154
* When HT is off these events can only run on the bottom 4 counters
155
* When HT is on, they are impacted by the HT bug and require EXCL access
156
*/
157
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
158
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
159
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
160
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
161
162
EVENT_CONSTRAINT_END
163
};
164
165
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
166
{
167
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
168
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
169
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
170
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
171
EVENT_EXTRA_END
172
};
173
174
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
175
{
176
EVENT_CONSTRAINT_END
177
};
178
179
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
180
{
181
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184
EVENT_CONSTRAINT_END
185
};
186
187
static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
188
{
189
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
190
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
191
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
192
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
193
FIXED_EVENT_CONSTRAINT(0x0500, 4),
194
FIXED_EVENT_CONSTRAINT(0x0600, 5),
195
FIXED_EVENT_CONSTRAINT(0x0700, 6),
196
FIXED_EVENT_CONSTRAINT(0x0800, 7),
197
FIXED_EVENT_CONSTRAINT(0x0900, 8),
198
FIXED_EVENT_CONSTRAINT(0x0a00, 9),
199
FIXED_EVENT_CONSTRAINT(0x0b00, 10),
200
FIXED_EVENT_CONSTRAINT(0x0c00, 11),
201
FIXED_EVENT_CONSTRAINT(0x0d00, 12),
202
FIXED_EVENT_CONSTRAINT(0x0e00, 13),
203
FIXED_EVENT_CONSTRAINT(0x0f00, 14),
204
FIXED_EVENT_CONSTRAINT(0x1000, 15),
205
EVENT_CONSTRAINT_END
206
};
207
208
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
209
{
210
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
211
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
212
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
213
EVENT_CONSTRAINT_END
214
};
215
216
static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
217
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
218
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
219
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
220
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
221
EVENT_CONSTRAINT_END
222
};
223
224
static struct event_constraint intel_skt_event_constraints[] __read_mostly = {
225
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
226
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
227
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
228
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
229
FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
230
FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
231
FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
232
EVENT_CONSTRAINT_END
233
};
234
235
static struct event_constraint intel_skl_event_constraints[] = {
236
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
237
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
238
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
239
INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
240
241
/*
242
* when HT is off, these can only run on the bottom 4 counters
243
*/
244
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
245
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
246
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
247
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
248
INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
249
250
EVENT_CONSTRAINT_END
251
};
252
253
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
254
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
255
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
256
EVENT_EXTRA_END
257
};
258
259
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
260
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
261
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
262
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
263
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
264
EVENT_EXTRA_END
265
};
266
267
static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
268
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
269
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
270
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
271
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
272
EVENT_EXTRA_END
273
};
274
275
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
276
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
277
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
278
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
279
/*
280
* Note the low 8 bits eventsel code is not a continuous field, containing
281
* some #GPing bits. These are masked out.
282
*/
283
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
284
EVENT_EXTRA_END
285
};
286
287
static struct event_constraint intel_icl_event_constraints[] = {
288
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
289
FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
290
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
291
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
292
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
293
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
294
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
295
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
296
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
297
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
298
INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
299
INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
300
INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
301
INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
302
INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
303
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
304
INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
305
INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
306
INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
307
INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
308
INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
309
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
310
INTEL_EVENT_CONSTRAINT(0xef, 0xf),
311
INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
312
EVENT_CONSTRAINT_END
313
};
314
315
static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
316
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
317
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
318
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
319
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
320
EVENT_EXTRA_END
321
};
322
323
static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
324
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
325
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
326
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
327
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
328
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
329
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
330
EVENT_EXTRA_END
331
};
332
333
static struct event_constraint intel_glc_event_constraints[] = {
334
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
335
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
336
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
337
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
338
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
339
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
340
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
341
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
342
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
343
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
344
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
345
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
346
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
347
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
348
349
INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
350
INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
351
/*
352
* Generally event codes < 0x90 are restricted to counters 0-3.
353
* The 0x2E and 0x3C are exception, which has no restriction.
354
*/
355
INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
356
357
INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
358
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
359
INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
360
INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
361
INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
362
INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
363
INTEL_EVENT_CONSTRAINT(0xce, 0x1),
364
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
365
/*
366
* Generally event codes >= 0x90 are likely to have no restrictions.
367
* The exception are defined as above.
368
*/
369
INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
370
371
EVENT_CONSTRAINT_END
372
};
373
374
static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
375
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
376
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
377
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
378
INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
379
INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
380
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
381
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
382
EVENT_EXTRA_END
383
};
384
385
static struct event_constraint intel_lnc_event_constraints[] = {
386
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
387
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
388
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
389
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
390
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
391
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
392
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
393
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
394
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
395
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
396
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
397
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
398
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
399
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
400
401
INTEL_EVENT_CONSTRAINT(0x20, 0xf),
402
403
INTEL_UEVENT_CONSTRAINT(0x012a, 0xf),
404
INTEL_UEVENT_CONSTRAINT(0x012b, 0xf),
405
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4),
406
INTEL_UEVENT_CONSTRAINT(0x0175, 0x4),
407
408
INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff),
409
INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff),
410
411
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
412
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
413
INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
414
INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
415
INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1),
416
INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
417
INTEL_UEVENT_CONSTRAINT(0x01cd, 0x3fc),
418
INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
419
420
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
421
422
INTEL_UEVENT_CONSTRAINT(0x00e0, 0xf),
423
424
EVENT_CONSTRAINT_END
425
};
426
427
static struct extra_reg intel_lnc_extra_regs[] __read_mostly = {
428
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0),
429
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1),
430
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
431
INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
432
INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
433
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
434
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
435
EVENT_EXTRA_END
436
};
437
438
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
439
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
440
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
441
442
static struct attribute *nhm_mem_events_attrs[] = {
443
EVENT_PTR(mem_ld_nhm),
444
NULL,
445
};
446
447
/*
448
* topdown events for Intel Core CPUs.
449
*
450
* The events are all in slots, which is a free slot in a 4 wide
451
* pipeline. Some events are already reported in slots, for cycle
452
* events we multiply by the pipeline width (4).
453
*
454
* With Hyper Threading on, topdown metrics are either summed or averaged
455
* between the threads of a core: (count_t0 + count_t1).
456
*
457
* For the average case the metric is always scaled to pipeline width,
458
* so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
459
*/
460
461
EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
462
"event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
463
"event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
464
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
465
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
466
"event=0xe,umask=0x1"); /* uops_issued.any */
467
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
468
"event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
469
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
470
"event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
471
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
472
"event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
473
"event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
474
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
475
"4", "2");
476
477
EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
478
EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
479
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
480
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
481
EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
482
EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
483
EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
484
EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
485
EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
486
487
static struct attribute *snb_events_attrs[] = {
488
EVENT_PTR(td_slots_issued),
489
EVENT_PTR(td_slots_retired),
490
EVENT_PTR(td_fetch_bubbles),
491
EVENT_PTR(td_total_slots),
492
EVENT_PTR(td_total_slots_scale),
493
EVENT_PTR(td_recovery_bubbles),
494
EVENT_PTR(td_recovery_bubbles_scale),
495
NULL,
496
};
497
498
static struct attribute *snb_mem_events_attrs[] = {
499
EVENT_PTR(mem_ld_snb),
500
EVENT_PTR(mem_st_snb),
501
NULL,
502
};
503
504
static struct event_constraint intel_hsw_event_constraints[] = {
505
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
506
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
507
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
508
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
509
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
510
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
511
/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
512
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
513
/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
514
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
515
/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
516
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
517
518
/*
519
* When HT is off these events can only run on the bottom 4 counters
520
* When HT is on, they are impacted by the HT bug and require EXCL access
521
*/
522
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
523
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
524
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
525
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
526
527
EVENT_CONSTRAINT_END
528
};
529
530
static struct event_constraint intel_bdw_event_constraints[] = {
531
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
532
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
533
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
534
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
535
INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
536
/*
537
* when HT is off, these can only run on the bottom 4 counters
538
*/
539
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
540
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
541
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
542
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
543
EVENT_CONSTRAINT_END
544
};
545
546
static u64 intel_pmu_event_map(int hw_event)
547
{
548
return intel_perfmon_event_map[hw_event];
549
}
550
551
static __initconst const u64 glc_hw_cache_event_ids
552
[PERF_COUNT_HW_CACHE_MAX]
553
[PERF_COUNT_HW_CACHE_OP_MAX]
554
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
555
{
556
[ C(L1D ) ] = {
557
[ C(OP_READ) ] = {
558
[ C(RESULT_ACCESS) ] = 0x81d0,
559
[ C(RESULT_MISS) ] = 0xe124,
560
},
561
[ C(OP_WRITE) ] = {
562
[ C(RESULT_ACCESS) ] = 0x82d0,
563
},
564
},
565
[ C(L1I ) ] = {
566
[ C(OP_READ) ] = {
567
[ C(RESULT_MISS) ] = 0xe424,
568
},
569
[ C(OP_WRITE) ] = {
570
[ C(RESULT_ACCESS) ] = -1,
571
[ C(RESULT_MISS) ] = -1,
572
},
573
},
574
[ C(LL ) ] = {
575
[ C(OP_READ) ] = {
576
[ C(RESULT_ACCESS) ] = 0x12a,
577
[ C(RESULT_MISS) ] = 0x12a,
578
},
579
[ C(OP_WRITE) ] = {
580
[ C(RESULT_ACCESS) ] = 0x12a,
581
[ C(RESULT_MISS) ] = 0x12a,
582
},
583
},
584
[ C(DTLB) ] = {
585
[ C(OP_READ) ] = {
586
[ C(RESULT_ACCESS) ] = 0x81d0,
587
[ C(RESULT_MISS) ] = 0xe12,
588
},
589
[ C(OP_WRITE) ] = {
590
[ C(RESULT_ACCESS) ] = 0x82d0,
591
[ C(RESULT_MISS) ] = 0xe13,
592
},
593
},
594
[ C(ITLB) ] = {
595
[ C(OP_READ) ] = {
596
[ C(RESULT_ACCESS) ] = -1,
597
[ C(RESULT_MISS) ] = 0xe11,
598
},
599
[ C(OP_WRITE) ] = {
600
[ C(RESULT_ACCESS) ] = -1,
601
[ C(RESULT_MISS) ] = -1,
602
},
603
[ C(OP_PREFETCH) ] = {
604
[ C(RESULT_ACCESS) ] = -1,
605
[ C(RESULT_MISS) ] = -1,
606
},
607
},
608
[ C(BPU ) ] = {
609
[ C(OP_READ) ] = {
610
[ C(RESULT_ACCESS) ] = 0x4c4,
611
[ C(RESULT_MISS) ] = 0x4c5,
612
},
613
[ C(OP_WRITE) ] = {
614
[ C(RESULT_ACCESS) ] = -1,
615
[ C(RESULT_MISS) ] = -1,
616
},
617
[ C(OP_PREFETCH) ] = {
618
[ C(RESULT_ACCESS) ] = -1,
619
[ C(RESULT_MISS) ] = -1,
620
},
621
},
622
[ C(NODE) ] = {
623
[ C(OP_READ) ] = {
624
[ C(RESULT_ACCESS) ] = 0x12a,
625
[ C(RESULT_MISS) ] = 0x12a,
626
},
627
},
628
};
629
630
static __initconst const u64 glc_hw_cache_extra_regs
631
[PERF_COUNT_HW_CACHE_MAX]
632
[PERF_COUNT_HW_CACHE_OP_MAX]
633
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
634
{
635
[ C(LL ) ] = {
636
[ C(OP_READ) ] = {
637
[ C(RESULT_ACCESS) ] = 0x10001,
638
[ C(RESULT_MISS) ] = 0x3fbfc00001,
639
},
640
[ C(OP_WRITE) ] = {
641
[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
642
[ C(RESULT_MISS) ] = 0x3f3fc00002,
643
},
644
},
645
[ C(NODE) ] = {
646
[ C(OP_READ) ] = {
647
[ C(RESULT_ACCESS) ] = 0x10c000001,
648
[ C(RESULT_MISS) ] = 0x3fb3000001,
649
},
650
},
651
};
652
653
/*
654
* Notes on the events:
655
* - data reads do not include code reads (comparable to earlier tables)
656
* - data counts include speculative execution (except L1 write, dtlb, bpu)
657
* - remote node access includes remote memory, remote cache, remote mmio.
658
* - prefetches are not included in the counts.
659
* - icache miss does not include decoded icache
660
*/
661
662
#define SKL_DEMAND_DATA_RD BIT_ULL(0)
663
#define SKL_DEMAND_RFO BIT_ULL(1)
664
#define SKL_ANY_RESPONSE BIT_ULL(16)
665
#define SKL_SUPPLIER_NONE BIT_ULL(17)
666
#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
667
#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
668
#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
669
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
670
#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
671
SKL_L3_MISS_REMOTE_HOP0_DRAM| \
672
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
673
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
674
#define SKL_SPL_HIT BIT_ULL(30)
675
#define SKL_SNOOP_NONE BIT_ULL(31)
676
#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
677
#define SKL_SNOOP_MISS BIT_ULL(33)
678
#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
679
#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
680
#define SKL_SNOOP_HITM BIT_ULL(36)
681
#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
682
#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
683
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
684
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
685
SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
686
#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
687
#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
688
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
689
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
690
SKL_SNOOP_HITM|SKL_SPL_HIT)
691
#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
692
#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
693
#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
694
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
695
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
696
697
static __initconst const u64 skl_hw_cache_event_ids
698
[PERF_COUNT_HW_CACHE_MAX]
699
[PERF_COUNT_HW_CACHE_OP_MAX]
700
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
701
{
702
[ C(L1D ) ] = {
703
[ C(OP_READ) ] = {
704
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
705
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
706
},
707
[ C(OP_WRITE) ] = {
708
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
709
[ C(RESULT_MISS) ] = 0x0,
710
},
711
[ C(OP_PREFETCH) ] = {
712
[ C(RESULT_ACCESS) ] = 0x0,
713
[ C(RESULT_MISS) ] = 0x0,
714
},
715
},
716
[ C(L1I ) ] = {
717
[ C(OP_READ) ] = {
718
[ C(RESULT_ACCESS) ] = 0x0,
719
[ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
720
},
721
[ C(OP_WRITE) ] = {
722
[ C(RESULT_ACCESS) ] = -1,
723
[ C(RESULT_MISS) ] = -1,
724
},
725
[ C(OP_PREFETCH) ] = {
726
[ C(RESULT_ACCESS) ] = 0x0,
727
[ C(RESULT_MISS) ] = 0x0,
728
},
729
},
730
[ C(LL ) ] = {
731
[ C(OP_READ) ] = {
732
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
733
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
734
},
735
[ C(OP_WRITE) ] = {
736
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
737
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
738
},
739
[ C(OP_PREFETCH) ] = {
740
[ C(RESULT_ACCESS) ] = 0x0,
741
[ C(RESULT_MISS) ] = 0x0,
742
},
743
},
744
[ C(DTLB) ] = {
745
[ C(OP_READ) ] = {
746
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
747
[ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
748
},
749
[ C(OP_WRITE) ] = {
750
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
751
[ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
752
},
753
[ C(OP_PREFETCH) ] = {
754
[ C(RESULT_ACCESS) ] = 0x0,
755
[ C(RESULT_MISS) ] = 0x0,
756
},
757
},
758
[ C(ITLB) ] = {
759
[ C(OP_READ) ] = {
760
[ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
761
[ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
762
},
763
[ C(OP_WRITE) ] = {
764
[ C(RESULT_ACCESS) ] = -1,
765
[ C(RESULT_MISS) ] = -1,
766
},
767
[ C(OP_PREFETCH) ] = {
768
[ C(RESULT_ACCESS) ] = -1,
769
[ C(RESULT_MISS) ] = -1,
770
},
771
},
772
[ C(BPU ) ] = {
773
[ C(OP_READ) ] = {
774
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
775
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
776
},
777
[ C(OP_WRITE) ] = {
778
[ C(RESULT_ACCESS) ] = -1,
779
[ C(RESULT_MISS) ] = -1,
780
},
781
[ C(OP_PREFETCH) ] = {
782
[ C(RESULT_ACCESS) ] = -1,
783
[ C(RESULT_MISS) ] = -1,
784
},
785
},
786
[ C(NODE) ] = {
787
[ C(OP_READ) ] = {
788
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
789
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
790
},
791
[ C(OP_WRITE) ] = {
792
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
793
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
794
},
795
[ C(OP_PREFETCH) ] = {
796
[ C(RESULT_ACCESS) ] = 0x0,
797
[ C(RESULT_MISS) ] = 0x0,
798
},
799
},
800
};
801
802
static __initconst const u64 skl_hw_cache_extra_regs
803
[PERF_COUNT_HW_CACHE_MAX]
804
[PERF_COUNT_HW_CACHE_OP_MAX]
805
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
806
{
807
[ C(LL ) ] = {
808
[ C(OP_READ) ] = {
809
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
810
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
811
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
812
SKL_L3_MISS|SKL_ANY_SNOOP|
813
SKL_SUPPLIER_NONE,
814
},
815
[ C(OP_WRITE) ] = {
816
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
817
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
818
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
819
SKL_L3_MISS|SKL_ANY_SNOOP|
820
SKL_SUPPLIER_NONE,
821
},
822
[ C(OP_PREFETCH) ] = {
823
[ C(RESULT_ACCESS) ] = 0x0,
824
[ C(RESULT_MISS) ] = 0x0,
825
},
826
},
827
[ C(NODE) ] = {
828
[ C(OP_READ) ] = {
829
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
830
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
831
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
832
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
833
},
834
[ C(OP_WRITE) ] = {
835
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
836
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
837
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
838
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
839
},
840
[ C(OP_PREFETCH) ] = {
841
[ C(RESULT_ACCESS) ] = 0x0,
842
[ C(RESULT_MISS) ] = 0x0,
843
},
844
},
845
};
846
847
#define SNB_DMND_DATA_RD (1ULL << 0)
848
#define SNB_DMND_RFO (1ULL << 1)
849
#define SNB_DMND_IFETCH (1ULL << 2)
850
#define SNB_DMND_WB (1ULL << 3)
851
#define SNB_PF_DATA_RD (1ULL << 4)
852
#define SNB_PF_RFO (1ULL << 5)
853
#define SNB_PF_IFETCH (1ULL << 6)
854
#define SNB_LLC_DATA_RD (1ULL << 7)
855
#define SNB_LLC_RFO (1ULL << 8)
856
#define SNB_LLC_IFETCH (1ULL << 9)
857
#define SNB_BUS_LOCKS (1ULL << 10)
858
#define SNB_STRM_ST (1ULL << 11)
859
#define SNB_OTHER (1ULL << 15)
860
#define SNB_RESP_ANY (1ULL << 16)
861
#define SNB_NO_SUPP (1ULL << 17)
862
#define SNB_LLC_HITM (1ULL << 18)
863
#define SNB_LLC_HITE (1ULL << 19)
864
#define SNB_LLC_HITS (1ULL << 20)
865
#define SNB_LLC_HITF (1ULL << 21)
866
#define SNB_LOCAL (1ULL << 22)
867
#define SNB_REMOTE (0xffULL << 23)
868
#define SNB_SNP_NONE (1ULL << 31)
869
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
870
#define SNB_SNP_MISS (1ULL << 33)
871
#define SNB_NO_FWD (1ULL << 34)
872
#define SNB_SNP_FWD (1ULL << 35)
873
#define SNB_HITM (1ULL << 36)
874
#define SNB_NON_DRAM (1ULL << 37)
875
876
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
877
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
878
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
879
880
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
881
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
882
SNB_HITM)
883
884
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
885
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
886
887
#define SNB_L3_ACCESS SNB_RESP_ANY
888
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
889
890
static __initconst const u64 snb_hw_cache_extra_regs
891
[PERF_COUNT_HW_CACHE_MAX]
892
[PERF_COUNT_HW_CACHE_OP_MAX]
893
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
894
{
895
[ C(LL ) ] = {
896
[ C(OP_READ) ] = {
897
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
898
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
899
},
900
[ C(OP_WRITE) ] = {
901
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
902
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
903
},
904
[ C(OP_PREFETCH) ] = {
905
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
906
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
907
},
908
},
909
[ C(NODE) ] = {
910
[ C(OP_READ) ] = {
911
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
912
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
913
},
914
[ C(OP_WRITE) ] = {
915
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
916
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
917
},
918
[ C(OP_PREFETCH) ] = {
919
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
920
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
921
},
922
},
923
};
924
925
static __initconst const u64 snb_hw_cache_event_ids
926
[PERF_COUNT_HW_CACHE_MAX]
927
[PERF_COUNT_HW_CACHE_OP_MAX]
928
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
929
{
930
[ C(L1D) ] = {
931
[ C(OP_READ) ] = {
932
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
933
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
934
},
935
[ C(OP_WRITE) ] = {
936
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
937
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
938
},
939
[ C(OP_PREFETCH) ] = {
940
[ C(RESULT_ACCESS) ] = 0x0,
941
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
942
},
943
},
944
[ C(L1I ) ] = {
945
[ C(OP_READ) ] = {
946
[ C(RESULT_ACCESS) ] = 0x0,
947
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
948
},
949
[ C(OP_WRITE) ] = {
950
[ C(RESULT_ACCESS) ] = -1,
951
[ C(RESULT_MISS) ] = -1,
952
},
953
[ C(OP_PREFETCH) ] = {
954
[ C(RESULT_ACCESS) ] = 0x0,
955
[ C(RESULT_MISS) ] = 0x0,
956
},
957
},
958
[ C(LL ) ] = {
959
[ C(OP_READ) ] = {
960
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961
[ C(RESULT_ACCESS) ] = 0x01b7,
962
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
963
[ C(RESULT_MISS) ] = 0x01b7,
964
},
965
[ C(OP_WRITE) ] = {
966
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
967
[ C(RESULT_ACCESS) ] = 0x01b7,
968
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
969
[ C(RESULT_MISS) ] = 0x01b7,
970
},
971
[ C(OP_PREFETCH) ] = {
972
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
973
[ C(RESULT_ACCESS) ] = 0x01b7,
974
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
975
[ C(RESULT_MISS) ] = 0x01b7,
976
},
977
},
978
[ C(DTLB) ] = {
979
[ C(OP_READ) ] = {
980
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
981
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
982
},
983
[ C(OP_WRITE) ] = {
984
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
985
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
986
},
987
[ C(OP_PREFETCH) ] = {
988
[ C(RESULT_ACCESS) ] = 0x0,
989
[ C(RESULT_MISS) ] = 0x0,
990
},
991
},
992
[ C(ITLB) ] = {
993
[ C(OP_READ) ] = {
994
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
995
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
996
},
997
[ C(OP_WRITE) ] = {
998
[ C(RESULT_ACCESS) ] = -1,
999
[ C(RESULT_MISS) ] = -1,
1000
},
1001
[ C(OP_PREFETCH) ] = {
1002
[ C(RESULT_ACCESS) ] = -1,
1003
[ C(RESULT_MISS) ] = -1,
1004
},
1005
},
1006
[ C(BPU ) ] = {
1007
[ C(OP_READ) ] = {
1008
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1009
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1010
},
1011
[ C(OP_WRITE) ] = {
1012
[ C(RESULT_ACCESS) ] = -1,
1013
[ C(RESULT_MISS) ] = -1,
1014
},
1015
[ C(OP_PREFETCH) ] = {
1016
[ C(RESULT_ACCESS) ] = -1,
1017
[ C(RESULT_MISS) ] = -1,
1018
},
1019
},
1020
[ C(NODE) ] = {
1021
[ C(OP_READ) ] = {
1022
[ C(RESULT_ACCESS) ] = 0x01b7,
1023
[ C(RESULT_MISS) ] = 0x01b7,
1024
},
1025
[ C(OP_WRITE) ] = {
1026
[ C(RESULT_ACCESS) ] = 0x01b7,
1027
[ C(RESULT_MISS) ] = 0x01b7,
1028
},
1029
[ C(OP_PREFETCH) ] = {
1030
[ C(RESULT_ACCESS) ] = 0x01b7,
1031
[ C(RESULT_MISS) ] = 0x01b7,
1032
},
1033
},
1034
1035
};
1036
1037
/*
1038
* Notes on the events:
1039
* - data reads do not include code reads (comparable to earlier tables)
1040
* - data counts include speculative execution (except L1 write, dtlb, bpu)
1041
* - remote node access includes remote memory, remote cache, remote mmio.
1042
* - prefetches are not included in the counts because they are not
1043
* reliably counted.
1044
*/
1045
1046
#define HSW_DEMAND_DATA_RD BIT_ULL(0)
1047
#define HSW_DEMAND_RFO BIT_ULL(1)
1048
#define HSW_ANY_RESPONSE BIT_ULL(16)
1049
#define HSW_SUPPLIER_NONE BIT_ULL(17)
1050
#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
1051
#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
1052
#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
1053
#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
1054
#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
1055
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1056
HSW_L3_MISS_REMOTE_HOP2P)
1057
#define HSW_SNOOP_NONE BIT_ULL(31)
1058
#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
1059
#define HSW_SNOOP_MISS BIT_ULL(33)
1060
#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
1061
#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
1062
#define HSW_SNOOP_HITM BIT_ULL(36)
1063
#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
1064
#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
1065
HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1066
HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1067
HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1068
#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1069
#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
1070
#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
1071
#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
1072
HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1073
#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
1074
1075
#define BDW_L3_MISS_LOCAL BIT(26)
1076
#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
1077
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1078
HSW_L3_MISS_REMOTE_HOP2P)
1079
1080
1081
static __initconst const u64 hsw_hw_cache_event_ids
1082
[PERF_COUNT_HW_CACHE_MAX]
1083
[PERF_COUNT_HW_CACHE_OP_MAX]
1084
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1085
{
1086
[ C(L1D ) ] = {
1087
[ C(OP_READ) ] = {
1088
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1089
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
1090
},
1091
[ C(OP_WRITE) ] = {
1092
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1093
[ C(RESULT_MISS) ] = 0x0,
1094
},
1095
[ C(OP_PREFETCH) ] = {
1096
[ C(RESULT_ACCESS) ] = 0x0,
1097
[ C(RESULT_MISS) ] = 0x0,
1098
},
1099
},
1100
[ C(L1I ) ] = {
1101
[ C(OP_READ) ] = {
1102
[ C(RESULT_ACCESS) ] = 0x0,
1103
[ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
1104
},
1105
[ C(OP_WRITE) ] = {
1106
[ C(RESULT_ACCESS) ] = -1,
1107
[ C(RESULT_MISS) ] = -1,
1108
},
1109
[ C(OP_PREFETCH) ] = {
1110
[ C(RESULT_ACCESS) ] = 0x0,
1111
[ C(RESULT_MISS) ] = 0x0,
1112
},
1113
},
1114
[ C(LL ) ] = {
1115
[ C(OP_READ) ] = {
1116
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1117
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1118
},
1119
[ C(OP_WRITE) ] = {
1120
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1121
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1122
},
1123
[ C(OP_PREFETCH) ] = {
1124
[ C(RESULT_ACCESS) ] = 0x0,
1125
[ C(RESULT_MISS) ] = 0x0,
1126
},
1127
},
1128
[ C(DTLB) ] = {
1129
[ C(OP_READ) ] = {
1130
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1131
[ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1132
},
1133
[ C(OP_WRITE) ] = {
1134
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1135
[ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1136
},
1137
[ C(OP_PREFETCH) ] = {
1138
[ C(RESULT_ACCESS) ] = 0x0,
1139
[ C(RESULT_MISS) ] = 0x0,
1140
},
1141
},
1142
[ C(ITLB) ] = {
1143
[ C(OP_READ) ] = {
1144
[ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1145
[ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1146
},
1147
[ C(OP_WRITE) ] = {
1148
[ C(RESULT_ACCESS) ] = -1,
1149
[ C(RESULT_MISS) ] = -1,
1150
},
1151
[ C(OP_PREFETCH) ] = {
1152
[ C(RESULT_ACCESS) ] = -1,
1153
[ C(RESULT_MISS) ] = -1,
1154
},
1155
},
1156
[ C(BPU ) ] = {
1157
[ C(OP_READ) ] = {
1158
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1159
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1160
},
1161
[ C(OP_WRITE) ] = {
1162
[ C(RESULT_ACCESS) ] = -1,
1163
[ C(RESULT_MISS) ] = -1,
1164
},
1165
[ C(OP_PREFETCH) ] = {
1166
[ C(RESULT_ACCESS) ] = -1,
1167
[ C(RESULT_MISS) ] = -1,
1168
},
1169
},
1170
[ C(NODE) ] = {
1171
[ C(OP_READ) ] = {
1172
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1173
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1174
},
1175
[ C(OP_WRITE) ] = {
1176
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1177
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1178
},
1179
[ C(OP_PREFETCH) ] = {
1180
[ C(RESULT_ACCESS) ] = 0x0,
1181
[ C(RESULT_MISS) ] = 0x0,
1182
},
1183
},
1184
};
1185
1186
static __initconst const u64 hsw_hw_cache_extra_regs
1187
[PERF_COUNT_HW_CACHE_MAX]
1188
[PERF_COUNT_HW_CACHE_OP_MAX]
1189
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1190
{
1191
[ C(LL ) ] = {
1192
[ C(OP_READ) ] = {
1193
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1194
HSW_LLC_ACCESS,
1195
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1196
HSW_L3_MISS|HSW_ANY_SNOOP,
1197
},
1198
[ C(OP_WRITE) ] = {
1199
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1200
HSW_LLC_ACCESS,
1201
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1202
HSW_L3_MISS|HSW_ANY_SNOOP,
1203
},
1204
[ C(OP_PREFETCH) ] = {
1205
[ C(RESULT_ACCESS) ] = 0x0,
1206
[ C(RESULT_MISS) ] = 0x0,
1207
},
1208
},
1209
[ C(NODE) ] = {
1210
[ C(OP_READ) ] = {
1211
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1212
HSW_L3_MISS_LOCAL_DRAM|
1213
HSW_SNOOP_DRAM,
1214
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1215
HSW_L3_MISS_REMOTE|
1216
HSW_SNOOP_DRAM,
1217
},
1218
[ C(OP_WRITE) ] = {
1219
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1220
HSW_L3_MISS_LOCAL_DRAM|
1221
HSW_SNOOP_DRAM,
1222
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1223
HSW_L3_MISS_REMOTE|
1224
HSW_SNOOP_DRAM,
1225
},
1226
[ C(OP_PREFETCH) ] = {
1227
[ C(RESULT_ACCESS) ] = 0x0,
1228
[ C(RESULT_MISS) ] = 0x0,
1229
},
1230
},
1231
};
1232
1233
static __initconst const u64 westmere_hw_cache_event_ids
1234
[PERF_COUNT_HW_CACHE_MAX]
1235
[PERF_COUNT_HW_CACHE_OP_MAX]
1236
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1237
{
1238
[ C(L1D) ] = {
1239
[ C(OP_READ) ] = {
1240
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1241
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1242
},
1243
[ C(OP_WRITE) ] = {
1244
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1245
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1246
},
1247
[ C(OP_PREFETCH) ] = {
1248
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1249
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1250
},
1251
},
1252
[ C(L1I ) ] = {
1253
[ C(OP_READ) ] = {
1254
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1255
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1256
},
1257
[ C(OP_WRITE) ] = {
1258
[ C(RESULT_ACCESS) ] = -1,
1259
[ C(RESULT_MISS) ] = -1,
1260
},
1261
[ C(OP_PREFETCH) ] = {
1262
[ C(RESULT_ACCESS) ] = 0x0,
1263
[ C(RESULT_MISS) ] = 0x0,
1264
},
1265
},
1266
[ C(LL ) ] = {
1267
[ C(OP_READ) ] = {
1268
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1269
[ C(RESULT_ACCESS) ] = 0x01b7,
1270
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1271
[ C(RESULT_MISS) ] = 0x01b7,
1272
},
1273
/*
1274
* Use RFO, not WRITEBACK, because a write miss would typically occur
1275
* on RFO.
1276
*/
1277
[ C(OP_WRITE) ] = {
1278
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1279
[ C(RESULT_ACCESS) ] = 0x01b7,
1280
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1281
[ C(RESULT_MISS) ] = 0x01b7,
1282
},
1283
[ C(OP_PREFETCH) ] = {
1284
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1285
[ C(RESULT_ACCESS) ] = 0x01b7,
1286
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1287
[ C(RESULT_MISS) ] = 0x01b7,
1288
},
1289
},
1290
[ C(DTLB) ] = {
1291
[ C(OP_READ) ] = {
1292
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1293
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1294
},
1295
[ C(OP_WRITE) ] = {
1296
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1297
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1298
},
1299
[ C(OP_PREFETCH) ] = {
1300
[ C(RESULT_ACCESS) ] = 0x0,
1301
[ C(RESULT_MISS) ] = 0x0,
1302
},
1303
},
1304
[ C(ITLB) ] = {
1305
[ C(OP_READ) ] = {
1306
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1307
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1308
},
1309
[ C(OP_WRITE) ] = {
1310
[ C(RESULT_ACCESS) ] = -1,
1311
[ C(RESULT_MISS) ] = -1,
1312
},
1313
[ C(OP_PREFETCH) ] = {
1314
[ C(RESULT_ACCESS) ] = -1,
1315
[ C(RESULT_MISS) ] = -1,
1316
},
1317
},
1318
[ C(BPU ) ] = {
1319
[ C(OP_READ) ] = {
1320
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1321
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1322
},
1323
[ C(OP_WRITE) ] = {
1324
[ C(RESULT_ACCESS) ] = -1,
1325
[ C(RESULT_MISS) ] = -1,
1326
},
1327
[ C(OP_PREFETCH) ] = {
1328
[ C(RESULT_ACCESS) ] = -1,
1329
[ C(RESULT_MISS) ] = -1,
1330
},
1331
},
1332
[ C(NODE) ] = {
1333
[ C(OP_READ) ] = {
1334
[ C(RESULT_ACCESS) ] = 0x01b7,
1335
[ C(RESULT_MISS) ] = 0x01b7,
1336
},
1337
[ C(OP_WRITE) ] = {
1338
[ C(RESULT_ACCESS) ] = 0x01b7,
1339
[ C(RESULT_MISS) ] = 0x01b7,
1340
},
1341
[ C(OP_PREFETCH) ] = {
1342
[ C(RESULT_ACCESS) ] = 0x01b7,
1343
[ C(RESULT_MISS) ] = 0x01b7,
1344
},
1345
},
1346
};
1347
1348
/*
1349
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1350
* See IA32 SDM Vol 3B 30.6.1.3
1351
*/
1352
1353
#define NHM_DMND_DATA_RD (1 << 0)
1354
#define NHM_DMND_RFO (1 << 1)
1355
#define NHM_DMND_IFETCH (1 << 2)
1356
#define NHM_DMND_WB (1 << 3)
1357
#define NHM_PF_DATA_RD (1 << 4)
1358
#define NHM_PF_DATA_RFO (1 << 5)
1359
#define NHM_PF_IFETCH (1 << 6)
1360
#define NHM_OFFCORE_OTHER (1 << 7)
1361
#define NHM_UNCORE_HIT (1 << 8)
1362
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1363
#define NHM_OTHER_CORE_HITM (1 << 10)
1364
/* reserved */
1365
#define NHM_REMOTE_CACHE_FWD (1 << 12)
1366
#define NHM_REMOTE_DRAM (1 << 13)
1367
#define NHM_LOCAL_DRAM (1 << 14)
1368
#define NHM_NON_DRAM (1 << 15)
1369
1370
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1371
#define NHM_REMOTE (NHM_REMOTE_DRAM)
1372
1373
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
1374
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1375
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1376
1377
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1378
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1379
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1380
1381
static __initconst const u64 nehalem_hw_cache_extra_regs
1382
[PERF_COUNT_HW_CACHE_MAX]
1383
[PERF_COUNT_HW_CACHE_OP_MAX]
1384
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1385
{
1386
[ C(LL ) ] = {
1387
[ C(OP_READ) ] = {
1388
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1389
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1390
},
1391
[ C(OP_WRITE) ] = {
1392
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1393
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1394
},
1395
[ C(OP_PREFETCH) ] = {
1396
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1397
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1398
},
1399
},
1400
[ C(NODE) ] = {
1401
[ C(OP_READ) ] = {
1402
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1403
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1404
},
1405
[ C(OP_WRITE) ] = {
1406
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1407
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1408
},
1409
[ C(OP_PREFETCH) ] = {
1410
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1411
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1412
},
1413
},
1414
};
1415
1416
static __initconst const u64 nehalem_hw_cache_event_ids
1417
[PERF_COUNT_HW_CACHE_MAX]
1418
[PERF_COUNT_HW_CACHE_OP_MAX]
1419
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1420
{
1421
[ C(L1D) ] = {
1422
[ C(OP_READ) ] = {
1423
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1424
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1425
},
1426
[ C(OP_WRITE) ] = {
1427
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1428
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1429
},
1430
[ C(OP_PREFETCH) ] = {
1431
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1432
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1433
},
1434
},
1435
[ C(L1I ) ] = {
1436
[ C(OP_READ) ] = {
1437
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1438
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1439
},
1440
[ C(OP_WRITE) ] = {
1441
[ C(RESULT_ACCESS) ] = -1,
1442
[ C(RESULT_MISS) ] = -1,
1443
},
1444
[ C(OP_PREFETCH) ] = {
1445
[ C(RESULT_ACCESS) ] = 0x0,
1446
[ C(RESULT_MISS) ] = 0x0,
1447
},
1448
},
1449
[ C(LL ) ] = {
1450
[ C(OP_READ) ] = {
1451
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1452
[ C(RESULT_ACCESS) ] = 0x01b7,
1453
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1454
[ C(RESULT_MISS) ] = 0x01b7,
1455
},
1456
/*
1457
* Use RFO, not WRITEBACK, because a write miss would typically occur
1458
* on RFO.
1459
*/
1460
[ C(OP_WRITE) ] = {
1461
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1462
[ C(RESULT_ACCESS) ] = 0x01b7,
1463
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1464
[ C(RESULT_MISS) ] = 0x01b7,
1465
},
1466
[ C(OP_PREFETCH) ] = {
1467
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1468
[ C(RESULT_ACCESS) ] = 0x01b7,
1469
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1470
[ C(RESULT_MISS) ] = 0x01b7,
1471
},
1472
},
1473
[ C(DTLB) ] = {
1474
[ C(OP_READ) ] = {
1475
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1476
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1477
},
1478
[ C(OP_WRITE) ] = {
1479
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1480
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1481
},
1482
[ C(OP_PREFETCH) ] = {
1483
[ C(RESULT_ACCESS) ] = 0x0,
1484
[ C(RESULT_MISS) ] = 0x0,
1485
},
1486
},
1487
[ C(ITLB) ] = {
1488
[ C(OP_READ) ] = {
1489
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1490
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1491
},
1492
[ C(OP_WRITE) ] = {
1493
[ C(RESULT_ACCESS) ] = -1,
1494
[ C(RESULT_MISS) ] = -1,
1495
},
1496
[ C(OP_PREFETCH) ] = {
1497
[ C(RESULT_ACCESS) ] = -1,
1498
[ C(RESULT_MISS) ] = -1,
1499
},
1500
},
1501
[ C(BPU ) ] = {
1502
[ C(OP_READ) ] = {
1503
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1504
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1505
},
1506
[ C(OP_WRITE) ] = {
1507
[ C(RESULT_ACCESS) ] = -1,
1508
[ C(RESULT_MISS) ] = -1,
1509
},
1510
[ C(OP_PREFETCH) ] = {
1511
[ C(RESULT_ACCESS) ] = -1,
1512
[ C(RESULT_MISS) ] = -1,
1513
},
1514
},
1515
[ C(NODE) ] = {
1516
[ C(OP_READ) ] = {
1517
[ C(RESULT_ACCESS) ] = 0x01b7,
1518
[ C(RESULT_MISS) ] = 0x01b7,
1519
},
1520
[ C(OP_WRITE) ] = {
1521
[ C(RESULT_ACCESS) ] = 0x01b7,
1522
[ C(RESULT_MISS) ] = 0x01b7,
1523
},
1524
[ C(OP_PREFETCH) ] = {
1525
[ C(RESULT_ACCESS) ] = 0x01b7,
1526
[ C(RESULT_MISS) ] = 0x01b7,
1527
},
1528
},
1529
};
1530
1531
static __initconst const u64 core2_hw_cache_event_ids
1532
[PERF_COUNT_HW_CACHE_MAX]
1533
[PERF_COUNT_HW_CACHE_OP_MAX]
1534
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1535
{
1536
[ C(L1D) ] = {
1537
[ C(OP_READ) ] = {
1538
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1539
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1540
},
1541
[ C(OP_WRITE) ] = {
1542
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1543
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1544
},
1545
[ C(OP_PREFETCH) ] = {
1546
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1547
[ C(RESULT_MISS) ] = 0,
1548
},
1549
},
1550
[ C(L1I ) ] = {
1551
[ C(OP_READ) ] = {
1552
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1553
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1554
},
1555
[ C(OP_WRITE) ] = {
1556
[ C(RESULT_ACCESS) ] = -1,
1557
[ C(RESULT_MISS) ] = -1,
1558
},
1559
[ C(OP_PREFETCH) ] = {
1560
[ C(RESULT_ACCESS) ] = 0,
1561
[ C(RESULT_MISS) ] = 0,
1562
},
1563
},
1564
[ C(LL ) ] = {
1565
[ C(OP_READ) ] = {
1566
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1567
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1568
},
1569
[ C(OP_WRITE) ] = {
1570
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1571
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1572
},
1573
[ C(OP_PREFETCH) ] = {
1574
[ C(RESULT_ACCESS) ] = 0,
1575
[ C(RESULT_MISS) ] = 0,
1576
},
1577
},
1578
[ C(DTLB) ] = {
1579
[ C(OP_READ) ] = {
1580
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1581
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1582
},
1583
[ C(OP_WRITE) ] = {
1584
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1585
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1586
},
1587
[ C(OP_PREFETCH) ] = {
1588
[ C(RESULT_ACCESS) ] = 0,
1589
[ C(RESULT_MISS) ] = 0,
1590
},
1591
},
1592
[ C(ITLB) ] = {
1593
[ C(OP_READ) ] = {
1594
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1595
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1596
},
1597
[ C(OP_WRITE) ] = {
1598
[ C(RESULT_ACCESS) ] = -1,
1599
[ C(RESULT_MISS) ] = -1,
1600
},
1601
[ C(OP_PREFETCH) ] = {
1602
[ C(RESULT_ACCESS) ] = -1,
1603
[ C(RESULT_MISS) ] = -1,
1604
},
1605
},
1606
[ C(BPU ) ] = {
1607
[ C(OP_READ) ] = {
1608
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1609
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1610
},
1611
[ C(OP_WRITE) ] = {
1612
[ C(RESULT_ACCESS) ] = -1,
1613
[ C(RESULT_MISS) ] = -1,
1614
},
1615
[ C(OP_PREFETCH) ] = {
1616
[ C(RESULT_ACCESS) ] = -1,
1617
[ C(RESULT_MISS) ] = -1,
1618
},
1619
},
1620
};
1621
1622
static __initconst const u64 atom_hw_cache_event_ids
1623
[PERF_COUNT_HW_CACHE_MAX]
1624
[PERF_COUNT_HW_CACHE_OP_MAX]
1625
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1626
{
1627
[ C(L1D) ] = {
1628
[ C(OP_READ) ] = {
1629
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1630
[ C(RESULT_MISS) ] = 0,
1631
},
1632
[ C(OP_WRITE) ] = {
1633
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1634
[ C(RESULT_MISS) ] = 0,
1635
},
1636
[ C(OP_PREFETCH) ] = {
1637
[ C(RESULT_ACCESS) ] = 0x0,
1638
[ C(RESULT_MISS) ] = 0,
1639
},
1640
},
1641
[ C(L1I ) ] = {
1642
[ C(OP_READ) ] = {
1643
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1644
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1645
},
1646
[ C(OP_WRITE) ] = {
1647
[ C(RESULT_ACCESS) ] = -1,
1648
[ C(RESULT_MISS) ] = -1,
1649
},
1650
[ C(OP_PREFETCH) ] = {
1651
[ C(RESULT_ACCESS) ] = 0,
1652
[ C(RESULT_MISS) ] = 0,
1653
},
1654
},
1655
[ C(LL ) ] = {
1656
[ C(OP_READ) ] = {
1657
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1658
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1659
},
1660
[ C(OP_WRITE) ] = {
1661
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1662
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1663
},
1664
[ C(OP_PREFETCH) ] = {
1665
[ C(RESULT_ACCESS) ] = 0,
1666
[ C(RESULT_MISS) ] = 0,
1667
},
1668
},
1669
[ C(DTLB) ] = {
1670
[ C(OP_READ) ] = {
1671
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1672
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1673
},
1674
[ C(OP_WRITE) ] = {
1675
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1676
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1677
},
1678
[ C(OP_PREFETCH) ] = {
1679
[ C(RESULT_ACCESS) ] = 0,
1680
[ C(RESULT_MISS) ] = 0,
1681
},
1682
},
1683
[ C(ITLB) ] = {
1684
[ C(OP_READ) ] = {
1685
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1686
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1687
},
1688
[ C(OP_WRITE) ] = {
1689
[ C(RESULT_ACCESS) ] = -1,
1690
[ C(RESULT_MISS) ] = -1,
1691
},
1692
[ C(OP_PREFETCH) ] = {
1693
[ C(RESULT_ACCESS) ] = -1,
1694
[ C(RESULT_MISS) ] = -1,
1695
},
1696
},
1697
[ C(BPU ) ] = {
1698
[ C(OP_READ) ] = {
1699
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1700
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1701
},
1702
[ C(OP_WRITE) ] = {
1703
[ C(RESULT_ACCESS) ] = -1,
1704
[ C(RESULT_MISS) ] = -1,
1705
},
1706
[ C(OP_PREFETCH) ] = {
1707
[ C(RESULT_ACCESS) ] = -1,
1708
[ C(RESULT_MISS) ] = -1,
1709
},
1710
},
1711
};
1712
1713
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1714
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1715
/* no_alloc_cycles.not_delivered */
1716
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1717
"event=0xca,umask=0x50");
1718
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1719
/* uops_retired.all */
1720
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1721
"event=0xc2,umask=0x10");
1722
/* uops_retired.all */
1723
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1724
"event=0xc2,umask=0x10");
1725
1726
static struct attribute *slm_events_attrs[] = {
1727
EVENT_PTR(td_total_slots_slm),
1728
EVENT_PTR(td_total_slots_scale_slm),
1729
EVENT_PTR(td_fetch_bubbles_slm),
1730
EVENT_PTR(td_fetch_bubbles_scale_slm),
1731
EVENT_PTR(td_slots_issued_slm),
1732
EVENT_PTR(td_slots_retired_slm),
1733
NULL
1734
};
1735
1736
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1737
{
1738
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1739
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1740
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1741
EVENT_EXTRA_END
1742
};
1743
1744
#define SLM_DMND_READ SNB_DMND_DATA_RD
1745
#define SLM_DMND_WRITE SNB_DMND_RFO
1746
#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1747
1748
#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1749
#define SLM_LLC_ACCESS SNB_RESP_ANY
1750
#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1751
1752
static __initconst const u64 slm_hw_cache_extra_regs
1753
[PERF_COUNT_HW_CACHE_MAX]
1754
[PERF_COUNT_HW_CACHE_OP_MAX]
1755
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1756
{
1757
[ C(LL ) ] = {
1758
[ C(OP_READ) ] = {
1759
[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1760
[ C(RESULT_MISS) ] = 0,
1761
},
1762
[ C(OP_WRITE) ] = {
1763
[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1764
[ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1765
},
1766
[ C(OP_PREFETCH) ] = {
1767
[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1768
[ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1769
},
1770
},
1771
};
1772
1773
static __initconst const u64 slm_hw_cache_event_ids
1774
[PERF_COUNT_HW_CACHE_MAX]
1775
[PERF_COUNT_HW_CACHE_OP_MAX]
1776
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1777
{
1778
[ C(L1D) ] = {
1779
[ C(OP_READ) ] = {
1780
[ C(RESULT_ACCESS) ] = 0,
1781
[ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1782
},
1783
[ C(OP_WRITE) ] = {
1784
[ C(RESULT_ACCESS) ] = 0,
1785
[ C(RESULT_MISS) ] = 0,
1786
},
1787
[ C(OP_PREFETCH) ] = {
1788
[ C(RESULT_ACCESS) ] = 0,
1789
[ C(RESULT_MISS) ] = 0,
1790
},
1791
},
1792
[ C(L1I ) ] = {
1793
[ C(OP_READ) ] = {
1794
[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1795
[ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1796
},
1797
[ C(OP_WRITE) ] = {
1798
[ C(RESULT_ACCESS) ] = -1,
1799
[ C(RESULT_MISS) ] = -1,
1800
},
1801
[ C(OP_PREFETCH) ] = {
1802
[ C(RESULT_ACCESS) ] = 0,
1803
[ C(RESULT_MISS) ] = 0,
1804
},
1805
},
1806
[ C(LL ) ] = {
1807
[ C(OP_READ) ] = {
1808
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1809
[ C(RESULT_ACCESS) ] = 0x01b7,
1810
[ C(RESULT_MISS) ] = 0,
1811
},
1812
[ C(OP_WRITE) ] = {
1813
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1814
[ C(RESULT_ACCESS) ] = 0x01b7,
1815
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1816
[ C(RESULT_MISS) ] = 0x01b7,
1817
},
1818
[ C(OP_PREFETCH) ] = {
1819
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1820
[ C(RESULT_ACCESS) ] = 0x01b7,
1821
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1822
[ C(RESULT_MISS) ] = 0x01b7,
1823
},
1824
},
1825
[ C(DTLB) ] = {
1826
[ C(OP_READ) ] = {
1827
[ C(RESULT_ACCESS) ] = 0,
1828
[ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1829
},
1830
[ C(OP_WRITE) ] = {
1831
[ C(RESULT_ACCESS) ] = 0,
1832
[ C(RESULT_MISS) ] = 0,
1833
},
1834
[ C(OP_PREFETCH) ] = {
1835
[ C(RESULT_ACCESS) ] = 0,
1836
[ C(RESULT_MISS) ] = 0,
1837
},
1838
},
1839
[ C(ITLB) ] = {
1840
[ C(OP_READ) ] = {
1841
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1842
[ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1843
},
1844
[ C(OP_WRITE) ] = {
1845
[ C(RESULT_ACCESS) ] = -1,
1846
[ C(RESULT_MISS) ] = -1,
1847
},
1848
[ C(OP_PREFETCH) ] = {
1849
[ C(RESULT_ACCESS) ] = -1,
1850
[ C(RESULT_MISS) ] = -1,
1851
},
1852
},
1853
[ C(BPU ) ] = {
1854
[ C(OP_READ) ] = {
1855
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1856
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1857
},
1858
[ C(OP_WRITE) ] = {
1859
[ C(RESULT_ACCESS) ] = -1,
1860
[ C(RESULT_MISS) ] = -1,
1861
},
1862
[ C(OP_PREFETCH) ] = {
1863
[ C(RESULT_ACCESS) ] = -1,
1864
[ C(RESULT_MISS) ] = -1,
1865
},
1866
},
1867
};
1868
1869
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1870
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1871
/* UOPS_NOT_DELIVERED.ANY */
1872
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1873
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1874
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1875
/* UOPS_RETIRED.ANY */
1876
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1877
/* UOPS_ISSUED.ANY */
1878
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1879
1880
static struct attribute *glm_events_attrs[] = {
1881
EVENT_PTR(td_total_slots_glm),
1882
EVENT_PTR(td_total_slots_scale_glm),
1883
EVENT_PTR(td_fetch_bubbles_glm),
1884
EVENT_PTR(td_recovery_bubbles_glm),
1885
EVENT_PTR(td_slots_issued_glm),
1886
EVENT_PTR(td_slots_retired_glm),
1887
NULL
1888
};
1889
1890
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1891
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1892
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1893
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1894
EVENT_EXTRA_END
1895
};
1896
1897
#define GLM_DEMAND_DATA_RD BIT_ULL(0)
1898
#define GLM_DEMAND_RFO BIT_ULL(1)
1899
#define GLM_ANY_RESPONSE BIT_ULL(16)
1900
#define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1901
#define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1902
#define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1903
#define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1904
#define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1905
#define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1906
#define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1907
1908
static __initconst const u64 glm_hw_cache_event_ids
1909
[PERF_COUNT_HW_CACHE_MAX]
1910
[PERF_COUNT_HW_CACHE_OP_MAX]
1911
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1912
[C(L1D)] = {
1913
[C(OP_READ)] = {
1914
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1915
[C(RESULT_MISS)] = 0x0,
1916
},
1917
[C(OP_WRITE)] = {
1918
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1919
[C(RESULT_MISS)] = 0x0,
1920
},
1921
[C(OP_PREFETCH)] = {
1922
[C(RESULT_ACCESS)] = 0x0,
1923
[C(RESULT_MISS)] = 0x0,
1924
},
1925
},
1926
[C(L1I)] = {
1927
[C(OP_READ)] = {
1928
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1929
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1930
},
1931
[C(OP_WRITE)] = {
1932
[C(RESULT_ACCESS)] = -1,
1933
[C(RESULT_MISS)] = -1,
1934
},
1935
[C(OP_PREFETCH)] = {
1936
[C(RESULT_ACCESS)] = 0x0,
1937
[C(RESULT_MISS)] = 0x0,
1938
},
1939
},
1940
[C(LL)] = {
1941
[C(OP_READ)] = {
1942
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1943
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1944
},
1945
[C(OP_WRITE)] = {
1946
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1947
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1948
},
1949
[C(OP_PREFETCH)] = {
1950
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1951
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1952
},
1953
},
1954
[C(DTLB)] = {
1955
[C(OP_READ)] = {
1956
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1957
[C(RESULT_MISS)] = 0x0,
1958
},
1959
[C(OP_WRITE)] = {
1960
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1961
[C(RESULT_MISS)] = 0x0,
1962
},
1963
[C(OP_PREFETCH)] = {
1964
[C(RESULT_ACCESS)] = 0x0,
1965
[C(RESULT_MISS)] = 0x0,
1966
},
1967
},
1968
[C(ITLB)] = {
1969
[C(OP_READ)] = {
1970
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1971
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1972
},
1973
[C(OP_WRITE)] = {
1974
[C(RESULT_ACCESS)] = -1,
1975
[C(RESULT_MISS)] = -1,
1976
},
1977
[C(OP_PREFETCH)] = {
1978
[C(RESULT_ACCESS)] = -1,
1979
[C(RESULT_MISS)] = -1,
1980
},
1981
},
1982
[C(BPU)] = {
1983
[C(OP_READ)] = {
1984
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1985
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1986
},
1987
[C(OP_WRITE)] = {
1988
[C(RESULT_ACCESS)] = -1,
1989
[C(RESULT_MISS)] = -1,
1990
},
1991
[C(OP_PREFETCH)] = {
1992
[C(RESULT_ACCESS)] = -1,
1993
[C(RESULT_MISS)] = -1,
1994
},
1995
},
1996
};
1997
1998
static __initconst const u64 glm_hw_cache_extra_regs
1999
[PERF_COUNT_HW_CACHE_MAX]
2000
[PERF_COUNT_HW_CACHE_OP_MAX]
2001
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2002
[C(LL)] = {
2003
[C(OP_READ)] = {
2004
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2005
GLM_LLC_ACCESS,
2006
[C(RESULT_MISS)] = GLM_DEMAND_READ|
2007
GLM_LLC_MISS,
2008
},
2009
[C(OP_WRITE)] = {
2010
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2011
GLM_LLC_ACCESS,
2012
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2013
GLM_LLC_MISS,
2014
},
2015
[C(OP_PREFETCH)] = {
2016
[C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
2017
GLM_LLC_ACCESS,
2018
[C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
2019
GLM_LLC_MISS,
2020
},
2021
},
2022
};
2023
2024
static __initconst const u64 glp_hw_cache_event_ids
2025
[PERF_COUNT_HW_CACHE_MAX]
2026
[PERF_COUNT_HW_CACHE_OP_MAX]
2027
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2028
[C(L1D)] = {
2029
[C(OP_READ)] = {
2030
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2031
[C(RESULT_MISS)] = 0x0,
2032
},
2033
[C(OP_WRITE)] = {
2034
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2035
[C(RESULT_MISS)] = 0x0,
2036
},
2037
[C(OP_PREFETCH)] = {
2038
[C(RESULT_ACCESS)] = 0x0,
2039
[C(RESULT_MISS)] = 0x0,
2040
},
2041
},
2042
[C(L1I)] = {
2043
[C(OP_READ)] = {
2044
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
2045
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
2046
},
2047
[C(OP_WRITE)] = {
2048
[C(RESULT_ACCESS)] = -1,
2049
[C(RESULT_MISS)] = -1,
2050
},
2051
[C(OP_PREFETCH)] = {
2052
[C(RESULT_ACCESS)] = 0x0,
2053
[C(RESULT_MISS)] = 0x0,
2054
},
2055
},
2056
[C(LL)] = {
2057
[C(OP_READ)] = {
2058
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2059
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2060
},
2061
[C(OP_WRITE)] = {
2062
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2063
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2064
},
2065
[C(OP_PREFETCH)] = {
2066
[C(RESULT_ACCESS)] = 0x0,
2067
[C(RESULT_MISS)] = 0x0,
2068
},
2069
},
2070
[C(DTLB)] = {
2071
[C(OP_READ)] = {
2072
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2073
[C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2074
},
2075
[C(OP_WRITE)] = {
2076
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2077
[C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
2078
},
2079
[C(OP_PREFETCH)] = {
2080
[C(RESULT_ACCESS)] = 0x0,
2081
[C(RESULT_MISS)] = 0x0,
2082
},
2083
},
2084
[C(ITLB)] = {
2085
[C(OP_READ)] = {
2086
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2087
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2088
},
2089
[C(OP_WRITE)] = {
2090
[C(RESULT_ACCESS)] = -1,
2091
[C(RESULT_MISS)] = -1,
2092
},
2093
[C(OP_PREFETCH)] = {
2094
[C(RESULT_ACCESS)] = -1,
2095
[C(RESULT_MISS)] = -1,
2096
},
2097
},
2098
[C(BPU)] = {
2099
[C(OP_READ)] = {
2100
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2101
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2102
},
2103
[C(OP_WRITE)] = {
2104
[C(RESULT_ACCESS)] = -1,
2105
[C(RESULT_MISS)] = -1,
2106
},
2107
[C(OP_PREFETCH)] = {
2108
[C(RESULT_ACCESS)] = -1,
2109
[C(RESULT_MISS)] = -1,
2110
},
2111
},
2112
};
2113
2114
static __initconst const u64 glp_hw_cache_extra_regs
2115
[PERF_COUNT_HW_CACHE_MAX]
2116
[PERF_COUNT_HW_CACHE_OP_MAX]
2117
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2118
[C(LL)] = {
2119
[C(OP_READ)] = {
2120
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2121
GLM_LLC_ACCESS,
2122
[C(RESULT_MISS)] = GLM_DEMAND_READ|
2123
GLM_LLC_MISS,
2124
},
2125
[C(OP_WRITE)] = {
2126
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2127
GLM_LLC_ACCESS,
2128
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2129
GLM_LLC_MISS,
2130
},
2131
[C(OP_PREFETCH)] = {
2132
[C(RESULT_ACCESS)] = 0x0,
2133
[C(RESULT_MISS)] = 0x0,
2134
},
2135
},
2136
};
2137
2138
#define TNT_LOCAL_DRAM BIT_ULL(26)
2139
#define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2140
#define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2141
#define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2142
#define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2143
SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2144
#define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2145
2146
static __initconst const u64 tnt_hw_cache_extra_regs
2147
[PERF_COUNT_HW_CACHE_MAX]
2148
[PERF_COUNT_HW_CACHE_OP_MAX]
2149
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2150
[C(LL)] = {
2151
[C(OP_READ)] = {
2152
[C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2153
TNT_LLC_ACCESS,
2154
[C(RESULT_MISS)] = TNT_DEMAND_READ|
2155
TNT_LLC_MISS,
2156
},
2157
[C(OP_WRITE)] = {
2158
[C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2159
TNT_LLC_ACCESS,
2160
[C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2161
TNT_LLC_MISS,
2162
},
2163
[C(OP_PREFETCH)] = {
2164
[C(RESULT_ACCESS)] = 0x0,
2165
[C(RESULT_MISS)] = 0x0,
2166
},
2167
},
2168
};
2169
2170
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2171
EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2172
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2173
EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2174
2175
static struct attribute *tnt_events_attrs[] = {
2176
EVENT_PTR(td_fe_bound_tnt),
2177
EVENT_PTR(td_retiring_tnt),
2178
EVENT_PTR(td_bad_spec_tnt),
2179
EVENT_PTR(td_be_bound_tnt),
2180
NULL,
2181
};
2182
2183
static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2184
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2185
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2186
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2187
EVENT_EXTRA_END
2188
};
2189
2190
EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2191
EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
2192
2193
static struct attribute *grt_mem_attrs[] = {
2194
EVENT_PTR(mem_ld_grt),
2195
EVENT_PTR(mem_st_grt),
2196
NULL
2197
};
2198
2199
static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2200
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2201
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2202
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2203
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2204
EVENT_EXTRA_END
2205
};
2206
2207
EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0");
2208
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0");
2209
2210
static struct attribute *cmt_events_attrs[] = {
2211
EVENT_PTR(td_fe_bound_tnt),
2212
EVENT_PTR(td_retiring_cmt),
2213
EVENT_PTR(td_bad_spec_cmt),
2214
EVENT_PTR(td_be_bound_tnt),
2215
NULL
2216
};
2217
2218
static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2219
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2220
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2221
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2222
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2223
INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2224
INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2225
EVENT_EXTRA_END
2226
};
2227
2228
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_skt, "event=0x9c,umask=0x01");
2229
EVENT_ATTR_STR(topdown-retiring, td_retiring_skt, "event=0xc2,umask=0x02");
2230
EVENT_ATTR_STR(topdown-be-bound, td_be_bound_skt, "event=0xa4,umask=0x02");
2231
2232
static struct attribute *skt_events_attrs[] = {
2233
EVENT_PTR(td_fe_bound_skt),
2234
EVENT_PTR(td_retiring_skt),
2235
EVENT_PTR(td_bad_spec_cmt),
2236
EVENT_PTR(td_be_bound_skt),
2237
NULL,
2238
};
2239
2240
#define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2241
#define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2242
#define KNL_MCDRAM_LOCAL BIT_ULL(21)
2243
#define KNL_MCDRAM_FAR BIT_ULL(22)
2244
#define KNL_DDR_LOCAL BIT_ULL(23)
2245
#define KNL_DDR_FAR BIT_ULL(24)
2246
#define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2247
KNL_DDR_LOCAL | KNL_DDR_FAR)
2248
#define KNL_L2_READ SLM_DMND_READ
2249
#define KNL_L2_WRITE SLM_DMND_WRITE
2250
#define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2251
#define KNL_L2_ACCESS SLM_LLC_ACCESS
2252
#define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2253
KNL_DRAM_ANY | SNB_SNP_ANY | \
2254
SNB_NON_DRAM)
2255
2256
static __initconst const u64 knl_hw_cache_extra_regs
2257
[PERF_COUNT_HW_CACHE_MAX]
2258
[PERF_COUNT_HW_CACHE_OP_MAX]
2259
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2260
[C(LL)] = {
2261
[C(OP_READ)] = {
2262
[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2263
[C(RESULT_MISS)] = 0,
2264
},
2265
[C(OP_WRITE)] = {
2266
[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2267
[C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2268
},
2269
[C(OP_PREFETCH)] = {
2270
[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2271
[C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2272
},
2273
},
2274
};
2275
2276
/*
2277
* Used from PMIs where the LBRs are already disabled.
2278
*
2279
* This function could be called consecutively. It is required to remain in
2280
* disabled state if called consecutively.
2281
*
2282
* During consecutive calls, the same disable value will be written to related
2283
* registers, so the PMU state remains unchanged.
2284
*
2285
* intel_bts events don't coexist with intel PMU's BTS events because of
2286
* x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2287
* disabled around intel PMU's event batching etc, only inside the PMI handler.
2288
*
2289
* Avoid PEBS_ENABLE MSR access in PMIs.
2290
* The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2291
* It doesn't matter if the PEBS is enabled or not.
2292
* Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2293
* access PEBS_ENABLE MSR in disable_all()/enable_all().
2294
* However, there are some cases which may change PEBS status, e.g. PMI
2295
* throttle. The PEBS_ENABLE should be updated where the status changes.
2296
*/
2297
static __always_inline void __intel_pmu_disable_all(bool bts)
2298
{
2299
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2300
2301
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2302
2303
if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2304
intel_pmu_disable_bts();
2305
}
2306
2307
static __always_inline void intel_pmu_disable_all(void)
2308
{
2309
__intel_pmu_disable_all(true);
2310
static_call_cond(x86_pmu_pebs_disable_all)();
2311
intel_pmu_lbr_disable_all();
2312
}
2313
2314
static void __intel_pmu_enable_all(int added, bool pmi)
2315
{
2316
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2317
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2318
2319
intel_pmu_lbr_enable_all(pmi);
2320
2321
if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2322
wrmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2323
cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2324
}
2325
2326
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL,
2327
intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2328
2329
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2330
struct perf_event *event =
2331
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2332
2333
if (WARN_ON_ONCE(!event))
2334
return;
2335
2336
intel_pmu_enable_bts(event->hw.config);
2337
}
2338
}
2339
2340
static void intel_pmu_enable_all(int added)
2341
{
2342
static_call_cond(x86_pmu_pebs_enable_all)();
2343
__intel_pmu_enable_all(added, false);
2344
}
2345
2346
static noinline int
2347
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2348
unsigned int cnt, unsigned long flags)
2349
{
2350
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2351
2352
intel_pmu_lbr_read();
2353
cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2354
2355
memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2356
intel_pmu_enable_all(0);
2357
local_irq_restore(flags);
2358
return cnt;
2359
}
2360
2361
static int
2362
intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2363
{
2364
unsigned long flags;
2365
2366
/* must not have branches... */
2367
local_irq_save(flags);
2368
__intel_pmu_disable_all(false); /* we don't care about BTS */
2369
__intel_pmu_lbr_disable();
2370
/* ... until here */
2371
return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2372
}
2373
2374
static int
2375
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2376
{
2377
unsigned long flags;
2378
2379
/* must not have branches... */
2380
local_irq_save(flags);
2381
__intel_pmu_disable_all(false); /* we don't care about BTS */
2382
__intel_pmu_arch_lbr_disable();
2383
/* ... until here */
2384
return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2385
}
2386
2387
/*
2388
* Workaround for:
2389
* Intel Errata AAK100 (model 26)
2390
* Intel Errata AAP53 (model 30)
2391
* Intel Errata BD53 (model 44)
2392
*
2393
* The official story:
2394
* These chips need to be 'reset' when adding counters by programming the
2395
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2396
* in sequence on the same PMC or on different PMCs.
2397
*
2398
* In practice it appears some of these events do in fact count, and
2399
* we need to program all 4 events.
2400
*/
2401
static void intel_pmu_nhm_workaround(void)
2402
{
2403
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2404
static const unsigned long nhm_magic[4] = {
2405
0x4300B5,
2406
0x4300D2,
2407
0x4300B1,
2408
0x4300B1
2409
};
2410
struct perf_event *event;
2411
int i;
2412
2413
/*
2414
* The Errata requires below steps:
2415
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2416
* 2) Configure 4 PERFEVTSELx with the magic events and clear
2417
* the corresponding PMCx;
2418
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2419
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2420
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2421
*/
2422
2423
/*
2424
* The real steps we choose are a little different from above.
2425
* A) To reduce MSR operations, we don't run step 1) as they
2426
* are already cleared before this function is called;
2427
* B) Call x86_perf_event_update to save PMCx before configuring
2428
* PERFEVTSELx with magic number;
2429
* C) With step 5), we do clear only when the PERFEVTSELx is
2430
* not used currently.
2431
* D) Call x86_perf_event_set_period to restore PMCx;
2432
*/
2433
2434
/* We always operate 4 pairs of PERF Counters */
2435
for (i = 0; i < 4; i++) {
2436
event = cpuc->events[i];
2437
if (event)
2438
static_call(x86_pmu_update)(event);
2439
}
2440
2441
for (i = 0; i < 4; i++) {
2442
wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2443
wrmsrq(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2444
}
2445
2446
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2447
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2448
2449
for (i = 0; i < 4; i++) {
2450
event = cpuc->events[i];
2451
2452
if (event) {
2453
static_call(x86_pmu_set_period)(event);
2454
__x86_pmu_enable_event(&event->hw,
2455
ARCH_PERFMON_EVENTSEL_ENABLE);
2456
} else
2457
wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2458
}
2459
}
2460
2461
static void intel_pmu_nhm_enable_all(int added)
2462
{
2463
if (added)
2464
intel_pmu_nhm_workaround();
2465
intel_pmu_enable_all(added);
2466
}
2467
2468
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2469
{
2470
u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2471
2472
if (cpuc->tfa_shadow != val) {
2473
cpuc->tfa_shadow = val;
2474
wrmsrq(MSR_TSX_FORCE_ABORT, val);
2475
}
2476
}
2477
2478
static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2479
{
2480
/*
2481
* We're going to use PMC3, make sure TFA is set before we touch it.
2482
*/
2483
if (cntr == 3)
2484
intel_set_tfa(cpuc, true);
2485
}
2486
2487
static void intel_tfa_pmu_enable_all(int added)
2488
{
2489
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2490
2491
/*
2492
* If we find PMC3 is no longer used when we enable the PMU, we can
2493
* clear TFA.
2494
*/
2495
if (!test_bit(3, cpuc->active_mask))
2496
intel_set_tfa(cpuc, false);
2497
2498
intel_pmu_enable_all(added);
2499
}
2500
2501
static inline u64 intel_pmu_get_status(void)
2502
{
2503
u64 status;
2504
2505
rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status);
2506
2507
return status;
2508
}
2509
2510
static inline void intel_pmu_ack_status(u64 ack)
2511
{
2512
wrmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2513
}
2514
2515
static inline bool event_is_checkpointed(struct perf_event *event)
2516
{
2517
return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2518
}
2519
2520
static inline void intel_set_masks(struct perf_event *event, int idx)
2521
{
2522
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2523
2524
if (event->attr.exclude_host)
2525
__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2526
if (event->attr.exclude_guest)
2527
__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2528
if (event_is_checkpointed(event))
2529
__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2530
}
2531
2532
static inline void intel_clear_masks(struct perf_event *event, int idx)
2533
{
2534
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2535
2536
__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2537
__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2538
__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2539
}
2540
2541
static void intel_pmu_disable_fixed(struct perf_event *event)
2542
{
2543
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2544
struct hw_perf_event *hwc = &event->hw;
2545
int idx = hwc->idx;
2546
u64 mask;
2547
2548
if (is_topdown_idx(idx)) {
2549
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2550
2551
/*
2552
* When there are other active TopDown events,
2553
* don't disable the fixed counter 3.
2554
*/
2555
if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2556
return;
2557
idx = INTEL_PMC_IDX_FIXED_SLOTS;
2558
}
2559
2560
intel_clear_masks(event, idx);
2561
2562
mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2563
cpuc->fixed_ctrl_val &= ~mask;
2564
}
2565
2566
static void intel_pmu_disable_event(struct perf_event *event)
2567
{
2568
struct hw_perf_event *hwc = &event->hw;
2569
int idx = hwc->idx;
2570
2571
switch (idx) {
2572
case 0 ... INTEL_PMC_IDX_FIXED - 1:
2573
intel_clear_masks(event, idx);
2574
x86_pmu_disable_event(event);
2575
break;
2576
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2577
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2578
intel_pmu_disable_fixed(event);
2579
break;
2580
case INTEL_PMC_IDX_FIXED_BTS:
2581
intel_pmu_disable_bts();
2582
intel_pmu_drain_bts_buffer();
2583
return;
2584
case INTEL_PMC_IDX_FIXED_VLBR:
2585
intel_clear_masks(event, idx);
2586
break;
2587
default:
2588
intel_clear_masks(event, idx);
2589
pr_warn("Failed to disable the event with invalid index %d\n",
2590
idx);
2591
return;
2592
}
2593
2594
/*
2595
* Needs to be called after x86_pmu_disable_event,
2596
* so we don't trigger the event without PEBS bit set.
2597
*/
2598
if (unlikely(event->attr.precise_ip))
2599
static_call(x86_pmu_pebs_disable)(event);
2600
}
2601
2602
static void intel_pmu_assign_event(struct perf_event *event, int idx)
2603
{
2604
if (is_pebs_pt(event))
2605
perf_report_aux_output_id(event, idx);
2606
}
2607
2608
static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2609
{
2610
return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2611
}
2612
2613
static void intel_pmu_del_event(struct perf_event *event)
2614
{
2615
if (intel_pmu_needs_branch_stack(event))
2616
intel_pmu_lbr_del(event);
2617
if (event->attr.precise_ip)
2618
intel_pmu_pebs_del(event);
2619
if (is_pebs_counter_event_group(event) ||
2620
is_acr_event_group(event))
2621
this_cpu_ptr(&cpu_hw_events)->n_late_setup--;
2622
}
2623
2624
static int icl_set_topdown_event_period(struct perf_event *event)
2625
{
2626
struct hw_perf_event *hwc = &event->hw;
2627
s64 left = local64_read(&hwc->period_left);
2628
2629
/*
2630
* The values in PERF_METRICS MSR are derived from fixed counter 3.
2631
* Software should start both registers, PERF_METRICS and fixed
2632
* counter 3, from zero.
2633
* Clear PERF_METRICS and Fixed counter 3 in initialization.
2634
* After that, both MSRs will be cleared for each read.
2635
* Don't need to clear them again.
2636
*/
2637
if (left == x86_pmu.max_period) {
2638
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2639
wrmsrq(MSR_PERF_METRICS, 0);
2640
hwc->saved_slots = 0;
2641
hwc->saved_metric = 0;
2642
}
2643
2644
if ((hwc->saved_slots) && is_slots_event(event)) {
2645
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2646
wrmsrq(MSR_PERF_METRICS, hwc->saved_metric);
2647
}
2648
2649
perf_event_update_userpage(event);
2650
2651
return 0;
2652
}
2653
2654
DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2655
2656
static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2657
{
2658
u32 val;
2659
2660
/*
2661
* The metric is reported as an 8bit integer fraction
2662
* summing up to 0xff.
2663
* slots-in-metric = (Metric / 0xff) * slots
2664
*/
2665
val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2666
return mul_u64_u32_div(slots, val, 0xff);
2667
}
2668
2669
static u64 icl_get_topdown_value(struct perf_event *event,
2670
u64 slots, u64 metrics)
2671
{
2672
int idx = event->hw.idx;
2673
u64 delta;
2674
2675
if (is_metric_idx(idx))
2676
delta = icl_get_metrics_event_value(metrics, slots, idx);
2677
else
2678
delta = slots;
2679
2680
return delta;
2681
}
2682
2683
static void __icl_update_topdown_event(struct perf_event *event,
2684
u64 slots, u64 metrics,
2685
u64 last_slots, u64 last_metrics)
2686
{
2687
u64 delta, last = 0;
2688
2689
delta = icl_get_topdown_value(event, slots, metrics);
2690
if (last_slots)
2691
last = icl_get_topdown_value(event, last_slots, last_metrics);
2692
2693
/*
2694
* The 8bit integer fraction of metric may be not accurate,
2695
* especially when the changes is very small.
2696
* For example, if only a few bad_spec happens, the fraction
2697
* may be reduced from 1 to 0. If so, the bad_spec event value
2698
* will be 0 which is definitely less than the last value.
2699
* Avoid update event->count for this case.
2700
*/
2701
if (delta > last) {
2702
delta -= last;
2703
local64_add(delta, &event->count);
2704
}
2705
}
2706
2707
static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2708
u64 metrics, int metric_end)
2709
{
2710
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2711
struct perf_event *other;
2712
int idx;
2713
2714
event->hw.saved_slots = slots;
2715
event->hw.saved_metric = metrics;
2716
2717
for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2718
if (!is_topdown_idx(idx))
2719
continue;
2720
other = cpuc->events[idx];
2721
other->hw.saved_slots = slots;
2722
other->hw.saved_metric = metrics;
2723
}
2724
}
2725
2726
/*
2727
* Update all active Topdown events.
2728
*
2729
* The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2730
* modify by a NMI. PMU has to be disabled before calling this function.
2731
*/
2732
2733
static u64 intel_update_topdown_event(struct perf_event *event, int metric_end, u64 *val)
2734
{
2735
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2736
struct perf_event *other;
2737
u64 slots, metrics;
2738
bool reset = true;
2739
int idx;
2740
2741
if (!val) {
2742
/* read Fixed counter 3 */
2743
slots = rdpmc(3 | INTEL_PMC_FIXED_RDPMC_BASE);
2744
if (!slots)
2745
return 0;
2746
2747
/* read PERF_METRICS */
2748
metrics = rdpmc(INTEL_PMC_FIXED_RDPMC_METRICS);
2749
} else {
2750
slots = val[0];
2751
metrics = val[1];
2752
/*
2753
* Don't reset the PERF_METRICS and Fixed counter 3
2754
* for each PEBS record read. Utilize the RDPMC metrics
2755
* clear mode.
2756
*/
2757
reset = false;
2758
}
2759
2760
for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2761
if (!is_topdown_idx(idx))
2762
continue;
2763
other = cpuc->events[idx];
2764
__icl_update_topdown_event(other, slots, metrics,
2765
event ? event->hw.saved_slots : 0,
2766
event ? event->hw.saved_metric : 0);
2767
}
2768
2769
/*
2770
* Check and update this event, which may have been cleared
2771
* in active_mask e.g. x86_pmu_stop()
2772
*/
2773
if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2774
__icl_update_topdown_event(event, slots, metrics,
2775
event->hw.saved_slots,
2776
event->hw.saved_metric);
2777
2778
/*
2779
* In x86_pmu_stop(), the event is cleared in active_mask first,
2780
* then drain the delta, which indicates context switch for
2781
* counting.
2782
* Save metric and slots for context switch.
2783
* Don't need to reset the PERF_METRICS and Fixed counter 3.
2784
* Because the values will be restored in next schedule in.
2785
*/
2786
update_saved_topdown_regs(event, slots, metrics, metric_end);
2787
reset = false;
2788
}
2789
2790
if (reset) {
2791
/* The fixed counter 3 has to be written before the PERF_METRICS. */
2792
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2793
wrmsrq(MSR_PERF_METRICS, 0);
2794
if (event)
2795
update_saved_topdown_regs(event, 0, 0, metric_end);
2796
}
2797
2798
return slots;
2799
}
2800
2801
static u64 icl_update_topdown_event(struct perf_event *event, u64 *val)
2802
{
2803
return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2804
x86_pmu.num_topdown_events - 1,
2805
val);
2806
}
2807
2808
DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, intel_pmu_topdown_event_update);
2809
2810
static void intel_pmu_read_event(struct perf_event *event)
2811
{
2812
if (event->hw.flags & (PERF_X86_EVENT_AUTO_RELOAD | PERF_X86_EVENT_TOPDOWN) ||
2813
is_pebs_counter_event_group(event)) {
2814
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2815
bool pmu_enabled = cpuc->enabled;
2816
2817
/* Only need to call update_topdown_event() once for group read. */
2818
if (is_metric_event(event) && (cpuc->txn_flags & PERF_PMU_TXN_READ))
2819
return;
2820
2821
cpuc->enabled = 0;
2822
if (pmu_enabled)
2823
intel_pmu_disable_all();
2824
2825
/*
2826
* If the PEBS counters snapshotting is enabled,
2827
* the topdown event is available in PEBS records.
2828
*/
2829
if (is_topdown_count(event) && !is_pebs_counter_event_group(event))
2830
static_call(intel_pmu_update_topdown_event)(event, NULL);
2831
else
2832
intel_pmu_drain_pebs_buffer();
2833
2834
cpuc->enabled = pmu_enabled;
2835
if (pmu_enabled)
2836
intel_pmu_enable_all(0);
2837
2838
return;
2839
}
2840
2841
x86_perf_event_update(event);
2842
}
2843
2844
static void intel_pmu_enable_fixed(struct perf_event *event)
2845
{
2846
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2847
struct hw_perf_event *hwc = &event->hw;
2848
u64 mask, bits = 0;
2849
int idx = hwc->idx;
2850
2851
if (is_topdown_idx(idx)) {
2852
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2853
/*
2854
* When there are other active TopDown events,
2855
* don't enable the fixed counter 3 again.
2856
*/
2857
if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2858
return;
2859
2860
idx = INTEL_PMC_IDX_FIXED_SLOTS;
2861
2862
if (event->attr.config1 & INTEL_TD_CFG_METRIC_CLEAR)
2863
bits |= INTEL_FIXED_3_METRICS_CLEAR;
2864
}
2865
2866
intel_set_masks(event, idx);
2867
2868
/*
2869
* Enable IRQ generation (0x8), if not PEBS,
2870
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2871
* if requested:
2872
*/
2873
if (!event->attr.precise_ip)
2874
bits |= INTEL_FIXED_0_ENABLE_PMI;
2875
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2876
bits |= INTEL_FIXED_0_USER;
2877
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2878
bits |= INTEL_FIXED_0_KERNEL;
2879
2880
/*
2881
* ANY bit is supported in v3 and up
2882
*/
2883
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2884
bits |= INTEL_FIXED_0_ANYTHREAD;
2885
2886
idx -= INTEL_PMC_IDX_FIXED;
2887
bits = intel_fixed_bits_by_idx(idx, bits);
2888
mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2889
2890
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2891
bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2892
mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2893
}
2894
2895
cpuc->fixed_ctrl_val &= ~mask;
2896
cpuc->fixed_ctrl_val |= bits;
2897
}
2898
2899
static void intel_pmu_config_acr(int idx, u64 mask, u32 reload)
2900
{
2901
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2902
int msr_b, msr_c;
2903
int msr_offset;
2904
2905
if (!mask && !cpuc->acr_cfg_b[idx])
2906
return;
2907
2908
if (idx < INTEL_PMC_IDX_FIXED) {
2909
msr_b = MSR_IA32_PMC_V6_GP0_CFG_B;
2910
msr_c = MSR_IA32_PMC_V6_GP0_CFG_C;
2911
msr_offset = x86_pmu.addr_offset(idx, false);
2912
} else {
2913
msr_b = MSR_IA32_PMC_V6_FX0_CFG_B;
2914
msr_c = MSR_IA32_PMC_V6_FX0_CFG_C;
2915
msr_offset = x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
2916
}
2917
2918
if (cpuc->acr_cfg_b[idx] != mask) {
2919
wrmsrl(msr_b + msr_offset, mask);
2920
cpuc->acr_cfg_b[idx] = mask;
2921
}
2922
/* Only need to update the reload value when there is a valid config value. */
2923
if (mask && cpuc->acr_cfg_c[idx] != reload) {
2924
wrmsrl(msr_c + msr_offset, reload);
2925
cpuc->acr_cfg_c[idx] = reload;
2926
}
2927
}
2928
2929
static void intel_pmu_enable_acr(struct perf_event *event)
2930
{
2931
struct hw_perf_event *hwc = &event->hw;
2932
2933
if (!is_acr_event_group(event) || !event->attr.config2) {
2934
/*
2935
* The disable doesn't clear the ACR CFG register.
2936
* Check and clear the ACR CFG register.
2937
*/
2938
intel_pmu_config_acr(hwc->idx, 0, 0);
2939
return;
2940
}
2941
2942
intel_pmu_config_acr(hwc->idx, hwc->config1, -hwc->sample_period);
2943
}
2944
2945
DEFINE_STATIC_CALL_NULL(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
2946
2947
static void intel_pmu_enable_event(struct perf_event *event)
2948
{
2949
u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
2950
struct hw_perf_event *hwc = &event->hw;
2951
int idx = hwc->idx;
2952
2953
if (unlikely(event->attr.precise_ip))
2954
static_call(x86_pmu_pebs_enable)(event);
2955
2956
switch (idx) {
2957
case 0 ... INTEL_PMC_IDX_FIXED - 1:
2958
if (branch_sample_counters(event))
2959
enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
2960
intel_set_masks(event, idx);
2961
static_call_cond(intel_pmu_enable_acr_event)(event);
2962
__x86_pmu_enable_event(hwc, enable_mask);
2963
break;
2964
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2965
static_call_cond(intel_pmu_enable_acr_event)(event);
2966
fallthrough;
2967
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2968
intel_pmu_enable_fixed(event);
2969
break;
2970
case INTEL_PMC_IDX_FIXED_BTS:
2971
if (!__this_cpu_read(cpu_hw_events.enabled))
2972
return;
2973
intel_pmu_enable_bts(hwc->config);
2974
break;
2975
case INTEL_PMC_IDX_FIXED_VLBR:
2976
intel_set_masks(event, idx);
2977
break;
2978
default:
2979
pr_warn("Failed to enable the event with invalid index %d\n",
2980
idx);
2981
}
2982
}
2983
2984
static void intel_pmu_acr_late_setup(struct cpu_hw_events *cpuc)
2985
{
2986
struct perf_event *event, *leader;
2987
int i, j, idx;
2988
2989
for (i = 0; i < cpuc->n_events; i++) {
2990
leader = cpuc->event_list[i];
2991
if (!is_acr_event_group(leader))
2992
continue;
2993
2994
/* The ACR events must be contiguous. */
2995
for (j = i; j < cpuc->n_events; j++) {
2996
event = cpuc->event_list[j];
2997
if (event->group_leader != leader->group_leader)
2998
break;
2999
for_each_set_bit(idx, (unsigned long *)&event->attr.config2, X86_PMC_IDX_MAX) {
3000
if (WARN_ON_ONCE(i + idx > cpuc->n_events))
3001
return;
3002
__set_bit(cpuc->assign[i + idx], (unsigned long *)&event->hw.config1);
3003
}
3004
}
3005
i = j - 1;
3006
}
3007
}
3008
3009
void intel_pmu_late_setup(void)
3010
{
3011
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3012
3013
if (!cpuc->n_late_setup)
3014
return;
3015
3016
intel_pmu_pebs_late_setup(cpuc);
3017
intel_pmu_acr_late_setup(cpuc);
3018
}
3019
3020
static void intel_pmu_add_event(struct perf_event *event)
3021
{
3022
if (event->attr.precise_ip)
3023
intel_pmu_pebs_add(event);
3024
if (intel_pmu_needs_branch_stack(event))
3025
intel_pmu_lbr_add(event);
3026
if (is_pebs_counter_event_group(event) ||
3027
is_acr_event_group(event))
3028
this_cpu_ptr(&cpu_hw_events)->n_late_setup++;
3029
}
3030
3031
/*
3032
* Save and restart an expired event. Called by NMI contexts,
3033
* so it has to be careful about preempting normal event ops:
3034
*/
3035
int intel_pmu_save_and_restart(struct perf_event *event)
3036
{
3037
static_call(x86_pmu_update)(event);
3038
/*
3039
* For a checkpointed counter always reset back to 0. This
3040
* avoids a situation where the counter overflows, aborts the
3041
* transaction and is then set back to shortly before the
3042
* overflow, and overflows and aborts again.
3043
*/
3044
if (unlikely(event_is_checkpointed(event))) {
3045
/* No race with NMIs because the counter should not be armed */
3046
wrmsrq(event->hw.event_base, 0);
3047
local64_set(&event->hw.prev_count, 0);
3048
}
3049
return static_call(x86_pmu_set_period)(event);
3050
}
3051
3052
static int intel_pmu_set_period(struct perf_event *event)
3053
{
3054
if (unlikely(is_topdown_count(event)))
3055
return static_call(intel_pmu_set_topdown_event_period)(event);
3056
3057
return x86_perf_event_set_period(event);
3058
}
3059
3060
static u64 intel_pmu_update(struct perf_event *event)
3061
{
3062
if (unlikely(is_topdown_count(event)))
3063
return static_call(intel_pmu_update_topdown_event)(event, NULL);
3064
3065
return x86_perf_event_update(event);
3066
}
3067
3068
static void intel_pmu_reset(void)
3069
{
3070
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
3071
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3072
unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
3073
unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
3074
unsigned long flags;
3075
int idx;
3076
3077
if (!*(u64 *)cntr_mask)
3078
return;
3079
3080
local_irq_save(flags);
3081
3082
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
3083
3084
for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) {
3085
wrmsrq_safe(x86_pmu_config_addr(idx), 0ull);
3086
wrmsrq_safe(x86_pmu_event_addr(idx), 0ull);
3087
}
3088
for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) {
3089
if (fixed_counter_disabled(idx, cpuc->pmu))
3090
continue;
3091
wrmsrq_safe(x86_pmu_fixed_ctr_addr(idx), 0ull);
3092
}
3093
3094
if (ds)
3095
ds->bts_index = ds->bts_buffer_base;
3096
3097
/* Ack all overflows and disable fixed counters */
3098
if (x86_pmu.version >= 2) {
3099
intel_pmu_ack_status(intel_pmu_get_status());
3100
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
3101
}
3102
3103
/* Reset LBRs and LBR freezing */
3104
if (x86_pmu.lbr_nr) {
3105
update_debugctlmsr(get_debugctlmsr() &
3106
~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
3107
}
3108
3109
local_irq_restore(flags);
3110
}
3111
3112
/*
3113
* We may be running with guest PEBS events created by KVM, and the
3114
* PEBS records are logged into the guest's DS and invisible to host.
3115
*
3116
* In the case of guest PEBS overflow, we only trigger a fake event
3117
* to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
3118
* The guest will then vm-entry and check the guest DS area to read
3119
* the guest PEBS records.
3120
*
3121
* The contents and other behavior of the guest event do not matter.
3122
*/
3123
static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
3124
struct perf_sample_data *data)
3125
{
3126
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3127
u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
3128
struct perf_event *event = NULL;
3129
int bit;
3130
3131
if (!unlikely(perf_guest_state()))
3132
return;
3133
3134
if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
3135
!guest_pebs_idxs)
3136
return;
3137
3138
for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) {
3139
event = cpuc->events[bit];
3140
if (!event->attr.precise_ip)
3141
continue;
3142
3143
perf_sample_data_init(data, 0, event->hw.last_period);
3144
perf_event_overflow(event, data, regs);
3145
3146
/* Inject one fake event is enough. */
3147
break;
3148
}
3149
}
3150
3151
static int handle_pmi_common(struct pt_regs *regs, u64 status)
3152
{
3153
struct perf_sample_data data;
3154
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3155
int bit;
3156
int handled = 0;
3157
3158
inc_irq_stat(apic_perf_irqs);
3159
3160
/*
3161
* Ignore a range of extra bits in status that do not indicate
3162
* overflow by themselves.
3163
*/
3164
status &= ~(GLOBAL_STATUS_COND_CHG |
3165
GLOBAL_STATUS_ASIF |
3166
GLOBAL_STATUS_LBRS_FROZEN);
3167
if (!status)
3168
return 0;
3169
/*
3170
* In case multiple PEBS events are sampled at the same time,
3171
* it is possible to have GLOBAL_STATUS bit 62 set indicating
3172
* PEBS buffer overflow and also seeing at most 3 PEBS counters
3173
* having their bits set in the status register. This is a sign
3174
* that there was at least one PEBS record pending at the time
3175
* of the PMU interrupt. PEBS counters must only be processed
3176
* via the drain_pebs() calls and not via the regular sample
3177
* processing loop coming after that the function, otherwise
3178
* phony regular samples may be generated in the sampling buffer
3179
* not marked with the EXACT tag. Another possibility is to have
3180
* one PEBS event and at least one non-PEBS event which overflows
3181
* while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
3182
* not be set, yet the overflow status bit for the PEBS counter will
3183
* be on Skylake.
3184
*
3185
* To avoid this problem, we systematically ignore the PEBS-enabled
3186
* counters from the GLOBAL_STATUS mask and we always process PEBS
3187
* events via drain_pebs().
3188
*/
3189
status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3190
3191
/*
3192
* PEBS overflow sets bit 62 in the global status register
3193
*/
3194
if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3195
u64 pebs_enabled = cpuc->pebs_enabled;
3196
3197
handled++;
3198
x86_pmu_handle_guest_pebs(regs, &data);
3199
static_call(x86_pmu_drain_pebs)(regs, &data);
3200
3201
/*
3202
* PMI throttle may be triggered, which stops the PEBS event.
3203
* Although cpuc->pebs_enabled is updated accordingly, the
3204
* MSR_IA32_PEBS_ENABLE is not updated. Because the
3205
* cpuc->enabled has been forced to 0 in PMI.
3206
* Update the MSR if pebs_enabled is changed.
3207
*/
3208
if (pebs_enabled != cpuc->pebs_enabled)
3209
wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3210
3211
/*
3212
* Above PEBS handler (PEBS counters snapshotting) has updated fixed
3213
* counter 3 and perf metrics counts if they are in counter group,
3214
* unnecessary to update again.
3215
*/
3216
if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3217
is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3218
status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3219
}
3220
3221
/*
3222
* Intel PT
3223
*/
3224
if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3225
handled++;
3226
if (!perf_guest_handle_intel_pt_intr())
3227
intel_pt_interrupt();
3228
}
3229
3230
/*
3231
* Intel Perf metrics
3232
*/
3233
if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3234
handled++;
3235
static_call(intel_pmu_update_topdown_event)(NULL, NULL);
3236
}
3237
3238
status &= hybrid(cpuc->pmu, intel_ctrl);
3239
3240
/*
3241
* Checkpointed counters can lead to 'spurious' PMIs because the
3242
* rollback caused by the PMI will have cleared the overflow status
3243
* bit. Therefore always force probe these counters.
3244
*/
3245
status |= cpuc->intel_cp_status;
3246
3247
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3248
struct perf_event *event = cpuc->events[bit];
3249
u64 last_period;
3250
3251
handled++;
3252
3253
if (!test_bit(bit, cpuc->active_mask))
3254
continue;
3255
3256
/*
3257
* There may be unprocessed PEBS records in the PEBS buffer,
3258
* which still stores the previous values.
3259
* Process those records first before handling the latest value.
3260
* For example,
3261
* A is a regular counter
3262
* B is a PEBS event which reads A
3263
* C is a PEBS event
3264
*
3265
* The following can happen:
3266
* B-assist A=1
3267
* C A=2
3268
* B-assist A=3
3269
* A-overflow-PMI A=4
3270
* C-assist-PMI (PEBS buffer) A=5
3271
*
3272
* The PEBS buffer has to be drained before handling the A-PMI
3273
*/
3274
if (is_pebs_counter_event_group(event))
3275
x86_pmu.drain_pebs(regs, &data);
3276
3277
last_period = event->hw.last_period;
3278
3279
if (!intel_pmu_save_and_restart(event))
3280
continue;
3281
3282
perf_sample_data_init(&data, 0, last_period);
3283
3284
if (has_branch_stack(event))
3285
intel_pmu_lbr_save_brstack(&data, cpuc, event);
3286
3287
perf_event_overflow(event, &data, regs);
3288
}
3289
3290
return handled;
3291
}
3292
3293
/*
3294
* This handler is triggered by the local APIC, so the APIC IRQ handling
3295
* rules apply:
3296
*/
3297
static int intel_pmu_handle_irq(struct pt_regs *regs)
3298
{
3299
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3300
bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3301
bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3302
int loops;
3303
u64 status;
3304
int handled;
3305
int pmu_enabled;
3306
3307
/*
3308
* Save the PMU state.
3309
* It needs to be restored when leaving the handler.
3310
*/
3311
pmu_enabled = cpuc->enabled;
3312
/*
3313
* In general, the early ACK is only applied for old platforms.
3314
* For the big core starts from Haswell, the late ACK should be
3315
* applied.
3316
* For the small core after Tremont, we have to do the ACK right
3317
* before re-enabling counters, which is in the middle of the
3318
* NMI handler.
3319
*/
3320
if (!late_ack && !mid_ack)
3321
apic_write(APIC_LVTPC, APIC_DM_NMI);
3322
intel_bts_disable_local();
3323
cpuc->enabled = 0;
3324
__intel_pmu_disable_all(true);
3325
handled = intel_pmu_drain_bts_buffer();
3326
handled += intel_bts_interrupt();
3327
status = intel_pmu_get_status();
3328
if (!status)
3329
goto done;
3330
3331
loops = 0;
3332
again:
3333
intel_pmu_lbr_read();
3334
intel_pmu_ack_status(status);
3335
if (++loops > 100) {
3336
static bool warned;
3337
3338
if (!warned) {
3339
WARN(1, "perfevents: irq loop stuck!\n");
3340
perf_event_print_debug();
3341
warned = true;
3342
}
3343
intel_pmu_reset();
3344
goto done;
3345
}
3346
3347
handled += handle_pmi_common(regs, status);
3348
3349
/*
3350
* Repeat if there is more work to be done:
3351
*/
3352
status = intel_pmu_get_status();
3353
if (status)
3354
goto again;
3355
3356
done:
3357
if (mid_ack)
3358
apic_write(APIC_LVTPC, APIC_DM_NMI);
3359
/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3360
cpuc->enabled = pmu_enabled;
3361
if (pmu_enabled)
3362
__intel_pmu_enable_all(0, true);
3363
intel_bts_enable_local();
3364
3365
/*
3366
* Only unmask the NMI after the overflow counters
3367
* have been reset. This avoids spurious NMIs on
3368
* Haswell CPUs.
3369
*/
3370
if (late_ack)
3371
apic_write(APIC_LVTPC, APIC_DM_NMI);
3372
return handled;
3373
}
3374
3375
static struct event_constraint *
3376
intel_bts_constraints(struct perf_event *event)
3377
{
3378
if (unlikely(intel_pmu_has_bts(event)))
3379
return &bts_constraint;
3380
3381
return NULL;
3382
}
3383
3384
/*
3385
* Note: matches a fake event, like Fixed2.
3386
*/
3387
static struct event_constraint *
3388
intel_vlbr_constraints(struct perf_event *event)
3389
{
3390
struct event_constraint *c = &vlbr_constraint;
3391
3392
if (unlikely(constraint_match(c, event->hw.config))) {
3393
event->hw.flags |= c->flags;
3394
return c;
3395
}
3396
3397
return NULL;
3398
}
3399
3400
static int intel_alt_er(struct cpu_hw_events *cpuc,
3401
int idx, u64 config)
3402
{
3403
struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3404
int alt_idx = idx;
3405
3406
if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3407
return idx;
3408
3409
if (idx == EXTRA_REG_RSP_0)
3410
alt_idx = EXTRA_REG_RSP_1;
3411
3412
if (idx == EXTRA_REG_RSP_1)
3413
alt_idx = EXTRA_REG_RSP_0;
3414
3415
if (config & ~extra_regs[alt_idx].valid_mask)
3416
return idx;
3417
3418
return alt_idx;
3419
}
3420
3421
static void intel_fixup_er(struct perf_event *event, int idx)
3422
{
3423
struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3424
event->hw.extra_reg.idx = idx;
3425
3426
if (idx == EXTRA_REG_RSP_0) {
3427
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3428
event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3429
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3430
} else if (idx == EXTRA_REG_RSP_1) {
3431
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3432
event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3433
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3434
}
3435
}
3436
3437
/*
3438
* manage allocation of shared extra msr for certain events
3439
*
3440
* sharing can be:
3441
* per-cpu: to be shared between the various events on a single PMU
3442
* per-core: per-cpu + shared by HT threads
3443
*/
3444
static struct event_constraint *
3445
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3446
struct perf_event *event,
3447
struct hw_perf_event_extra *reg)
3448
{
3449
struct event_constraint *c = &emptyconstraint;
3450
struct er_account *era;
3451
unsigned long flags;
3452
int idx = reg->idx;
3453
3454
/*
3455
* reg->alloc can be set due to existing state, so for fake cpuc we
3456
* need to ignore this, otherwise we might fail to allocate proper fake
3457
* state for this extra reg constraint. Also see the comment below.
3458
*/
3459
if (reg->alloc && !cpuc->is_fake)
3460
return NULL; /* call x86_get_event_constraint() */
3461
3462
again:
3463
era = &cpuc->shared_regs->regs[idx];
3464
/*
3465
* we use spin_lock_irqsave() to avoid lockdep issues when
3466
* passing a fake cpuc
3467
*/
3468
raw_spin_lock_irqsave(&era->lock, flags);
3469
3470
if (!atomic_read(&era->ref) || era->config == reg->config) {
3471
3472
/*
3473
* If its a fake cpuc -- as per validate_{group,event}() we
3474
* shouldn't touch event state and we can avoid doing so
3475
* since both will only call get_event_constraints() once
3476
* on each event, this avoids the need for reg->alloc.
3477
*
3478
* Not doing the ER fixup will only result in era->reg being
3479
* wrong, but since we won't actually try and program hardware
3480
* this isn't a problem either.
3481
*/
3482
if (!cpuc->is_fake) {
3483
if (idx != reg->idx)
3484
intel_fixup_er(event, idx);
3485
3486
/*
3487
* x86_schedule_events() can call get_event_constraints()
3488
* multiple times on events in the case of incremental
3489
* scheduling(). reg->alloc ensures we only do the ER
3490
* allocation once.
3491
*/
3492
reg->alloc = 1;
3493
}
3494
3495
/* lock in msr value */
3496
era->config = reg->config;
3497
era->reg = reg->reg;
3498
3499
/* one more user */
3500
atomic_inc(&era->ref);
3501
3502
/*
3503
* need to call x86_get_event_constraint()
3504
* to check if associated event has constraints
3505
*/
3506
c = NULL;
3507
} else {
3508
idx = intel_alt_er(cpuc, idx, reg->config);
3509
if (idx != reg->idx) {
3510
raw_spin_unlock_irqrestore(&era->lock, flags);
3511
goto again;
3512
}
3513
}
3514
raw_spin_unlock_irqrestore(&era->lock, flags);
3515
3516
return c;
3517
}
3518
3519
static void
3520
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3521
struct hw_perf_event_extra *reg)
3522
{
3523
struct er_account *era;
3524
3525
/*
3526
* Only put constraint if extra reg was actually allocated. Also takes
3527
* care of event which do not use an extra shared reg.
3528
*
3529
* Also, if this is a fake cpuc we shouldn't touch any event state
3530
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
3531
* either since it'll be thrown out.
3532
*/
3533
if (!reg->alloc || cpuc->is_fake)
3534
return;
3535
3536
era = &cpuc->shared_regs->regs[reg->idx];
3537
3538
/* one fewer user */
3539
atomic_dec(&era->ref);
3540
3541
/* allocate again next time */
3542
reg->alloc = 0;
3543
}
3544
3545
static struct event_constraint *
3546
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3547
struct perf_event *event)
3548
{
3549
struct event_constraint *c = NULL, *d;
3550
struct hw_perf_event_extra *xreg, *breg;
3551
3552
xreg = &event->hw.extra_reg;
3553
if (xreg->idx != EXTRA_REG_NONE) {
3554
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3555
if (c == &emptyconstraint)
3556
return c;
3557
}
3558
breg = &event->hw.branch_reg;
3559
if (breg->idx != EXTRA_REG_NONE) {
3560
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3561
if (d == &emptyconstraint) {
3562
__intel_shared_reg_put_constraints(cpuc, xreg);
3563
c = d;
3564
}
3565
}
3566
return c;
3567
}
3568
3569
struct event_constraint *
3570
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3571
struct perf_event *event)
3572
{
3573
struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3574
struct event_constraint *c;
3575
3576
if (event_constraints) {
3577
for_each_event_constraint(c, event_constraints) {
3578
if (constraint_match(c, event->hw.config)) {
3579
event->hw.flags |= c->flags;
3580
return c;
3581
}
3582
}
3583
}
3584
3585
return &hybrid_var(cpuc->pmu, unconstrained);
3586
}
3587
3588
static struct event_constraint *
3589
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3590
struct perf_event *event)
3591
{
3592
struct event_constraint *c;
3593
3594
c = intel_vlbr_constraints(event);
3595
if (c)
3596
return c;
3597
3598
c = intel_bts_constraints(event);
3599
if (c)
3600
return c;
3601
3602
c = intel_shared_regs_constraints(cpuc, event);
3603
if (c)
3604
return c;
3605
3606
c = intel_pebs_constraints(event);
3607
if (c)
3608
return c;
3609
3610
return x86_get_event_constraints(cpuc, idx, event);
3611
}
3612
3613
static void
3614
intel_start_scheduling(struct cpu_hw_events *cpuc)
3615
{
3616
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3617
struct intel_excl_states *xl;
3618
int tid = cpuc->excl_thread_id;
3619
3620
/*
3621
* nothing needed if in group validation mode
3622
*/
3623
if (cpuc->is_fake || !is_ht_workaround_enabled())
3624
return;
3625
3626
/*
3627
* no exclusion needed
3628
*/
3629
if (WARN_ON_ONCE(!excl_cntrs))
3630
return;
3631
3632
xl = &excl_cntrs->states[tid];
3633
3634
xl->sched_started = true;
3635
/*
3636
* lock shared state until we are done scheduling
3637
* in stop_event_scheduling()
3638
* makes scheduling appear as a transaction
3639
*/
3640
raw_spin_lock(&excl_cntrs->lock);
3641
}
3642
3643
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3644
{
3645
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3646
struct event_constraint *c = cpuc->event_constraint[idx];
3647
struct intel_excl_states *xl;
3648
int tid = cpuc->excl_thread_id;
3649
3650
if (cpuc->is_fake || !is_ht_workaround_enabled())
3651
return;
3652
3653
if (WARN_ON_ONCE(!excl_cntrs))
3654
return;
3655
3656
if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3657
return;
3658
3659
xl = &excl_cntrs->states[tid];
3660
3661
lockdep_assert_held(&excl_cntrs->lock);
3662
3663
if (c->flags & PERF_X86_EVENT_EXCL)
3664
xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3665
else
3666
xl->state[cntr] = INTEL_EXCL_SHARED;
3667
}
3668
3669
static void
3670
intel_stop_scheduling(struct cpu_hw_events *cpuc)
3671
{
3672
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3673
struct intel_excl_states *xl;
3674
int tid = cpuc->excl_thread_id;
3675
3676
/*
3677
* nothing needed if in group validation mode
3678
*/
3679
if (cpuc->is_fake || !is_ht_workaround_enabled())
3680
return;
3681
/*
3682
* no exclusion needed
3683
*/
3684
if (WARN_ON_ONCE(!excl_cntrs))
3685
return;
3686
3687
xl = &excl_cntrs->states[tid];
3688
3689
xl->sched_started = false;
3690
/*
3691
* release shared state lock (acquired in intel_start_scheduling())
3692
*/
3693
raw_spin_unlock(&excl_cntrs->lock);
3694
}
3695
3696
static struct event_constraint *
3697
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3698
{
3699
WARN_ON_ONCE(!cpuc->constraint_list);
3700
3701
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3702
struct event_constraint *cx;
3703
3704
/*
3705
* grab pre-allocated constraint entry
3706
*/
3707
cx = &cpuc->constraint_list[idx];
3708
3709
/*
3710
* initialize dynamic constraint
3711
* with static constraint
3712
*/
3713
*cx = *c;
3714
3715
/*
3716
* mark constraint as dynamic
3717
*/
3718
cx->flags |= PERF_X86_EVENT_DYNAMIC;
3719
c = cx;
3720
}
3721
3722
return c;
3723
}
3724
3725
static struct event_constraint *
3726
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3727
int idx, struct event_constraint *c)
3728
{
3729
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3730
struct intel_excl_states *xlo;
3731
int tid = cpuc->excl_thread_id;
3732
int is_excl, i, w;
3733
3734
/*
3735
* validating a group does not require
3736
* enforcing cross-thread exclusion
3737
*/
3738
if (cpuc->is_fake || !is_ht_workaround_enabled())
3739
return c;
3740
3741
/*
3742
* no exclusion needed
3743
*/
3744
if (WARN_ON_ONCE(!excl_cntrs))
3745
return c;
3746
3747
/*
3748
* because we modify the constraint, we need
3749
* to make a copy. Static constraints come
3750
* from static const tables.
3751
*
3752
* only needed when constraint has not yet
3753
* been cloned (marked dynamic)
3754
*/
3755
c = dyn_constraint(cpuc, c, idx);
3756
3757
/*
3758
* From here on, the constraint is dynamic.
3759
* Either it was just allocated above, or it
3760
* was allocated during a earlier invocation
3761
* of this function
3762
*/
3763
3764
/*
3765
* state of sibling HT
3766
*/
3767
xlo = &excl_cntrs->states[tid ^ 1];
3768
3769
/*
3770
* event requires exclusive counter access
3771
* across HT threads
3772
*/
3773
is_excl = c->flags & PERF_X86_EVENT_EXCL;
3774
if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3775
event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3776
if (!cpuc->n_excl++)
3777
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3778
}
3779
3780
/*
3781
* Modify static constraint with current dynamic
3782
* state of thread
3783
*
3784
* EXCLUSIVE: sibling counter measuring exclusive event
3785
* SHARED : sibling counter measuring non-exclusive event
3786
* UNUSED : sibling counter unused
3787
*/
3788
w = c->weight;
3789
for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3790
/*
3791
* exclusive event in sibling counter
3792
* our corresponding counter cannot be used
3793
* regardless of our event
3794
*/
3795
if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3796
__clear_bit(i, c->idxmsk);
3797
w--;
3798
continue;
3799
}
3800
/*
3801
* if measuring an exclusive event, sibling
3802
* measuring non-exclusive, then counter cannot
3803
* be used
3804
*/
3805
if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3806
__clear_bit(i, c->idxmsk);
3807
w--;
3808
continue;
3809
}
3810
}
3811
3812
/*
3813
* if we return an empty mask, then switch
3814
* back to static empty constraint to avoid
3815
* the cost of freeing later on
3816
*/
3817
if (!w)
3818
c = &emptyconstraint;
3819
3820
c->weight = w;
3821
3822
return c;
3823
}
3824
3825
static struct event_constraint *
3826
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3827
struct perf_event *event)
3828
{
3829
struct event_constraint *c1, *c2;
3830
3831
c1 = cpuc->event_constraint[idx];
3832
3833
/*
3834
* first time only
3835
* - static constraint: no change across incremental scheduling calls
3836
* - dynamic constraint: handled by intel_get_excl_constraints()
3837
*/
3838
c2 = __intel_get_event_constraints(cpuc, idx, event);
3839
if (c1) {
3840
WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3841
bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3842
c1->weight = c2->weight;
3843
c2 = c1;
3844
}
3845
3846
if (cpuc->excl_cntrs)
3847
return intel_get_excl_constraints(cpuc, event, idx, c2);
3848
3849
if (event->hw.dyn_constraint != ~0ULL) {
3850
c2 = dyn_constraint(cpuc, c2, idx);
3851
c2->idxmsk64 &= event->hw.dyn_constraint;
3852
c2->weight = hweight64(c2->idxmsk64);
3853
}
3854
3855
return c2;
3856
}
3857
3858
static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3859
struct perf_event *event)
3860
{
3861
struct hw_perf_event *hwc = &event->hw;
3862
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3863
int tid = cpuc->excl_thread_id;
3864
struct intel_excl_states *xl;
3865
3866
/*
3867
* nothing needed if in group validation mode
3868
*/
3869
if (cpuc->is_fake)
3870
return;
3871
3872
if (WARN_ON_ONCE(!excl_cntrs))
3873
return;
3874
3875
if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3876
hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3877
if (!--cpuc->n_excl)
3878
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3879
}
3880
3881
/*
3882
* If event was actually assigned, then mark the counter state as
3883
* unused now.
3884
*/
3885
if (hwc->idx >= 0) {
3886
xl = &excl_cntrs->states[tid];
3887
3888
/*
3889
* put_constraint may be called from x86_schedule_events()
3890
* which already has the lock held so here make locking
3891
* conditional.
3892
*/
3893
if (!xl->sched_started)
3894
raw_spin_lock(&excl_cntrs->lock);
3895
3896
xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3897
3898
if (!xl->sched_started)
3899
raw_spin_unlock(&excl_cntrs->lock);
3900
}
3901
}
3902
3903
static void
3904
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3905
struct perf_event *event)
3906
{
3907
struct hw_perf_event_extra *reg;
3908
3909
reg = &event->hw.extra_reg;
3910
if (reg->idx != EXTRA_REG_NONE)
3911
__intel_shared_reg_put_constraints(cpuc, reg);
3912
3913
reg = &event->hw.branch_reg;
3914
if (reg->idx != EXTRA_REG_NONE)
3915
__intel_shared_reg_put_constraints(cpuc, reg);
3916
}
3917
3918
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3919
struct perf_event *event)
3920
{
3921
intel_put_shared_regs_event_constraints(cpuc, event);
3922
3923
/*
3924
* is PMU has exclusive counter restrictions, then
3925
* all events are subject to and must call the
3926
* put_excl_constraints() routine
3927
*/
3928
if (cpuc->excl_cntrs)
3929
intel_put_excl_constraints(cpuc, event);
3930
}
3931
3932
static void intel_pebs_aliases_core2(struct perf_event *event)
3933
{
3934
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3935
/*
3936
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3937
* (0x003c) so that we can use it with PEBS.
3938
*
3939
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3940
* PEBS capable. However we can use INST_RETIRED.ANY_P
3941
* (0x00c0), which is a PEBS capable event, to get the same
3942
* count.
3943
*
3944
* INST_RETIRED.ANY_P counts the number of cycles that retires
3945
* CNTMASK instructions. By setting CNTMASK to a value (16)
3946
* larger than the maximum number of instructions that can be
3947
* retired per cycle (4) and then inverting the condition, we
3948
* count all cycles that retire 16 or less instructions, which
3949
* is every cycle.
3950
*
3951
* Thereby we gain a PEBS capable cycle counter.
3952
*/
3953
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3954
3955
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3956
event->hw.config = alt_config;
3957
}
3958
}
3959
3960
static void intel_pebs_aliases_snb(struct perf_event *event)
3961
{
3962
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3963
/*
3964
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3965
* (0x003c) so that we can use it with PEBS.
3966
*
3967
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3968
* PEBS capable. However we can use UOPS_RETIRED.ALL
3969
* (0x01c2), which is a PEBS capable event, to get the same
3970
* count.
3971
*
3972
* UOPS_RETIRED.ALL counts the number of cycles that retires
3973
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
3974
* larger than the maximum number of micro-ops that can be
3975
* retired per cycle (4) and then inverting the condition, we
3976
* count all cycles that retire 16 or less micro-ops, which
3977
* is every cycle.
3978
*
3979
* Thereby we gain a PEBS capable cycle counter.
3980
*/
3981
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3982
3983
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3984
event->hw.config = alt_config;
3985
}
3986
}
3987
3988
static void intel_pebs_aliases_precdist(struct perf_event *event)
3989
{
3990
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3991
/*
3992
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3993
* (0x003c) so that we can use it with PEBS.
3994
*
3995
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3996
* PEBS capable. However we can use INST_RETIRED.PREC_DIST
3997
* (0x01c0), which is a PEBS capable event, to get the same
3998
* count.
3999
*
4000
* The PREC_DIST event has special support to minimize sample
4001
* shadowing effects. One drawback is that it can be
4002
* only programmed on counter 1, but that seems like an
4003
* acceptable trade off.
4004
*/
4005
u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
4006
4007
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4008
event->hw.config = alt_config;
4009
}
4010
}
4011
4012
static void intel_pebs_aliases_ivb(struct perf_event *event)
4013
{
4014
if (event->attr.precise_ip < 3)
4015
return intel_pebs_aliases_snb(event);
4016
return intel_pebs_aliases_precdist(event);
4017
}
4018
4019
static void intel_pebs_aliases_skl(struct perf_event *event)
4020
{
4021
if (event->attr.precise_ip < 3)
4022
return intel_pebs_aliases_core2(event);
4023
return intel_pebs_aliases_precdist(event);
4024
}
4025
4026
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
4027
{
4028
unsigned long flags = x86_pmu.large_pebs_flags;
4029
4030
if (event->attr.use_clockid)
4031
flags &= ~PERF_SAMPLE_TIME;
4032
if (!event->attr.exclude_kernel)
4033
flags &= ~PERF_SAMPLE_REGS_USER;
4034
if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
4035
flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
4036
return flags;
4037
}
4038
4039
static int intel_pmu_bts_config(struct perf_event *event)
4040
{
4041
struct perf_event_attr *attr = &event->attr;
4042
4043
if (unlikely(intel_pmu_has_bts(event))) {
4044
/* BTS is not supported by this architecture. */
4045
if (!x86_pmu.bts_active)
4046
return -EOPNOTSUPP;
4047
4048
/* BTS is currently only allowed for user-mode. */
4049
if (!attr->exclude_kernel)
4050
return -EOPNOTSUPP;
4051
4052
/* BTS is not allowed for precise events. */
4053
if (attr->precise_ip)
4054
return -EOPNOTSUPP;
4055
4056
/* disallow bts if conflicting events are present */
4057
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4058
return -EBUSY;
4059
4060
event->destroy = hw_perf_lbr_event_destroy;
4061
}
4062
4063
return 0;
4064
}
4065
4066
static int core_pmu_hw_config(struct perf_event *event)
4067
{
4068
int ret = x86_pmu_hw_config(event);
4069
4070
if (ret)
4071
return ret;
4072
4073
return intel_pmu_bts_config(event);
4074
}
4075
4076
#define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
4077
((x86_pmu.num_topdown_events - 1) << 8))
4078
4079
static bool is_available_metric_event(struct perf_event *event)
4080
{
4081
return is_metric_event(event) &&
4082
event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
4083
}
4084
4085
static inline bool is_mem_loads_event(struct perf_event *event)
4086
{
4087
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
4088
}
4089
4090
static inline bool is_mem_loads_aux_event(struct perf_event *event)
4091
{
4092
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
4093
}
4094
4095
static inline bool require_mem_loads_aux_event(struct perf_event *event)
4096
{
4097
if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
4098
return false;
4099
4100
if (is_hybrid())
4101
return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
4102
4103
return true;
4104
}
4105
4106
static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
4107
{
4108
union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
4109
4110
return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
4111
}
4112
4113
static u64 intel_pmu_freq_start_period(struct perf_event *event)
4114
{
4115
int type = event->attr.type;
4116
u64 config, factor;
4117
s64 start;
4118
4119
/*
4120
* The 127 is the lowest possible recommended SAV (sample after value)
4121
* for a 4000 freq (default freq), according to the event list JSON file.
4122
* Also, assume the workload is idle 50% time.
4123
*/
4124
factor = 64 * 4000;
4125
if (type != PERF_TYPE_HARDWARE && type != PERF_TYPE_HW_CACHE)
4126
goto end;
4127
4128
/*
4129
* The estimation of the start period in the freq mode is
4130
* based on the below assumption.
4131
*
4132
* For a cycles or an instructions event, 1GHZ of the
4133
* underlying platform, 1 IPC. The workload is idle 50% time.
4134
* The start period = 1,000,000,000 * 1 / freq / 2.
4135
* = 500,000,000 / freq
4136
*
4137
* Usually, the branch-related events occur less than the
4138
* instructions event. According to the Intel event list JSON
4139
* file, the SAV (sample after value) of a branch-related event
4140
* is usually 1/4 of an instruction event.
4141
* The start period of branch-related events = 125,000,000 / freq.
4142
*
4143
* The cache-related events occurs even less. The SAV is usually
4144
* 1/20 of an instruction event.
4145
* The start period of cache-related events = 25,000,000 / freq.
4146
*/
4147
config = event->attr.config & PERF_HW_EVENT_MASK;
4148
if (type == PERF_TYPE_HARDWARE) {
4149
switch (config) {
4150
case PERF_COUNT_HW_CPU_CYCLES:
4151
case PERF_COUNT_HW_INSTRUCTIONS:
4152
case PERF_COUNT_HW_BUS_CYCLES:
4153
case PERF_COUNT_HW_STALLED_CYCLES_FRONTEND:
4154
case PERF_COUNT_HW_STALLED_CYCLES_BACKEND:
4155
case PERF_COUNT_HW_REF_CPU_CYCLES:
4156
factor = 500000000;
4157
break;
4158
case PERF_COUNT_HW_BRANCH_INSTRUCTIONS:
4159
case PERF_COUNT_HW_BRANCH_MISSES:
4160
factor = 125000000;
4161
break;
4162
case PERF_COUNT_HW_CACHE_REFERENCES:
4163
case PERF_COUNT_HW_CACHE_MISSES:
4164
factor = 25000000;
4165
break;
4166
default:
4167
goto end;
4168
}
4169
}
4170
4171
if (type == PERF_TYPE_HW_CACHE)
4172
factor = 25000000;
4173
end:
4174
/*
4175
* Usually, a prime or a number with less factors (close to prime)
4176
* is chosen as an SAV, which makes it less likely that the sampling
4177
* period synchronizes with some periodic event in the workload.
4178
* Minus 1 to make it at least avoiding values near power of twos
4179
* for the default freq.
4180
*/
4181
start = DIV_ROUND_UP_ULL(factor, event->attr.sample_freq) - 1;
4182
4183
if (start > x86_pmu.max_period)
4184
start = x86_pmu.max_period;
4185
4186
if (x86_pmu.limit_period)
4187
x86_pmu.limit_period(event, &start);
4188
4189
return start;
4190
}
4191
4192
static inline bool intel_pmu_has_acr(struct pmu *pmu)
4193
{
4194
return !!hybrid(pmu, acr_cause_mask64);
4195
}
4196
4197
static bool intel_pmu_is_acr_group(struct perf_event *event)
4198
{
4199
/* The group leader has the ACR flag set */
4200
if (is_acr_event_group(event))
4201
return true;
4202
4203
/* The acr_mask is set */
4204
if (event->attr.config2)
4205
return true;
4206
4207
return false;
4208
}
4209
4210
static inline void intel_pmu_set_acr_cntr_constr(struct perf_event *event,
4211
u64 *cause_mask, int *num)
4212
{
4213
event->hw.dyn_constraint &= hybrid(event->pmu, acr_cntr_mask64);
4214
*cause_mask |= event->attr.config2;
4215
*num += 1;
4216
}
4217
4218
static inline void intel_pmu_set_acr_caused_constr(struct perf_event *event,
4219
int idx, u64 cause_mask)
4220
{
4221
if (test_bit(idx, (unsigned long *)&cause_mask))
4222
event->hw.dyn_constraint &= hybrid(event->pmu, acr_cause_mask64);
4223
}
4224
4225
static int intel_pmu_hw_config(struct perf_event *event)
4226
{
4227
int ret = x86_pmu_hw_config(event);
4228
4229
if (ret)
4230
return ret;
4231
4232
ret = intel_pmu_bts_config(event);
4233
if (ret)
4234
return ret;
4235
4236
if (event->attr.freq && event->attr.sample_freq) {
4237
event->hw.sample_period = intel_pmu_freq_start_period(event);
4238
event->hw.last_period = event->hw.sample_period;
4239
local64_set(&event->hw.period_left, event->hw.sample_period);
4240
}
4241
4242
if (event->attr.precise_ip) {
4243
if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
4244
return -EINVAL;
4245
4246
if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
4247
event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
4248
if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event)) &&
4249
!has_aux_action(event)) {
4250
event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
4251
event->attach_state |= PERF_ATTACH_SCHED_CB;
4252
}
4253
}
4254
if (x86_pmu.pebs_aliases)
4255
x86_pmu.pebs_aliases(event);
4256
}
4257
4258
if (needs_branch_stack(event)) {
4259
/* Avoid branch stack setup for counting events in SAMPLE READ */
4260
if (is_sampling_event(event) ||
4261
!(event->attr.sample_type & PERF_SAMPLE_READ))
4262
event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4263
}
4264
4265
if (branch_sample_counters(event)) {
4266
struct perf_event *leader, *sibling;
4267
int num = 0;
4268
4269
if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
4270
(event->attr.config & ~INTEL_ARCH_EVENT_MASK))
4271
return -EINVAL;
4272
4273
/*
4274
* The branch counter logging is not supported in the call stack
4275
* mode yet, since we cannot simply flush the LBR during e.g.,
4276
* multiplexing. Also, there is no obvious usage with the call
4277
* stack mode. Simply forbids it for now.
4278
*
4279
* If any events in the group enable the branch counter logging
4280
* feature, the group is treated as a branch counter logging
4281
* group, which requires the extra space to store the counters.
4282
*/
4283
leader = event->group_leader;
4284
if (branch_sample_call_stack(leader))
4285
return -EINVAL;
4286
if (branch_sample_counters(leader)) {
4287
num++;
4288
leader->hw.dyn_constraint &= x86_pmu.lbr_counters;
4289
}
4290
leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
4291
4292
for_each_sibling_event(sibling, leader) {
4293
if (branch_sample_call_stack(sibling))
4294
return -EINVAL;
4295
if (branch_sample_counters(sibling)) {
4296
num++;
4297
sibling->hw.dyn_constraint &= x86_pmu.lbr_counters;
4298
}
4299
}
4300
4301
if (num > fls(x86_pmu.lbr_counters))
4302
return -EINVAL;
4303
/*
4304
* Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
4305
* require any branch stack setup.
4306
* Clear the bit to avoid unnecessary branch stack setup.
4307
*/
4308
if (0 == (event->attr.branch_sample_type &
4309
~(PERF_SAMPLE_BRANCH_PLM_ALL |
4310
PERF_SAMPLE_BRANCH_COUNTERS)))
4311
event->hw.flags &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4312
4313
/*
4314
* Force the leader to be a LBR event. So LBRs can be reset
4315
* with the leader event. See intel_pmu_lbr_del() for details.
4316
*/
4317
if (!intel_pmu_needs_branch_stack(leader))
4318
return -EINVAL;
4319
}
4320
4321
if (intel_pmu_needs_branch_stack(event)) {
4322
ret = intel_pmu_setup_lbr_filter(event);
4323
if (ret)
4324
return ret;
4325
event->attach_state |= PERF_ATTACH_SCHED_CB;
4326
4327
/*
4328
* BTS is set up earlier in this path, so don't account twice
4329
*/
4330
if (!unlikely(intel_pmu_has_bts(event))) {
4331
/* disallow lbr if conflicting events are present */
4332
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4333
return -EBUSY;
4334
4335
event->destroy = hw_perf_lbr_event_destroy;
4336
}
4337
}
4338
4339
if (event->attr.aux_output) {
4340
if (!event->attr.precise_ip)
4341
return -EINVAL;
4342
4343
event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4344
}
4345
4346
if ((event->attr.sample_type & PERF_SAMPLE_READ) &&
4347
(x86_pmu.intel_cap.pebs_format >= 6) &&
4348
x86_pmu.intel_cap.pebs_baseline &&
4349
is_sampling_event(event) &&
4350
event->attr.precise_ip)
4351
event->group_leader->hw.flags |= PERF_X86_EVENT_PEBS_CNTR;
4352
4353
if (intel_pmu_has_acr(event->pmu) && intel_pmu_is_acr_group(event)) {
4354
struct perf_event *sibling, *leader = event->group_leader;
4355
struct pmu *pmu = event->pmu;
4356
bool has_sw_event = false;
4357
int num = 0, idx = 0;
4358
u64 cause_mask = 0;
4359
4360
/* Not support perf metrics */
4361
if (is_metric_event(event))
4362
return -EINVAL;
4363
4364
/* Not support freq mode */
4365
if (event->attr.freq)
4366
return -EINVAL;
4367
4368
/* PDist is not supported */
4369
if (event->attr.config2 && event->attr.precise_ip > 2)
4370
return -EINVAL;
4371
4372
/* The reload value cannot exceeds the max period */
4373
if (event->attr.sample_period > x86_pmu.max_period)
4374
return -EINVAL;
4375
/*
4376
* The counter-constraints of each event cannot be finalized
4377
* unless the whole group is scanned. However, it's hard
4378
* to know whether the event is the last one of the group.
4379
* Recalculate the counter-constraints for each event when
4380
* adding a new event.
4381
*
4382
* The group is traversed twice, which may be optimized later.
4383
* In the first round,
4384
* - Find all events which do reload when other events
4385
* overflow and set the corresponding counter-constraints
4386
* - Add all events, which can cause other events reload,
4387
* in the cause_mask
4388
* - Error out if the number of events exceeds the HW limit
4389
* - The ACR events must be contiguous.
4390
* Error out if there are non-X86 events between ACR events.
4391
* This is not a HW limit, but a SW limit.
4392
* With the assumption, the intel_pmu_acr_late_setup() can
4393
* easily convert the event idx to counter idx without
4394
* traversing the whole event list.
4395
*/
4396
if (!is_x86_event(leader))
4397
return -EINVAL;
4398
4399
if (leader->attr.config2)
4400
intel_pmu_set_acr_cntr_constr(leader, &cause_mask, &num);
4401
4402
if (leader->nr_siblings) {
4403
for_each_sibling_event(sibling, leader) {
4404
if (!is_x86_event(sibling)) {
4405
has_sw_event = true;
4406
continue;
4407
}
4408
if (!sibling->attr.config2)
4409
continue;
4410
if (has_sw_event)
4411
return -EINVAL;
4412
intel_pmu_set_acr_cntr_constr(sibling, &cause_mask, &num);
4413
}
4414
}
4415
if (leader != event && event->attr.config2) {
4416
if (has_sw_event)
4417
return -EINVAL;
4418
intel_pmu_set_acr_cntr_constr(event, &cause_mask, &num);
4419
}
4420
4421
if (hweight64(cause_mask) > hweight64(hybrid(pmu, acr_cause_mask64)) ||
4422
num > hweight64(hybrid(event->pmu, acr_cntr_mask64)))
4423
return -EINVAL;
4424
/*
4425
* In the second round, apply the counter-constraints for
4426
* the events which can cause other events reload.
4427
*/
4428
intel_pmu_set_acr_caused_constr(leader, idx++, cause_mask);
4429
4430
if (leader->nr_siblings) {
4431
for_each_sibling_event(sibling, leader)
4432
intel_pmu_set_acr_caused_constr(sibling, idx++, cause_mask);
4433
}
4434
4435
if (leader != event)
4436
intel_pmu_set_acr_caused_constr(event, idx, cause_mask);
4437
4438
leader->hw.flags |= PERF_X86_EVENT_ACR;
4439
}
4440
4441
if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4442
(event->attr.type == PERF_TYPE_HW_CACHE))
4443
return 0;
4444
4445
/*
4446
* Config Topdown slots and metric events
4447
*
4448
* The slots event on Fixed Counter 3 can support sampling,
4449
* which will be handled normally in x86_perf_event_update().
4450
*
4451
* Metric events don't support sampling and require being paired
4452
* with a slots event as group leader. When the slots event
4453
* is used in a metrics group, it too cannot support sampling.
4454
*/
4455
if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4456
/* The metrics_clear can only be set for the slots event */
4457
if (event->attr.config1 &&
4458
(!is_slots_event(event) || (event->attr.config1 & ~INTEL_TD_CFG_METRIC_CLEAR)))
4459
return -EINVAL;
4460
4461
if (event->attr.config2)
4462
return -EINVAL;
4463
4464
/*
4465
* The TopDown metrics events and slots event don't
4466
* support any filters.
4467
*/
4468
if (event->attr.config & X86_ALL_EVENT_FLAGS)
4469
return -EINVAL;
4470
4471
if (is_available_metric_event(event)) {
4472
struct perf_event *leader = event->group_leader;
4473
4474
/* The metric events don't support sampling. */
4475
if (is_sampling_event(event))
4476
return -EINVAL;
4477
4478
/* The metric events require a slots group leader. */
4479
if (!is_slots_event(leader))
4480
return -EINVAL;
4481
4482
/*
4483
* The leader/SLOTS must not be a sampling event for
4484
* metric use; hardware requires it starts at 0 when used
4485
* in conjunction with MSR_PERF_METRICS.
4486
*/
4487
if (is_sampling_event(leader))
4488
return -EINVAL;
4489
4490
event->event_caps |= PERF_EV_CAP_SIBLING;
4491
/*
4492
* Only once we have a METRICs sibling do we
4493
* need TopDown magic.
4494
*/
4495
leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4496
event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4497
}
4498
}
4499
4500
/*
4501
* The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4502
* doesn't function quite right. As a work-around it needs to always be
4503
* co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4504
* The actual count of this second event is irrelevant it just needs
4505
* to be active to make the first event function correctly.
4506
*
4507
* In a group, the auxiliary event must be in front of the load latency
4508
* event. The rule is to simplify the implementation of the check.
4509
* That's because perf cannot have a complete group at the moment.
4510
*/
4511
if (require_mem_loads_aux_event(event) &&
4512
(event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4513
is_mem_loads_event(event)) {
4514
struct perf_event *leader = event->group_leader;
4515
struct perf_event *sibling = NULL;
4516
4517
/*
4518
* When this memload event is also the first event (no group
4519
* exists yet), then there is no aux event before it.
4520
*/
4521
if (leader == event)
4522
return -ENODATA;
4523
4524
if (!is_mem_loads_aux_event(leader)) {
4525
for_each_sibling_event(sibling, leader) {
4526
if (is_mem_loads_aux_event(sibling))
4527
break;
4528
}
4529
if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4530
return -ENODATA;
4531
}
4532
}
4533
4534
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4535
return 0;
4536
4537
if (x86_pmu.version < 3)
4538
return -EINVAL;
4539
4540
ret = perf_allow_cpu();
4541
if (ret)
4542
return ret;
4543
4544
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4545
4546
return 0;
4547
}
4548
4549
/*
4550
* Currently, the only caller of this function is the atomic_switch_perf_msrs().
4551
* The host perf context helps to prepare the values of the real hardware for
4552
* a set of msrs that need to be switched atomically in a vmx transaction.
4553
*
4554
* For example, the pseudocode needed to add a new msr should look like:
4555
*
4556
* arr[(*nr)++] = (struct perf_guest_switch_msr){
4557
* .msr = the hardware msr address,
4558
* .host = the value the hardware has when it doesn't run a guest,
4559
* .guest = the value the hardware has when it runs a guest,
4560
* };
4561
*
4562
* These values have nothing to do with the emulated values the guest sees
4563
* when it uses {RD,WR}MSR, which should be handled by the KVM context,
4564
* specifically in the intel_pmu_{get,set}_msr().
4565
*/
4566
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4567
{
4568
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4569
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4570
struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4571
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4572
u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4573
int global_ctrl, pebs_enable;
4574
4575
/*
4576
* In addition to obeying exclude_guest/exclude_host, remove bits being
4577
* used for PEBS when running a guest, because PEBS writes to virtual
4578
* addresses (not physical addresses).
4579
*/
4580
*nr = 0;
4581
global_ctrl = (*nr)++;
4582
arr[global_ctrl] = (struct perf_guest_switch_msr){
4583
.msr = MSR_CORE_PERF_GLOBAL_CTRL,
4584
.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4585
.guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4586
};
4587
4588
if (!x86_pmu.ds_pebs)
4589
return arr;
4590
4591
/*
4592
* If PMU counter has PEBS enabled it is not enough to
4593
* disable counter on a guest entry since PEBS memory
4594
* write can overshoot guest entry and corrupt guest
4595
* memory. Disabling PEBS solves the problem.
4596
*
4597
* Don't do this if the CPU already enforces it.
4598
*/
4599
if (x86_pmu.pebs_no_isolation) {
4600
arr[(*nr)++] = (struct perf_guest_switch_msr){
4601
.msr = MSR_IA32_PEBS_ENABLE,
4602
.host = cpuc->pebs_enabled,
4603
.guest = 0,
4604
};
4605
return arr;
4606
}
4607
4608
if (!kvm_pmu || !x86_pmu.pebs_ept)
4609
return arr;
4610
4611
arr[(*nr)++] = (struct perf_guest_switch_msr){
4612
.msr = MSR_IA32_DS_AREA,
4613
.host = (unsigned long)cpuc->ds,
4614
.guest = kvm_pmu->ds_area,
4615
};
4616
4617
if (x86_pmu.intel_cap.pebs_baseline) {
4618
arr[(*nr)++] = (struct perf_guest_switch_msr){
4619
.msr = MSR_PEBS_DATA_CFG,
4620
.host = cpuc->active_pebs_data_cfg,
4621
.guest = kvm_pmu->pebs_data_cfg,
4622
};
4623
}
4624
4625
pebs_enable = (*nr)++;
4626
arr[pebs_enable] = (struct perf_guest_switch_msr){
4627
.msr = MSR_IA32_PEBS_ENABLE,
4628
.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4629
.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask & kvm_pmu->pebs_enable,
4630
};
4631
4632
if (arr[pebs_enable].host) {
4633
/* Disable guest PEBS if host PEBS is enabled. */
4634
arr[pebs_enable].guest = 0;
4635
} else {
4636
/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4637
arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4638
arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4639
/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4640
arr[global_ctrl].guest |= arr[pebs_enable].guest;
4641
}
4642
4643
return arr;
4644
}
4645
4646
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4647
{
4648
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4649
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4650
int idx;
4651
4652
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4653
struct perf_event *event = cpuc->events[idx];
4654
4655
arr[idx].msr = x86_pmu_config_addr(idx);
4656
arr[idx].host = arr[idx].guest = 0;
4657
4658
if (!test_bit(idx, cpuc->active_mask))
4659
continue;
4660
4661
arr[idx].host = arr[idx].guest =
4662
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4663
4664
if (event->attr.exclude_host)
4665
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4666
else if (event->attr.exclude_guest)
4667
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4668
}
4669
4670
*nr = x86_pmu_max_num_counters(cpuc->pmu);
4671
return arr;
4672
}
4673
4674
static void core_pmu_enable_event(struct perf_event *event)
4675
{
4676
if (!event->attr.exclude_host)
4677
x86_pmu_enable_event(event);
4678
}
4679
4680
static void core_pmu_enable_all(int added)
4681
{
4682
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4683
int idx;
4684
4685
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4686
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4687
4688
if (!test_bit(idx, cpuc->active_mask) ||
4689
cpuc->events[idx]->attr.exclude_host)
4690
continue;
4691
4692
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4693
}
4694
}
4695
4696
static int hsw_hw_config(struct perf_event *event)
4697
{
4698
int ret = intel_pmu_hw_config(event);
4699
4700
if (ret)
4701
return ret;
4702
if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4703
return 0;
4704
event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4705
4706
/*
4707
* IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4708
* PEBS or in ANY thread mode. Since the results are non-sensical forbid
4709
* this combination.
4710
*/
4711
if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4712
((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4713
event->attr.precise_ip > 0))
4714
return -EOPNOTSUPP;
4715
4716
if (event_is_checkpointed(event)) {
4717
/*
4718
* Sampling of checkpointed events can cause situations where
4719
* the CPU constantly aborts because of a overflow, which is
4720
* then checkpointed back and ignored. Forbid checkpointing
4721
* for sampling.
4722
*
4723
* But still allow a long sampling period, so that perf stat
4724
* from KVM works.
4725
*/
4726
if (event->attr.sample_period > 0 &&
4727
event->attr.sample_period < 0x7fffffff)
4728
return -EOPNOTSUPP;
4729
}
4730
return 0;
4731
}
4732
4733
static struct event_constraint counter0_constraint =
4734
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4735
4736
static struct event_constraint counter1_constraint =
4737
INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4738
4739
static struct event_constraint counter0_1_constraint =
4740
INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4741
4742
static struct event_constraint counter2_constraint =
4743
EVENT_CONSTRAINT(0, 0x4, 0);
4744
4745
static struct event_constraint fixed0_constraint =
4746
FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4747
4748
static struct event_constraint fixed0_counter0_constraint =
4749
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4750
4751
static struct event_constraint fixed0_counter0_1_constraint =
4752
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4753
4754
static struct event_constraint counters_1_7_constraint =
4755
INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4756
4757
static struct event_constraint *
4758
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4759
struct perf_event *event)
4760
{
4761
struct event_constraint *c;
4762
4763
c = intel_get_event_constraints(cpuc, idx, event);
4764
4765
/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4766
if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4767
if (c->idxmsk64 & (1U << 2))
4768
return &counter2_constraint;
4769
return &emptyconstraint;
4770
}
4771
4772
return c;
4773
}
4774
4775
static struct event_constraint *
4776
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4777
struct perf_event *event)
4778
{
4779
/*
4780
* Fixed counter 0 has less skid.
4781
* Force instruction:ppp in Fixed counter 0
4782
*/
4783
if ((event->attr.precise_ip == 3) &&
4784
constraint_match(&fixed0_constraint, event->hw.config))
4785
return &fixed0_constraint;
4786
4787
return hsw_get_event_constraints(cpuc, idx, event);
4788
}
4789
4790
static struct event_constraint *
4791
glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4792
struct perf_event *event)
4793
{
4794
struct event_constraint *c;
4795
4796
c = icl_get_event_constraints(cpuc, idx, event);
4797
4798
/*
4799
* The :ppp indicates the Precise Distribution (PDist) facility, which
4800
* is only supported on the GP counter 0. If a :ppp event which is not
4801
* available on the GP counter 0, error out.
4802
* Exception: Instruction PDIR is only available on the fixed counter 0.
4803
*/
4804
if ((event->attr.precise_ip == 3) &&
4805
!constraint_match(&fixed0_constraint, event->hw.config)) {
4806
if (c->idxmsk64 & BIT_ULL(0))
4807
return &counter0_constraint;
4808
4809
return &emptyconstraint;
4810
}
4811
4812
return c;
4813
}
4814
4815
static struct event_constraint *
4816
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4817
struct perf_event *event)
4818
{
4819
struct event_constraint *c;
4820
4821
/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4822
if (event->attr.precise_ip == 3)
4823
return &counter0_constraint;
4824
4825
c = intel_get_event_constraints(cpuc, idx, event);
4826
4827
return c;
4828
}
4829
4830
static struct event_constraint *
4831
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4832
struct perf_event *event)
4833
{
4834
struct event_constraint *c;
4835
4836
c = intel_get_event_constraints(cpuc, idx, event);
4837
4838
/*
4839
* :ppp means to do reduced skid PEBS,
4840
* which is available on PMC0 and fixed counter 0.
4841
*/
4842
if (event->attr.precise_ip == 3) {
4843
/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4844
if (constraint_match(&fixed0_constraint, event->hw.config))
4845
return &fixed0_counter0_constraint;
4846
4847
return &counter0_constraint;
4848
}
4849
4850
return c;
4851
}
4852
4853
static bool allow_tsx_force_abort = true;
4854
4855
static struct event_constraint *
4856
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4857
struct perf_event *event)
4858
{
4859
struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4860
4861
/*
4862
* Without TFA we must not use PMC3.
4863
*/
4864
if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4865
c = dyn_constraint(cpuc, c, idx);
4866
c->idxmsk64 &= ~(1ULL << 3);
4867
c->weight--;
4868
}
4869
4870
return c;
4871
}
4872
4873
static struct event_constraint *
4874
adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4875
struct perf_event *event)
4876
{
4877
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4878
4879
if (pmu->pmu_type == hybrid_big)
4880
return glc_get_event_constraints(cpuc, idx, event);
4881
else if (pmu->pmu_type == hybrid_small)
4882
return tnt_get_event_constraints(cpuc, idx, event);
4883
4884
WARN_ON(1);
4885
return &emptyconstraint;
4886
}
4887
4888
static struct event_constraint *
4889
cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4890
struct perf_event *event)
4891
{
4892
struct event_constraint *c;
4893
4894
c = intel_get_event_constraints(cpuc, idx, event);
4895
4896
/*
4897
* The :ppp indicates the Precise Distribution (PDist) facility, which
4898
* is only supported on the GP counter 0 & 1 and Fixed counter 0.
4899
* If a :ppp event which is not available on the above eligible counters,
4900
* error out.
4901
*/
4902
if (event->attr.precise_ip == 3) {
4903
/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4904
if (constraint_match(&fixed0_constraint, event->hw.config)) {
4905
/* The fixed counter 0 doesn't support LBR event logging. */
4906
if (branch_sample_counters(event))
4907
return &counter0_1_constraint;
4908
else
4909
return &fixed0_counter0_1_constraint;
4910
}
4911
4912
switch (c->idxmsk64 & 0x3ull) {
4913
case 0x1:
4914
return &counter0_constraint;
4915
case 0x2:
4916
return &counter1_constraint;
4917
case 0x3:
4918
return &counter0_1_constraint;
4919
}
4920
return &emptyconstraint;
4921
}
4922
4923
return c;
4924
}
4925
4926
static struct event_constraint *
4927
rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4928
struct perf_event *event)
4929
{
4930
struct event_constraint *c;
4931
4932
c = glc_get_event_constraints(cpuc, idx, event);
4933
4934
/* The Retire Latency is not supported by the fixed counter 0. */
4935
if (event->attr.precise_ip &&
4936
(event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4937
constraint_match(&fixed0_constraint, event->hw.config)) {
4938
/*
4939
* The Instruction PDIR is only available
4940
* on the fixed counter 0. Error out for this case.
4941
*/
4942
if (event->attr.precise_ip == 3)
4943
return &emptyconstraint;
4944
return &counters_1_7_constraint;
4945
}
4946
4947
return c;
4948
}
4949
4950
static struct event_constraint *
4951
mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4952
struct perf_event *event)
4953
{
4954
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4955
4956
if (pmu->pmu_type == hybrid_big)
4957
return rwc_get_event_constraints(cpuc, idx, event);
4958
if (pmu->pmu_type == hybrid_small)
4959
return cmt_get_event_constraints(cpuc, idx, event);
4960
4961
WARN_ON(1);
4962
return &emptyconstraint;
4963
}
4964
4965
static int adl_hw_config(struct perf_event *event)
4966
{
4967
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4968
4969
if (pmu->pmu_type == hybrid_big)
4970
return hsw_hw_config(event);
4971
else if (pmu->pmu_type == hybrid_small)
4972
return intel_pmu_hw_config(event);
4973
4974
WARN_ON(1);
4975
return -EOPNOTSUPP;
4976
}
4977
4978
static enum intel_cpu_type adl_get_hybrid_cpu_type(void)
4979
{
4980
return INTEL_CPU_TYPE_CORE;
4981
}
4982
4983
static inline bool erratum_hsw11(struct perf_event *event)
4984
{
4985
return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4986
X86_CONFIG(.event=0xc0, .umask=0x01);
4987
}
4988
4989
static struct event_constraint *
4990
arl_h_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4991
struct perf_event *event)
4992
{
4993
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4994
4995
if (pmu->pmu_type == hybrid_tiny)
4996
return cmt_get_event_constraints(cpuc, idx, event);
4997
4998
return mtl_get_event_constraints(cpuc, idx, event);
4999
}
5000
5001
static int arl_h_hw_config(struct perf_event *event)
5002
{
5003
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5004
5005
if (pmu->pmu_type == hybrid_tiny)
5006
return intel_pmu_hw_config(event);
5007
5008
return adl_hw_config(event);
5009
}
5010
5011
/*
5012
* The HSW11 requires a period larger than 100 which is the same as the BDM11.
5013
* A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
5014
*
5015
* The message 'interrupt took too long' can be observed on any counter which
5016
* was armed with a period < 32 and two events expired in the same NMI.
5017
* A minimum period of 32 is enforced for the rest of the events.
5018
*/
5019
static void hsw_limit_period(struct perf_event *event, s64 *left)
5020
{
5021
*left = max(*left, erratum_hsw11(event) ? 128 : 32);
5022
}
5023
5024
/*
5025
* Broadwell:
5026
*
5027
* The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
5028
* (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
5029
* the two to enforce a minimum period of 128 (the smallest value that has bits
5030
* 0-5 cleared and >= 100).
5031
*
5032
* Because of how the code in x86_perf_event_set_period() works, the truncation
5033
* of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
5034
* to make up for the 'lost' events due to carrying the 'error' in period_left.
5035
*
5036
* Therefore the effective (average) period matches the requested period,
5037
* despite coarser hardware granularity.
5038
*/
5039
static void bdw_limit_period(struct perf_event *event, s64 *left)
5040
{
5041
if (erratum_hsw11(event)) {
5042
if (*left < 128)
5043
*left = 128;
5044
*left &= ~0x3fULL;
5045
}
5046
}
5047
5048
static void nhm_limit_period(struct perf_event *event, s64 *left)
5049
{
5050
*left = max(*left, 32LL);
5051
}
5052
5053
static void glc_limit_period(struct perf_event *event, s64 *left)
5054
{
5055
if (event->attr.precise_ip == 3)
5056
*left = max(*left, 128LL);
5057
}
5058
5059
PMU_FORMAT_ATTR(event, "config:0-7" );
5060
PMU_FORMAT_ATTR(umask, "config:8-15" );
5061
PMU_FORMAT_ATTR(edge, "config:18" );
5062
PMU_FORMAT_ATTR(pc, "config:19" );
5063
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
5064
PMU_FORMAT_ATTR(inv, "config:23" );
5065
PMU_FORMAT_ATTR(cmask, "config:24-31" );
5066
PMU_FORMAT_ATTR(in_tx, "config:32" );
5067
PMU_FORMAT_ATTR(in_tx_cp, "config:33" );
5068
PMU_FORMAT_ATTR(eq, "config:36" ); /* v6 + */
5069
5070
PMU_FORMAT_ATTR(metrics_clear, "config1:0"); /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5071
5072
static ssize_t umask2_show(struct device *dev,
5073
struct device_attribute *attr,
5074
char *page)
5075
{
5076
u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2;
5077
5078
if (mask == ARCH_PERFMON_EVENTSEL_UMASK2)
5079
return sprintf(page, "config:8-15,40-47\n");
5080
5081
/* Roll back to the old format if umask2 is not supported. */
5082
return sprintf(page, "config:8-15\n");
5083
}
5084
5085
static struct device_attribute format_attr_umask2 =
5086
__ATTR(umask, 0444, umask2_show, NULL);
5087
5088
static struct attribute *format_evtsel_ext_attrs[] = {
5089
&format_attr_umask2.attr,
5090
&format_attr_eq.attr,
5091
&format_attr_metrics_clear.attr,
5092
NULL
5093
};
5094
5095
static umode_t
5096
evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5097
{
5098
struct device *dev = kobj_to_dev(kobj);
5099
u64 mask;
5100
5101
/*
5102
* The umask and umask2 have different formats but share the
5103
* same attr name. In update mode, the previous value of the
5104
* umask is unconditionally removed before is_visible. If
5105
* umask2 format is not enumerated, it's impossible to roll
5106
* back to the old format.
5107
* Does the check in umask2_show rather than is_visible.
5108
*/
5109
if (i == 0)
5110
return attr->mode;
5111
5112
mask = hybrid(dev_get_drvdata(dev), config_mask);
5113
if (i == 1)
5114
return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0;
5115
5116
/* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5117
if (i == 2) {
5118
union perf_capabilities intel_cap = hybrid(dev_get_drvdata(dev), intel_cap);
5119
5120
return intel_cap.rdpmc_metrics_clear ? attr->mode : 0;
5121
}
5122
5123
return 0;
5124
}
5125
5126
static struct attribute *intel_arch_formats_attr[] = {
5127
&format_attr_event.attr,
5128
&format_attr_umask.attr,
5129
&format_attr_edge.attr,
5130
&format_attr_pc.attr,
5131
&format_attr_inv.attr,
5132
&format_attr_cmask.attr,
5133
NULL,
5134
};
5135
5136
ssize_t intel_event_sysfs_show(char *page, u64 config)
5137
{
5138
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
5139
5140
return x86_event_sysfs_show(page, config, event);
5141
}
5142
5143
static struct intel_shared_regs *allocate_shared_regs(int cpu)
5144
{
5145
struct intel_shared_regs *regs;
5146
int i;
5147
5148
regs = kzalloc_node(sizeof(struct intel_shared_regs),
5149
GFP_KERNEL, cpu_to_node(cpu));
5150
if (regs) {
5151
/*
5152
* initialize the locks to keep lockdep happy
5153
*/
5154
for (i = 0; i < EXTRA_REG_MAX; i++)
5155
raw_spin_lock_init(&regs->regs[i].lock);
5156
5157
regs->core_id = -1;
5158
}
5159
return regs;
5160
}
5161
5162
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
5163
{
5164
struct intel_excl_cntrs *c;
5165
5166
c = kzalloc_node(sizeof(struct intel_excl_cntrs),
5167
GFP_KERNEL, cpu_to_node(cpu));
5168
if (c) {
5169
raw_spin_lock_init(&c->lock);
5170
c->core_id = -1;
5171
}
5172
return c;
5173
}
5174
5175
5176
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
5177
{
5178
cpuc->pebs_record_size = x86_pmu.pebs_record_size;
5179
5180
if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
5181
cpuc->shared_regs = allocate_shared_regs(cpu);
5182
if (!cpuc->shared_regs)
5183
goto err;
5184
}
5185
5186
if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_DYN_CONSTRAINT)) {
5187
size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
5188
5189
cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
5190
if (!cpuc->constraint_list)
5191
goto err_shared_regs;
5192
}
5193
5194
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5195
cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
5196
if (!cpuc->excl_cntrs)
5197
goto err_constraint_list;
5198
5199
cpuc->excl_thread_id = 0;
5200
}
5201
5202
return 0;
5203
5204
err_constraint_list:
5205
kfree(cpuc->constraint_list);
5206
cpuc->constraint_list = NULL;
5207
5208
err_shared_regs:
5209
kfree(cpuc->shared_regs);
5210
cpuc->shared_regs = NULL;
5211
5212
err:
5213
return -ENOMEM;
5214
}
5215
5216
static int intel_pmu_cpu_prepare(int cpu)
5217
{
5218
return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
5219
}
5220
5221
static void flip_smm_bit(void *data)
5222
{
5223
unsigned long set = *(unsigned long *)data;
5224
5225
if (set > 0) {
5226
msr_set_bit(MSR_IA32_DEBUGCTLMSR,
5227
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5228
} else {
5229
msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
5230
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5231
}
5232
}
5233
5234
static void intel_pmu_check_counters_mask(u64 *cntr_mask,
5235
u64 *fixed_cntr_mask,
5236
u64 *intel_ctrl)
5237
{
5238
unsigned int bit;
5239
5240
bit = fls64(*cntr_mask);
5241
if (bit > INTEL_PMC_MAX_GENERIC) {
5242
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5243
bit, INTEL_PMC_MAX_GENERIC);
5244
*cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5245
}
5246
*intel_ctrl = *cntr_mask;
5247
5248
bit = fls64(*fixed_cntr_mask);
5249
if (bit > INTEL_PMC_MAX_FIXED) {
5250
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5251
bit, INTEL_PMC_MAX_FIXED);
5252
*fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
5253
}
5254
5255
*intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED;
5256
}
5257
5258
static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5259
u64 cntr_mask,
5260
u64 fixed_cntr_mask,
5261
u64 intel_ctrl);
5262
5263
static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
5264
5265
static inline bool intel_pmu_broken_perf_cap(void)
5266
{
5267
/* The Perf Metric (Bit 15) is always cleared */
5268
if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE ||
5269
boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L)
5270
return true;
5271
5272
return false;
5273
}
5274
5275
static void update_pmu_cap(struct pmu *pmu)
5276
{
5277
unsigned int cntr, fixed_cntr, ecx, edx;
5278
union cpuid35_eax eax;
5279
union cpuid35_ebx ebx;
5280
5281
cpuid(ARCH_PERFMON_EXT_LEAF, &eax.full, &ebx.full, &ecx, &edx);
5282
5283
if (ebx.split.umask2)
5284
hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_UMASK2;
5285
if (ebx.split.eq)
5286
hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_EQ;
5287
5288
if (eax.split.cntr_subleaf) {
5289
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
5290
&cntr, &fixed_cntr, &ecx, &edx);
5291
hybrid(pmu, cntr_mask64) = cntr;
5292
hybrid(pmu, fixed_cntr_mask64) = fixed_cntr;
5293
}
5294
5295
if (eax.split.acr_subleaf) {
5296
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_ACR_LEAF,
5297
&cntr, &fixed_cntr, &ecx, &edx);
5298
/* The mask of the counters which can be reloaded */
5299
hybrid(pmu, acr_cntr_mask64) = cntr | ((u64)fixed_cntr << INTEL_PMC_IDX_FIXED);
5300
5301
/* The mask of the counters which can cause a reload of reloadable counters */
5302
hybrid(pmu, acr_cause_mask64) = ecx | ((u64)edx << INTEL_PMC_IDX_FIXED);
5303
}
5304
5305
if (!intel_pmu_broken_perf_cap()) {
5306
/* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
5307
rdmsrq(MSR_IA32_PERF_CAPABILITIES, hybrid(pmu, intel_cap).capabilities);
5308
}
5309
}
5310
5311
static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
5312
{
5313
intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64,
5314
&pmu->intel_ctrl);
5315
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
5316
pmu->unconstrained = (struct event_constraint)
5317
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
5318
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
5319
5320
if (pmu->intel_cap.perf_metrics)
5321
pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5322
else
5323
pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
5324
5325
intel_pmu_check_event_constraints(pmu->event_constraints,
5326
pmu->cntr_mask64,
5327
pmu->fixed_cntr_mask64,
5328
pmu->intel_ctrl);
5329
5330
intel_pmu_check_extra_regs(pmu->extra_regs);
5331
}
5332
5333
static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
5334
{
5335
struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
5336
enum intel_cpu_type cpu_type = c->topo.intel_type;
5337
int i;
5338
5339
/*
5340
* This is running on a CPU model that is known to have hybrid
5341
* configurations. But the CPU told us it is not hybrid, shame
5342
* on it. There should be a fixup function provided for these
5343
* troublesome CPUs (->get_hybrid_cpu_type).
5344
*/
5345
if (cpu_type == INTEL_CPU_TYPE_UNKNOWN) {
5346
if (x86_pmu.get_hybrid_cpu_type)
5347
cpu_type = x86_pmu.get_hybrid_cpu_type();
5348
else
5349
return NULL;
5350
}
5351
5352
/*
5353
* This essentially just maps between the 'hybrid_cpu_type'
5354
* and 'hybrid_pmu_type' enums except for ARL-H processor
5355
* which needs to compare atom uarch native id since ARL-H
5356
* contains two different atom uarchs.
5357
*/
5358
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5359
enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
5360
u32 native_id;
5361
5362
if (cpu_type == INTEL_CPU_TYPE_CORE && pmu_type == hybrid_big)
5363
return &x86_pmu.hybrid_pmu[i];
5364
if (cpu_type == INTEL_CPU_TYPE_ATOM) {
5365
if (x86_pmu.num_hybrid_pmus == 2 && pmu_type == hybrid_small)
5366
return &x86_pmu.hybrid_pmu[i];
5367
5368
native_id = c->topo.intel_native_model_id;
5369
if (native_id == INTEL_ATOM_SKT_NATIVE_ID && pmu_type == hybrid_small)
5370
return &x86_pmu.hybrid_pmu[i];
5371
if (native_id == INTEL_ATOM_CMT_NATIVE_ID && pmu_type == hybrid_tiny)
5372
return &x86_pmu.hybrid_pmu[i];
5373
}
5374
}
5375
5376
return NULL;
5377
}
5378
5379
static bool init_hybrid_pmu(int cpu)
5380
{
5381
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5382
struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
5383
5384
if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
5385
cpuc->pmu = NULL;
5386
return false;
5387
}
5388
5389
/* Only check and dump the PMU information for the first CPU */
5390
if (!cpumask_empty(&pmu->supported_cpus))
5391
goto end;
5392
5393
if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
5394
update_pmu_cap(&pmu->pmu);
5395
5396
intel_pmu_check_hybrid_pmus(pmu);
5397
5398
if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask))
5399
return false;
5400
5401
pr_info("%s PMU driver: ", pmu->name);
5402
5403
pr_cont("\n");
5404
5405
x86_pmu_show_pmu_cap(&pmu->pmu);
5406
5407
end:
5408
cpumask_set_cpu(cpu, &pmu->supported_cpus);
5409
cpuc->pmu = &pmu->pmu;
5410
5411
return true;
5412
}
5413
5414
static void intel_pmu_cpu_starting(int cpu)
5415
{
5416
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5417
int core_id = topology_core_id(cpu);
5418
int i;
5419
5420
if (is_hybrid() && !init_hybrid_pmu(cpu))
5421
return;
5422
5423
init_debug_store_on_cpu(cpu);
5424
/*
5425
* Deal with CPUs that don't clear their LBRs on power-up, and that may
5426
* even boot with LBRs enabled.
5427
*/
5428
if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && x86_pmu.lbr_nr)
5429
msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR_BIT);
5430
intel_pmu_lbr_reset();
5431
5432
cpuc->lbr_sel = NULL;
5433
5434
if (x86_pmu.flags & PMU_FL_TFA) {
5435
WARN_ON_ONCE(cpuc->tfa_shadow);
5436
cpuc->tfa_shadow = ~0ULL;
5437
intel_set_tfa(cpuc, false);
5438
}
5439
5440
if (x86_pmu.version > 1)
5441
flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
5442
5443
/*
5444
* Disable perf metrics if any added CPU doesn't support it.
5445
*
5446
* Turn off the check for a hybrid architecture, because the
5447
* architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
5448
* the architecture features. The perf metrics is a model-specific
5449
* feature for now. The corresponding bit should always be 0 on
5450
* a hybrid platform, e.g., Alder Lake.
5451
*/
5452
if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
5453
union perf_capabilities perf_cap;
5454
5455
rdmsrq(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
5456
if (!perf_cap.perf_metrics) {
5457
x86_pmu.intel_cap.perf_metrics = 0;
5458
x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
5459
}
5460
}
5461
5462
if (!cpuc->shared_regs)
5463
return;
5464
5465
if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
5466
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5467
struct intel_shared_regs *pc;
5468
5469
pc = per_cpu(cpu_hw_events, i).shared_regs;
5470
if (pc && pc->core_id == core_id) {
5471
cpuc->kfree_on_online[0] = cpuc->shared_regs;
5472
cpuc->shared_regs = pc;
5473
break;
5474
}
5475
}
5476
cpuc->shared_regs->core_id = core_id;
5477
cpuc->shared_regs->refcnt++;
5478
}
5479
5480
if (x86_pmu.lbr_sel_map)
5481
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
5482
5483
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5484
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5485
struct cpu_hw_events *sibling;
5486
struct intel_excl_cntrs *c;
5487
5488
sibling = &per_cpu(cpu_hw_events, i);
5489
c = sibling->excl_cntrs;
5490
if (c && c->core_id == core_id) {
5491
cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
5492
cpuc->excl_cntrs = c;
5493
if (!sibling->excl_thread_id)
5494
cpuc->excl_thread_id = 1;
5495
break;
5496
}
5497
}
5498
cpuc->excl_cntrs->core_id = core_id;
5499
cpuc->excl_cntrs->refcnt++;
5500
}
5501
}
5502
5503
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
5504
{
5505
struct intel_excl_cntrs *c;
5506
5507
c = cpuc->excl_cntrs;
5508
if (c) {
5509
if (c->core_id == -1 || --c->refcnt == 0)
5510
kfree(c);
5511
cpuc->excl_cntrs = NULL;
5512
}
5513
5514
kfree(cpuc->constraint_list);
5515
cpuc->constraint_list = NULL;
5516
}
5517
5518
static void intel_pmu_cpu_dying(int cpu)
5519
{
5520
fini_debug_store_on_cpu(cpu);
5521
}
5522
5523
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
5524
{
5525
struct intel_shared_regs *pc;
5526
5527
pc = cpuc->shared_regs;
5528
if (pc) {
5529
if (pc->core_id == -1 || --pc->refcnt == 0)
5530
kfree(pc);
5531
cpuc->shared_regs = NULL;
5532
}
5533
5534
free_excl_cntrs(cpuc);
5535
}
5536
5537
static void intel_pmu_cpu_dead(int cpu)
5538
{
5539
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5540
5541
intel_cpuc_finish(cpuc);
5542
5543
if (is_hybrid() && cpuc->pmu)
5544
cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
5545
}
5546
5547
static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
5548
struct task_struct *task, bool sched_in)
5549
{
5550
intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
5551
intel_pmu_lbr_sched_task(pmu_ctx, task, sched_in);
5552
}
5553
5554
static int intel_pmu_check_period(struct perf_event *event, u64 value)
5555
{
5556
return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
5557
}
5558
5559
static void intel_aux_output_init(void)
5560
{
5561
/* Refer also intel_pmu_aux_output_match() */
5562
if (x86_pmu.intel_cap.pebs_output_pt_available)
5563
x86_pmu.assign = intel_pmu_assign_event;
5564
}
5565
5566
static int intel_pmu_aux_output_match(struct perf_event *event)
5567
{
5568
/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
5569
if (!x86_pmu.intel_cap.pebs_output_pt_available)
5570
return 0;
5571
5572
return is_intel_pt_event(event);
5573
}
5574
5575
static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
5576
{
5577
struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
5578
5579
*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
5580
}
5581
5582
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5583
5584
PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5585
5586
PMU_FORMAT_ATTR(frontend, "config1:0-23");
5587
5588
PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5589
5590
static struct attribute *intel_arch3_formats_attr[] = {
5591
&format_attr_event.attr,
5592
&format_attr_umask.attr,
5593
&format_attr_edge.attr,
5594
&format_attr_pc.attr,
5595
&format_attr_any.attr,
5596
&format_attr_inv.attr,
5597
&format_attr_cmask.attr,
5598
NULL,
5599
};
5600
5601
static struct attribute *hsw_format_attr[] = {
5602
&format_attr_in_tx.attr,
5603
&format_attr_in_tx_cp.attr,
5604
&format_attr_offcore_rsp.attr,
5605
&format_attr_ldlat.attr,
5606
NULL
5607
};
5608
5609
static struct attribute *nhm_format_attr[] = {
5610
&format_attr_offcore_rsp.attr,
5611
&format_attr_ldlat.attr,
5612
NULL
5613
};
5614
5615
static struct attribute *slm_format_attr[] = {
5616
&format_attr_offcore_rsp.attr,
5617
NULL
5618
};
5619
5620
static struct attribute *cmt_format_attr[] = {
5621
&format_attr_offcore_rsp.attr,
5622
&format_attr_ldlat.attr,
5623
&format_attr_snoop_rsp.attr,
5624
NULL
5625
};
5626
5627
static struct attribute *skl_format_attr[] = {
5628
&format_attr_frontend.attr,
5629
NULL,
5630
};
5631
5632
static __initconst const struct x86_pmu core_pmu = {
5633
.name = "core",
5634
.handle_irq = x86_pmu_handle_irq,
5635
.disable_all = x86_pmu_disable_all,
5636
.enable_all = core_pmu_enable_all,
5637
.enable = core_pmu_enable_event,
5638
.disable = x86_pmu_disable_event,
5639
.hw_config = core_pmu_hw_config,
5640
.schedule_events = x86_schedule_events,
5641
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5642
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5643
.fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
5644
.event_map = intel_pmu_event_map,
5645
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
5646
.apic = 1,
5647
.large_pebs_flags = LARGE_PEBS_FLAGS,
5648
5649
/*
5650
* Intel PMCs cannot be accessed sanely above 32-bit width,
5651
* so we install an artificial 1<<31 period regardless of
5652
* the generic event period:
5653
*/
5654
.max_period = (1ULL<<31) - 1,
5655
.get_event_constraints = intel_get_event_constraints,
5656
.put_event_constraints = intel_put_event_constraints,
5657
.event_constraints = intel_core_event_constraints,
5658
.guest_get_msrs = core_guest_get_msrs,
5659
.format_attrs = intel_arch_formats_attr,
5660
.events_sysfs_show = intel_event_sysfs_show,
5661
5662
/*
5663
* Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5664
* together with PMU version 1 and thus be using core_pmu with
5665
* shared_regs. We need following callbacks here to allocate
5666
* it properly.
5667
*/
5668
.cpu_prepare = intel_pmu_cpu_prepare,
5669
.cpu_starting = intel_pmu_cpu_starting,
5670
.cpu_dying = intel_pmu_cpu_dying,
5671
.cpu_dead = intel_pmu_cpu_dead,
5672
5673
.check_period = intel_pmu_check_period,
5674
5675
.lbr_reset = intel_pmu_lbr_reset_64,
5676
.lbr_read = intel_pmu_lbr_read_64,
5677
.lbr_save = intel_pmu_lbr_save,
5678
.lbr_restore = intel_pmu_lbr_restore,
5679
};
5680
5681
static __initconst const struct x86_pmu intel_pmu = {
5682
.name = "Intel",
5683
.handle_irq = intel_pmu_handle_irq,
5684
.disable_all = intel_pmu_disable_all,
5685
.enable_all = intel_pmu_enable_all,
5686
.enable = intel_pmu_enable_event,
5687
.disable = intel_pmu_disable_event,
5688
.add = intel_pmu_add_event,
5689
.del = intel_pmu_del_event,
5690
.read = intel_pmu_read_event,
5691
.set_period = intel_pmu_set_period,
5692
.update = intel_pmu_update,
5693
.hw_config = intel_pmu_hw_config,
5694
.schedule_events = x86_schedule_events,
5695
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5696
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5697
.fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
5698
.event_map = intel_pmu_event_map,
5699
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
5700
.apic = 1,
5701
.large_pebs_flags = LARGE_PEBS_FLAGS,
5702
/*
5703
* Intel PMCs cannot be accessed sanely above 32 bit width,
5704
* so we install an artificial 1<<31 period regardless of
5705
* the generic event period:
5706
*/
5707
.max_period = (1ULL << 31) - 1,
5708
.get_event_constraints = intel_get_event_constraints,
5709
.put_event_constraints = intel_put_event_constraints,
5710
.pebs_aliases = intel_pebs_aliases_core2,
5711
5712
.format_attrs = intel_arch3_formats_attr,
5713
.events_sysfs_show = intel_event_sysfs_show,
5714
5715
.cpu_prepare = intel_pmu_cpu_prepare,
5716
.cpu_starting = intel_pmu_cpu_starting,
5717
.cpu_dying = intel_pmu_cpu_dying,
5718
.cpu_dead = intel_pmu_cpu_dead,
5719
5720
.guest_get_msrs = intel_guest_get_msrs,
5721
.sched_task = intel_pmu_sched_task,
5722
5723
.check_period = intel_pmu_check_period,
5724
5725
.aux_output_match = intel_pmu_aux_output_match,
5726
5727
.lbr_reset = intel_pmu_lbr_reset_64,
5728
.lbr_read = intel_pmu_lbr_read_64,
5729
.lbr_save = intel_pmu_lbr_save,
5730
.lbr_restore = intel_pmu_lbr_restore,
5731
5732
/*
5733
* SMM has access to all 4 rings and while traditionally SMM code only
5734
* ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5735
*
5736
* Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5737
* between SMM or not, this results in what should be pure userspace
5738
* counters including SMM data.
5739
*
5740
* This is a clear privilege issue, therefore globally disable
5741
* counting SMM by default.
5742
*/
5743
.attr_freeze_on_smi = 1,
5744
};
5745
5746
static __init void intel_clovertown_quirk(void)
5747
{
5748
/*
5749
* PEBS is unreliable due to:
5750
*
5751
* AJ67 - PEBS may experience CPL leaks
5752
* AJ68 - PEBS PMI may be delayed by one event
5753
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5754
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5755
*
5756
* AJ67 could be worked around by restricting the OS/USR flags.
5757
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5758
*
5759
* AJ106 could possibly be worked around by not allowing LBR
5760
* usage from PEBS, including the fixup.
5761
* AJ68 could possibly be worked around by always programming
5762
* a pebs_event_reset[0] value and coping with the lost events.
5763
*
5764
* But taken together it might just make sense to not enable PEBS on
5765
* these chips.
5766
*/
5767
pr_warn("PEBS disabled due to CPU errata\n");
5768
x86_pmu.ds_pebs = 0;
5769
x86_pmu.pebs_constraints = NULL;
5770
}
5771
5772
static const struct x86_cpu_id isolation_ucodes[] = {
5773
X86_MATCH_VFM_STEPS(INTEL_HASWELL, 3, 3, 0x0000001f),
5774
X86_MATCH_VFM_STEPS(INTEL_HASWELL_L, 1, 1, 0x0000001e),
5775
X86_MATCH_VFM_STEPS(INTEL_HASWELL_G, 1, 1, 0x00000015),
5776
X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 2, 2, 0x00000037),
5777
X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 4, 4, 0x0000000a),
5778
X86_MATCH_VFM_STEPS(INTEL_BROADWELL, 4, 4, 0x00000023),
5779
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_G, 1, 1, 0x00000014),
5780
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 2, 2, 0x00000010),
5781
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 3, 3, 0x07000009),
5782
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 4, 4, 0x0f000009),
5783
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 5, 5, 0x0e000002),
5784
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_X, 1, 1, 0x0b000014),
5785
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 3, 3, 0x00000021),
5786
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 4, 7, 0x00000000),
5787
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 11, 11, 0x00000000),
5788
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_L, 3, 3, 0x0000007c),
5789
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE, 3, 3, 0x0000007c),
5790
X86_MATCH_VFM_STEPS(INTEL_KABYLAKE, 9, 13, 0x0000004e),
5791
X86_MATCH_VFM_STEPS(INTEL_KABYLAKE_L, 9, 12, 0x0000004e),
5792
{}
5793
};
5794
5795
static void intel_check_pebs_isolation(void)
5796
{
5797
x86_pmu.pebs_no_isolation = !x86_match_min_microcode_rev(isolation_ucodes);
5798
}
5799
5800
static __init void intel_pebs_isolation_quirk(void)
5801
{
5802
WARN_ON_ONCE(x86_pmu.check_microcode);
5803
x86_pmu.check_microcode = intel_check_pebs_isolation;
5804
intel_check_pebs_isolation();
5805
}
5806
5807
static const struct x86_cpu_id pebs_ucodes[] = {
5808
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE, 7, 7, 0x00000028),
5809
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 6, 6, 0x00000618),
5810
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 7, 7, 0x0000070c),
5811
{}
5812
};
5813
5814
static bool intel_snb_pebs_broken(void)
5815
{
5816
return !x86_match_min_microcode_rev(pebs_ucodes);
5817
}
5818
5819
static void intel_snb_check_microcode(void)
5820
{
5821
if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5822
return;
5823
5824
/*
5825
* Serialized by the microcode lock..
5826
*/
5827
if (x86_pmu.pebs_broken) {
5828
pr_info("PEBS enabled due to microcode update\n");
5829
x86_pmu.pebs_broken = 0;
5830
} else {
5831
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5832
x86_pmu.pebs_broken = 1;
5833
}
5834
}
5835
5836
static bool is_lbr_from(unsigned long msr)
5837
{
5838
unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5839
5840
return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5841
}
5842
5843
/*
5844
* Under certain circumstances, access certain MSR may cause #GP.
5845
* The function tests if the input MSR can be safely accessed.
5846
*/
5847
static bool check_msr(unsigned long msr, u64 mask)
5848
{
5849
u64 val_old, val_new, val_tmp;
5850
5851
/*
5852
* Disable the check for real HW, so we don't
5853
* mess with potentially enabled registers:
5854
*/
5855
if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5856
return true;
5857
5858
/*
5859
* Read the current value, change it and read it back to see if it
5860
* matches, this is needed to detect certain hardware emulators
5861
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
5862
*/
5863
if (rdmsrq_safe(msr, &val_old))
5864
return false;
5865
5866
/*
5867
* Only change the bits which can be updated by wrmsrq.
5868
*/
5869
val_tmp = val_old ^ mask;
5870
5871
if (is_lbr_from(msr))
5872
val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5873
5874
if (wrmsrq_safe(msr, val_tmp) ||
5875
rdmsrq_safe(msr, &val_new))
5876
return false;
5877
5878
/*
5879
* Quirk only affects validation in wrmsr(), so wrmsrq()'s value
5880
* should equal rdmsrq()'s even with the quirk.
5881
*/
5882
if (val_new != val_tmp)
5883
return false;
5884
5885
if (is_lbr_from(msr))
5886
val_old = lbr_from_signext_quirk_wr(val_old);
5887
5888
/* Here it's sure that the MSR can be safely accessed.
5889
* Restore the old value and return.
5890
*/
5891
wrmsrq(msr, val_old);
5892
5893
return true;
5894
}
5895
5896
static __init void intel_sandybridge_quirk(void)
5897
{
5898
x86_pmu.check_microcode = intel_snb_check_microcode;
5899
cpus_read_lock();
5900
intel_snb_check_microcode();
5901
cpus_read_unlock();
5902
}
5903
5904
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5905
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5906
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5907
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5908
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5909
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5910
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5911
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5912
};
5913
5914
static __init void intel_arch_events_quirk(void)
5915
{
5916
int bit;
5917
5918
/* disable event that reported as not present by cpuid */
5919
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5920
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5921
pr_warn("CPUID marked event: \'%s\' unavailable\n",
5922
intel_arch_events_map[bit].name);
5923
}
5924
}
5925
5926
static __init void intel_nehalem_quirk(void)
5927
{
5928
union cpuid10_ebx ebx;
5929
5930
ebx.full = x86_pmu.events_maskl;
5931
if (ebx.split.no_branch_misses_retired) {
5932
/*
5933
* Erratum AAJ80 detected, we work it around by using
5934
* the BR_MISP_EXEC.ANY event. This will over-count
5935
* branch-misses, but it's still much better than the
5936
* architectural event which is often completely bogus:
5937
*/
5938
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5939
ebx.split.no_branch_misses_retired = 0;
5940
x86_pmu.events_maskl = ebx.full;
5941
pr_info("CPU erratum AAJ80 worked around\n");
5942
}
5943
}
5944
5945
/*
5946
* enable software workaround for errata:
5947
* SNB: BJ122
5948
* IVB: BV98
5949
* HSW: HSD29
5950
*
5951
* Only needed when HT is enabled. However detecting
5952
* if HT is enabled is difficult (model specific). So instead,
5953
* we enable the workaround in the early boot, and verify if
5954
* it is needed in a later initcall phase once we have valid
5955
* topology information to check if HT is actually enabled
5956
*/
5957
static __init void intel_ht_bug(void)
5958
{
5959
x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5960
5961
x86_pmu.start_scheduling = intel_start_scheduling;
5962
x86_pmu.commit_scheduling = intel_commit_scheduling;
5963
x86_pmu.stop_scheduling = intel_stop_scheduling;
5964
}
5965
5966
EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
5967
EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
5968
5969
/* Haswell special events */
5970
EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
5971
EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
5972
EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
5973
EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
5974
EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
5975
EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
5976
EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
5977
EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
5978
EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
5979
EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
5980
EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
5981
EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
5982
5983
static struct attribute *hsw_events_attrs[] = {
5984
EVENT_PTR(td_slots_issued),
5985
EVENT_PTR(td_slots_retired),
5986
EVENT_PTR(td_fetch_bubbles),
5987
EVENT_PTR(td_total_slots),
5988
EVENT_PTR(td_total_slots_scale),
5989
EVENT_PTR(td_recovery_bubbles),
5990
EVENT_PTR(td_recovery_bubbles_scale),
5991
NULL
5992
};
5993
5994
static struct attribute *hsw_mem_events_attrs[] = {
5995
EVENT_PTR(mem_ld_hsw),
5996
EVENT_PTR(mem_st_hsw),
5997
NULL,
5998
};
5999
6000
static struct attribute *hsw_tsx_events_attrs[] = {
6001
EVENT_PTR(tx_start),
6002
EVENT_PTR(tx_commit),
6003
EVENT_PTR(tx_abort),
6004
EVENT_PTR(tx_capacity),
6005
EVENT_PTR(tx_conflict),
6006
EVENT_PTR(el_start),
6007
EVENT_PTR(el_commit),
6008
EVENT_PTR(el_abort),
6009
EVENT_PTR(el_capacity),
6010
EVENT_PTR(el_conflict),
6011
EVENT_PTR(cycles_t),
6012
EVENT_PTR(cycles_ct),
6013
NULL
6014
};
6015
6016
EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
6017
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
6018
EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
6019
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
6020
6021
static struct attribute *icl_events_attrs[] = {
6022
EVENT_PTR(mem_ld_hsw),
6023
EVENT_PTR(mem_st_hsw),
6024
NULL,
6025
};
6026
6027
static struct attribute *icl_td_events_attrs[] = {
6028
EVENT_PTR(slots),
6029
EVENT_PTR(td_retiring),
6030
EVENT_PTR(td_bad_spec),
6031
EVENT_PTR(td_fe_bound),
6032
EVENT_PTR(td_be_bound),
6033
NULL,
6034
};
6035
6036
static struct attribute *icl_tsx_events_attrs[] = {
6037
EVENT_PTR(tx_start),
6038
EVENT_PTR(tx_abort),
6039
EVENT_PTR(tx_commit),
6040
EVENT_PTR(tx_capacity_read),
6041
EVENT_PTR(tx_capacity_write),
6042
EVENT_PTR(tx_conflict),
6043
EVENT_PTR(el_start),
6044
EVENT_PTR(el_abort),
6045
EVENT_PTR(el_commit),
6046
EVENT_PTR(el_capacity_read),
6047
EVENT_PTR(el_capacity_write),
6048
EVENT_PTR(el_conflict),
6049
EVENT_PTR(cycles_t),
6050
EVENT_PTR(cycles_ct),
6051
NULL,
6052
};
6053
6054
6055
EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
6056
EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
6057
6058
static struct attribute *glc_events_attrs[] = {
6059
EVENT_PTR(mem_ld_hsw),
6060
EVENT_PTR(mem_st_spr),
6061
EVENT_PTR(mem_ld_aux),
6062
NULL,
6063
};
6064
6065
static struct attribute *glc_td_events_attrs[] = {
6066
EVENT_PTR(slots),
6067
EVENT_PTR(td_retiring),
6068
EVENT_PTR(td_bad_spec),
6069
EVENT_PTR(td_fe_bound),
6070
EVENT_PTR(td_be_bound),
6071
EVENT_PTR(td_heavy_ops),
6072
EVENT_PTR(td_br_mispredict),
6073
EVENT_PTR(td_fetch_lat),
6074
EVENT_PTR(td_mem_bound),
6075
NULL,
6076
};
6077
6078
static struct attribute *glc_tsx_events_attrs[] = {
6079
EVENT_PTR(tx_start),
6080
EVENT_PTR(tx_abort),
6081
EVENT_PTR(tx_commit),
6082
EVENT_PTR(tx_capacity_read),
6083
EVENT_PTR(tx_capacity_write),
6084
EVENT_PTR(tx_conflict),
6085
EVENT_PTR(cycles_t),
6086
EVENT_PTR(cycles_ct),
6087
NULL,
6088
};
6089
6090
static ssize_t freeze_on_smi_show(struct device *cdev,
6091
struct device_attribute *attr,
6092
char *buf)
6093
{
6094
return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
6095
}
6096
6097
static DEFINE_MUTEX(freeze_on_smi_mutex);
6098
6099
static ssize_t freeze_on_smi_store(struct device *cdev,
6100
struct device_attribute *attr,
6101
const char *buf, size_t count)
6102
{
6103
unsigned long val;
6104
ssize_t ret;
6105
6106
ret = kstrtoul(buf, 0, &val);
6107
if (ret)
6108
return ret;
6109
6110
if (val > 1)
6111
return -EINVAL;
6112
6113
mutex_lock(&freeze_on_smi_mutex);
6114
6115
if (x86_pmu.attr_freeze_on_smi == val)
6116
goto done;
6117
6118
x86_pmu.attr_freeze_on_smi = val;
6119
6120
cpus_read_lock();
6121
on_each_cpu(flip_smm_bit, &val, 1);
6122
cpus_read_unlock();
6123
done:
6124
mutex_unlock(&freeze_on_smi_mutex);
6125
6126
return count;
6127
}
6128
6129
static void update_tfa_sched(void *ignored)
6130
{
6131
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
6132
6133
/*
6134
* check if PMC3 is used
6135
* and if so force schedule out for all event types all contexts
6136
*/
6137
if (test_bit(3, cpuc->active_mask))
6138
perf_pmu_resched(x86_get_pmu(smp_processor_id()));
6139
}
6140
6141
static ssize_t show_sysctl_tfa(struct device *cdev,
6142
struct device_attribute *attr,
6143
char *buf)
6144
{
6145
return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
6146
}
6147
6148
static ssize_t set_sysctl_tfa(struct device *cdev,
6149
struct device_attribute *attr,
6150
const char *buf, size_t count)
6151
{
6152
bool val;
6153
ssize_t ret;
6154
6155
ret = kstrtobool(buf, &val);
6156
if (ret)
6157
return ret;
6158
6159
/* no change */
6160
if (val == allow_tsx_force_abort)
6161
return count;
6162
6163
allow_tsx_force_abort = val;
6164
6165
cpus_read_lock();
6166
on_each_cpu(update_tfa_sched, NULL, 1);
6167
cpus_read_unlock();
6168
6169
return count;
6170
}
6171
6172
6173
static DEVICE_ATTR_RW(freeze_on_smi);
6174
6175
static ssize_t branches_show(struct device *cdev,
6176
struct device_attribute *attr,
6177
char *buf)
6178
{
6179
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
6180
}
6181
6182
static DEVICE_ATTR_RO(branches);
6183
6184
static ssize_t branch_counter_nr_show(struct device *cdev,
6185
struct device_attribute *attr,
6186
char *buf)
6187
{
6188
return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
6189
}
6190
6191
static DEVICE_ATTR_RO(branch_counter_nr);
6192
6193
static ssize_t branch_counter_width_show(struct device *cdev,
6194
struct device_attribute *attr,
6195
char *buf)
6196
{
6197
return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
6198
}
6199
6200
static DEVICE_ATTR_RO(branch_counter_width);
6201
6202
static struct attribute *lbr_attrs[] = {
6203
&dev_attr_branches.attr,
6204
&dev_attr_branch_counter_nr.attr,
6205
&dev_attr_branch_counter_width.attr,
6206
NULL
6207
};
6208
6209
static umode_t
6210
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6211
{
6212
/* branches */
6213
if (i == 0)
6214
return x86_pmu.lbr_nr ? attr->mode : 0;
6215
6216
return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
6217
}
6218
6219
static char pmu_name_str[30];
6220
6221
static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
6222
6223
static struct attribute *intel_pmu_caps_attrs[] = {
6224
&dev_attr_pmu_name.attr.attr,
6225
NULL
6226
};
6227
6228
static DEVICE_ATTR(allow_tsx_force_abort, 0644,
6229
show_sysctl_tfa,
6230
set_sysctl_tfa);
6231
6232
static struct attribute *intel_pmu_attrs[] = {
6233
&dev_attr_freeze_on_smi.attr,
6234
&dev_attr_allow_tsx_force_abort.attr,
6235
NULL,
6236
};
6237
6238
static umode_t
6239
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6240
{
6241
if (attr == &dev_attr_allow_tsx_force_abort.attr)
6242
return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
6243
6244
return attr->mode;
6245
}
6246
6247
static umode_t
6248
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6249
{
6250
return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
6251
}
6252
6253
static umode_t
6254
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6255
{
6256
return x86_pmu.ds_pebs ? attr->mode : 0;
6257
}
6258
6259
static umode_t
6260
mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6261
{
6262
if (attr == &event_attr_mem_ld_aux.attr.attr)
6263
return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
6264
6265
return pebs_is_visible(kobj, attr, i);
6266
}
6267
6268
static umode_t
6269
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6270
{
6271
return x86_pmu.version >= 2 ? attr->mode : 0;
6272
}
6273
6274
static umode_t
6275
td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6276
{
6277
/*
6278
* Hide the perf metrics topdown events
6279
* if the feature is not enumerated.
6280
*/
6281
if (x86_pmu.num_topdown_events)
6282
return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
6283
6284
return attr->mode;
6285
}
6286
6287
PMU_FORMAT_ATTR(acr_mask, "config2:0-63");
6288
6289
static struct attribute *format_acr_attrs[] = {
6290
&format_attr_acr_mask.attr,
6291
NULL
6292
};
6293
6294
static umode_t
6295
acr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6296
{
6297
struct device *dev = kobj_to_dev(kobj);
6298
6299
return intel_pmu_has_acr(dev_get_drvdata(dev)) ? attr->mode : 0;
6300
}
6301
6302
static struct attribute_group group_events_td = {
6303
.name = "events",
6304
.is_visible = td_is_visible,
6305
};
6306
6307
static struct attribute_group group_events_mem = {
6308
.name = "events",
6309
.is_visible = mem_is_visible,
6310
};
6311
6312
static struct attribute_group group_events_tsx = {
6313
.name = "events",
6314
.is_visible = tsx_is_visible,
6315
};
6316
6317
static struct attribute_group group_caps_gen = {
6318
.name = "caps",
6319
.attrs = intel_pmu_caps_attrs,
6320
};
6321
6322
static struct attribute_group group_caps_lbr = {
6323
.name = "caps",
6324
.attrs = lbr_attrs,
6325
.is_visible = lbr_is_visible,
6326
};
6327
6328
static struct attribute_group group_format_extra = {
6329
.name = "format",
6330
.is_visible = exra_is_visible,
6331
};
6332
6333
static struct attribute_group group_format_extra_skl = {
6334
.name = "format",
6335
.is_visible = exra_is_visible,
6336
};
6337
6338
static struct attribute_group group_format_evtsel_ext = {
6339
.name = "format",
6340
.attrs = format_evtsel_ext_attrs,
6341
.is_visible = evtsel_ext_is_visible,
6342
};
6343
6344
static struct attribute_group group_format_acr = {
6345
.name = "format",
6346
.attrs = format_acr_attrs,
6347
.is_visible = acr_is_visible,
6348
};
6349
6350
static struct attribute_group group_default = {
6351
.attrs = intel_pmu_attrs,
6352
.is_visible = default_is_visible,
6353
};
6354
6355
static const struct attribute_group *attr_update[] = {
6356
&group_events_td,
6357
&group_events_mem,
6358
&group_events_tsx,
6359
&group_caps_gen,
6360
&group_caps_lbr,
6361
&group_format_extra,
6362
&group_format_extra_skl,
6363
&group_format_evtsel_ext,
6364
&group_format_acr,
6365
&group_default,
6366
NULL,
6367
};
6368
6369
EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
6370
EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
6371
EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
6372
EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
6373
EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
6374
EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
6375
EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
6376
EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
6377
EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
6378
6379
static struct attribute *adl_hybrid_events_attrs[] = {
6380
EVENT_PTR(slots_adl),
6381
EVENT_PTR(td_retiring_adl),
6382
EVENT_PTR(td_bad_spec_adl),
6383
EVENT_PTR(td_fe_bound_adl),
6384
EVENT_PTR(td_be_bound_adl),
6385
EVENT_PTR(td_heavy_ops_adl),
6386
EVENT_PTR(td_br_mis_adl),
6387
EVENT_PTR(td_fetch_lat_adl),
6388
EVENT_PTR(td_mem_bound_adl),
6389
NULL,
6390
};
6391
6392
EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_lnl, "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small);
6393
EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_lnl, "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small);
6394
EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_lnl, "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small);
6395
6396
static struct attribute *lnl_hybrid_events_attrs[] = {
6397
EVENT_PTR(slots_adl),
6398
EVENT_PTR(td_retiring_lnl),
6399
EVENT_PTR(td_bad_spec_adl),
6400
EVENT_PTR(td_fe_bound_lnl),
6401
EVENT_PTR(td_be_bound_lnl),
6402
EVENT_PTR(td_heavy_ops_adl),
6403
EVENT_PTR(td_br_mis_adl),
6404
EVENT_PTR(td_fetch_lat_adl),
6405
EVENT_PTR(td_mem_bound_adl),
6406
NULL
6407
};
6408
6409
/* The event string must be in PMU IDX order. */
6410
EVENT_ATTR_STR_HYBRID(topdown-retiring,
6411
td_retiring_arl_h,
6412
"event=0xc2,umask=0x02;event=0x00,umask=0x80;event=0xc2,umask=0x0",
6413
hybrid_big_small_tiny);
6414
EVENT_ATTR_STR_HYBRID(topdown-bad-spec,
6415
td_bad_spec_arl_h,
6416
"event=0x73,umask=0x0;event=0x00,umask=0x81;event=0x73,umask=0x0",
6417
hybrid_big_small_tiny);
6418
EVENT_ATTR_STR_HYBRID(topdown-fe-bound,
6419
td_fe_bound_arl_h,
6420
"event=0x9c,umask=0x01;event=0x00,umask=0x82;event=0x71,umask=0x0",
6421
hybrid_big_small_tiny);
6422
EVENT_ATTR_STR_HYBRID(topdown-be-bound,
6423
td_be_bound_arl_h,
6424
"event=0xa4,umask=0x02;event=0x00,umask=0x83;event=0x74,umask=0x0",
6425
hybrid_big_small_tiny);
6426
6427
static struct attribute *arl_h_hybrid_events_attrs[] = {
6428
EVENT_PTR(slots_adl),
6429
EVENT_PTR(td_retiring_arl_h),
6430
EVENT_PTR(td_bad_spec_arl_h),
6431
EVENT_PTR(td_fe_bound_arl_h),
6432
EVENT_PTR(td_be_bound_arl_h),
6433
EVENT_PTR(td_heavy_ops_adl),
6434
EVENT_PTR(td_br_mis_adl),
6435
EVENT_PTR(td_fetch_lat_adl),
6436
EVENT_PTR(td_mem_bound_adl),
6437
NULL,
6438
};
6439
6440
/* Must be in IDX order */
6441
EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
6442
EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
6443
EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
6444
6445
static struct attribute *adl_hybrid_mem_attrs[] = {
6446
EVENT_PTR(mem_ld_adl),
6447
EVENT_PTR(mem_st_adl),
6448
EVENT_PTR(mem_ld_aux_adl),
6449
NULL,
6450
};
6451
6452
static struct attribute *mtl_hybrid_mem_attrs[] = {
6453
EVENT_PTR(mem_ld_adl),
6454
EVENT_PTR(mem_st_adl),
6455
NULL
6456
};
6457
6458
EVENT_ATTR_STR_HYBRID(mem-loads,
6459
mem_ld_arl_h,
6460
"event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3;event=0xd0,umask=0x5,ldlat=3",
6461
hybrid_big_small_tiny);
6462
EVENT_ATTR_STR_HYBRID(mem-stores,
6463
mem_st_arl_h,
6464
"event=0xd0,umask=0x6;event=0xcd,umask=0x2;event=0xd0,umask=0x6",
6465
hybrid_big_small_tiny);
6466
6467
static struct attribute *arl_h_hybrid_mem_attrs[] = {
6468
EVENT_PTR(mem_ld_arl_h),
6469
EVENT_PTR(mem_st_arl_h),
6470
NULL,
6471
};
6472
6473
EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
6474
EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
6475
EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
6476
EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
6477
EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
6478
EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
6479
EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
6480
EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
6481
6482
static struct attribute *adl_hybrid_tsx_attrs[] = {
6483
EVENT_PTR(tx_start_adl),
6484
EVENT_PTR(tx_abort_adl),
6485
EVENT_PTR(tx_commit_adl),
6486
EVENT_PTR(tx_capacity_read_adl),
6487
EVENT_PTR(tx_capacity_write_adl),
6488
EVENT_PTR(tx_conflict_adl),
6489
EVENT_PTR(cycles_t_adl),
6490
EVENT_PTR(cycles_ct_adl),
6491
NULL,
6492
};
6493
6494
FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
6495
FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
6496
FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small_tiny);
6497
FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small_tiny);
6498
FORMAT_ATTR_HYBRID(frontend, hybrid_big);
6499
6500
#define ADL_HYBRID_RTM_FORMAT_ATTR \
6501
FORMAT_HYBRID_PTR(in_tx), \
6502
FORMAT_HYBRID_PTR(in_tx_cp)
6503
6504
#define ADL_HYBRID_FORMAT_ATTR \
6505
FORMAT_HYBRID_PTR(offcore_rsp), \
6506
FORMAT_HYBRID_PTR(ldlat), \
6507
FORMAT_HYBRID_PTR(frontend)
6508
6509
static struct attribute *adl_hybrid_extra_attr_rtm[] = {
6510
ADL_HYBRID_RTM_FORMAT_ATTR,
6511
ADL_HYBRID_FORMAT_ATTR,
6512
NULL
6513
};
6514
6515
static struct attribute *adl_hybrid_extra_attr[] = {
6516
ADL_HYBRID_FORMAT_ATTR,
6517
NULL
6518
};
6519
6520
FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small_tiny);
6521
6522
static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
6523
ADL_HYBRID_RTM_FORMAT_ATTR,
6524
ADL_HYBRID_FORMAT_ATTR,
6525
FORMAT_HYBRID_PTR(snoop_rsp),
6526
NULL
6527
};
6528
6529
static struct attribute *mtl_hybrid_extra_attr[] = {
6530
ADL_HYBRID_FORMAT_ATTR,
6531
FORMAT_HYBRID_PTR(snoop_rsp),
6532
NULL
6533
};
6534
6535
static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
6536
{
6537
struct device *dev = kobj_to_dev(kobj);
6538
struct x86_hybrid_pmu *pmu =
6539
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6540
struct perf_pmu_events_hybrid_attr *pmu_attr =
6541
container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
6542
6543
return pmu->pmu_type & pmu_attr->pmu_type;
6544
}
6545
6546
static umode_t hybrid_events_is_visible(struct kobject *kobj,
6547
struct attribute *attr, int i)
6548
{
6549
return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
6550
}
6551
6552
static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
6553
{
6554
int cpu = cpumask_first(&pmu->supported_cpus);
6555
6556
return (cpu >= nr_cpu_ids) ? -1 : cpu;
6557
}
6558
6559
static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
6560
struct attribute *attr, int i)
6561
{
6562
struct device *dev = kobj_to_dev(kobj);
6563
struct x86_hybrid_pmu *pmu =
6564
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6565
int cpu = hybrid_find_supported_cpu(pmu);
6566
6567
return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
6568
}
6569
6570
static umode_t hybrid_format_is_visible(struct kobject *kobj,
6571
struct attribute *attr, int i)
6572
{
6573
struct device *dev = kobj_to_dev(kobj);
6574
struct x86_hybrid_pmu *pmu =
6575
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6576
struct perf_pmu_format_hybrid_attr *pmu_attr =
6577
container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
6578
int cpu = hybrid_find_supported_cpu(pmu);
6579
6580
return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
6581
}
6582
6583
static umode_t hybrid_td_is_visible(struct kobject *kobj,
6584
struct attribute *attr, int i)
6585
{
6586
struct device *dev = kobj_to_dev(kobj);
6587
struct x86_hybrid_pmu *pmu =
6588
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6589
6590
if (!is_attr_for_this_pmu(kobj, attr))
6591
return 0;
6592
6593
6594
/* Only the big core supports perf metrics */
6595
if (pmu->pmu_type == hybrid_big)
6596
return pmu->intel_cap.perf_metrics ? attr->mode : 0;
6597
6598
return attr->mode;
6599
}
6600
6601
static struct attribute_group hybrid_group_events_td = {
6602
.name = "events",
6603
.is_visible = hybrid_td_is_visible,
6604
};
6605
6606
static struct attribute_group hybrid_group_events_mem = {
6607
.name = "events",
6608
.is_visible = hybrid_events_is_visible,
6609
};
6610
6611
static struct attribute_group hybrid_group_events_tsx = {
6612
.name = "events",
6613
.is_visible = hybrid_tsx_is_visible,
6614
};
6615
6616
static struct attribute_group hybrid_group_format_extra = {
6617
.name = "format",
6618
.is_visible = hybrid_format_is_visible,
6619
};
6620
6621
static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
6622
struct device_attribute *attr,
6623
char *buf)
6624
{
6625
struct x86_hybrid_pmu *pmu =
6626
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6627
6628
return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
6629
}
6630
6631
static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
6632
static struct attribute *intel_hybrid_cpus_attrs[] = {
6633
&dev_attr_cpus.attr,
6634
NULL,
6635
};
6636
6637
static struct attribute_group hybrid_group_cpus = {
6638
.attrs = intel_hybrid_cpus_attrs,
6639
};
6640
6641
static const struct attribute_group *hybrid_attr_update[] = {
6642
&hybrid_group_events_td,
6643
&hybrid_group_events_mem,
6644
&hybrid_group_events_tsx,
6645
&group_caps_gen,
6646
&group_caps_lbr,
6647
&hybrid_group_format_extra,
6648
&group_format_evtsel_ext,
6649
&group_format_acr,
6650
&group_default,
6651
&hybrid_group_cpus,
6652
NULL,
6653
};
6654
6655
static struct attribute *empty_attrs;
6656
6657
static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
6658
u64 cntr_mask,
6659
u64 fixed_cntr_mask,
6660
u64 intel_ctrl)
6661
{
6662
struct event_constraint *c;
6663
6664
if (!event_constraints)
6665
return;
6666
6667
/*
6668
* event on fixed counter2 (REF_CYCLES) only works on this
6669
* counter, so do not extend mask to generic counters
6670
*/
6671
for_each_event_constraint(c, event_constraints) {
6672
/*
6673
* Don't extend the topdown slots and metrics
6674
* events to the generic counters.
6675
*/
6676
if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
6677
/*
6678
* Disable topdown slots and metrics events,
6679
* if slots event is not in CPUID.
6680
*/
6681
if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
6682
c->idxmsk64 = 0;
6683
c->weight = hweight64(c->idxmsk64);
6684
continue;
6685
}
6686
6687
if (c->cmask == FIXED_EVENT_FLAGS) {
6688
/* Disabled fixed counters which are not in CPUID */
6689
c->idxmsk64 &= intel_ctrl;
6690
6691
/*
6692
* Don't extend the pseudo-encoding to the
6693
* generic counters
6694
*/
6695
if (!use_fixed_pseudo_encoding(c->code))
6696
c->idxmsk64 |= cntr_mask;
6697
}
6698
c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED);
6699
c->weight = hweight64(c->idxmsk64);
6700
}
6701
}
6702
6703
static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6704
{
6705
struct extra_reg *er;
6706
6707
/*
6708
* Access extra MSR may cause #GP under certain circumstances.
6709
* E.g. KVM doesn't support offcore event
6710
* Check all extra_regs here.
6711
*/
6712
if (!extra_regs)
6713
return;
6714
6715
for (er = extra_regs; er->msr; er++) {
6716
er->extra_msr_access = check_msr(er->msr, 0x11UL);
6717
/* Disable LBR select mapping */
6718
if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6719
x86_pmu.lbr_sel_map = NULL;
6720
}
6721
}
6722
6723
static inline int intel_pmu_v6_addr_offset(int index, bool eventsel)
6724
{
6725
return MSR_IA32_PMC_V6_STEP * index;
6726
}
6727
6728
static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
6729
{ hybrid_small, "cpu_atom" },
6730
{ hybrid_big, "cpu_core" },
6731
{ hybrid_tiny, "cpu_lowpower" },
6732
};
6733
6734
static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
6735
{
6736
unsigned long pmus_mask = pmus;
6737
struct x86_hybrid_pmu *pmu;
6738
int idx = 0, bit;
6739
6740
x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
6741
x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
6742
sizeof(struct x86_hybrid_pmu),
6743
GFP_KERNEL);
6744
if (!x86_pmu.hybrid_pmu)
6745
return -ENOMEM;
6746
6747
static_branch_enable(&perf_is_hybrid);
6748
x86_pmu.filter = intel_pmu_filter;
6749
6750
for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
6751
pmu = &x86_pmu.hybrid_pmu[idx++];
6752
pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
6753
pmu->name = intel_hybrid_pmu_type_map[bit].name;
6754
6755
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
6756
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
6757
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
6758
pmu->config_mask = X86_RAW_EVENT_MASK;
6759
pmu->unconstrained = (struct event_constraint)
6760
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
6761
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
6762
6763
pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6764
if (pmu->pmu_type & hybrid_small_tiny) {
6765
pmu->intel_cap.perf_metrics = 0;
6766
pmu->mid_ack = true;
6767
} else if (pmu->pmu_type & hybrid_big) {
6768
pmu->intel_cap.perf_metrics = 1;
6769
pmu->late_ack = true;
6770
}
6771
}
6772
6773
return 0;
6774
}
6775
6776
static __always_inline void intel_pmu_ref_cycles_ext(void)
6777
{
6778
if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6779
intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6780
}
6781
6782
static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6783
{
6784
x86_pmu.late_ack = true;
6785
x86_pmu.limit_period = glc_limit_period;
6786
x86_pmu.pebs_aliases = NULL;
6787
x86_pmu.pebs_prec_dist = true;
6788
x86_pmu.pebs_block = true;
6789
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6790
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6791
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6792
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6793
x86_pmu.lbr_pt_coexist = true;
6794
x86_pmu.num_topdown_events = 8;
6795
static_call_update(intel_pmu_update_topdown_event,
6796
&icl_update_topdown_event);
6797
static_call_update(intel_pmu_set_topdown_event_period,
6798
&icl_set_topdown_event_period);
6799
6800
memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6801
memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6802
hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6803
hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6804
6805
intel_pmu_ref_cycles_ext();
6806
}
6807
6808
static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6809
{
6810
x86_pmu.mid_ack = true;
6811
x86_pmu.limit_period = glc_limit_period;
6812
x86_pmu.pebs_aliases = NULL;
6813
x86_pmu.pebs_prec_dist = true;
6814
x86_pmu.pebs_block = true;
6815
x86_pmu.lbr_pt_coexist = true;
6816
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6817
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6818
6819
memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6820
memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6821
hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6822
hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6823
hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6824
hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6825
6826
intel_pmu_ref_cycles_ext();
6827
}
6828
6829
static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
6830
{
6831
intel_pmu_init_glc(pmu);
6832
hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
6833
hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
6834
hybrid(pmu, extra_regs) = intel_lnc_extra_regs;
6835
}
6836
6837
static __always_inline void intel_pmu_init_skt(struct pmu *pmu)
6838
{
6839
intel_pmu_init_grt(pmu);
6840
hybrid(pmu, event_constraints) = intel_skt_event_constraints;
6841
hybrid(pmu, extra_regs) = intel_cmt_extra_regs;
6842
static_call_update(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
6843
}
6844
6845
__init int intel_pmu_init(void)
6846
{
6847
struct attribute **extra_skl_attr = &empty_attrs;
6848
struct attribute **extra_attr = &empty_attrs;
6849
struct attribute **td_attr = &empty_attrs;
6850
struct attribute **mem_attr = &empty_attrs;
6851
struct attribute **tsx_attr = &empty_attrs;
6852
union cpuid10_edx edx;
6853
union cpuid10_eax eax;
6854
union cpuid10_ebx ebx;
6855
unsigned int fixed_mask;
6856
bool pmem = false;
6857
int version, i;
6858
char *name;
6859
struct x86_hybrid_pmu *pmu;
6860
6861
/* Architectural Perfmon was introduced starting with Core "Yonah" */
6862
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6863
switch (boot_cpu_data.x86) {
6864
case 6:
6865
if (boot_cpu_data.x86_vfm < INTEL_CORE_YONAH)
6866
return p6_pmu_init();
6867
break;
6868
case 11:
6869
return knc_pmu_init();
6870
case 15:
6871
return p4_pmu_init();
6872
}
6873
6874
pr_cont("unsupported CPU family %d model %d ",
6875
boot_cpu_data.x86, boot_cpu_data.x86_model);
6876
return -ENODEV;
6877
}
6878
6879
/*
6880
* Check whether the Architectural PerfMon supports
6881
* Branch Misses Retired hw_event or not.
6882
*/
6883
cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6884
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6885
return -ENODEV;
6886
6887
version = eax.split.version_id;
6888
if (version < 2)
6889
x86_pmu = core_pmu;
6890
else
6891
x86_pmu = intel_pmu;
6892
6893
x86_pmu.version = version;
6894
x86_pmu.cntr_mask64 = GENMASK_ULL(eax.split.num_counters - 1, 0);
6895
x86_pmu.cntval_bits = eax.split.bit_width;
6896
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
6897
6898
x86_pmu.events_maskl = ebx.full;
6899
x86_pmu.events_mask_len = eax.split.mask_length;
6900
6901
x86_pmu.pebs_events_mask = intel_pmu_pebs_mask(x86_pmu.cntr_mask64);
6902
x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
6903
x86_pmu.config_mask = X86_RAW_EVENT_MASK;
6904
6905
/*
6906
* Quirk: v2 perfmon does not report fixed-purpose events, so
6907
* assume at least 3 events, when not running in a hypervisor:
6908
*/
6909
if (version > 1 && version < 5) {
6910
int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6911
6912
x86_pmu.fixed_cntr_mask64 =
6913
GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0);
6914
} else if (version >= 5)
6915
x86_pmu.fixed_cntr_mask64 = fixed_mask;
6916
6917
if (boot_cpu_has(X86_FEATURE_PDCM)) {
6918
u64 capabilities;
6919
6920
rdmsrq(MSR_IA32_PERF_CAPABILITIES, capabilities);
6921
x86_pmu.intel_cap.capabilities = capabilities;
6922
}
6923
6924
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6925
x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6926
x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6927
}
6928
6929
if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6930
intel_pmu_arch_lbr_init();
6931
6932
intel_pebs_init();
6933
6934
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6935
6936
if (version >= 5) {
6937
x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6938
if (x86_pmu.intel_cap.anythread_deprecated)
6939
pr_cont(" AnyThread deprecated, ");
6940
}
6941
6942
/*
6943
* Many features on and after V6 require dynamic constraint,
6944
* e.g., Arch PEBS, ACR.
6945
*/
6946
if (version >= 6)
6947
x86_pmu.flags |= PMU_FL_DYN_CONSTRAINT;
6948
/*
6949
* Install the hw-cache-events table:
6950
*/
6951
switch (boot_cpu_data.x86_vfm) {
6952
case INTEL_CORE_YONAH:
6953
pr_cont("Core events, ");
6954
name = "core";
6955
break;
6956
6957
case INTEL_CORE2_MEROM:
6958
x86_add_quirk(intel_clovertown_quirk);
6959
fallthrough;
6960
6961
case INTEL_CORE2_MEROM_L:
6962
case INTEL_CORE2_PENRYN:
6963
case INTEL_CORE2_DUNNINGTON:
6964
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6965
sizeof(hw_cache_event_ids));
6966
6967
intel_pmu_lbr_init_core();
6968
6969
x86_pmu.event_constraints = intel_core2_event_constraints;
6970
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6971
pr_cont("Core2 events, ");
6972
name = "core2";
6973
break;
6974
6975
case INTEL_NEHALEM:
6976
case INTEL_NEHALEM_EP:
6977
case INTEL_NEHALEM_EX:
6978
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6979
sizeof(hw_cache_event_ids));
6980
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6981
sizeof(hw_cache_extra_regs));
6982
6983
intel_pmu_lbr_init_nhm();
6984
6985
x86_pmu.event_constraints = intel_nehalem_event_constraints;
6986
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6987
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6988
x86_pmu.extra_regs = intel_nehalem_extra_regs;
6989
x86_pmu.limit_period = nhm_limit_period;
6990
6991
mem_attr = nhm_mem_events_attrs;
6992
6993
/* UOPS_ISSUED.STALLED_CYCLES */
6994
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6995
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6996
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6997
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6998
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6999
7000
intel_pmu_pebs_data_source_nhm();
7001
x86_add_quirk(intel_nehalem_quirk);
7002
x86_pmu.pebs_no_tlb = 1;
7003
extra_attr = nhm_format_attr;
7004
7005
pr_cont("Nehalem events, ");
7006
name = "nehalem";
7007
break;
7008
7009
case INTEL_ATOM_BONNELL:
7010
case INTEL_ATOM_BONNELL_MID:
7011
case INTEL_ATOM_SALTWELL:
7012
case INTEL_ATOM_SALTWELL_MID:
7013
case INTEL_ATOM_SALTWELL_TABLET:
7014
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
7015
sizeof(hw_cache_event_ids));
7016
7017
intel_pmu_lbr_init_atom();
7018
7019
x86_pmu.event_constraints = intel_gen_event_constraints;
7020
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
7021
x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
7022
pr_cont("Atom events, ");
7023
name = "bonnell";
7024
break;
7025
7026
case INTEL_ATOM_SILVERMONT:
7027
case INTEL_ATOM_SILVERMONT_D:
7028
case INTEL_ATOM_SILVERMONT_MID:
7029
case INTEL_ATOM_AIRMONT:
7030
case INTEL_ATOM_SILVERMONT_MID2:
7031
memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
7032
sizeof(hw_cache_event_ids));
7033
memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
7034
sizeof(hw_cache_extra_regs));
7035
7036
intel_pmu_lbr_init_slm();
7037
7038
x86_pmu.event_constraints = intel_slm_event_constraints;
7039
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7040
x86_pmu.extra_regs = intel_slm_extra_regs;
7041
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7042
td_attr = slm_events_attrs;
7043
extra_attr = slm_format_attr;
7044
pr_cont("Silvermont events, ");
7045
name = "silvermont";
7046
break;
7047
7048
case INTEL_ATOM_GOLDMONT:
7049
case INTEL_ATOM_GOLDMONT_D:
7050
memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
7051
sizeof(hw_cache_event_ids));
7052
memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
7053
sizeof(hw_cache_extra_regs));
7054
7055
intel_pmu_lbr_init_skl();
7056
7057
x86_pmu.event_constraints = intel_slm_event_constraints;
7058
x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
7059
x86_pmu.extra_regs = intel_glm_extra_regs;
7060
/*
7061
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7062
* for precise cycles.
7063
* :pp is identical to :ppp
7064
*/
7065
x86_pmu.pebs_aliases = NULL;
7066
x86_pmu.pebs_prec_dist = true;
7067
x86_pmu.lbr_pt_coexist = true;
7068
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7069
td_attr = glm_events_attrs;
7070
extra_attr = slm_format_attr;
7071
pr_cont("Goldmont events, ");
7072
name = "goldmont";
7073
break;
7074
7075
case INTEL_ATOM_GOLDMONT_PLUS:
7076
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7077
sizeof(hw_cache_event_ids));
7078
memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
7079
sizeof(hw_cache_extra_regs));
7080
7081
intel_pmu_lbr_init_skl();
7082
7083
x86_pmu.event_constraints = intel_slm_event_constraints;
7084
x86_pmu.extra_regs = intel_glm_extra_regs;
7085
/*
7086
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7087
* for precise cycles.
7088
*/
7089
x86_pmu.pebs_aliases = NULL;
7090
x86_pmu.pebs_prec_dist = true;
7091
x86_pmu.lbr_pt_coexist = true;
7092
x86_pmu.pebs_capable = ~0ULL;
7093
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7094
x86_pmu.flags |= PMU_FL_PEBS_ALL;
7095
x86_pmu.get_event_constraints = glp_get_event_constraints;
7096
td_attr = glm_events_attrs;
7097
/* Goldmont Plus has 4-wide pipeline */
7098
event_attr_td_total_slots_scale_glm.event_str = "4";
7099
extra_attr = slm_format_attr;
7100
pr_cont("Goldmont plus events, ");
7101
name = "goldmont_plus";
7102
break;
7103
7104
case INTEL_ATOM_TREMONT_D:
7105
case INTEL_ATOM_TREMONT:
7106
case INTEL_ATOM_TREMONT_L:
7107
x86_pmu.late_ack = true;
7108
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7109
sizeof(hw_cache_event_ids));
7110
memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
7111
sizeof(hw_cache_extra_regs));
7112
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7113
7114
intel_pmu_lbr_init_skl();
7115
7116
x86_pmu.event_constraints = intel_slm_event_constraints;
7117
x86_pmu.extra_regs = intel_tnt_extra_regs;
7118
/*
7119
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7120
* for precise cycles.
7121
*/
7122
x86_pmu.pebs_aliases = NULL;
7123
x86_pmu.pebs_prec_dist = true;
7124
x86_pmu.lbr_pt_coexist = true;
7125
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7126
x86_pmu.get_event_constraints = tnt_get_event_constraints;
7127
td_attr = tnt_events_attrs;
7128
extra_attr = slm_format_attr;
7129
pr_cont("Tremont events, ");
7130
name = "Tremont";
7131
break;
7132
7133
case INTEL_ATOM_GRACEMONT:
7134
intel_pmu_init_grt(NULL);
7135
intel_pmu_pebs_data_source_grt();
7136
x86_pmu.pebs_latency_data = grt_latency_data;
7137
x86_pmu.get_event_constraints = tnt_get_event_constraints;
7138
td_attr = tnt_events_attrs;
7139
mem_attr = grt_mem_attrs;
7140
extra_attr = nhm_format_attr;
7141
pr_cont("Gracemont events, ");
7142
name = "gracemont";
7143
break;
7144
7145
case INTEL_ATOM_CRESTMONT:
7146
case INTEL_ATOM_CRESTMONT_X:
7147
intel_pmu_init_grt(NULL);
7148
x86_pmu.extra_regs = intel_cmt_extra_regs;
7149
intel_pmu_pebs_data_source_cmt();
7150
x86_pmu.pebs_latency_data = cmt_latency_data;
7151
x86_pmu.get_event_constraints = cmt_get_event_constraints;
7152
td_attr = cmt_events_attrs;
7153
mem_attr = grt_mem_attrs;
7154
extra_attr = cmt_format_attr;
7155
pr_cont("Crestmont events, ");
7156
name = "crestmont";
7157
break;
7158
7159
case INTEL_ATOM_DARKMONT_X:
7160
intel_pmu_init_skt(NULL);
7161
intel_pmu_pebs_data_source_cmt();
7162
x86_pmu.pebs_latency_data = cmt_latency_data;
7163
x86_pmu.get_event_constraints = cmt_get_event_constraints;
7164
td_attr = skt_events_attrs;
7165
mem_attr = grt_mem_attrs;
7166
extra_attr = cmt_format_attr;
7167
pr_cont("Darkmont events, ");
7168
name = "darkmont";
7169
break;
7170
7171
case INTEL_WESTMERE:
7172
case INTEL_WESTMERE_EP:
7173
case INTEL_WESTMERE_EX:
7174
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
7175
sizeof(hw_cache_event_ids));
7176
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7177
sizeof(hw_cache_extra_regs));
7178
7179
intel_pmu_lbr_init_nhm();
7180
7181
x86_pmu.event_constraints = intel_westmere_event_constraints;
7182
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7183
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
7184
x86_pmu.extra_regs = intel_westmere_extra_regs;
7185
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7186
7187
mem_attr = nhm_mem_events_attrs;
7188
7189
/* UOPS_ISSUED.STALLED_CYCLES */
7190
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7191
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7192
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7193
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7194
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7195
7196
intel_pmu_pebs_data_source_nhm();
7197
extra_attr = nhm_format_attr;
7198
pr_cont("Westmere events, ");
7199
name = "westmere";
7200
break;
7201
7202
case INTEL_SANDYBRIDGE:
7203
case INTEL_SANDYBRIDGE_X:
7204
x86_add_quirk(intel_sandybridge_quirk);
7205
x86_add_quirk(intel_ht_bug);
7206
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7207
sizeof(hw_cache_event_ids));
7208
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7209
sizeof(hw_cache_extra_regs));
7210
7211
intel_pmu_lbr_init_snb();
7212
7213
x86_pmu.event_constraints = intel_snb_event_constraints;
7214
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
7215
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
7216
if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X)
7217
x86_pmu.extra_regs = intel_snbep_extra_regs;
7218
else
7219
x86_pmu.extra_regs = intel_snb_extra_regs;
7220
7221
7222
/* all extra regs are per-cpu when HT is on */
7223
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7224
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7225
7226
td_attr = snb_events_attrs;
7227
mem_attr = snb_mem_events_attrs;
7228
7229
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7230
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7231
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7232
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
7233
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7234
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
7235
7236
extra_attr = nhm_format_attr;
7237
7238
pr_cont("SandyBridge events, ");
7239
name = "sandybridge";
7240
break;
7241
7242
case INTEL_IVYBRIDGE:
7243
case INTEL_IVYBRIDGE_X:
7244
x86_add_quirk(intel_ht_bug);
7245
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7246
sizeof(hw_cache_event_ids));
7247
/* dTLB-load-misses on IVB is different than SNB */
7248
hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
7249
7250
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7251
sizeof(hw_cache_extra_regs));
7252
7253
intel_pmu_lbr_init_snb();
7254
7255
x86_pmu.event_constraints = intel_ivb_event_constraints;
7256
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
7257
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7258
x86_pmu.pebs_prec_dist = true;
7259
if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X)
7260
x86_pmu.extra_regs = intel_snbep_extra_regs;
7261
else
7262
x86_pmu.extra_regs = intel_snb_extra_regs;
7263
/* all extra regs are per-cpu when HT is on */
7264
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7265
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7266
7267
td_attr = snb_events_attrs;
7268
mem_attr = snb_mem_events_attrs;
7269
7270
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7271
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7272
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7273
7274
extra_attr = nhm_format_attr;
7275
7276
pr_cont("IvyBridge events, ");
7277
name = "ivybridge";
7278
break;
7279
7280
7281
case INTEL_HASWELL:
7282
case INTEL_HASWELL_X:
7283
case INTEL_HASWELL_L:
7284
case INTEL_HASWELL_G:
7285
x86_add_quirk(intel_ht_bug);
7286
x86_add_quirk(intel_pebs_isolation_quirk);
7287
x86_pmu.late_ack = true;
7288
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7289
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7290
7291
intel_pmu_lbr_init_hsw();
7292
7293
x86_pmu.event_constraints = intel_hsw_event_constraints;
7294
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
7295
x86_pmu.extra_regs = intel_snbep_extra_regs;
7296
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7297
x86_pmu.pebs_prec_dist = true;
7298
/* all extra regs are per-cpu when HT is on */
7299
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7300
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7301
7302
x86_pmu.hw_config = hsw_hw_config;
7303
x86_pmu.get_event_constraints = hsw_get_event_constraints;
7304
x86_pmu.limit_period = hsw_limit_period;
7305
x86_pmu.lbr_double_abort = true;
7306
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7307
hsw_format_attr : nhm_format_attr;
7308
td_attr = hsw_events_attrs;
7309
mem_attr = hsw_mem_events_attrs;
7310
tsx_attr = hsw_tsx_events_attrs;
7311
pr_cont("Haswell events, ");
7312
name = "haswell";
7313
break;
7314
7315
case INTEL_BROADWELL:
7316
case INTEL_BROADWELL_D:
7317
case INTEL_BROADWELL_G:
7318
case INTEL_BROADWELL_X:
7319
x86_add_quirk(intel_pebs_isolation_quirk);
7320
x86_pmu.late_ack = true;
7321
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7322
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7323
7324
/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
7325
hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
7326
BDW_L3_MISS|HSW_SNOOP_DRAM;
7327
hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
7328
HSW_SNOOP_DRAM;
7329
hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
7330
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
7331
hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
7332
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
7333
7334
intel_pmu_lbr_init_hsw();
7335
7336
x86_pmu.event_constraints = intel_bdw_event_constraints;
7337
x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
7338
x86_pmu.extra_regs = intel_snbep_extra_regs;
7339
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7340
x86_pmu.pebs_prec_dist = true;
7341
/* all extra regs are per-cpu when HT is on */
7342
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7343
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7344
7345
x86_pmu.hw_config = hsw_hw_config;
7346
x86_pmu.get_event_constraints = hsw_get_event_constraints;
7347
x86_pmu.limit_period = bdw_limit_period;
7348
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7349
hsw_format_attr : nhm_format_attr;
7350
td_attr = hsw_events_attrs;
7351
mem_attr = hsw_mem_events_attrs;
7352
tsx_attr = hsw_tsx_events_attrs;
7353
pr_cont("Broadwell events, ");
7354
name = "broadwell";
7355
break;
7356
7357
case INTEL_XEON_PHI_KNL:
7358
case INTEL_XEON_PHI_KNM:
7359
memcpy(hw_cache_event_ids,
7360
slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7361
memcpy(hw_cache_extra_regs,
7362
knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7363
intel_pmu_lbr_init_knl();
7364
7365
x86_pmu.event_constraints = intel_slm_event_constraints;
7366
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7367
x86_pmu.extra_regs = intel_knl_extra_regs;
7368
7369
/* all extra regs are per-cpu when HT is on */
7370
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7371
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7372
extra_attr = slm_format_attr;
7373
pr_cont("Knights Landing/Mill events, ");
7374
name = "knights-landing";
7375
break;
7376
7377
case INTEL_SKYLAKE_X:
7378
pmem = true;
7379
fallthrough;
7380
case INTEL_SKYLAKE_L:
7381
case INTEL_SKYLAKE:
7382
case INTEL_KABYLAKE_L:
7383
case INTEL_KABYLAKE:
7384
case INTEL_COMETLAKE_L:
7385
case INTEL_COMETLAKE:
7386
x86_add_quirk(intel_pebs_isolation_quirk);
7387
x86_pmu.late_ack = true;
7388
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7389
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7390
intel_pmu_lbr_init_skl();
7391
7392
/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
7393
event_attr_td_recovery_bubbles.event_str_noht =
7394
"event=0xd,umask=0x1,cmask=1";
7395
event_attr_td_recovery_bubbles.event_str_ht =
7396
"event=0xd,umask=0x1,cmask=1,any=1";
7397
7398
x86_pmu.event_constraints = intel_skl_event_constraints;
7399
x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
7400
x86_pmu.extra_regs = intel_skl_extra_regs;
7401
x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
7402
x86_pmu.pebs_prec_dist = true;
7403
/* all extra regs are per-cpu when HT is on */
7404
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7405
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7406
7407
x86_pmu.hw_config = hsw_hw_config;
7408
x86_pmu.get_event_constraints = hsw_get_event_constraints;
7409
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7410
hsw_format_attr : nhm_format_attr;
7411
extra_skl_attr = skl_format_attr;
7412
td_attr = hsw_events_attrs;
7413
mem_attr = hsw_mem_events_attrs;
7414
tsx_attr = hsw_tsx_events_attrs;
7415
intel_pmu_pebs_data_source_skl(pmem);
7416
7417
/*
7418
* Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
7419
* TSX force abort hooks are not required on these systems. Only deploy
7420
* workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
7421
*/
7422
if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
7423
!boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
7424
x86_pmu.flags |= PMU_FL_TFA;
7425
x86_pmu.get_event_constraints = tfa_get_event_constraints;
7426
x86_pmu.enable_all = intel_tfa_pmu_enable_all;
7427
x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
7428
}
7429
7430
pr_cont("Skylake events, ");
7431
name = "skylake";
7432
break;
7433
7434
case INTEL_ICELAKE_X:
7435
case INTEL_ICELAKE_D:
7436
x86_pmu.pebs_ept = 1;
7437
pmem = true;
7438
fallthrough;
7439
case INTEL_ICELAKE_L:
7440
case INTEL_ICELAKE:
7441
case INTEL_TIGERLAKE_L:
7442
case INTEL_TIGERLAKE:
7443
case INTEL_ROCKETLAKE:
7444
x86_pmu.late_ack = true;
7445
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7446
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7447
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7448
intel_pmu_lbr_init_skl();
7449
7450
x86_pmu.event_constraints = intel_icl_event_constraints;
7451
x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
7452
x86_pmu.extra_regs = intel_icl_extra_regs;
7453
x86_pmu.pebs_aliases = NULL;
7454
x86_pmu.pebs_prec_dist = true;
7455
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7456
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7457
7458
x86_pmu.hw_config = hsw_hw_config;
7459
x86_pmu.get_event_constraints = icl_get_event_constraints;
7460
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7461
hsw_format_attr : nhm_format_attr;
7462
extra_skl_attr = skl_format_attr;
7463
mem_attr = icl_events_attrs;
7464
td_attr = icl_td_events_attrs;
7465
tsx_attr = icl_tsx_events_attrs;
7466
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
7467
x86_pmu.lbr_pt_coexist = true;
7468
intel_pmu_pebs_data_source_skl(pmem);
7469
x86_pmu.num_topdown_events = 4;
7470
static_call_update(intel_pmu_update_topdown_event,
7471
&icl_update_topdown_event);
7472
static_call_update(intel_pmu_set_topdown_event_period,
7473
&icl_set_topdown_event_period);
7474
pr_cont("Icelake events, ");
7475
name = "icelake";
7476
break;
7477
7478
case INTEL_SAPPHIRERAPIDS_X:
7479
case INTEL_EMERALDRAPIDS_X:
7480
x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7481
x86_pmu.extra_regs = intel_glc_extra_regs;
7482
pr_cont("Sapphire Rapids events, ");
7483
name = "sapphire_rapids";
7484
goto glc_common;
7485
7486
case INTEL_GRANITERAPIDS_X:
7487
case INTEL_GRANITERAPIDS_D:
7488
x86_pmu.extra_regs = intel_rwc_extra_regs;
7489
pr_cont("Granite Rapids events, ");
7490
name = "granite_rapids";
7491
7492
glc_common:
7493
intel_pmu_init_glc(NULL);
7494
x86_pmu.pebs_ept = 1;
7495
x86_pmu.hw_config = hsw_hw_config;
7496
x86_pmu.get_event_constraints = glc_get_event_constraints;
7497
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7498
hsw_format_attr : nhm_format_attr;
7499
extra_skl_attr = skl_format_attr;
7500
mem_attr = glc_events_attrs;
7501
td_attr = glc_td_events_attrs;
7502
tsx_attr = glc_tsx_events_attrs;
7503
intel_pmu_pebs_data_source_skl(true);
7504
break;
7505
7506
case INTEL_ALDERLAKE:
7507
case INTEL_ALDERLAKE_L:
7508
case INTEL_RAPTORLAKE:
7509
case INTEL_RAPTORLAKE_P:
7510
case INTEL_RAPTORLAKE_S:
7511
/*
7512
* Alder Lake has 2 types of CPU, core and atom.
7513
*
7514
* Initialize the common PerfMon capabilities here.
7515
*/
7516
intel_pmu_init_hybrid(hybrid_big_small);
7517
7518
x86_pmu.pebs_latency_data = grt_latency_data;
7519
x86_pmu.get_event_constraints = adl_get_event_constraints;
7520
x86_pmu.hw_config = adl_hw_config;
7521
x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
7522
7523
td_attr = adl_hybrid_events_attrs;
7524
mem_attr = adl_hybrid_mem_attrs;
7525
tsx_attr = adl_hybrid_tsx_attrs;
7526
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7527
adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
7528
7529
/* Initialize big core specific PerfMon capabilities.*/
7530
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7531
intel_pmu_init_glc(&pmu->pmu);
7532
if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
7533
pmu->cntr_mask64 <<= 2;
7534
pmu->cntr_mask64 |= 0x3;
7535
pmu->fixed_cntr_mask64 <<= 1;
7536
pmu->fixed_cntr_mask64 |= 0x1;
7537
} else {
7538
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7539
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7540
}
7541
7542
/*
7543
* Quirk: For some Alder Lake machine, when all E-cores are disabled in
7544
* a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
7545
* the X86_FEATURE_HYBRID_CPU is still set. The above codes will
7546
* mistakenly add extra counters for P-cores. Correct the number of
7547
* counters here.
7548
*/
7549
if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) {
7550
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7551
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7552
}
7553
7554
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7555
pmu->unconstrained = (struct event_constraint)
7556
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7557
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7558
7559
pmu->extra_regs = intel_glc_extra_regs;
7560
7561
/* Initialize Atom core specific PerfMon capabilities.*/
7562
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7563
intel_pmu_init_grt(&pmu->pmu);
7564
7565
x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7566
intel_pmu_pebs_data_source_adl();
7567
pr_cont("Alderlake Hybrid events, ");
7568
name = "alderlake_hybrid";
7569
break;
7570
7571
case INTEL_METEORLAKE:
7572
case INTEL_METEORLAKE_L:
7573
case INTEL_ARROWLAKE_U:
7574
intel_pmu_init_hybrid(hybrid_big_small);
7575
7576
x86_pmu.pebs_latency_data = cmt_latency_data;
7577
x86_pmu.get_event_constraints = mtl_get_event_constraints;
7578
x86_pmu.hw_config = adl_hw_config;
7579
7580
td_attr = adl_hybrid_events_attrs;
7581
mem_attr = mtl_hybrid_mem_attrs;
7582
tsx_attr = adl_hybrid_tsx_attrs;
7583
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7584
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7585
7586
/* Initialize big core specific PerfMon capabilities.*/
7587
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7588
intel_pmu_init_glc(&pmu->pmu);
7589
pmu->extra_regs = intel_rwc_extra_regs;
7590
7591
/* Initialize Atom core specific PerfMon capabilities.*/
7592
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7593
intel_pmu_init_grt(&pmu->pmu);
7594
pmu->extra_regs = intel_cmt_extra_regs;
7595
7596
intel_pmu_pebs_data_source_mtl();
7597
pr_cont("Meteorlake Hybrid events, ");
7598
name = "meteorlake_hybrid";
7599
break;
7600
7601
case INTEL_PANTHERLAKE_L:
7602
pr_cont("Pantherlake Hybrid events, ");
7603
name = "pantherlake_hybrid";
7604
goto lnl_common;
7605
7606
case INTEL_LUNARLAKE_M:
7607
case INTEL_ARROWLAKE:
7608
pr_cont("Lunarlake Hybrid events, ");
7609
name = "lunarlake_hybrid";
7610
7611
lnl_common:
7612
intel_pmu_init_hybrid(hybrid_big_small);
7613
7614
x86_pmu.pebs_latency_data = lnl_latency_data;
7615
x86_pmu.get_event_constraints = mtl_get_event_constraints;
7616
x86_pmu.hw_config = adl_hw_config;
7617
7618
td_attr = lnl_hybrid_events_attrs;
7619
mem_attr = mtl_hybrid_mem_attrs;
7620
tsx_attr = adl_hybrid_tsx_attrs;
7621
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7622
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7623
7624
/* Initialize big core specific PerfMon capabilities.*/
7625
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7626
intel_pmu_init_lnc(&pmu->pmu);
7627
7628
/* Initialize Atom core specific PerfMon capabilities.*/
7629
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7630
intel_pmu_init_skt(&pmu->pmu);
7631
7632
intel_pmu_pebs_data_source_lnl();
7633
break;
7634
7635
case INTEL_ARROWLAKE_H:
7636
intel_pmu_init_hybrid(hybrid_big_small_tiny);
7637
7638
x86_pmu.pebs_latency_data = arl_h_latency_data;
7639
x86_pmu.get_event_constraints = arl_h_get_event_constraints;
7640
x86_pmu.hw_config = arl_h_hw_config;
7641
7642
td_attr = arl_h_hybrid_events_attrs;
7643
mem_attr = arl_h_hybrid_mem_attrs;
7644
tsx_attr = adl_hybrid_tsx_attrs;
7645
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7646
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7647
7648
/* Initialize big core specific PerfMon capabilities. */
7649
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7650
intel_pmu_init_lnc(&pmu->pmu);
7651
7652
/* Initialize Atom core specific PerfMon capabilities. */
7653
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7654
intel_pmu_init_skt(&pmu->pmu);
7655
7656
/* Initialize Lower Power Atom specific PerfMon capabilities. */
7657
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX];
7658
intel_pmu_init_grt(&pmu->pmu);
7659
pmu->extra_regs = intel_cmt_extra_regs;
7660
7661
intel_pmu_pebs_data_source_arl_h();
7662
pr_cont("ArrowLake-H Hybrid events, ");
7663
name = "arrowlake_h_hybrid";
7664
break;
7665
7666
default:
7667
switch (x86_pmu.version) {
7668
case 1:
7669
x86_pmu.event_constraints = intel_v1_event_constraints;
7670
pr_cont("generic architected perfmon v1, ");
7671
name = "generic_arch_v1";
7672
break;
7673
case 2:
7674
case 3:
7675
case 4:
7676
/*
7677
* default constraints for v2 and up
7678
*/
7679
x86_pmu.event_constraints = intel_gen_event_constraints;
7680
pr_cont("generic architected perfmon, ");
7681
name = "generic_arch_v2+";
7682
break;
7683
default:
7684
/*
7685
* The default constraints for v5 and up can support up to
7686
* 16 fixed counters. For the fixed counters 4 and later,
7687
* the pseudo-encoding is applied.
7688
* The constraints may be cut according to the CPUID enumeration
7689
* by inserting the EVENT_CONSTRAINT_END.
7690
*/
7691
if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED)
7692
x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
7693
intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1;
7694
x86_pmu.event_constraints = intel_v5_gen_event_constraints;
7695
pr_cont("generic architected perfmon, ");
7696
name = "generic_arch_v5+";
7697
break;
7698
}
7699
}
7700
7701
snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
7702
7703
if (!is_hybrid()) {
7704
group_events_td.attrs = td_attr;
7705
group_events_mem.attrs = mem_attr;
7706
group_events_tsx.attrs = tsx_attr;
7707
group_format_extra.attrs = extra_attr;
7708
group_format_extra_skl.attrs = extra_skl_attr;
7709
7710
x86_pmu.attr_update = attr_update;
7711
} else {
7712
hybrid_group_events_td.attrs = td_attr;
7713
hybrid_group_events_mem.attrs = mem_attr;
7714
hybrid_group_events_tsx.attrs = tsx_attr;
7715
hybrid_group_format_extra.attrs = extra_attr;
7716
7717
x86_pmu.attr_update = hybrid_attr_update;
7718
}
7719
7720
/*
7721
* The archPerfmonExt (0x23) includes an enhanced enumeration of
7722
* PMU architectural features with a per-core view. For non-hybrid,
7723
* each core has the same PMU capabilities. It's good enough to
7724
* update the x86_pmu from the booting CPU. For hybrid, the x86_pmu
7725
* is used to keep the common capabilities. Still keep the values
7726
* from the leaf 0xa. The core specific update will be done later
7727
* when a new type is online.
7728
*/
7729
if (!is_hybrid() && boot_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
7730
update_pmu_cap(NULL);
7731
7732
intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64,
7733
&x86_pmu.fixed_cntr_mask64,
7734
&x86_pmu.intel_ctrl);
7735
7736
/* AnyThread may be deprecated on arch perfmon v5 or later */
7737
if (x86_pmu.intel_cap.anythread_deprecated)
7738
x86_pmu.format_attrs = intel_arch_formats_attr;
7739
7740
intel_pmu_check_event_constraints(x86_pmu.event_constraints,
7741
x86_pmu.cntr_mask64,
7742
x86_pmu.fixed_cntr_mask64,
7743
x86_pmu.intel_ctrl);
7744
/*
7745
* Access LBR MSR may cause #GP under certain circumstances.
7746
* Check all LBR MSR here.
7747
* Disable LBR access if any LBR MSRs can not be accessed.
7748
*/
7749
if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
7750
x86_pmu.lbr_nr = 0;
7751
for (i = 0; i < x86_pmu.lbr_nr; i++) {
7752
if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
7753
check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
7754
x86_pmu.lbr_nr = 0;
7755
}
7756
7757
if (x86_pmu.lbr_nr) {
7758
intel_pmu_lbr_init();
7759
7760
pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
7761
7762
/* only support branch_stack snapshot for perfmon >= v2 */
7763
if (x86_pmu.disable_all == intel_pmu_disable_all) {
7764
if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
7765
static_call_update(perf_snapshot_branch_stack,
7766
intel_pmu_snapshot_arch_branch_stack);
7767
} else {
7768
static_call_update(perf_snapshot_branch_stack,
7769
intel_pmu_snapshot_branch_stack);
7770
}
7771
}
7772
}
7773
7774
intel_pmu_check_extra_regs(x86_pmu.extra_regs);
7775
7776
/* Support full width counters using alternative MSR range */
7777
if (x86_pmu.intel_cap.full_width_write) {
7778
x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
7779
x86_pmu.perfctr = MSR_IA32_PMC0;
7780
pr_cont("full-width counters, ");
7781
}
7782
7783
/* Support V6+ MSR Aliasing */
7784
if (x86_pmu.version >= 6) {
7785
x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR;
7786
x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A;
7787
x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR;
7788
x86_pmu.addr_offset = intel_pmu_v6_addr_offset;
7789
}
7790
7791
if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
7792
x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
7793
7794
if (x86_pmu.intel_cap.pebs_timing_info)
7795
x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
7796
7797
intel_aux_output_init();
7798
7799
return 0;
7800
}
7801
7802
/*
7803
* HT bug: phase 2 init
7804
* Called once we have valid topology information to check
7805
* whether or not HT is enabled
7806
* If HT is off, then we disable the workaround
7807
*/
7808
static __init int fixup_ht_bug(void)
7809
{
7810
int c;
7811
/*
7812
* problem not present on this CPU model, nothing to do
7813
*/
7814
if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7815
return 0;
7816
7817
if (topology_max_smt_threads() > 1) {
7818
pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7819
return 0;
7820
}
7821
7822
cpus_read_lock();
7823
7824
hardlockup_detector_perf_stop();
7825
7826
x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7827
7828
x86_pmu.start_scheduling = NULL;
7829
x86_pmu.commit_scheduling = NULL;
7830
x86_pmu.stop_scheduling = NULL;
7831
7832
hardlockup_detector_perf_restart();
7833
7834
for_each_online_cpu(c)
7835
free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7836
7837
cpus_read_unlock();
7838
pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7839
return 0;
7840
}
7841
subsys_initcall(fixup_ht_bug)
7842
7843