Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/events/intel/core.c
50379 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Per core/cpu state
4
*
5
* Used to coordinate shared registers between HT threads or
6
* among events on a single PMU.
7
*/
8
9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11
#include <linux/stddef.h>
12
#include <linux/types.h>
13
#include <linux/init.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16
#include <linux/nmi.h>
17
#include <linux/kvm_host.h>
18
19
#include <asm/cpufeature.h>
20
#include <asm/debugreg.h>
21
#include <asm/hardirq.h>
22
#include <asm/intel-family.h>
23
#include <asm/intel_pt.h>
24
#include <asm/apic.h>
25
#include <asm/cpu_device_id.h>
26
#include <asm/msr.h>
27
28
#include "../perf_event.h"
29
30
/*
31
* Intel PerfMon, used on Core and later.
32
*/
33
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
34
{
35
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
36
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
37
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
38
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
39
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
40
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
41
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
42
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
43
};
44
45
static struct event_constraint intel_core_event_constraints[] __read_mostly =
46
{
47
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
48
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
49
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
50
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
51
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
52
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
53
EVENT_CONSTRAINT_END
54
};
55
56
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
57
{
58
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
59
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
60
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
61
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
62
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
63
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
64
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
65
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
66
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
67
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
68
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
69
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
70
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
71
EVENT_CONSTRAINT_END
72
};
73
74
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
75
{
76
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
77
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
78
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
79
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
80
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
81
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
82
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
83
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
84
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
85
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
86
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
87
EVENT_CONSTRAINT_END
88
};
89
90
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
91
{
92
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
93
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
94
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
95
EVENT_EXTRA_END
96
};
97
98
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
99
{
100
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
101
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
102
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
103
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
104
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
105
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
106
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
107
EVENT_CONSTRAINT_END
108
};
109
110
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
111
{
112
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
113
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
114
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
115
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
117
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
119
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
120
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
121
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
122
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
123
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
124
125
/*
126
* When HT is off these events can only run on the bottom 4 counters
127
* When HT is on, they are impacted by the HT bug and require EXCL access
128
*/
129
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
130
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
131
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
132
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
133
134
EVENT_CONSTRAINT_END
135
};
136
137
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
138
{
139
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
140
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
141
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
142
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
143
INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
144
INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
145
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
146
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
147
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
148
INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
149
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
150
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
151
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
152
153
/*
154
* When HT is off these events can only run on the bottom 4 counters
155
* When HT is on, they are impacted by the HT bug and require EXCL access
156
*/
157
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
158
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
159
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
160
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
161
162
EVENT_CONSTRAINT_END
163
};
164
165
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
166
{
167
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
168
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
169
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
170
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
171
EVENT_EXTRA_END
172
};
173
174
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
175
{
176
EVENT_CONSTRAINT_END
177
};
178
179
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
180
{
181
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184
EVENT_CONSTRAINT_END
185
};
186
187
static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
188
{
189
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
190
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
191
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
192
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
193
FIXED_EVENT_CONSTRAINT(0x0500, 4),
194
FIXED_EVENT_CONSTRAINT(0x0600, 5),
195
FIXED_EVENT_CONSTRAINT(0x0700, 6),
196
FIXED_EVENT_CONSTRAINT(0x0800, 7),
197
FIXED_EVENT_CONSTRAINT(0x0900, 8),
198
FIXED_EVENT_CONSTRAINT(0x0a00, 9),
199
FIXED_EVENT_CONSTRAINT(0x0b00, 10),
200
FIXED_EVENT_CONSTRAINT(0x0c00, 11),
201
FIXED_EVENT_CONSTRAINT(0x0d00, 12),
202
FIXED_EVENT_CONSTRAINT(0x0e00, 13),
203
FIXED_EVENT_CONSTRAINT(0x0f00, 14),
204
FIXED_EVENT_CONSTRAINT(0x1000, 15),
205
EVENT_CONSTRAINT_END
206
};
207
208
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
209
{
210
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
211
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
212
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
213
EVENT_CONSTRAINT_END
214
};
215
216
static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
217
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
218
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
219
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
220
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
221
EVENT_CONSTRAINT_END
222
};
223
224
static struct event_constraint intel_skt_event_constraints[] __read_mostly = {
225
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
226
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
227
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
228
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
229
FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
230
FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
231
FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
232
EVENT_CONSTRAINT_END
233
};
234
235
static struct event_constraint intel_arw_event_constraints[] __read_mostly = {
236
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
237
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
238
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
239
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
240
FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
241
FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
242
FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
243
INTEL_UEVENT_CONSTRAINT(0x01b7, 0x1),
244
INTEL_UEVENT_CONSTRAINT(0x02b7, 0x2),
245
INTEL_UEVENT_CONSTRAINT(0x04b7, 0x4),
246
INTEL_UEVENT_CONSTRAINT(0x08b7, 0x8),
247
INTEL_UEVENT_CONSTRAINT(0x01d4, 0x1),
248
INTEL_UEVENT_CONSTRAINT(0x02d4, 0x2),
249
INTEL_UEVENT_CONSTRAINT(0x04d4, 0x4),
250
INTEL_UEVENT_CONSTRAINT(0x08d4, 0x8),
251
INTEL_UEVENT_CONSTRAINT(0x0175, 0x1),
252
INTEL_UEVENT_CONSTRAINT(0x0275, 0x2),
253
INTEL_UEVENT_CONSTRAINT(0x21d3, 0x1),
254
INTEL_UEVENT_CONSTRAINT(0x22d3, 0x1),
255
EVENT_CONSTRAINT_END
256
};
257
258
static struct event_constraint intel_skl_event_constraints[] = {
259
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
260
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
261
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
262
INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
263
264
/*
265
* when HT is off, these can only run on the bottom 4 counters
266
*/
267
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
268
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
269
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
270
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
271
INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
272
273
EVENT_CONSTRAINT_END
274
};
275
276
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
277
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
278
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
279
EVENT_EXTRA_END
280
};
281
282
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
283
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
284
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
285
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
286
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
287
EVENT_EXTRA_END
288
};
289
290
static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
291
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
292
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
293
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
294
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
295
EVENT_EXTRA_END
296
};
297
298
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
299
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
300
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
301
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
302
/*
303
* Note the low 8 bits eventsel code is not a continuous field, containing
304
* some #GPing bits. These are masked out.
305
*/
306
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
307
EVENT_EXTRA_END
308
};
309
310
static struct event_constraint intel_icl_event_constraints[] = {
311
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
312
FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
313
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
314
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
315
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
316
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
317
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
318
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
319
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
320
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
321
INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
322
INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
323
INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
324
INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
325
INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
326
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
327
INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
328
INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
329
INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
330
INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
331
INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
332
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
333
INTEL_EVENT_CONSTRAINT(0xef, 0xf),
334
INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
335
EVENT_CONSTRAINT_END
336
};
337
338
static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
339
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
340
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
341
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
342
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
343
EVENT_EXTRA_END
344
};
345
346
static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
347
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
348
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
349
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
350
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
351
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
352
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
353
EVENT_EXTRA_END
354
};
355
356
static struct event_constraint intel_glc_event_constraints[] = {
357
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
358
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
359
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
360
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
361
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
362
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
363
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
364
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
365
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
366
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
367
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
368
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
369
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
370
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
371
372
INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
373
INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
374
/*
375
* Generally event codes < 0x90 are restricted to counters 0-3.
376
* The 0x2E and 0x3C are exception, which has no restriction.
377
*/
378
INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
379
380
INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
381
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
382
INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
383
INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
384
INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
385
INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
386
INTEL_EVENT_CONSTRAINT(0xce, 0x1),
387
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
388
/*
389
* Generally event codes >= 0x90 are likely to have no restrictions.
390
* The exception are defined as above.
391
*/
392
INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
393
394
EVENT_CONSTRAINT_END
395
};
396
397
static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
398
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
399
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
400
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
401
INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
402
INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
403
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
404
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
405
EVENT_EXTRA_END
406
};
407
408
static struct event_constraint intel_lnc_event_constraints[] = {
409
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
410
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
411
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
412
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
413
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
414
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
415
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
416
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
417
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
418
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
419
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
420
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
421
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
422
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
423
424
INTEL_EVENT_CONSTRAINT(0x20, 0xf),
425
426
INTEL_UEVENT_CONSTRAINT(0x012a, 0xf),
427
INTEL_UEVENT_CONSTRAINT(0x012b, 0xf),
428
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4),
429
INTEL_UEVENT_CONSTRAINT(0x0175, 0x4),
430
431
INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff),
432
INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff),
433
434
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
435
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
436
INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
437
INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
438
INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1),
439
INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
440
INTEL_UEVENT_CONSTRAINT(0x01cd, 0x3fc),
441
INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
442
443
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
444
445
INTEL_UEVENT_CONSTRAINT(0x00e0, 0xf),
446
447
EVENT_CONSTRAINT_END
448
};
449
450
static struct extra_reg intel_lnc_extra_regs[] __read_mostly = {
451
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0),
452
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1),
453
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
454
INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
455
INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
456
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
457
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
458
EVENT_EXTRA_END
459
};
460
461
static struct event_constraint intel_pnc_event_constraints[] = {
462
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
463
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
464
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
465
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
466
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
467
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
468
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
469
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
470
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
471
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
472
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
473
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
474
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
475
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
476
477
INTEL_EVENT_CONSTRAINT(0x20, 0xf),
478
INTEL_EVENT_CONSTRAINT(0x79, 0xf),
479
480
INTEL_UEVENT_CONSTRAINT(0x0275, 0xf),
481
INTEL_UEVENT_CONSTRAINT(0x0176, 0xf),
482
INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
483
INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
484
INTEL_UEVENT_CONSTRAINT(0x01cd, 0xfc),
485
INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
486
487
INTEL_EVENT_CONSTRAINT(0xd0, 0xf),
488
INTEL_EVENT_CONSTRAINT(0xd1, 0xf),
489
INTEL_EVENT_CONSTRAINT(0xd4, 0xf),
490
INTEL_EVENT_CONSTRAINT(0xd6, 0xf),
491
INTEL_EVENT_CONSTRAINT(0xdf, 0xf),
492
INTEL_EVENT_CONSTRAINT(0xce, 0x1),
493
494
INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
495
INTEL_UEVENT_CONSTRAINT(0x0847, 0xf),
496
INTEL_UEVENT_CONSTRAINT(0x0446, 0xf),
497
INTEL_UEVENT_CONSTRAINT(0x0846, 0xf),
498
INTEL_UEVENT_CONSTRAINT(0x0148, 0xf),
499
500
EVENT_CONSTRAINT_END
501
};
502
503
static struct extra_reg intel_pnc_extra_regs[] __read_mostly = {
504
/* must define OMR_X first, see intel_alt_er() */
505
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OMR_0, 0x40ffffff0000ffffull, OMR_0),
506
INTEL_UEVENT_EXTRA_REG(0x022a, MSR_OMR_1, 0x40ffffff0000ffffull, OMR_1),
507
INTEL_UEVENT_EXTRA_REG(0x042a, MSR_OMR_2, 0x40ffffff0000ffffull, OMR_2),
508
INTEL_UEVENT_EXTRA_REG(0x082a, MSR_OMR_3, 0x40ffffff0000ffffull, OMR_3),
509
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
510
INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
511
INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
512
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
513
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
514
EVENT_EXTRA_END
515
};
516
517
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
518
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
519
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
520
521
static struct attribute *nhm_mem_events_attrs[] = {
522
EVENT_PTR(mem_ld_nhm),
523
NULL,
524
};
525
526
/*
527
* topdown events for Intel Core CPUs.
528
*
529
* The events are all in slots, which is a free slot in a 4 wide
530
* pipeline. Some events are already reported in slots, for cycle
531
* events we multiply by the pipeline width (4).
532
*
533
* With Hyper Threading on, topdown metrics are either summed or averaged
534
* between the threads of a core: (count_t0 + count_t1).
535
*
536
* For the average case the metric is always scaled to pipeline width,
537
* so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
538
*/
539
540
EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
541
"event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
542
"event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
543
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
544
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
545
"event=0xe,umask=0x1"); /* uops_issued.any */
546
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
547
"event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
548
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
549
"event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
550
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
551
"event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
552
"event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
553
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
554
"4", "2");
555
556
EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
557
EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
558
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
559
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
560
EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
561
EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
562
EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
563
EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
564
EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
565
566
static struct attribute *snb_events_attrs[] = {
567
EVENT_PTR(td_slots_issued),
568
EVENT_PTR(td_slots_retired),
569
EVENT_PTR(td_fetch_bubbles),
570
EVENT_PTR(td_total_slots),
571
EVENT_PTR(td_total_slots_scale),
572
EVENT_PTR(td_recovery_bubbles),
573
EVENT_PTR(td_recovery_bubbles_scale),
574
NULL,
575
};
576
577
static struct attribute *snb_mem_events_attrs[] = {
578
EVENT_PTR(mem_ld_snb),
579
EVENT_PTR(mem_st_snb),
580
NULL,
581
};
582
583
static struct event_constraint intel_hsw_event_constraints[] = {
584
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
585
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
586
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
587
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
588
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
589
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
590
/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
591
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
592
/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
593
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
594
/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
595
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
596
597
/*
598
* When HT is off these events can only run on the bottom 4 counters
599
* When HT is on, they are impacted by the HT bug and require EXCL access
600
*/
601
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
602
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
603
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
604
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
605
606
EVENT_CONSTRAINT_END
607
};
608
609
static struct event_constraint intel_bdw_event_constraints[] = {
610
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
611
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
612
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
613
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
614
INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
615
/*
616
* when HT is off, these can only run on the bottom 4 counters
617
*/
618
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
619
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
620
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
621
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
622
EVENT_CONSTRAINT_END
623
};
624
625
static u64 intel_pmu_event_map(int hw_event)
626
{
627
return intel_perfmon_event_map[hw_event];
628
}
629
630
static __initconst const u64 glc_hw_cache_event_ids
631
[PERF_COUNT_HW_CACHE_MAX]
632
[PERF_COUNT_HW_CACHE_OP_MAX]
633
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
634
{
635
[ C(L1D ) ] = {
636
[ C(OP_READ) ] = {
637
[ C(RESULT_ACCESS) ] = 0x81d0,
638
[ C(RESULT_MISS) ] = 0xe124,
639
},
640
[ C(OP_WRITE) ] = {
641
[ C(RESULT_ACCESS) ] = 0x82d0,
642
},
643
},
644
[ C(L1I ) ] = {
645
[ C(OP_READ) ] = {
646
[ C(RESULT_MISS) ] = 0xe424,
647
},
648
[ C(OP_WRITE) ] = {
649
[ C(RESULT_ACCESS) ] = -1,
650
[ C(RESULT_MISS) ] = -1,
651
},
652
},
653
[ C(LL ) ] = {
654
[ C(OP_READ) ] = {
655
[ C(RESULT_ACCESS) ] = 0x12a,
656
[ C(RESULT_MISS) ] = 0x12a,
657
},
658
[ C(OP_WRITE) ] = {
659
[ C(RESULT_ACCESS) ] = 0x12a,
660
[ C(RESULT_MISS) ] = 0x12a,
661
},
662
},
663
[ C(DTLB) ] = {
664
[ C(OP_READ) ] = {
665
[ C(RESULT_ACCESS) ] = 0x81d0,
666
[ C(RESULT_MISS) ] = 0xe12,
667
},
668
[ C(OP_WRITE) ] = {
669
[ C(RESULT_ACCESS) ] = 0x82d0,
670
[ C(RESULT_MISS) ] = 0xe13,
671
},
672
},
673
[ C(ITLB) ] = {
674
[ C(OP_READ) ] = {
675
[ C(RESULT_ACCESS) ] = -1,
676
[ C(RESULT_MISS) ] = 0xe11,
677
},
678
[ C(OP_WRITE) ] = {
679
[ C(RESULT_ACCESS) ] = -1,
680
[ C(RESULT_MISS) ] = -1,
681
},
682
[ C(OP_PREFETCH) ] = {
683
[ C(RESULT_ACCESS) ] = -1,
684
[ C(RESULT_MISS) ] = -1,
685
},
686
},
687
[ C(BPU ) ] = {
688
[ C(OP_READ) ] = {
689
[ C(RESULT_ACCESS) ] = 0x4c4,
690
[ C(RESULT_MISS) ] = 0x4c5,
691
},
692
[ C(OP_WRITE) ] = {
693
[ C(RESULT_ACCESS) ] = -1,
694
[ C(RESULT_MISS) ] = -1,
695
},
696
[ C(OP_PREFETCH) ] = {
697
[ C(RESULT_ACCESS) ] = -1,
698
[ C(RESULT_MISS) ] = -1,
699
},
700
},
701
[ C(NODE) ] = {
702
[ C(OP_READ) ] = {
703
[ C(RESULT_ACCESS) ] = 0x12a,
704
[ C(RESULT_MISS) ] = 0x12a,
705
},
706
},
707
};
708
709
static __initconst const u64 glc_hw_cache_extra_regs
710
[PERF_COUNT_HW_CACHE_MAX]
711
[PERF_COUNT_HW_CACHE_OP_MAX]
712
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
713
{
714
[ C(LL ) ] = {
715
[ C(OP_READ) ] = {
716
[ C(RESULT_ACCESS) ] = 0x10001,
717
[ C(RESULT_MISS) ] = 0x3fbfc00001,
718
},
719
[ C(OP_WRITE) ] = {
720
[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
721
[ C(RESULT_MISS) ] = 0x3f3fc00002,
722
},
723
},
724
[ C(NODE) ] = {
725
[ C(OP_READ) ] = {
726
[ C(RESULT_ACCESS) ] = 0x10c000001,
727
[ C(RESULT_MISS) ] = 0x3fb3000001,
728
},
729
},
730
};
731
732
static __initconst const u64 pnc_hw_cache_event_ids
733
[PERF_COUNT_HW_CACHE_MAX]
734
[PERF_COUNT_HW_CACHE_OP_MAX]
735
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
736
{
737
[ C(L1D ) ] = {
738
[ C(OP_READ) ] = {
739
[ C(RESULT_ACCESS) ] = 0x81d0,
740
[ C(RESULT_MISS) ] = 0xe124,
741
},
742
[ C(OP_WRITE) ] = {
743
[ C(RESULT_ACCESS) ] = 0x82d0,
744
},
745
},
746
[ C(L1I ) ] = {
747
[ C(OP_READ) ] = {
748
[ C(RESULT_MISS) ] = 0xe424,
749
},
750
[ C(OP_WRITE) ] = {
751
[ C(RESULT_ACCESS) ] = -1,
752
[ C(RESULT_MISS) ] = -1,
753
},
754
},
755
[ C(LL ) ] = {
756
[ C(OP_READ) ] = {
757
[ C(RESULT_ACCESS) ] = 0x12a,
758
[ C(RESULT_MISS) ] = 0x12a,
759
},
760
[ C(OP_WRITE) ] = {
761
[ C(RESULT_ACCESS) ] = 0x12a,
762
[ C(RESULT_MISS) ] = 0x12a,
763
},
764
},
765
[ C(DTLB) ] = {
766
[ C(OP_READ) ] = {
767
[ C(RESULT_ACCESS) ] = 0x81d0,
768
[ C(RESULT_MISS) ] = 0xe12,
769
},
770
[ C(OP_WRITE) ] = {
771
[ C(RESULT_ACCESS) ] = 0x82d0,
772
[ C(RESULT_MISS) ] = 0xe13,
773
},
774
},
775
[ C(ITLB) ] = {
776
[ C(OP_READ) ] = {
777
[ C(RESULT_ACCESS) ] = -1,
778
[ C(RESULT_MISS) ] = 0xe11,
779
},
780
[ C(OP_WRITE) ] = {
781
[ C(RESULT_ACCESS) ] = -1,
782
[ C(RESULT_MISS) ] = -1,
783
},
784
[ C(OP_PREFETCH) ] = {
785
[ C(RESULT_ACCESS) ] = -1,
786
[ C(RESULT_MISS) ] = -1,
787
},
788
},
789
[ C(BPU ) ] = {
790
[ C(OP_READ) ] = {
791
[ C(RESULT_ACCESS) ] = 0x4c4,
792
[ C(RESULT_MISS) ] = 0x4c5,
793
},
794
[ C(OP_WRITE) ] = {
795
[ C(RESULT_ACCESS) ] = -1,
796
[ C(RESULT_MISS) ] = -1,
797
},
798
[ C(OP_PREFETCH) ] = {
799
[ C(RESULT_ACCESS) ] = -1,
800
[ C(RESULT_MISS) ] = -1,
801
},
802
},
803
[ C(NODE) ] = {
804
[ C(OP_READ) ] = {
805
[ C(RESULT_ACCESS) ] = -1,
806
[ C(RESULT_MISS) ] = -1,
807
},
808
},
809
};
810
811
static __initconst const u64 pnc_hw_cache_extra_regs
812
[PERF_COUNT_HW_CACHE_MAX]
813
[PERF_COUNT_HW_CACHE_OP_MAX]
814
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
815
{
816
[ C(LL ) ] = {
817
[ C(OP_READ) ] = {
818
[ C(RESULT_ACCESS) ] = 0x4000000000000001,
819
[ C(RESULT_MISS) ] = 0xFFFFF000000001,
820
},
821
[ C(OP_WRITE) ] = {
822
[ C(RESULT_ACCESS) ] = 0x4000000000000002,
823
[ C(RESULT_MISS) ] = 0xFFFFF000000002,
824
},
825
},
826
};
827
828
/*
829
* Notes on the events:
830
* - data reads do not include code reads (comparable to earlier tables)
831
* - data counts include speculative execution (except L1 write, dtlb, bpu)
832
* - remote node access includes remote memory, remote cache, remote mmio.
833
* - prefetches are not included in the counts.
834
* - icache miss does not include decoded icache
835
*/
836
837
#define SKL_DEMAND_DATA_RD BIT_ULL(0)
838
#define SKL_DEMAND_RFO BIT_ULL(1)
839
#define SKL_ANY_RESPONSE BIT_ULL(16)
840
#define SKL_SUPPLIER_NONE BIT_ULL(17)
841
#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
842
#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
843
#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
844
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
845
#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
846
SKL_L3_MISS_REMOTE_HOP0_DRAM| \
847
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
848
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
849
#define SKL_SPL_HIT BIT_ULL(30)
850
#define SKL_SNOOP_NONE BIT_ULL(31)
851
#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
852
#define SKL_SNOOP_MISS BIT_ULL(33)
853
#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
854
#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
855
#define SKL_SNOOP_HITM BIT_ULL(36)
856
#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
857
#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
858
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
859
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
860
SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
861
#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
862
#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
863
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
864
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
865
SKL_SNOOP_HITM|SKL_SPL_HIT)
866
#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
867
#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
868
#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
869
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
870
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
871
872
static __initconst const u64 skl_hw_cache_event_ids
873
[PERF_COUNT_HW_CACHE_MAX]
874
[PERF_COUNT_HW_CACHE_OP_MAX]
875
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
876
{
877
[ C(L1D ) ] = {
878
[ C(OP_READ) ] = {
879
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
880
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
881
},
882
[ C(OP_WRITE) ] = {
883
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
884
[ C(RESULT_MISS) ] = 0x0,
885
},
886
[ C(OP_PREFETCH) ] = {
887
[ C(RESULT_ACCESS) ] = 0x0,
888
[ C(RESULT_MISS) ] = 0x0,
889
},
890
},
891
[ C(L1I ) ] = {
892
[ C(OP_READ) ] = {
893
[ C(RESULT_ACCESS) ] = 0x0,
894
[ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
895
},
896
[ C(OP_WRITE) ] = {
897
[ C(RESULT_ACCESS) ] = -1,
898
[ C(RESULT_MISS) ] = -1,
899
},
900
[ C(OP_PREFETCH) ] = {
901
[ C(RESULT_ACCESS) ] = 0x0,
902
[ C(RESULT_MISS) ] = 0x0,
903
},
904
},
905
[ C(LL ) ] = {
906
[ C(OP_READ) ] = {
907
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
908
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
909
},
910
[ C(OP_WRITE) ] = {
911
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
912
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
913
},
914
[ C(OP_PREFETCH) ] = {
915
[ C(RESULT_ACCESS) ] = 0x0,
916
[ C(RESULT_MISS) ] = 0x0,
917
},
918
},
919
[ C(DTLB) ] = {
920
[ C(OP_READ) ] = {
921
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
922
[ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
923
},
924
[ C(OP_WRITE) ] = {
925
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
926
[ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
927
},
928
[ C(OP_PREFETCH) ] = {
929
[ C(RESULT_ACCESS) ] = 0x0,
930
[ C(RESULT_MISS) ] = 0x0,
931
},
932
},
933
[ C(ITLB) ] = {
934
[ C(OP_READ) ] = {
935
[ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
936
[ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
937
},
938
[ C(OP_WRITE) ] = {
939
[ C(RESULT_ACCESS) ] = -1,
940
[ C(RESULT_MISS) ] = -1,
941
},
942
[ C(OP_PREFETCH) ] = {
943
[ C(RESULT_ACCESS) ] = -1,
944
[ C(RESULT_MISS) ] = -1,
945
},
946
},
947
[ C(BPU ) ] = {
948
[ C(OP_READ) ] = {
949
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
950
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
951
},
952
[ C(OP_WRITE) ] = {
953
[ C(RESULT_ACCESS) ] = -1,
954
[ C(RESULT_MISS) ] = -1,
955
},
956
[ C(OP_PREFETCH) ] = {
957
[ C(RESULT_ACCESS) ] = -1,
958
[ C(RESULT_MISS) ] = -1,
959
},
960
},
961
[ C(NODE) ] = {
962
[ C(OP_READ) ] = {
963
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
964
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
965
},
966
[ C(OP_WRITE) ] = {
967
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
968
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
969
},
970
[ C(OP_PREFETCH) ] = {
971
[ C(RESULT_ACCESS) ] = 0x0,
972
[ C(RESULT_MISS) ] = 0x0,
973
},
974
},
975
};
976
977
static __initconst const u64 skl_hw_cache_extra_regs
978
[PERF_COUNT_HW_CACHE_MAX]
979
[PERF_COUNT_HW_CACHE_OP_MAX]
980
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
981
{
982
[ C(LL ) ] = {
983
[ C(OP_READ) ] = {
984
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
985
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
986
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
987
SKL_L3_MISS|SKL_ANY_SNOOP|
988
SKL_SUPPLIER_NONE,
989
},
990
[ C(OP_WRITE) ] = {
991
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
992
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
993
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
994
SKL_L3_MISS|SKL_ANY_SNOOP|
995
SKL_SUPPLIER_NONE,
996
},
997
[ C(OP_PREFETCH) ] = {
998
[ C(RESULT_ACCESS) ] = 0x0,
999
[ C(RESULT_MISS) ] = 0x0,
1000
},
1001
},
1002
[ C(NODE) ] = {
1003
[ C(OP_READ) ] = {
1004
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
1005
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
1006
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
1007
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
1008
},
1009
[ C(OP_WRITE) ] = {
1010
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
1011
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
1012
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
1013
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
1014
},
1015
[ C(OP_PREFETCH) ] = {
1016
[ C(RESULT_ACCESS) ] = 0x0,
1017
[ C(RESULT_MISS) ] = 0x0,
1018
},
1019
},
1020
};
1021
1022
#define SNB_DMND_DATA_RD (1ULL << 0)
1023
#define SNB_DMND_RFO (1ULL << 1)
1024
#define SNB_DMND_IFETCH (1ULL << 2)
1025
#define SNB_DMND_WB (1ULL << 3)
1026
#define SNB_PF_DATA_RD (1ULL << 4)
1027
#define SNB_PF_RFO (1ULL << 5)
1028
#define SNB_PF_IFETCH (1ULL << 6)
1029
#define SNB_LLC_DATA_RD (1ULL << 7)
1030
#define SNB_LLC_RFO (1ULL << 8)
1031
#define SNB_LLC_IFETCH (1ULL << 9)
1032
#define SNB_BUS_LOCKS (1ULL << 10)
1033
#define SNB_STRM_ST (1ULL << 11)
1034
#define SNB_OTHER (1ULL << 15)
1035
#define SNB_RESP_ANY (1ULL << 16)
1036
#define SNB_NO_SUPP (1ULL << 17)
1037
#define SNB_LLC_HITM (1ULL << 18)
1038
#define SNB_LLC_HITE (1ULL << 19)
1039
#define SNB_LLC_HITS (1ULL << 20)
1040
#define SNB_LLC_HITF (1ULL << 21)
1041
#define SNB_LOCAL (1ULL << 22)
1042
#define SNB_REMOTE (0xffULL << 23)
1043
#define SNB_SNP_NONE (1ULL << 31)
1044
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
1045
#define SNB_SNP_MISS (1ULL << 33)
1046
#define SNB_NO_FWD (1ULL << 34)
1047
#define SNB_SNP_FWD (1ULL << 35)
1048
#define SNB_HITM (1ULL << 36)
1049
#define SNB_NON_DRAM (1ULL << 37)
1050
1051
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
1052
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
1053
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1054
1055
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
1056
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
1057
SNB_HITM)
1058
1059
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
1060
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
1061
1062
#define SNB_L3_ACCESS SNB_RESP_ANY
1063
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
1064
1065
static __initconst const u64 snb_hw_cache_extra_regs
1066
[PERF_COUNT_HW_CACHE_MAX]
1067
[PERF_COUNT_HW_CACHE_OP_MAX]
1068
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1069
{
1070
[ C(LL ) ] = {
1071
[ C(OP_READ) ] = {
1072
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
1073
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
1074
},
1075
[ C(OP_WRITE) ] = {
1076
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
1077
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
1078
},
1079
[ C(OP_PREFETCH) ] = {
1080
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
1081
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
1082
},
1083
},
1084
[ C(NODE) ] = {
1085
[ C(OP_READ) ] = {
1086
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
1087
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
1088
},
1089
[ C(OP_WRITE) ] = {
1090
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
1091
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
1092
},
1093
[ C(OP_PREFETCH) ] = {
1094
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
1095
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
1096
},
1097
},
1098
};
1099
1100
static __initconst const u64 snb_hw_cache_event_ids
1101
[PERF_COUNT_HW_CACHE_MAX]
1102
[PERF_COUNT_HW_CACHE_OP_MAX]
1103
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1104
{
1105
[ C(L1D) ] = {
1106
[ C(OP_READ) ] = {
1107
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
1108
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
1109
},
1110
[ C(OP_WRITE) ] = {
1111
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
1112
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
1113
},
1114
[ C(OP_PREFETCH) ] = {
1115
[ C(RESULT_ACCESS) ] = 0x0,
1116
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
1117
},
1118
},
1119
[ C(L1I ) ] = {
1120
[ C(OP_READ) ] = {
1121
[ C(RESULT_ACCESS) ] = 0x0,
1122
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
1123
},
1124
[ C(OP_WRITE) ] = {
1125
[ C(RESULT_ACCESS) ] = -1,
1126
[ C(RESULT_MISS) ] = -1,
1127
},
1128
[ C(OP_PREFETCH) ] = {
1129
[ C(RESULT_ACCESS) ] = 0x0,
1130
[ C(RESULT_MISS) ] = 0x0,
1131
},
1132
},
1133
[ C(LL ) ] = {
1134
[ C(OP_READ) ] = {
1135
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1136
[ C(RESULT_ACCESS) ] = 0x01b7,
1137
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1138
[ C(RESULT_MISS) ] = 0x01b7,
1139
},
1140
[ C(OP_WRITE) ] = {
1141
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1142
[ C(RESULT_ACCESS) ] = 0x01b7,
1143
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1144
[ C(RESULT_MISS) ] = 0x01b7,
1145
},
1146
[ C(OP_PREFETCH) ] = {
1147
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1148
[ C(RESULT_ACCESS) ] = 0x01b7,
1149
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1150
[ C(RESULT_MISS) ] = 0x01b7,
1151
},
1152
},
1153
[ C(DTLB) ] = {
1154
[ C(OP_READ) ] = {
1155
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
1156
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
1157
},
1158
[ C(OP_WRITE) ] = {
1159
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
1160
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1161
},
1162
[ C(OP_PREFETCH) ] = {
1163
[ C(RESULT_ACCESS) ] = 0x0,
1164
[ C(RESULT_MISS) ] = 0x0,
1165
},
1166
},
1167
[ C(ITLB) ] = {
1168
[ C(OP_READ) ] = {
1169
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
1170
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
1171
},
1172
[ C(OP_WRITE) ] = {
1173
[ C(RESULT_ACCESS) ] = -1,
1174
[ C(RESULT_MISS) ] = -1,
1175
},
1176
[ C(OP_PREFETCH) ] = {
1177
[ C(RESULT_ACCESS) ] = -1,
1178
[ C(RESULT_MISS) ] = -1,
1179
},
1180
},
1181
[ C(BPU ) ] = {
1182
[ C(OP_READ) ] = {
1183
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1184
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1185
},
1186
[ C(OP_WRITE) ] = {
1187
[ C(RESULT_ACCESS) ] = -1,
1188
[ C(RESULT_MISS) ] = -1,
1189
},
1190
[ C(OP_PREFETCH) ] = {
1191
[ C(RESULT_ACCESS) ] = -1,
1192
[ C(RESULT_MISS) ] = -1,
1193
},
1194
},
1195
[ C(NODE) ] = {
1196
[ C(OP_READ) ] = {
1197
[ C(RESULT_ACCESS) ] = 0x01b7,
1198
[ C(RESULT_MISS) ] = 0x01b7,
1199
},
1200
[ C(OP_WRITE) ] = {
1201
[ C(RESULT_ACCESS) ] = 0x01b7,
1202
[ C(RESULT_MISS) ] = 0x01b7,
1203
},
1204
[ C(OP_PREFETCH) ] = {
1205
[ C(RESULT_ACCESS) ] = 0x01b7,
1206
[ C(RESULT_MISS) ] = 0x01b7,
1207
},
1208
},
1209
1210
};
1211
1212
/*
1213
* Notes on the events:
1214
* - data reads do not include code reads (comparable to earlier tables)
1215
* - data counts include speculative execution (except L1 write, dtlb, bpu)
1216
* - remote node access includes remote memory, remote cache, remote mmio.
1217
* - prefetches are not included in the counts because they are not
1218
* reliably counted.
1219
*/
1220
1221
#define HSW_DEMAND_DATA_RD BIT_ULL(0)
1222
#define HSW_DEMAND_RFO BIT_ULL(1)
1223
#define HSW_ANY_RESPONSE BIT_ULL(16)
1224
#define HSW_SUPPLIER_NONE BIT_ULL(17)
1225
#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
1226
#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
1227
#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
1228
#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
1229
#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
1230
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1231
HSW_L3_MISS_REMOTE_HOP2P)
1232
#define HSW_SNOOP_NONE BIT_ULL(31)
1233
#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
1234
#define HSW_SNOOP_MISS BIT_ULL(33)
1235
#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
1236
#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
1237
#define HSW_SNOOP_HITM BIT_ULL(36)
1238
#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
1239
#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
1240
HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1241
HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1242
HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1243
#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1244
#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
1245
#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
1246
#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
1247
HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1248
#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
1249
1250
#define BDW_L3_MISS_LOCAL BIT(26)
1251
#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
1252
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1253
HSW_L3_MISS_REMOTE_HOP2P)
1254
1255
1256
static __initconst const u64 hsw_hw_cache_event_ids
1257
[PERF_COUNT_HW_CACHE_MAX]
1258
[PERF_COUNT_HW_CACHE_OP_MAX]
1259
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1260
{
1261
[ C(L1D ) ] = {
1262
[ C(OP_READ) ] = {
1263
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1264
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
1265
},
1266
[ C(OP_WRITE) ] = {
1267
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1268
[ C(RESULT_MISS) ] = 0x0,
1269
},
1270
[ C(OP_PREFETCH) ] = {
1271
[ C(RESULT_ACCESS) ] = 0x0,
1272
[ C(RESULT_MISS) ] = 0x0,
1273
},
1274
},
1275
[ C(L1I ) ] = {
1276
[ C(OP_READ) ] = {
1277
[ C(RESULT_ACCESS) ] = 0x0,
1278
[ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
1279
},
1280
[ C(OP_WRITE) ] = {
1281
[ C(RESULT_ACCESS) ] = -1,
1282
[ C(RESULT_MISS) ] = -1,
1283
},
1284
[ C(OP_PREFETCH) ] = {
1285
[ C(RESULT_ACCESS) ] = 0x0,
1286
[ C(RESULT_MISS) ] = 0x0,
1287
},
1288
},
1289
[ C(LL ) ] = {
1290
[ C(OP_READ) ] = {
1291
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1292
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1293
},
1294
[ C(OP_WRITE) ] = {
1295
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1296
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1297
},
1298
[ C(OP_PREFETCH) ] = {
1299
[ C(RESULT_ACCESS) ] = 0x0,
1300
[ C(RESULT_MISS) ] = 0x0,
1301
},
1302
},
1303
[ C(DTLB) ] = {
1304
[ C(OP_READ) ] = {
1305
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1306
[ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1307
},
1308
[ C(OP_WRITE) ] = {
1309
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1310
[ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1311
},
1312
[ C(OP_PREFETCH) ] = {
1313
[ C(RESULT_ACCESS) ] = 0x0,
1314
[ C(RESULT_MISS) ] = 0x0,
1315
},
1316
},
1317
[ C(ITLB) ] = {
1318
[ C(OP_READ) ] = {
1319
[ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1320
[ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1321
},
1322
[ C(OP_WRITE) ] = {
1323
[ C(RESULT_ACCESS) ] = -1,
1324
[ C(RESULT_MISS) ] = -1,
1325
},
1326
[ C(OP_PREFETCH) ] = {
1327
[ C(RESULT_ACCESS) ] = -1,
1328
[ C(RESULT_MISS) ] = -1,
1329
},
1330
},
1331
[ C(BPU ) ] = {
1332
[ C(OP_READ) ] = {
1333
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1334
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1335
},
1336
[ C(OP_WRITE) ] = {
1337
[ C(RESULT_ACCESS) ] = -1,
1338
[ C(RESULT_MISS) ] = -1,
1339
},
1340
[ C(OP_PREFETCH) ] = {
1341
[ C(RESULT_ACCESS) ] = -1,
1342
[ C(RESULT_MISS) ] = -1,
1343
},
1344
},
1345
[ C(NODE) ] = {
1346
[ C(OP_READ) ] = {
1347
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1348
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1349
},
1350
[ C(OP_WRITE) ] = {
1351
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1352
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1353
},
1354
[ C(OP_PREFETCH) ] = {
1355
[ C(RESULT_ACCESS) ] = 0x0,
1356
[ C(RESULT_MISS) ] = 0x0,
1357
},
1358
},
1359
};
1360
1361
static __initconst const u64 hsw_hw_cache_extra_regs
1362
[PERF_COUNT_HW_CACHE_MAX]
1363
[PERF_COUNT_HW_CACHE_OP_MAX]
1364
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1365
{
1366
[ C(LL ) ] = {
1367
[ C(OP_READ) ] = {
1368
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1369
HSW_LLC_ACCESS,
1370
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1371
HSW_L3_MISS|HSW_ANY_SNOOP,
1372
},
1373
[ C(OP_WRITE) ] = {
1374
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1375
HSW_LLC_ACCESS,
1376
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1377
HSW_L3_MISS|HSW_ANY_SNOOP,
1378
},
1379
[ C(OP_PREFETCH) ] = {
1380
[ C(RESULT_ACCESS) ] = 0x0,
1381
[ C(RESULT_MISS) ] = 0x0,
1382
},
1383
},
1384
[ C(NODE) ] = {
1385
[ C(OP_READ) ] = {
1386
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1387
HSW_L3_MISS_LOCAL_DRAM|
1388
HSW_SNOOP_DRAM,
1389
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1390
HSW_L3_MISS_REMOTE|
1391
HSW_SNOOP_DRAM,
1392
},
1393
[ C(OP_WRITE) ] = {
1394
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1395
HSW_L3_MISS_LOCAL_DRAM|
1396
HSW_SNOOP_DRAM,
1397
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1398
HSW_L3_MISS_REMOTE|
1399
HSW_SNOOP_DRAM,
1400
},
1401
[ C(OP_PREFETCH) ] = {
1402
[ C(RESULT_ACCESS) ] = 0x0,
1403
[ C(RESULT_MISS) ] = 0x0,
1404
},
1405
},
1406
};
1407
1408
static __initconst const u64 westmere_hw_cache_event_ids
1409
[PERF_COUNT_HW_CACHE_MAX]
1410
[PERF_COUNT_HW_CACHE_OP_MAX]
1411
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1412
{
1413
[ C(L1D) ] = {
1414
[ C(OP_READ) ] = {
1415
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1416
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1417
},
1418
[ C(OP_WRITE) ] = {
1419
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1420
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1421
},
1422
[ C(OP_PREFETCH) ] = {
1423
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1424
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1425
},
1426
},
1427
[ C(L1I ) ] = {
1428
[ C(OP_READ) ] = {
1429
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1430
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1431
},
1432
[ C(OP_WRITE) ] = {
1433
[ C(RESULT_ACCESS) ] = -1,
1434
[ C(RESULT_MISS) ] = -1,
1435
},
1436
[ C(OP_PREFETCH) ] = {
1437
[ C(RESULT_ACCESS) ] = 0x0,
1438
[ C(RESULT_MISS) ] = 0x0,
1439
},
1440
},
1441
[ C(LL ) ] = {
1442
[ C(OP_READ) ] = {
1443
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1444
[ C(RESULT_ACCESS) ] = 0x01b7,
1445
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1446
[ C(RESULT_MISS) ] = 0x01b7,
1447
},
1448
/*
1449
* Use RFO, not WRITEBACK, because a write miss would typically occur
1450
* on RFO.
1451
*/
1452
[ C(OP_WRITE) ] = {
1453
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1454
[ C(RESULT_ACCESS) ] = 0x01b7,
1455
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1456
[ C(RESULT_MISS) ] = 0x01b7,
1457
},
1458
[ C(OP_PREFETCH) ] = {
1459
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1460
[ C(RESULT_ACCESS) ] = 0x01b7,
1461
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1462
[ C(RESULT_MISS) ] = 0x01b7,
1463
},
1464
},
1465
[ C(DTLB) ] = {
1466
[ C(OP_READ) ] = {
1467
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1468
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1469
},
1470
[ C(OP_WRITE) ] = {
1471
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1472
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1473
},
1474
[ C(OP_PREFETCH) ] = {
1475
[ C(RESULT_ACCESS) ] = 0x0,
1476
[ C(RESULT_MISS) ] = 0x0,
1477
},
1478
},
1479
[ C(ITLB) ] = {
1480
[ C(OP_READ) ] = {
1481
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1482
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1483
},
1484
[ C(OP_WRITE) ] = {
1485
[ C(RESULT_ACCESS) ] = -1,
1486
[ C(RESULT_MISS) ] = -1,
1487
},
1488
[ C(OP_PREFETCH) ] = {
1489
[ C(RESULT_ACCESS) ] = -1,
1490
[ C(RESULT_MISS) ] = -1,
1491
},
1492
},
1493
[ C(BPU ) ] = {
1494
[ C(OP_READ) ] = {
1495
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1496
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1497
},
1498
[ C(OP_WRITE) ] = {
1499
[ C(RESULT_ACCESS) ] = -1,
1500
[ C(RESULT_MISS) ] = -1,
1501
},
1502
[ C(OP_PREFETCH) ] = {
1503
[ C(RESULT_ACCESS) ] = -1,
1504
[ C(RESULT_MISS) ] = -1,
1505
},
1506
},
1507
[ C(NODE) ] = {
1508
[ C(OP_READ) ] = {
1509
[ C(RESULT_ACCESS) ] = 0x01b7,
1510
[ C(RESULT_MISS) ] = 0x01b7,
1511
},
1512
[ C(OP_WRITE) ] = {
1513
[ C(RESULT_ACCESS) ] = 0x01b7,
1514
[ C(RESULT_MISS) ] = 0x01b7,
1515
},
1516
[ C(OP_PREFETCH) ] = {
1517
[ C(RESULT_ACCESS) ] = 0x01b7,
1518
[ C(RESULT_MISS) ] = 0x01b7,
1519
},
1520
},
1521
};
1522
1523
/*
1524
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1525
* See IA32 SDM Vol 3B 30.6.1.3
1526
*/
1527
1528
#define NHM_DMND_DATA_RD (1 << 0)
1529
#define NHM_DMND_RFO (1 << 1)
1530
#define NHM_DMND_IFETCH (1 << 2)
1531
#define NHM_DMND_WB (1 << 3)
1532
#define NHM_PF_DATA_RD (1 << 4)
1533
#define NHM_PF_DATA_RFO (1 << 5)
1534
#define NHM_PF_IFETCH (1 << 6)
1535
#define NHM_OFFCORE_OTHER (1 << 7)
1536
#define NHM_UNCORE_HIT (1 << 8)
1537
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1538
#define NHM_OTHER_CORE_HITM (1 << 10)
1539
/* reserved */
1540
#define NHM_REMOTE_CACHE_FWD (1 << 12)
1541
#define NHM_REMOTE_DRAM (1 << 13)
1542
#define NHM_LOCAL_DRAM (1 << 14)
1543
#define NHM_NON_DRAM (1 << 15)
1544
1545
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1546
#define NHM_REMOTE (NHM_REMOTE_DRAM)
1547
1548
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
1549
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1550
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1551
1552
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1553
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1554
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1555
1556
static __initconst const u64 nehalem_hw_cache_extra_regs
1557
[PERF_COUNT_HW_CACHE_MAX]
1558
[PERF_COUNT_HW_CACHE_OP_MAX]
1559
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1560
{
1561
[ C(LL ) ] = {
1562
[ C(OP_READ) ] = {
1563
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1564
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1565
},
1566
[ C(OP_WRITE) ] = {
1567
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1568
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1569
},
1570
[ C(OP_PREFETCH) ] = {
1571
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1572
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1573
},
1574
},
1575
[ C(NODE) ] = {
1576
[ C(OP_READ) ] = {
1577
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1578
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1579
},
1580
[ C(OP_WRITE) ] = {
1581
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1582
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1583
},
1584
[ C(OP_PREFETCH) ] = {
1585
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1586
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1587
},
1588
},
1589
};
1590
1591
static __initconst const u64 nehalem_hw_cache_event_ids
1592
[PERF_COUNT_HW_CACHE_MAX]
1593
[PERF_COUNT_HW_CACHE_OP_MAX]
1594
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1595
{
1596
[ C(L1D) ] = {
1597
[ C(OP_READ) ] = {
1598
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1599
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1600
},
1601
[ C(OP_WRITE) ] = {
1602
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1603
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1604
},
1605
[ C(OP_PREFETCH) ] = {
1606
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1607
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1608
},
1609
},
1610
[ C(L1I ) ] = {
1611
[ C(OP_READ) ] = {
1612
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1613
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1614
},
1615
[ C(OP_WRITE) ] = {
1616
[ C(RESULT_ACCESS) ] = -1,
1617
[ C(RESULT_MISS) ] = -1,
1618
},
1619
[ C(OP_PREFETCH) ] = {
1620
[ C(RESULT_ACCESS) ] = 0x0,
1621
[ C(RESULT_MISS) ] = 0x0,
1622
},
1623
},
1624
[ C(LL ) ] = {
1625
[ C(OP_READ) ] = {
1626
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1627
[ C(RESULT_ACCESS) ] = 0x01b7,
1628
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1629
[ C(RESULT_MISS) ] = 0x01b7,
1630
},
1631
/*
1632
* Use RFO, not WRITEBACK, because a write miss would typically occur
1633
* on RFO.
1634
*/
1635
[ C(OP_WRITE) ] = {
1636
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1637
[ C(RESULT_ACCESS) ] = 0x01b7,
1638
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1639
[ C(RESULT_MISS) ] = 0x01b7,
1640
},
1641
[ C(OP_PREFETCH) ] = {
1642
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1643
[ C(RESULT_ACCESS) ] = 0x01b7,
1644
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1645
[ C(RESULT_MISS) ] = 0x01b7,
1646
},
1647
},
1648
[ C(DTLB) ] = {
1649
[ C(OP_READ) ] = {
1650
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1651
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1652
},
1653
[ C(OP_WRITE) ] = {
1654
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1655
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1656
},
1657
[ C(OP_PREFETCH) ] = {
1658
[ C(RESULT_ACCESS) ] = 0x0,
1659
[ C(RESULT_MISS) ] = 0x0,
1660
},
1661
},
1662
[ C(ITLB) ] = {
1663
[ C(OP_READ) ] = {
1664
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1665
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1666
},
1667
[ C(OP_WRITE) ] = {
1668
[ C(RESULT_ACCESS) ] = -1,
1669
[ C(RESULT_MISS) ] = -1,
1670
},
1671
[ C(OP_PREFETCH) ] = {
1672
[ C(RESULT_ACCESS) ] = -1,
1673
[ C(RESULT_MISS) ] = -1,
1674
},
1675
},
1676
[ C(BPU ) ] = {
1677
[ C(OP_READ) ] = {
1678
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1679
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1680
},
1681
[ C(OP_WRITE) ] = {
1682
[ C(RESULT_ACCESS) ] = -1,
1683
[ C(RESULT_MISS) ] = -1,
1684
},
1685
[ C(OP_PREFETCH) ] = {
1686
[ C(RESULT_ACCESS) ] = -1,
1687
[ C(RESULT_MISS) ] = -1,
1688
},
1689
},
1690
[ C(NODE) ] = {
1691
[ C(OP_READ) ] = {
1692
[ C(RESULT_ACCESS) ] = 0x01b7,
1693
[ C(RESULT_MISS) ] = 0x01b7,
1694
},
1695
[ C(OP_WRITE) ] = {
1696
[ C(RESULT_ACCESS) ] = 0x01b7,
1697
[ C(RESULT_MISS) ] = 0x01b7,
1698
},
1699
[ C(OP_PREFETCH) ] = {
1700
[ C(RESULT_ACCESS) ] = 0x01b7,
1701
[ C(RESULT_MISS) ] = 0x01b7,
1702
},
1703
},
1704
};
1705
1706
static __initconst const u64 core2_hw_cache_event_ids
1707
[PERF_COUNT_HW_CACHE_MAX]
1708
[PERF_COUNT_HW_CACHE_OP_MAX]
1709
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1710
{
1711
[ C(L1D) ] = {
1712
[ C(OP_READ) ] = {
1713
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1714
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1715
},
1716
[ C(OP_WRITE) ] = {
1717
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1718
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1719
},
1720
[ C(OP_PREFETCH) ] = {
1721
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1722
[ C(RESULT_MISS) ] = 0,
1723
},
1724
},
1725
[ C(L1I ) ] = {
1726
[ C(OP_READ) ] = {
1727
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1728
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1729
},
1730
[ C(OP_WRITE) ] = {
1731
[ C(RESULT_ACCESS) ] = -1,
1732
[ C(RESULT_MISS) ] = -1,
1733
},
1734
[ C(OP_PREFETCH) ] = {
1735
[ C(RESULT_ACCESS) ] = 0,
1736
[ C(RESULT_MISS) ] = 0,
1737
},
1738
},
1739
[ C(LL ) ] = {
1740
[ C(OP_READ) ] = {
1741
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1742
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1743
},
1744
[ C(OP_WRITE) ] = {
1745
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1746
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1747
},
1748
[ C(OP_PREFETCH) ] = {
1749
[ C(RESULT_ACCESS) ] = 0,
1750
[ C(RESULT_MISS) ] = 0,
1751
},
1752
},
1753
[ C(DTLB) ] = {
1754
[ C(OP_READ) ] = {
1755
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1756
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1757
},
1758
[ C(OP_WRITE) ] = {
1759
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1760
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1761
},
1762
[ C(OP_PREFETCH) ] = {
1763
[ C(RESULT_ACCESS) ] = 0,
1764
[ C(RESULT_MISS) ] = 0,
1765
},
1766
},
1767
[ C(ITLB) ] = {
1768
[ C(OP_READ) ] = {
1769
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1770
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1771
},
1772
[ C(OP_WRITE) ] = {
1773
[ C(RESULT_ACCESS) ] = -1,
1774
[ C(RESULT_MISS) ] = -1,
1775
},
1776
[ C(OP_PREFETCH) ] = {
1777
[ C(RESULT_ACCESS) ] = -1,
1778
[ C(RESULT_MISS) ] = -1,
1779
},
1780
},
1781
[ C(BPU ) ] = {
1782
[ C(OP_READ) ] = {
1783
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1784
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1785
},
1786
[ C(OP_WRITE) ] = {
1787
[ C(RESULT_ACCESS) ] = -1,
1788
[ C(RESULT_MISS) ] = -1,
1789
},
1790
[ C(OP_PREFETCH) ] = {
1791
[ C(RESULT_ACCESS) ] = -1,
1792
[ C(RESULT_MISS) ] = -1,
1793
},
1794
},
1795
};
1796
1797
static __initconst const u64 atom_hw_cache_event_ids
1798
[PERF_COUNT_HW_CACHE_MAX]
1799
[PERF_COUNT_HW_CACHE_OP_MAX]
1800
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1801
{
1802
[ C(L1D) ] = {
1803
[ C(OP_READ) ] = {
1804
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1805
[ C(RESULT_MISS) ] = 0,
1806
},
1807
[ C(OP_WRITE) ] = {
1808
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1809
[ C(RESULT_MISS) ] = 0,
1810
},
1811
[ C(OP_PREFETCH) ] = {
1812
[ C(RESULT_ACCESS) ] = 0x0,
1813
[ C(RESULT_MISS) ] = 0,
1814
},
1815
},
1816
[ C(L1I ) ] = {
1817
[ C(OP_READ) ] = {
1818
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1819
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1820
},
1821
[ C(OP_WRITE) ] = {
1822
[ C(RESULT_ACCESS) ] = -1,
1823
[ C(RESULT_MISS) ] = -1,
1824
},
1825
[ C(OP_PREFETCH) ] = {
1826
[ C(RESULT_ACCESS) ] = 0,
1827
[ C(RESULT_MISS) ] = 0,
1828
},
1829
},
1830
[ C(LL ) ] = {
1831
[ C(OP_READ) ] = {
1832
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1833
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1834
},
1835
[ C(OP_WRITE) ] = {
1836
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1837
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1838
},
1839
[ C(OP_PREFETCH) ] = {
1840
[ C(RESULT_ACCESS) ] = 0,
1841
[ C(RESULT_MISS) ] = 0,
1842
},
1843
},
1844
[ C(DTLB) ] = {
1845
[ C(OP_READ) ] = {
1846
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1847
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1848
},
1849
[ C(OP_WRITE) ] = {
1850
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1851
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1852
},
1853
[ C(OP_PREFETCH) ] = {
1854
[ C(RESULT_ACCESS) ] = 0,
1855
[ C(RESULT_MISS) ] = 0,
1856
},
1857
},
1858
[ C(ITLB) ] = {
1859
[ C(OP_READ) ] = {
1860
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1861
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1862
},
1863
[ C(OP_WRITE) ] = {
1864
[ C(RESULT_ACCESS) ] = -1,
1865
[ C(RESULT_MISS) ] = -1,
1866
},
1867
[ C(OP_PREFETCH) ] = {
1868
[ C(RESULT_ACCESS) ] = -1,
1869
[ C(RESULT_MISS) ] = -1,
1870
},
1871
},
1872
[ C(BPU ) ] = {
1873
[ C(OP_READ) ] = {
1874
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1875
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1876
},
1877
[ C(OP_WRITE) ] = {
1878
[ C(RESULT_ACCESS) ] = -1,
1879
[ C(RESULT_MISS) ] = -1,
1880
},
1881
[ C(OP_PREFETCH) ] = {
1882
[ C(RESULT_ACCESS) ] = -1,
1883
[ C(RESULT_MISS) ] = -1,
1884
},
1885
},
1886
};
1887
1888
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1889
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1890
/* no_alloc_cycles.not_delivered */
1891
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1892
"event=0xca,umask=0x50");
1893
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1894
/* uops_retired.all */
1895
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1896
"event=0xc2,umask=0x10");
1897
/* uops_retired.all */
1898
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1899
"event=0xc2,umask=0x10");
1900
1901
static struct attribute *slm_events_attrs[] = {
1902
EVENT_PTR(td_total_slots_slm),
1903
EVENT_PTR(td_total_slots_scale_slm),
1904
EVENT_PTR(td_fetch_bubbles_slm),
1905
EVENT_PTR(td_fetch_bubbles_scale_slm),
1906
EVENT_PTR(td_slots_issued_slm),
1907
EVENT_PTR(td_slots_retired_slm),
1908
NULL
1909
};
1910
1911
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1912
{
1913
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1914
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1915
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1916
EVENT_EXTRA_END
1917
};
1918
1919
#define SLM_DMND_READ SNB_DMND_DATA_RD
1920
#define SLM_DMND_WRITE SNB_DMND_RFO
1921
#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1922
1923
#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1924
#define SLM_LLC_ACCESS SNB_RESP_ANY
1925
#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1926
1927
static __initconst const u64 slm_hw_cache_extra_regs
1928
[PERF_COUNT_HW_CACHE_MAX]
1929
[PERF_COUNT_HW_CACHE_OP_MAX]
1930
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1931
{
1932
[ C(LL ) ] = {
1933
[ C(OP_READ) ] = {
1934
[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1935
[ C(RESULT_MISS) ] = 0,
1936
},
1937
[ C(OP_WRITE) ] = {
1938
[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1939
[ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1940
},
1941
[ C(OP_PREFETCH) ] = {
1942
[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1943
[ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1944
},
1945
},
1946
};
1947
1948
static __initconst const u64 slm_hw_cache_event_ids
1949
[PERF_COUNT_HW_CACHE_MAX]
1950
[PERF_COUNT_HW_CACHE_OP_MAX]
1951
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1952
{
1953
[ C(L1D) ] = {
1954
[ C(OP_READ) ] = {
1955
[ C(RESULT_ACCESS) ] = 0,
1956
[ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1957
},
1958
[ C(OP_WRITE) ] = {
1959
[ C(RESULT_ACCESS) ] = 0,
1960
[ C(RESULT_MISS) ] = 0,
1961
},
1962
[ C(OP_PREFETCH) ] = {
1963
[ C(RESULT_ACCESS) ] = 0,
1964
[ C(RESULT_MISS) ] = 0,
1965
},
1966
},
1967
[ C(L1I ) ] = {
1968
[ C(OP_READ) ] = {
1969
[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1970
[ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1971
},
1972
[ C(OP_WRITE) ] = {
1973
[ C(RESULT_ACCESS) ] = -1,
1974
[ C(RESULT_MISS) ] = -1,
1975
},
1976
[ C(OP_PREFETCH) ] = {
1977
[ C(RESULT_ACCESS) ] = 0,
1978
[ C(RESULT_MISS) ] = 0,
1979
},
1980
},
1981
[ C(LL ) ] = {
1982
[ C(OP_READ) ] = {
1983
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1984
[ C(RESULT_ACCESS) ] = 0x01b7,
1985
[ C(RESULT_MISS) ] = 0,
1986
},
1987
[ C(OP_WRITE) ] = {
1988
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1989
[ C(RESULT_ACCESS) ] = 0x01b7,
1990
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1991
[ C(RESULT_MISS) ] = 0x01b7,
1992
},
1993
[ C(OP_PREFETCH) ] = {
1994
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1995
[ C(RESULT_ACCESS) ] = 0x01b7,
1996
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1997
[ C(RESULT_MISS) ] = 0x01b7,
1998
},
1999
},
2000
[ C(DTLB) ] = {
2001
[ C(OP_READ) ] = {
2002
[ C(RESULT_ACCESS) ] = 0,
2003
[ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
2004
},
2005
[ C(OP_WRITE) ] = {
2006
[ C(RESULT_ACCESS) ] = 0,
2007
[ C(RESULT_MISS) ] = 0,
2008
},
2009
[ C(OP_PREFETCH) ] = {
2010
[ C(RESULT_ACCESS) ] = 0,
2011
[ C(RESULT_MISS) ] = 0,
2012
},
2013
},
2014
[ C(ITLB) ] = {
2015
[ C(OP_READ) ] = {
2016
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
2017
[ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
2018
},
2019
[ C(OP_WRITE) ] = {
2020
[ C(RESULT_ACCESS) ] = -1,
2021
[ C(RESULT_MISS) ] = -1,
2022
},
2023
[ C(OP_PREFETCH) ] = {
2024
[ C(RESULT_ACCESS) ] = -1,
2025
[ C(RESULT_MISS) ] = -1,
2026
},
2027
},
2028
[ C(BPU ) ] = {
2029
[ C(OP_READ) ] = {
2030
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
2031
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
2032
},
2033
[ C(OP_WRITE) ] = {
2034
[ C(RESULT_ACCESS) ] = -1,
2035
[ C(RESULT_MISS) ] = -1,
2036
},
2037
[ C(OP_PREFETCH) ] = {
2038
[ C(RESULT_ACCESS) ] = -1,
2039
[ C(RESULT_MISS) ] = -1,
2040
},
2041
},
2042
};
2043
2044
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
2045
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
2046
/* UOPS_NOT_DELIVERED.ANY */
2047
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
2048
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
2049
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
2050
/* UOPS_RETIRED.ANY */
2051
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
2052
/* UOPS_ISSUED.ANY */
2053
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
2054
2055
static struct attribute *glm_events_attrs[] = {
2056
EVENT_PTR(td_total_slots_glm),
2057
EVENT_PTR(td_total_slots_scale_glm),
2058
EVENT_PTR(td_fetch_bubbles_glm),
2059
EVENT_PTR(td_recovery_bubbles_glm),
2060
EVENT_PTR(td_slots_issued_glm),
2061
EVENT_PTR(td_slots_retired_glm),
2062
NULL
2063
};
2064
2065
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
2066
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2067
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
2068
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
2069
EVENT_EXTRA_END
2070
};
2071
2072
#define GLM_DEMAND_DATA_RD BIT_ULL(0)
2073
#define GLM_DEMAND_RFO BIT_ULL(1)
2074
#define GLM_ANY_RESPONSE BIT_ULL(16)
2075
#define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
2076
#define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
2077
#define GLM_DEMAND_WRITE GLM_DEMAND_RFO
2078
#define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
2079
#define GLM_LLC_ACCESS GLM_ANY_RESPONSE
2080
#define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
2081
#define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
2082
2083
static __initconst const u64 glm_hw_cache_event_ids
2084
[PERF_COUNT_HW_CACHE_MAX]
2085
[PERF_COUNT_HW_CACHE_OP_MAX]
2086
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2087
[C(L1D)] = {
2088
[C(OP_READ)] = {
2089
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2090
[C(RESULT_MISS)] = 0x0,
2091
},
2092
[C(OP_WRITE)] = {
2093
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2094
[C(RESULT_MISS)] = 0x0,
2095
},
2096
[C(OP_PREFETCH)] = {
2097
[C(RESULT_ACCESS)] = 0x0,
2098
[C(RESULT_MISS)] = 0x0,
2099
},
2100
},
2101
[C(L1I)] = {
2102
[C(OP_READ)] = {
2103
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
2104
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
2105
},
2106
[C(OP_WRITE)] = {
2107
[C(RESULT_ACCESS)] = -1,
2108
[C(RESULT_MISS)] = -1,
2109
},
2110
[C(OP_PREFETCH)] = {
2111
[C(RESULT_ACCESS)] = 0x0,
2112
[C(RESULT_MISS)] = 0x0,
2113
},
2114
},
2115
[C(LL)] = {
2116
[C(OP_READ)] = {
2117
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2118
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2119
},
2120
[C(OP_WRITE)] = {
2121
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2122
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2123
},
2124
[C(OP_PREFETCH)] = {
2125
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2126
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2127
},
2128
},
2129
[C(DTLB)] = {
2130
[C(OP_READ)] = {
2131
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2132
[C(RESULT_MISS)] = 0x0,
2133
},
2134
[C(OP_WRITE)] = {
2135
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2136
[C(RESULT_MISS)] = 0x0,
2137
},
2138
[C(OP_PREFETCH)] = {
2139
[C(RESULT_ACCESS)] = 0x0,
2140
[C(RESULT_MISS)] = 0x0,
2141
},
2142
},
2143
[C(ITLB)] = {
2144
[C(OP_READ)] = {
2145
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2146
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2147
},
2148
[C(OP_WRITE)] = {
2149
[C(RESULT_ACCESS)] = -1,
2150
[C(RESULT_MISS)] = -1,
2151
},
2152
[C(OP_PREFETCH)] = {
2153
[C(RESULT_ACCESS)] = -1,
2154
[C(RESULT_MISS)] = -1,
2155
},
2156
},
2157
[C(BPU)] = {
2158
[C(OP_READ)] = {
2159
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2160
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2161
},
2162
[C(OP_WRITE)] = {
2163
[C(RESULT_ACCESS)] = -1,
2164
[C(RESULT_MISS)] = -1,
2165
},
2166
[C(OP_PREFETCH)] = {
2167
[C(RESULT_ACCESS)] = -1,
2168
[C(RESULT_MISS)] = -1,
2169
},
2170
},
2171
};
2172
2173
static __initconst const u64 glm_hw_cache_extra_regs
2174
[PERF_COUNT_HW_CACHE_MAX]
2175
[PERF_COUNT_HW_CACHE_OP_MAX]
2176
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2177
[C(LL)] = {
2178
[C(OP_READ)] = {
2179
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2180
GLM_LLC_ACCESS,
2181
[C(RESULT_MISS)] = GLM_DEMAND_READ|
2182
GLM_LLC_MISS,
2183
},
2184
[C(OP_WRITE)] = {
2185
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2186
GLM_LLC_ACCESS,
2187
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2188
GLM_LLC_MISS,
2189
},
2190
[C(OP_PREFETCH)] = {
2191
[C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
2192
GLM_LLC_ACCESS,
2193
[C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
2194
GLM_LLC_MISS,
2195
},
2196
},
2197
};
2198
2199
static __initconst const u64 glp_hw_cache_event_ids
2200
[PERF_COUNT_HW_CACHE_MAX]
2201
[PERF_COUNT_HW_CACHE_OP_MAX]
2202
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2203
[C(L1D)] = {
2204
[C(OP_READ)] = {
2205
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2206
[C(RESULT_MISS)] = 0x0,
2207
},
2208
[C(OP_WRITE)] = {
2209
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2210
[C(RESULT_MISS)] = 0x0,
2211
},
2212
[C(OP_PREFETCH)] = {
2213
[C(RESULT_ACCESS)] = 0x0,
2214
[C(RESULT_MISS)] = 0x0,
2215
},
2216
},
2217
[C(L1I)] = {
2218
[C(OP_READ)] = {
2219
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
2220
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
2221
},
2222
[C(OP_WRITE)] = {
2223
[C(RESULT_ACCESS)] = -1,
2224
[C(RESULT_MISS)] = -1,
2225
},
2226
[C(OP_PREFETCH)] = {
2227
[C(RESULT_ACCESS)] = 0x0,
2228
[C(RESULT_MISS)] = 0x0,
2229
},
2230
},
2231
[C(LL)] = {
2232
[C(OP_READ)] = {
2233
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2234
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2235
},
2236
[C(OP_WRITE)] = {
2237
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2238
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2239
},
2240
[C(OP_PREFETCH)] = {
2241
[C(RESULT_ACCESS)] = 0x0,
2242
[C(RESULT_MISS)] = 0x0,
2243
},
2244
},
2245
[C(DTLB)] = {
2246
[C(OP_READ)] = {
2247
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2248
[C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2249
},
2250
[C(OP_WRITE)] = {
2251
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2252
[C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
2253
},
2254
[C(OP_PREFETCH)] = {
2255
[C(RESULT_ACCESS)] = 0x0,
2256
[C(RESULT_MISS)] = 0x0,
2257
},
2258
},
2259
[C(ITLB)] = {
2260
[C(OP_READ)] = {
2261
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2262
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2263
},
2264
[C(OP_WRITE)] = {
2265
[C(RESULT_ACCESS)] = -1,
2266
[C(RESULT_MISS)] = -1,
2267
},
2268
[C(OP_PREFETCH)] = {
2269
[C(RESULT_ACCESS)] = -1,
2270
[C(RESULT_MISS)] = -1,
2271
},
2272
},
2273
[C(BPU)] = {
2274
[C(OP_READ)] = {
2275
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2276
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2277
},
2278
[C(OP_WRITE)] = {
2279
[C(RESULT_ACCESS)] = -1,
2280
[C(RESULT_MISS)] = -1,
2281
},
2282
[C(OP_PREFETCH)] = {
2283
[C(RESULT_ACCESS)] = -1,
2284
[C(RESULT_MISS)] = -1,
2285
},
2286
},
2287
};
2288
2289
static __initconst const u64 glp_hw_cache_extra_regs
2290
[PERF_COUNT_HW_CACHE_MAX]
2291
[PERF_COUNT_HW_CACHE_OP_MAX]
2292
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2293
[C(LL)] = {
2294
[C(OP_READ)] = {
2295
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2296
GLM_LLC_ACCESS,
2297
[C(RESULT_MISS)] = GLM_DEMAND_READ|
2298
GLM_LLC_MISS,
2299
},
2300
[C(OP_WRITE)] = {
2301
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2302
GLM_LLC_ACCESS,
2303
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2304
GLM_LLC_MISS,
2305
},
2306
[C(OP_PREFETCH)] = {
2307
[C(RESULT_ACCESS)] = 0x0,
2308
[C(RESULT_MISS)] = 0x0,
2309
},
2310
},
2311
};
2312
2313
#define TNT_LOCAL_DRAM BIT_ULL(26)
2314
#define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2315
#define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2316
#define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2317
#define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2318
SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2319
#define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2320
2321
static __initconst const u64 tnt_hw_cache_extra_regs
2322
[PERF_COUNT_HW_CACHE_MAX]
2323
[PERF_COUNT_HW_CACHE_OP_MAX]
2324
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2325
[C(LL)] = {
2326
[C(OP_READ)] = {
2327
[C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2328
TNT_LLC_ACCESS,
2329
[C(RESULT_MISS)] = TNT_DEMAND_READ|
2330
TNT_LLC_MISS,
2331
},
2332
[C(OP_WRITE)] = {
2333
[C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2334
TNT_LLC_ACCESS,
2335
[C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2336
TNT_LLC_MISS,
2337
},
2338
[C(OP_PREFETCH)] = {
2339
[C(RESULT_ACCESS)] = 0x0,
2340
[C(RESULT_MISS)] = 0x0,
2341
},
2342
},
2343
};
2344
2345
static __initconst const u64 arw_hw_cache_extra_regs
2346
[PERF_COUNT_HW_CACHE_MAX]
2347
[PERF_COUNT_HW_CACHE_OP_MAX]
2348
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2349
[C(LL)] = {
2350
[C(OP_READ)] = {
2351
[C(RESULT_ACCESS)] = 0x4000000000000001,
2352
[C(RESULT_MISS)] = 0xFFFFF000000001,
2353
},
2354
[C(OP_WRITE)] = {
2355
[C(RESULT_ACCESS)] = 0x4000000000000002,
2356
[C(RESULT_MISS)] = 0xFFFFF000000002,
2357
},
2358
[C(OP_PREFETCH)] = {
2359
[C(RESULT_ACCESS)] = 0x0,
2360
[C(RESULT_MISS)] = 0x0,
2361
},
2362
},
2363
};
2364
2365
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2366
EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2367
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2368
EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2369
2370
static struct attribute *tnt_events_attrs[] = {
2371
EVENT_PTR(td_fe_bound_tnt),
2372
EVENT_PTR(td_retiring_tnt),
2373
EVENT_PTR(td_bad_spec_tnt),
2374
EVENT_PTR(td_be_bound_tnt),
2375
NULL,
2376
};
2377
2378
static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2379
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2380
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2381
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2382
EVENT_EXTRA_END
2383
};
2384
2385
EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2386
EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
2387
2388
static struct attribute *grt_mem_attrs[] = {
2389
EVENT_PTR(mem_ld_grt),
2390
EVENT_PTR(mem_st_grt),
2391
NULL
2392
};
2393
2394
static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2395
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2396
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2397
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2398
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2399
EVENT_EXTRA_END
2400
};
2401
2402
EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0");
2403
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0");
2404
2405
static struct attribute *cmt_events_attrs[] = {
2406
EVENT_PTR(td_fe_bound_tnt),
2407
EVENT_PTR(td_retiring_cmt),
2408
EVENT_PTR(td_bad_spec_cmt),
2409
EVENT_PTR(td_be_bound_tnt),
2410
NULL
2411
};
2412
2413
static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2414
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2415
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2416
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2417
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2418
INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2419
INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2420
EVENT_EXTRA_END
2421
};
2422
2423
static struct extra_reg intel_arw_extra_regs[] __read_mostly = {
2424
/* must define OMR_X first, see intel_alt_er() */
2425
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OMR_0, 0xc0ffffffffffffffull, OMR_0),
2426
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OMR_1, 0xc0ffffffffffffffull, OMR_1),
2427
INTEL_UEVENT_EXTRA_REG(0x04b7, MSR_OMR_2, 0xc0ffffffffffffffull, OMR_2),
2428
INTEL_UEVENT_EXTRA_REG(0x08b7, MSR_OMR_3, 0xc0ffffffffffffffull, OMR_3),
2429
INTEL_UEVENT_EXTRA_REG(0x01d4, MSR_OMR_0, 0xc0ffffffffffffffull, OMR_0),
2430
INTEL_UEVENT_EXTRA_REG(0x02d4, MSR_OMR_1, 0xc0ffffffffffffffull, OMR_1),
2431
INTEL_UEVENT_EXTRA_REG(0x04d4, MSR_OMR_2, 0xc0ffffffffffffffull, OMR_2),
2432
INTEL_UEVENT_EXTRA_REG(0x08d4, MSR_OMR_3, 0xc0ffffffffffffffull, OMR_3),
2433
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2434
INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2435
INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2436
EVENT_EXTRA_END
2437
};
2438
2439
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_skt, "event=0x9c,umask=0x01");
2440
EVENT_ATTR_STR(topdown-retiring, td_retiring_skt, "event=0xc2,umask=0x02");
2441
EVENT_ATTR_STR(topdown-be-bound, td_be_bound_skt, "event=0xa4,umask=0x02");
2442
2443
static struct attribute *skt_events_attrs[] = {
2444
EVENT_PTR(td_fe_bound_skt),
2445
EVENT_PTR(td_retiring_skt),
2446
EVENT_PTR(td_bad_spec_cmt),
2447
EVENT_PTR(td_be_bound_skt),
2448
NULL,
2449
};
2450
2451
#define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2452
#define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2453
#define KNL_MCDRAM_LOCAL BIT_ULL(21)
2454
#define KNL_MCDRAM_FAR BIT_ULL(22)
2455
#define KNL_DDR_LOCAL BIT_ULL(23)
2456
#define KNL_DDR_FAR BIT_ULL(24)
2457
#define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2458
KNL_DDR_LOCAL | KNL_DDR_FAR)
2459
#define KNL_L2_READ SLM_DMND_READ
2460
#define KNL_L2_WRITE SLM_DMND_WRITE
2461
#define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2462
#define KNL_L2_ACCESS SLM_LLC_ACCESS
2463
#define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2464
KNL_DRAM_ANY | SNB_SNP_ANY | \
2465
SNB_NON_DRAM)
2466
2467
static __initconst const u64 knl_hw_cache_extra_regs
2468
[PERF_COUNT_HW_CACHE_MAX]
2469
[PERF_COUNT_HW_CACHE_OP_MAX]
2470
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2471
[C(LL)] = {
2472
[C(OP_READ)] = {
2473
[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2474
[C(RESULT_MISS)] = 0,
2475
},
2476
[C(OP_WRITE)] = {
2477
[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2478
[C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2479
},
2480
[C(OP_PREFETCH)] = {
2481
[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2482
[C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2483
},
2484
},
2485
};
2486
2487
/*
2488
* Used from PMIs where the LBRs are already disabled.
2489
*
2490
* This function could be called consecutively. It is required to remain in
2491
* disabled state if called consecutively.
2492
*
2493
* During consecutive calls, the same disable value will be written to related
2494
* registers, so the PMU state remains unchanged.
2495
*
2496
* intel_bts events don't coexist with intel PMU's BTS events because of
2497
* x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2498
* disabled around intel PMU's event batching etc, only inside the PMI handler.
2499
*
2500
* Avoid PEBS_ENABLE MSR access in PMIs.
2501
* The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2502
* It doesn't matter if the PEBS is enabled or not.
2503
* Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2504
* access PEBS_ENABLE MSR in disable_all()/enable_all().
2505
* However, there are some cases which may change PEBS status, e.g. PMI
2506
* throttle. The PEBS_ENABLE should be updated where the status changes.
2507
*/
2508
static __always_inline void __intel_pmu_disable_all(bool bts)
2509
{
2510
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2511
2512
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2513
2514
if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2515
intel_pmu_disable_bts();
2516
}
2517
2518
static __always_inline void intel_pmu_disable_all(void)
2519
{
2520
__intel_pmu_disable_all(true);
2521
static_call_cond(x86_pmu_pebs_disable_all)();
2522
intel_pmu_lbr_disable_all();
2523
}
2524
2525
static void __intel_pmu_enable_all(int added, bool pmi)
2526
{
2527
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2528
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2529
2530
intel_pmu_lbr_enable_all(pmi);
2531
2532
if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2533
wrmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2534
cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2535
}
2536
2537
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL,
2538
intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2539
2540
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2541
struct perf_event *event =
2542
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2543
2544
if (WARN_ON_ONCE(!event))
2545
return;
2546
2547
intel_pmu_enable_bts(event->hw.config);
2548
}
2549
}
2550
2551
static void intel_pmu_enable_all(int added)
2552
{
2553
static_call_cond(x86_pmu_pebs_enable_all)();
2554
__intel_pmu_enable_all(added, false);
2555
}
2556
2557
static noinline int
2558
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2559
unsigned int cnt, unsigned long flags)
2560
{
2561
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2562
2563
intel_pmu_lbr_read();
2564
cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2565
2566
memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2567
intel_pmu_enable_all(0);
2568
local_irq_restore(flags);
2569
return cnt;
2570
}
2571
2572
static int
2573
intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2574
{
2575
unsigned long flags;
2576
2577
/* must not have branches... */
2578
local_irq_save(flags);
2579
__intel_pmu_disable_all(false); /* we don't care about BTS */
2580
__intel_pmu_lbr_disable();
2581
/* ... until here */
2582
return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2583
}
2584
2585
static int
2586
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2587
{
2588
unsigned long flags;
2589
2590
/* must not have branches... */
2591
local_irq_save(flags);
2592
__intel_pmu_disable_all(false); /* we don't care about BTS */
2593
__intel_pmu_arch_lbr_disable();
2594
/* ... until here */
2595
return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2596
}
2597
2598
/*
2599
* Workaround for:
2600
* Intel Errata AAK100 (model 26)
2601
* Intel Errata AAP53 (model 30)
2602
* Intel Errata BD53 (model 44)
2603
*
2604
* The official story:
2605
* These chips need to be 'reset' when adding counters by programming the
2606
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2607
* in sequence on the same PMC or on different PMCs.
2608
*
2609
* In practice it appears some of these events do in fact count, and
2610
* we need to program all 4 events.
2611
*/
2612
static void intel_pmu_nhm_workaround(void)
2613
{
2614
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2615
static const unsigned long nhm_magic[4] = {
2616
0x4300B5,
2617
0x4300D2,
2618
0x4300B1,
2619
0x4300B1
2620
};
2621
struct perf_event *event;
2622
int i;
2623
2624
/*
2625
* The Errata requires below steps:
2626
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2627
* 2) Configure 4 PERFEVTSELx with the magic events and clear
2628
* the corresponding PMCx;
2629
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2630
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2631
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2632
*/
2633
2634
/*
2635
* The real steps we choose are a little different from above.
2636
* A) To reduce MSR operations, we don't run step 1) as they
2637
* are already cleared before this function is called;
2638
* B) Call x86_perf_event_update to save PMCx before configuring
2639
* PERFEVTSELx with magic number;
2640
* C) With step 5), we do clear only when the PERFEVTSELx is
2641
* not used currently.
2642
* D) Call x86_perf_event_set_period to restore PMCx;
2643
*/
2644
2645
/* We always operate 4 pairs of PERF Counters */
2646
for (i = 0; i < 4; i++) {
2647
event = cpuc->events[i];
2648
if (event)
2649
static_call(x86_pmu_update)(event);
2650
}
2651
2652
for (i = 0; i < 4; i++) {
2653
wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2654
wrmsrq(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2655
}
2656
2657
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2658
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2659
2660
for (i = 0; i < 4; i++) {
2661
event = cpuc->events[i];
2662
2663
if (event) {
2664
static_call(x86_pmu_set_period)(event);
2665
__x86_pmu_enable_event(&event->hw,
2666
ARCH_PERFMON_EVENTSEL_ENABLE);
2667
} else
2668
wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2669
}
2670
}
2671
2672
static void intel_pmu_nhm_enable_all(int added)
2673
{
2674
if (added)
2675
intel_pmu_nhm_workaround();
2676
intel_pmu_enable_all(added);
2677
}
2678
2679
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2680
{
2681
u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2682
2683
if (cpuc->tfa_shadow != val) {
2684
cpuc->tfa_shadow = val;
2685
wrmsrq(MSR_TSX_FORCE_ABORT, val);
2686
}
2687
}
2688
2689
static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2690
{
2691
/*
2692
* We're going to use PMC3, make sure TFA is set before we touch it.
2693
*/
2694
if (cntr == 3)
2695
intel_set_tfa(cpuc, true);
2696
}
2697
2698
static void intel_tfa_pmu_enable_all(int added)
2699
{
2700
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2701
2702
/*
2703
* If we find PMC3 is no longer used when we enable the PMU, we can
2704
* clear TFA.
2705
*/
2706
if (!test_bit(3, cpuc->active_mask))
2707
intel_set_tfa(cpuc, false);
2708
2709
intel_pmu_enable_all(added);
2710
}
2711
2712
static inline u64 intel_pmu_get_status(void)
2713
{
2714
u64 status;
2715
2716
rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status);
2717
2718
return status;
2719
}
2720
2721
static inline void intel_pmu_ack_status(u64 ack)
2722
{
2723
wrmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2724
}
2725
2726
static inline bool event_is_checkpointed(struct perf_event *event)
2727
{
2728
return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2729
}
2730
2731
static inline void intel_set_masks(struct perf_event *event, int idx)
2732
{
2733
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2734
2735
if (event->attr.exclude_host)
2736
__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2737
if (event->attr.exclude_guest)
2738
__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2739
if (event_is_checkpointed(event))
2740
__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2741
}
2742
2743
static inline void intel_clear_masks(struct perf_event *event, int idx)
2744
{
2745
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2746
2747
__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2748
__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2749
__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2750
}
2751
2752
static void intel_pmu_disable_fixed(struct perf_event *event)
2753
{
2754
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2755
struct hw_perf_event *hwc = &event->hw;
2756
int idx = hwc->idx;
2757
u64 mask;
2758
2759
if (is_topdown_idx(idx)) {
2760
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2761
2762
/*
2763
* When there are other active TopDown events,
2764
* don't disable the fixed counter 3.
2765
*/
2766
if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2767
return;
2768
idx = INTEL_PMC_IDX_FIXED_SLOTS;
2769
}
2770
2771
intel_clear_masks(event, idx);
2772
2773
mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2774
cpuc->fixed_ctrl_val &= ~mask;
2775
}
2776
2777
static inline void __intel_pmu_update_event_ext(int idx, u64 ext)
2778
{
2779
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2780
u32 msr;
2781
2782
if (idx < INTEL_PMC_IDX_FIXED) {
2783
msr = MSR_IA32_PMC_V6_GP0_CFG_C +
2784
x86_pmu.addr_offset(idx, false);
2785
} else {
2786
msr = MSR_IA32_PMC_V6_FX0_CFG_C +
2787
x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
2788
}
2789
2790
cpuc->cfg_c_val[idx] = ext;
2791
wrmsrq(msr, ext);
2792
}
2793
2794
static void intel_pmu_disable_event_ext(struct perf_event *event)
2795
{
2796
/*
2797
* Only clear CFG_C MSR for PEBS counter group events,
2798
* it avoids the HW counter's value to be added into
2799
* other PEBS records incorrectly after PEBS counter
2800
* group events are disabled.
2801
*
2802
* For other events, it's unnecessary to clear CFG_C MSRs
2803
* since CFG_C doesn't take effect if counter is in
2804
* disabled state. That helps to reduce the WRMSR overhead
2805
* in context switches.
2806
*/
2807
if (!is_pebs_counter_event_group(event))
2808
return;
2809
2810
__intel_pmu_update_event_ext(event->hw.idx, 0);
2811
}
2812
2813
DEFINE_STATIC_CALL_NULL(intel_pmu_disable_event_ext, intel_pmu_disable_event_ext);
2814
2815
static void intel_pmu_disable_event(struct perf_event *event)
2816
{
2817
struct hw_perf_event *hwc = &event->hw;
2818
int idx = hwc->idx;
2819
2820
switch (idx) {
2821
case 0 ... INTEL_PMC_IDX_FIXED - 1:
2822
intel_clear_masks(event, idx);
2823
static_call_cond(intel_pmu_disable_event_ext)(event);
2824
x86_pmu_disable_event(event);
2825
break;
2826
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2827
static_call_cond(intel_pmu_disable_event_ext)(event);
2828
fallthrough;
2829
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2830
intel_pmu_disable_fixed(event);
2831
break;
2832
case INTEL_PMC_IDX_FIXED_BTS:
2833
intel_pmu_disable_bts();
2834
intel_pmu_drain_bts_buffer();
2835
return;
2836
case INTEL_PMC_IDX_FIXED_VLBR:
2837
intel_clear_masks(event, idx);
2838
break;
2839
default:
2840
intel_clear_masks(event, idx);
2841
pr_warn("Failed to disable the event with invalid index %d\n",
2842
idx);
2843
return;
2844
}
2845
2846
/*
2847
* Needs to be called after x86_pmu_disable_event,
2848
* so we don't trigger the event without PEBS bit set.
2849
*/
2850
if (unlikely(event->attr.precise_ip))
2851
static_call(x86_pmu_pebs_disable)(event);
2852
}
2853
2854
static void intel_pmu_assign_event(struct perf_event *event, int idx)
2855
{
2856
if (is_pebs_pt(event))
2857
perf_report_aux_output_id(event, idx);
2858
}
2859
2860
static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2861
{
2862
return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2863
}
2864
2865
static void intel_pmu_del_event(struct perf_event *event)
2866
{
2867
if (intel_pmu_needs_branch_stack(event))
2868
intel_pmu_lbr_del(event);
2869
if (event->attr.precise_ip)
2870
intel_pmu_pebs_del(event);
2871
if (is_pebs_counter_event_group(event) ||
2872
is_acr_event_group(event))
2873
this_cpu_ptr(&cpu_hw_events)->n_late_setup--;
2874
}
2875
2876
static int icl_set_topdown_event_period(struct perf_event *event)
2877
{
2878
struct hw_perf_event *hwc = &event->hw;
2879
s64 left = local64_read(&hwc->period_left);
2880
2881
/*
2882
* The values in PERF_METRICS MSR are derived from fixed counter 3.
2883
* Software should start both registers, PERF_METRICS and fixed
2884
* counter 3, from zero.
2885
* Clear PERF_METRICS and Fixed counter 3 in initialization.
2886
* After that, both MSRs will be cleared for each read.
2887
* Don't need to clear them again.
2888
*/
2889
if (left == x86_pmu.max_period) {
2890
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2891
wrmsrq(MSR_PERF_METRICS, 0);
2892
hwc->saved_slots = 0;
2893
hwc->saved_metric = 0;
2894
}
2895
2896
if ((hwc->saved_slots) && is_slots_event(event)) {
2897
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2898
wrmsrq(MSR_PERF_METRICS, hwc->saved_metric);
2899
}
2900
2901
perf_event_update_userpage(event);
2902
2903
return 0;
2904
}
2905
2906
DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2907
2908
static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2909
{
2910
u32 val;
2911
2912
/*
2913
* The metric is reported as an 8bit integer fraction
2914
* summing up to 0xff.
2915
* slots-in-metric = (Metric / 0xff) * slots
2916
*/
2917
val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2918
return mul_u64_u32_div(slots, val, 0xff);
2919
}
2920
2921
static u64 icl_get_topdown_value(struct perf_event *event,
2922
u64 slots, u64 metrics)
2923
{
2924
int idx = event->hw.idx;
2925
u64 delta;
2926
2927
if (is_metric_idx(idx))
2928
delta = icl_get_metrics_event_value(metrics, slots, idx);
2929
else
2930
delta = slots;
2931
2932
return delta;
2933
}
2934
2935
static void __icl_update_topdown_event(struct perf_event *event,
2936
u64 slots, u64 metrics,
2937
u64 last_slots, u64 last_metrics)
2938
{
2939
u64 delta, last = 0;
2940
2941
delta = icl_get_topdown_value(event, slots, metrics);
2942
if (last_slots)
2943
last = icl_get_topdown_value(event, last_slots, last_metrics);
2944
2945
/*
2946
* The 8bit integer fraction of metric may be not accurate,
2947
* especially when the changes is very small.
2948
* For example, if only a few bad_spec happens, the fraction
2949
* may be reduced from 1 to 0. If so, the bad_spec event value
2950
* will be 0 which is definitely less than the last value.
2951
* Avoid update event->count for this case.
2952
*/
2953
if (delta > last) {
2954
delta -= last;
2955
local64_add(delta, &event->count);
2956
}
2957
}
2958
2959
static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2960
u64 metrics, int metric_end)
2961
{
2962
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2963
struct perf_event *other;
2964
int idx;
2965
2966
event->hw.saved_slots = slots;
2967
event->hw.saved_metric = metrics;
2968
2969
for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2970
if (!is_topdown_idx(idx))
2971
continue;
2972
other = cpuc->events[idx];
2973
other->hw.saved_slots = slots;
2974
other->hw.saved_metric = metrics;
2975
}
2976
}
2977
2978
/*
2979
* Update all active Topdown events.
2980
*
2981
* The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2982
* modify by a NMI. PMU has to be disabled before calling this function.
2983
*/
2984
2985
static u64 intel_update_topdown_event(struct perf_event *event, int metric_end, u64 *val)
2986
{
2987
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2988
struct perf_event *other;
2989
u64 slots, metrics;
2990
bool reset = true;
2991
int idx;
2992
2993
if (!val) {
2994
/* read Fixed counter 3 */
2995
slots = rdpmc(3 | INTEL_PMC_FIXED_RDPMC_BASE);
2996
if (!slots)
2997
return 0;
2998
2999
/* read PERF_METRICS */
3000
metrics = rdpmc(INTEL_PMC_FIXED_RDPMC_METRICS);
3001
} else {
3002
slots = val[0];
3003
metrics = val[1];
3004
/*
3005
* Don't reset the PERF_METRICS and Fixed counter 3
3006
* for each PEBS record read. Utilize the RDPMC metrics
3007
* clear mode.
3008
*/
3009
reset = false;
3010
}
3011
3012
for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
3013
if (!is_topdown_idx(idx))
3014
continue;
3015
other = cpuc->events[idx];
3016
__icl_update_topdown_event(other, slots, metrics,
3017
event ? event->hw.saved_slots : 0,
3018
event ? event->hw.saved_metric : 0);
3019
}
3020
3021
/*
3022
* Check and update this event, which may have been cleared
3023
* in active_mask e.g. x86_pmu_stop()
3024
*/
3025
if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
3026
__icl_update_topdown_event(event, slots, metrics,
3027
event->hw.saved_slots,
3028
event->hw.saved_metric);
3029
3030
/*
3031
* In x86_pmu_stop(), the event is cleared in active_mask first,
3032
* then drain the delta, which indicates context switch for
3033
* counting.
3034
* Save metric and slots for context switch.
3035
* Don't need to reset the PERF_METRICS and Fixed counter 3.
3036
* Because the values will be restored in next schedule in.
3037
*/
3038
update_saved_topdown_regs(event, slots, metrics, metric_end);
3039
reset = false;
3040
}
3041
3042
if (reset) {
3043
/* The fixed counter 3 has to be written before the PERF_METRICS. */
3044
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
3045
wrmsrq(MSR_PERF_METRICS, 0);
3046
if (event)
3047
update_saved_topdown_regs(event, 0, 0, metric_end);
3048
}
3049
3050
return slots;
3051
}
3052
3053
static u64 icl_update_topdown_event(struct perf_event *event, u64 *val)
3054
{
3055
return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
3056
x86_pmu.num_topdown_events - 1,
3057
val);
3058
}
3059
3060
DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, intel_pmu_topdown_event_update);
3061
3062
static void intel_pmu_read_event(struct perf_event *event)
3063
{
3064
if (event->hw.flags & (PERF_X86_EVENT_AUTO_RELOAD | PERF_X86_EVENT_TOPDOWN) ||
3065
is_pebs_counter_event_group(event)) {
3066
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3067
bool pmu_enabled = cpuc->enabled;
3068
3069
/* Only need to call update_topdown_event() once for group read. */
3070
if (is_metric_event(event) && (cpuc->txn_flags & PERF_PMU_TXN_READ))
3071
return;
3072
3073
cpuc->enabled = 0;
3074
if (pmu_enabled)
3075
intel_pmu_disable_all();
3076
3077
/*
3078
* If the PEBS counters snapshotting is enabled,
3079
* the topdown event is available in PEBS records.
3080
*/
3081
if (is_topdown_count(event) && !is_pebs_counter_event_group(event))
3082
static_call(intel_pmu_update_topdown_event)(event, NULL);
3083
else
3084
intel_pmu_drain_pebs_buffer();
3085
3086
cpuc->enabled = pmu_enabled;
3087
if (pmu_enabled)
3088
intel_pmu_enable_all(0);
3089
3090
return;
3091
}
3092
3093
x86_perf_event_update(event);
3094
}
3095
3096
static void intel_pmu_enable_fixed(struct perf_event *event)
3097
{
3098
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3099
struct hw_perf_event *hwc = &event->hw;
3100
int idx = hwc->idx;
3101
u64 bits = 0;
3102
3103
if (is_topdown_idx(idx)) {
3104
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3105
/*
3106
* When there are other active TopDown events,
3107
* don't enable the fixed counter 3 again.
3108
*/
3109
if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
3110
return;
3111
3112
idx = INTEL_PMC_IDX_FIXED_SLOTS;
3113
3114
if (event->attr.config1 & INTEL_TD_CFG_METRIC_CLEAR)
3115
bits |= INTEL_FIXED_3_METRICS_CLEAR;
3116
}
3117
3118
intel_set_masks(event, idx);
3119
3120
/*
3121
* Enable IRQ generation (0x8), if not PEBS,
3122
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
3123
* if requested:
3124
*/
3125
if (!event->attr.precise_ip)
3126
bits |= INTEL_FIXED_0_ENABLE_PMI;
3127
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
3128
bits |= INTEL_FIXED_0_USER;
3129
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
3130
bits |= INTEL_FIXED_0_KERNEL;
3131
if (hwc->config & ARCH_PERFMON_EVENTSEL_RDPMC_USER_DISABLE)
3132
bits |= INTEL_FIXED_0_RDPMC_USER_DISABLE;
3133
3134
/*
3135
* ANY bit is supported in v3 and up
3136
*/
3137
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
3138
bits |= INTEL_FIXED_0_ANYTHREAD;
3139
3140
idx -= INTEL_PMC_IDX_FIXED;
3141
bits = intel_fixed_bits_by_idx(idx, bits);
3142
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip)
3143
bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
3144
3145
cpuc->fixed_ctrl_val &= ~intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
3146
cpuc->fixed_ctrl_val |= bits;
3147
}
3148
3149
static void intel_pmu_config_acr(int idx, u64 mask, u32 reload)
3150
{
3151
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3152
int msr_b, msr_c;
3153
int msr_offset;
3154
3155
if (!mask && !cpuc->acr_cfg_b[idx])
3156
return;
3157
3158
if (idx < INTEL_PMC_IDX_FIXED) {
3159
msr_b = MSR_IA32_PMC_V6_GP0_CFG_B;
3160
msr_c = MSR_IA32_PMC_V6_GP0_CFG_C;
3161
msr_offset = x86_pmu.addr_offset(idx, false);
3162
} else {
3163
msr_b = MSR_IA32_PMC_V6_FX0_CFG_B;
3164
msr_c = MSR_IA32_PMC_V6_FX0_CFG_C;
3165
msr_offset = x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
3166
}
3167
3168
if (cpuc->acr_cfg_b[idx] != mask) {
3169
wrmsrl(msr_b + msr_offset, mask);
3170
cpuc->acr_cfg_b[idx] = mask;
3171
}
3172
/* Only need to update the reload value when there is a valid config value. */
3173
if (mask && cpuc->acr_cfg_c[idx] != reload) {
3174
wrmsrl(msr_c + msr_offset, reload);
3175
cpuc->acr_cfg_c[idx] = reload;
3176
}
3177
}
3178
3179
static void intel_pmu_enable_acr(struct perf_event *event)
3180
{
3181
struct hw_perf_event *hwc = &event->hw;
3182
3183
if (!is_acr_event_group(event) || !event->attr.config2) {
3184
/*
3185
* The disable doesn't clear the ACR CFG register.
3186
* Check and clear the ACR CFG register.
3187
*/
3188
intel_pmu_config_acr(hwc->idx, 0, 0);
3189
return;
3190
}
3191
3192
intel_pmu_config_acr(hwc->idx, hwc->config1, -hwc->sample_period);
3193
}
3194
3195
DEFINE_STATIC_CALL_NULL(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
3196
3197
static void intel_pmu_enable_event_ext(struct perf_event *event)
3198
{
3199
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3200
struct hw_perf_event *hwc = &event->hw;
3201
union arch_pebs_index old, new;
3202
struct arch_pebs_cap cap;
3203
u64 ext = 0;
3204
3205
cap = hybrid(cpuc->pmu, arch_pebs_cap);
3206
3207
if (event->attr.precise_ip) {
3208
u64 pebs_data_cfg = intel_get_arch_pebs_data_config(event);
3209
3210
ext |= ARCH_PEBS_EN;
3211
if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD)
3212
ext |= (-hwc->sample_period) & ARCH_PEBS_RELOAD;
3213
3214
if (pebs_data_cfg && cap.caps) {
3215
if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
3216
ext |= ARCH_PEBS_AUX & cap.caps;
3217
3218
if (pebs_data_cfg & PEBS_DATACFG_GP)
3219
ext |= ARCH_PEBS_GPR & cap.caps;
3220
3221
if (pebs_data_cfg & PEBS_DATACFG_XMMS)
3222
ext |= ARCH_PEBS_VECR_XMM & cap.caps;
3223
3224
if (pebs_data_cfg & PEBS_DATACFG_LBRS)
3225
ext |= ARCH_PEBS_LBR & cap.caps;
3226
3227
if (pebs_data_cfg &
3228
(PEBS_DATACFG_CNTR_MASK << PEBS_DATACFG_CNTR_SHIFT))
3229
ext |= ARCH_PEBS_CNTR_GP & cap.caps;
3230
3231
if (pebs_data_cfg &
3232
(PEBS_DATACFG_FIX_MASK << PEBS_DATACFG_FIX_SHIFT))
3233
ext |= ARCH_PEBS_CNTR_FIXED & cap.caps;
3234
3235
if (pebs_data_cfg & PEBS_DATACFG_METRICS)
3236
ext |= ARCH_PEBS_CNTR_METRICS & cap.caps;
3237
}
3238
3239
if (cpuc->n_pebs == cpuc->n_large_pebs)
3240
new.thresh = ARCH_PEBS_THRESH_MULTI;
3241
else
3242
new.thresh = ARCH_PEBS_THRESH_SINGLE;
3243
3244
rdmsrq(MSR_IA32_PEBS_INDEX, old.whole);
3245
if (new.thresh != old.thresh || !old.en) {
3246
if (old.thresh == ARCH_PEBS_THRESH_MULTI && old.wr > 0) {
3247
/*
3248
* Large PEBS was enabled.
3249
* Drain PEBS buffer before applying the single PEBS.
3250
*/
3251
intel_pmu_drain_pebs_buffer();
3252
} else {
3253
new.wr = 0;
3254
new.full = 0;
3255
new.en = 1;
3256
wrmsrq(MSR_IA32_PEBS_INDEX, new.whole);
3257
}
3258
}
3259
}
3260
3261
if (is_pebs_counter_event_group(event))
3262
ext |= ARCH_PEBS_CNTR_ALLOW;
3263
3264
if (cpuc->cfg_c_val[hwc->idx] != ext)
3265
__intel_pmu_update_event_ext(hwc->idx, ext);
3266
}
3267
3268
static void intel_pmu_update_rdpmc_user_disable(struct perf_event *event)
3269
{
3270
if (!x86_pmu_has_rdpmc_user_disable(event->pmu))
3271
return;
3272
3273
/*
3274
* Counter scope's user-space rdpmc is disabled by default
3275
* except two cases.
3276
* a. rdpmc = 2 (user space rdpmc enabled unconditionally)
3277
* b. rdpmc = 1 and the event is not a system-wide event.
3278
* The count of non-system-wide events would be cleared when
3279
* context switches, so no count data is leaked.
3280
*/
3281
if (x86_pmu.attr_rdpmc == X86_USER_RDPMC_ALWAYS_ENABLE ||
3282
(x86_pmu.attr_rdpmc == X86_USER_RDPMC_CONDITIONAL_ENABLE &&
3283
event->ctx->task))
3284
event->hw.config &= ~ARCH_PERFMON_EVENTSEL_RDPMC_USER_DISABLE;
3285
else
3286
event->hw.config |= ARCH_PERFMON_EVENTSEL_RDPMC_USER_DISABLE;
3287
}
3288
3289
DEFINE_STATIC_CALL_NULL(intel_pmu_enable_event_ext, intel_pmu_enable_event_ext);
3290
3291
static void intel_pmu_enable_event(struct perf_event *event)
3292
{
3293
u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
3294
struct hw_perf_event *hwc = &event->hw;
3295
int idx = hwc->idx;
3296
3297
intel_pmu_update_rdpmc_user_disable(event);
3298
3299
if (unlikely(event->attr.precise_ip))
3300
static_call(x86_pmu_pebs_enable)(event);
3301
3302
switch (idx) {
3303
case 0 ... INTEL_PMC_IDX_FIXED - 1:
3304
if (branch_sample_counters(event))
3305
enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
3306
intel_set_masks(event, idx);
3307
static_call_cond(intel_pmu_enable_acr_event)(event);
3308
static_call_cond(intel_pmu_enable_event_ext)(event);
3309
__x86_pmu_enable_event(hwc, enable_mask);
3310
break;
3311
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
3312
static_call_cond(intel_pmu_enable_acr_event)(event);
3313
static_call_cond(intel_pmu_enable_event_ext)(event);
3314
fallthrough;
3315
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
3316
intel_pmu_enable_fixed(event);
3317
break;
3318
case INTEL_PMC_IDX_FIXED_BTS:
3319
if (!__this_cpu_read(cpu_hw_events.enabled))
3320
return;
3321
intel_pmu_enable_bts(hwc->config);
3322
break;
3323
case INTEL_PMC_IDX_FIXED_VLBR:
3324
intel_set_masks(event, idx);
3325
break;
3326
default:
3327
pr_warn("Failed to enable the event with invalid index %d\n",
3328
idx);
3329
}
3330
}
3331
3332
static void intel_pmu_acr_late_setup(struct cpu_hw_events *cpuc)
3333
{
3334
struct perf_event *event, *leader;
3335
int i, j, idx;
3336
3337
for (i = 0; i < cpuc->n_events; i++) {
3338
leader = cpuc->event_list[i];
3339
if (!is_acr_event_group(leader))
3340
continue;
3341
3342
/* The ACR events must be contiguous. */
3343
for (j = i; j < cpuc->n_events; j++) {
3344
event = cpuc->event_list[j];
3345
if (event->group_leader != leader->group_leader)
3346
break;
3347
for_each_set_bit(idx, (unsigned long *)&event->attr.config2, X86_PMC_IDX_MAX) {
3348
if (i + idx >= cpuc->n_events ||
3349
!is_acr_event_group(cpuc->event_list[i + idx]))
3350
return;
3351
__set_bit(cpuc->assign[i + idx], (unsigned long *)&event->hw.config1);
3352
}
3353
}
3354
i = j - 1;
3355
}
3356
}
3357
3358
void intel_pmu_late_setup(void)
3359
{
3360
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3361
3362
if (!cpuc->n_late_setup)
3363
return;
3364
3365
intel_pmu_pebs_late_setup(cpuc);
3366
intel_pmu_acr_late_setup(cpuc);
3367
}
3368
3369
static void intel_pmu_add_event(struct perf_event *event)
3370
{
3371
if (event->attr.precise_ip)
3372
intel_pmu_pebs_add(event);
3373
if (intel_pmu_needs_branch_stack(event))
3374
intel_pmu_lbr_add(event);
3375
if (is_pebs_counter_event_group(event) ||
3376
is_acr_event_group(event))
3377
this_cpu_ptr(&cpu_hw_events)->n_late_setup++;
3378
}
3379
3380
/*
3381
* Save and restart an expired event. Called by NMI contexts,
3382
* so it has to be careful about preempting normal event ops:
3383
*/
3384
int intel_pmu_save_and_restart(struct perf_event *event)
3385
{
3386
static_call(x86_pmu_update)(event);
3387
/*
3388
* For a checkpointed counter always reset back to 0. This
3389
* avoids a situation where the counter overflows, aborts the
3390
* transaction and is then set back to shortly before the
3391
* overflow, and overflows and aborts again.
3392
*/
3393
if (unlikely(event_is_checkpointed(event))) {
3394
/* No race with NMIs because the counter should not be armed */
3395
wrmsrq(event->hw.event_base, 0);
3396
local64_set(&event->hw.prev_count, 0);
3397
}
3398
return static_call(x86_pmu_set_period)(event);
3399
}
3400
3401
static int intel_pmu_set_period(struct perf_event *event)
3402
{
3403
if (unlikely(is_topdown_count(event)))
3404
return static_call(intel_pmu_set_topdown_event_period)(event);
3405
3406
return x86_perf_event_set_period(event);
3407
}
3408
3409
static u64 intel_pmu_update(struct perf_event *event)
3410
{
3411
if (unlikely(is_topdown_count(event)))
3412
return static_call(intel_pmu_update_topdown_event)(event, NULL);
3413
3414
return x86_perf_event_update(event);
3415
}
3416
3417
static void intel_pmu_reset(void)
3418
{
3419
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
3420
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3421
unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
3422
unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
3423
unsigned long flags;
3424
int idx;
3425
3426
if (!*(u64 *)cntr_mask)
3427
return;
3428
3429
local_irq_save(flags);
3430
3431
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
3432
3433
for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) {
3434
wrmsrq_safe(x86_pmu_config_addr(idx), 0ull);
3435
wrmsrq_safe(x86_pmu_event_addr(idx), 0ull);
3436
}
3437
for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) {
3438
if (fixed_counter_disabled(idx, cpuc->pmu))
3439
continue;
3440
wrmsrq_safe(x86_pmu_fixed_ctr_addr(idx), 0ull);
3441
}
3442
3443
if (ds)
3444
ds->bts_index = ds->bts_buffer_base;
3445
3446
/* Ack all overflows and disable fixed counters */
3447
if (x86_pmu.version >= 2) {
3448
intel_pmu_ack_status(intel_pmu_get_status());
3449
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
3450
}
3451
3452
/* Reset LBRs and LBR freezing */
3453
if (x86_pmu.lbr_nr) {
3454
update_debugctlmsr(get_debugctlmsr() &
3455
~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
3456
}
3457
3458
local_irq_restore(flags);
3459
}
3460
3461
/*
3462
* We may be running with guest PEBS events created by KVM, and the
3463
* PEBS records are logged into the guest's DS and invisible to host.
3464
*
3465
* In the case of guest PEBS overflow, we only trigger a fake event
3466
* to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
3467
* The guest will then vm-entry and check the guest DS area to read
3468
* the guest PEBS records.
3469
*
3470
* The contents and other behavior of the guest event do not matter.
3471
*/
3472
static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
3473
struct perf_sample_data *data)
3474
{
3475
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3476
u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
3477
struct perf_event *event = NULL;
3478
int bit;
3479
3480
if (!unlikely(perf_guest_state()))
3481
return;
3482
3483
if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
3484
!guest_pebs_idxs)
3485
return;
3486
3487
for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) {
3488
event = cpuc->events[bit];
3489
if (!event->attr.precise_ip)
3490
continue;
3491
3492
perf_sample_data_init(data, 0, event->hw.last_period);
3493
perf_event_overflow(event, data, regs);
3494
3495
/* Inject one fake event is enough. */
3496
break;
3497
}
3498
}
3499
3500
static int handle_pmi_common(struct pt_regs *regs, u64 status)
3501
{
3502
struct perf_sample_data data;
3503
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3504
int bit;
3505
int handled = 0;
3506
3507
inc_irq_stat(apic_perf_irqs);
3508
3509
/*
3510
* Ignore a range of extra bits in status that do not indicate
3511
* overflow by themselves.
3512
*/
3513
status &= ~(GLOBAL_STATUS_COND_CHG |
3514
GLOBAL_STATUS_ASIF |
3515
GLOBAL_STATUS_LBRS_FROZEN);
3516
if (!status)
3517
return 0;
3518
/*
3519
* In case multiple PEBS events are sampled at the same time,
3520
* it is possible to have GLOBAL_STATUS bit 62 set indicating
3521
* PEBS buffer overflow and also seeing at most 3 PEBS counters
3522
* having their bits set in the status register. This is a sign
3523
* that there was at least one PEBS record pending at the time
3524
* of the PMU interrupt. PEBS counters must only be processed
3525
* via the drain_pebs() calls and not via the regular sample
3526
* processing loop coming after that the function, otherwise
3527
* phony regular samples may be generated in the sampling buffer
3528
* not marked with the EXACT tag. Another possibility is to have
3529
* one PEBS event and at least one non-PEBS event which overflows
3530
* while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
3531
* not be set, yet the overflow status bit for the PEBS counter will
3532
* be on Skylake.
3533
*
3534
* To avoid this problem, we systematically ignore the PEBS-enabled
3535
* counters from the GLOBAL_STATUS mask and we always process PEBS
3536
* events via drain_pebs().
3537
*/
3538
status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3539
3540
/*
3541
* PEBS overflow sets bit 62 in the global status register
3542
*/
3543
if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3544
u64 pebs_enabled = cpuc->pebs_enabled;
3545
3546
handled++;
3547
x86_pmu_handle_guest_pebs(regs, &data);
3548
static_call(x86_pmu_drain_pebs)(regs, &data);
3549
3550
/*
3551
* PMI throttle may be triggered, which stops the PEBS event.
3552
* Although cpuc->pebs_enabled is updated accordingly, the
3553
* MSR_IA32_PEBS_ENABLE is not updated. Because the
3554
* cpuc->enabled has been forced to 0 in PMI.
3555
* Update the MSR if pebs_enabled is changed.
3556
*/
3557
if (pebs_enabled != cpuc->pebs_enabled)
3558
wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3559
3560
/*
3561
* Above PEBS handler (PEBS counters snapshotting) has updated fixed
3562
* counter 3 and perf metrics counts if they are in counter group,
3563
* unnecessary to update again.
3564
*/
3565
if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3566
is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3567
status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3568
}
3569
3570
/*
3571
* Arch PEBS sets bit 54 in the global status register
3572
*/
3573
if (__test_and_clear_bit(GLOBAL_STATUS_ARCH_PEBS_THRESHOLD_BIT,
3574
(unsigned long *)&status)) {
3575
handled++;
3576
static_call(x86_pmu_drain_pebs)(regs, &data);
3577
3578
if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3579
is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3580
status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3581
}
3582
3583
/*
3584
* Intel PT
3585
*/
3586
if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3587
handled++;
3588
if (!perf_guest_handle_intel_pt_intr())
3589
intel_pt_interrupt();
3590
}
3591
3592
/*
3593
* Intel Perf metrics
3594
*/
3595
if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3596
handled++;
3597
static_call(intel_pmu_update_topdown_event)(NULL, NULL);
3598
}
3599
3600
status &= hybrid(cpuc->pmu, intel_ctrl);
3601
3602
/*
3603
* Checkpointed counters can lead to 'spurious' PMIs because the
3604
* rollback caused by the PMI will have cleared the overflow status
3605
* bit. Therefore always force probe these counters.
3606
*/
3607
status |= cpuc->intel_cp_status;
3608
3609
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3610
struct perf_event *event = cpuc->events[bit];
3611
u64 last_period;
3612
3613
handled++;
3614
3615
if (!test_bit(bit, cpuc->active_mask))
3616
continue;
3617
/* Event may have already been cleared: */
3618
if (!event)
3619
continue;
3620
3621
/*
3622
* There may be unprocessed PEBS records in the PEBS buffer,
3623
* which still stores the previous values.
3624
* Process those records first before handling the latest value.
3625
* For example,
3626
* A is a regular counter
3627
* B is a PEBS event which reads A
3628
* C is a PEBS event
3629
*
3630
* The following can happen:
3631
* B-assist A=1
3632
* C A=2
3633
* B-assist A=3
3634
* A-overflow-PMI A=4
3635
* C-assist-PMI (PEBS buffer) A=5
3636
*
3637
* The PEBS buffer has to be drained before handling the A-PMI
3638
*/
3639
if (is_pebs_counter_event_group(event))
3640
static_call(x86_pmu_drain_pebs)(regs, &data);
3641
3642
last_period = event->hw.last_period;
3643
3644
if (!intel_pmu_save_and_restart(event))
3645
continue;
3646
3647
perf_sample_data_init(&data, 0, last_period);
3648
3649
if (has_branch_stack(event))
3650
intel_pmu_lbr_save_brstack(&data, cpuc, event);
3651
3652
perf_event_overflow(event, &data, regs);
3653
}
3654
3655
return handled;
3656
}
3657
3658
/*
3659
* This handler is triggered by the local APIC, so the APIC IRQ handling
3660
* rules apply:
3661
*/
3662
static int intel_pmu_handle_irq(struct pt_regs *regs)
3663
{
3664
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3665
bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3666
bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3667
int loops;
3668
u64 status;
3669
int handled;
3670
int pmu_enabled;
3671
3672
/*
3673
* Save the PMU state.
3674
* It needs to be restored when leaving the handler.
3675
*/
3676
pmu_enabled = cpuc->enabled;
3677
/*
3678
* In general, the early ACK is only applied for old platforms.
3679
* For the big core starts from Haswell, the late ACK should be
3680
* applied.
3681
* For the small core after Tremont, we have to do the ACK right
3682
* before re-enabling counters, which is in the middle of the
3683
* NMI handler.
3684
*/
3685
if (!late_ack && !mid_ack)
3686
apic_write(APIC_LVTPC, APIC_DM_NMI);
3687
intel_bts_disable_local();
3688
cpuc->enabled = 0;
3689
__intel_pmu_disable_all(true);
3690
handled = intel_pmu_drain_bts_buffer();
3691
handled += intel_bts_interrupt();
3692
status = intel_pmu_get_status();
3693
if (!status)
3694
goto done;
3695
3696
loops = 0;
3697
again:
3698
intel_pmu_lbr_read();
3699
intel_pmu_ack_status(status);
3700
if (++loops > 100) {
3701
static bool warned;
3702
3703
if (!warned) {
3704
WARN(1, "perfevents: irq loop stuck!\n");
3705
perf_event_print_debug();
3706
warned = true;
3707
}
3708
intel_pmu_reset();
3709
goto done;
3710
}
3711
3712
handled += handle_pmi_common(regs, status);
3713
3714
/*
3715
* Repeat if there is more work to be done:
3716
*/
3717
status = intel_pmu_get_status();
3718
if (status)
3719
goto again;
3720
3721
done:
3722
if (mid_ack)
3723
apic_write(APIC_LVTPC, APIC_DM_NMI);
3724
/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3725
cpuc->enabled = pmu_enabled;
3726
if (pmu_enabled)
3727
__intel_pmu_enable_all(0, true);
3728
intel_bts_enable_local();
3729
3730
/*
3731
* Only unmask the NMI after the overflow counters
3732
* have been reset. This avoids spurious NMIs on
3733
* Haswell CPUs.
3734
*/
3735
if (late_ack)
3736
apic_write(APIC_LVTPC, APIC_DM_NMI);
3737
return handled;
3738
}
3739
3740
static struct event_constraint *
3741
intel_bts_constraints(struct perf_event *event)
3742
{
3743
if (unlikely(intel_pmu_has_bts(event)))
3744
return &bts_constraint;
3745
3746
return NULL;
3747
}
3748
3749
/*
3750
* Note: matches a fake event, like Fixed2.
3751
*/
3752
static struct event_constraint *
3753
intel_vlbr_constraints(struct perf_event *event)
3754
{
3755
struct event_constraint *c = &vlbr_constraint;
3756
3757
if (unlikely(constraint_match(c, event->hw.config))) {
3758
event->hw.flags |= c->flags;
3759
return c;
3760
}
3761
3762
return NULL;
3763
}
3764
3765
static int intel_alt_er(struct cpu_hw_events *cpuc,
3766
int idx, u64 config)
3767
{
3768
struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3769
int alt_idx = idx;
3770
3771
switch (idx) {
3772
case EXTRA_REG_RSP_0 ... EXTRA_REG_RSP_1:
3773
if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3774
return idx;
3775
if (++alt_idx > EXTRA_REG_RSP_1)
3776
alt_idx = EXTRA_REG_RSP_0;
3777
if (config & ~extra_regs[alt_idx].valid_mask)
3778
return idx;
3779
break;
3780
3781
case EXTRA_REG_OMR_0 ... EXTRA_REG_OMR_3:
3782
if (!(x86_pmu.flags & PMU_FL_HAS_OMR))
3783
return idx;
3784
if (++alt_idx > EXTRA_REG_OMR_3)
3785
alt_idx = EXTRA_REG_OMR_0;
3786
/*
3787
* Subtracting EXTRA_REG_OMR_0 ensures to get correct
3788
* OMR extra_reg entries which start from 0.
3789
*/
3790
if (config & ~extra_regs[alt_idx - EXTRA_REG_OMR_0].valid_mask)
3791
return idx;
3792
break;
3793
3794
default:
3795
break;
3796
}
3797
3798
return alt_idx;
3799
}
3800
3801
static void intel_fixup_er(struct perf_event *event, int idx)
3802
{
3803
struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3804
int er_idx;
3805
3806
event->hw.extra_reg.idx = idx;
3807
switch (idx) {
3808
case EXTRA_REG_RSP_0 ... EXTRA_REG_RSP_1:
3809
er_idx = idx - EXTRA_REG_RSP_0;
3810
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3811
event->hw.config |= extra_regs[er_idx].event;
3812
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0 + er_idx;
3813
break;
3814
3815
case EXTRA_REG_OMR_0 ... EXTRA_REG_OMR_3:
3816
er_idx = idx - EXTRA_REG_OMR_0;
3817
event->hw.config &= ~ARCH_PERFMON_EVENTSEL_UMASK;
3818
event->hw.config |= 1ULL << (8 + er_idx);
3819
event->hw.extra_reg.reg = MSR_OMR_0 + er_idx;
3820
break;
3821
3822
default:
3823
pr_warn("The extra reg idx %d is not supported.\n", idx);
3824
}
3825
}
3826
3827
/*
3828
* manage allocation of shared extra msr for certain events
3829
*
3830
* sharing can be:
3831
* per-cpu: to be shared between the various events on a single PMU
3832
* per-core: per-cpu + shared by HT threads
3833
*/
3834
static struct event_constraint *
3835
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3836
struct perf_event *event,
3837
struct hw_perf_event_extra *reg)
3838
{
3839
struct event_constraint *c = &emptyconstraint;
3840
struct er_account *era;
3841
unsigned long flags;
3842
int idx = reg->idx;
3843
3844
/*
3845
* reg->alloc can be set due to existing state, so for fake cpuc we
3846
* need to ignore this, otherwise we might fail to allocate proper fake
3847
* state for this extra reg constraint. Also see the comment below.
3848
*/
3849
if (reg->alloc && !cpuc->is_fake)
3850
return NULL; /* call x86_get_event_constraint() */
3851
3852
again:
3853
era = &cpuc->shared_regs->regs[idx];
3854
/*
3855
* we use spin_lock_irqsave() to avoid lockdep issues when
3856
* passing a fake cpuc
3857
*/
3858
raw_spin_lock_irqsave(&era->lock, flags);
3859
3860
if (!atomic_read(&era->ref) || era->config == reg->config) {
3861
3862
/*
3863
* If its a fake cpuc -- as per validate_{group,event}() we
3864
* shouldn't touch event state and we can avoid doing so
3865
* since both will only call get_event_constraints() once
3866
* on each event, this avoids the need for reg->alloc.
3867
*
3868
* Not doing the ER fixup will only result in era->reg being
3869
* wrong, but since we won't actually try and program hardware
3870
* this isn't a problem either.
3871
*/
3872
if (!cpuc->is_fake) {
3873
if (idx != reg->idx)
3874
intel_fixup_er(event, idx);
3875
3876
/*
3877
* x86_schedule_events() can call get_event_constraints()
3878
* multiple times on events in the case of incremental
3879
* scheduling(). reg->alloc ensures we only do the ER
3880
* allocation once.
3881
*/
3882
reg->alloc = 1;
3883
}
3884
3885
/* lock in msr value */
3886
era->config = reg->config;
3887
era->reg = reg->reg;
3888
3889
/* one more user */
3890
atomic_inc(&era->ref);
3891
3892
/*
3893
* need to call x86_get_event_constraint()
3894
* to check if associated event has constraints
3895
*/
3896
c = NULL;
3897
} else {
3898
idx = intel_alt_er(cpuc, idx, reg->config);
3899
if (idx != reg->idx) {
3900
raw_spin_unlock_irqrestore(&era->lock, flags);
3901
goto again;
3902
}
3903
}
3904
raw_spin_unlock_irqrestore(&era->lock, flags);
3905
3906
return c;
3907
}
3908
3909
static void
3910
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3911
struct hw_perf_event_extra *reg)
3912
{
3913
struct er_account *era;
3914
3915
/*
3916
* Only put constraint if extra reg was actually allocated. Also takes
3917
* care of event which do not use an extra shared reg.
3918
*
3919
* Also, if this is a fake cpuc we shouldn't touch any event state
3920
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
3921
* either since it'll be thrown out.
3922
*/
3923
if (!reg->alloc || cpuc->is_fake)
3924
return;
3925
3926
era = &cpuc->shared_regs->regs[reg->idx];
3927
3928
/* one fewer user */
3929
atomic_dec(&era->ref);
3930
3931
/* allocate again next time */
3932
reg->alloc = 0;
3933
}
3934
3935
static struct event_constraint *
3936
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3937
struct perf_event *event)
3938
{
3939
struct event_constraint *c = NULL, *d;
3940
struct hw_perf_event_extra *xreg, *breg;
3941
3942
xreg = &event->hw.extra_reg;
3943
if (xreg->idx != EXTRA_REG_NONE) {
3944
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3945
if (c == &emptyconstraint)
3946
return c;
3947
}
3948
breg = &event->hw.branch_reg;
3949
if (breg->idx != EXTRA_REG_NONE) {
3950
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3951
if (d == &emptyconstraint) {
3952
__intel_shared_reg_put_constraints(cpuc, xreg);
3953
c = d;
3954
}
3955
}
3956
return c;
3957
}
3958
3959
struct event_constraint *
3960
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3961
struct perf_event *event)
3962
{
3963
struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3964
struct event_constraint *c;
3965
3966
if (event_constraints) {
3967
for_each_event_constraint(c, event_constraints) {
3968
if (constraint_match(c, event->hw.config)) {
3969
event->hw.flags |= c->flags;
3970
return c;
3971
}
3972
}
3973
}
3974
3975
return &hybrid_var(cpuc->pmu, unconstrained);
3976
}
3977
3978
static struct event_constraint *
3979
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3980
struct perf_event *event)
3981
{
3982
struct event_constraint *c;
3983
3984
c = intel_vlbr_constraints(event);
3985
if (c)
3986
return c;
3987
3988
c = intel_bts_constraints(event);
3989
if (c)
3990
return c;
3991
3992
c = intel_shared_regs_constraints(cpuc, event);
3993
if (c)
3994
return c;
3995
3996
c = intel_pebs_constraints(event);
3997
if (c)
3998
return c;
3999
4000
return x86_get_event_constraints(cpuc, idx, event);
4001
}
4002
4003
static void
4004
intel_start_scheduling(struct cpu_hw_events *cpuc)
4005
{
4006
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4007
struct intel_excl_states *xl;
4008
int tid = cpuc->excl_thread_id;
4009
4010
/*
4011
* nothing needed if in group validation mode
4012
*/
4013
if (cpuc->is_fake || !is_ht_workaround_enabled())
4014
return;
4015
4016
/*
4017
* no exclusion needed
4018
*/
4019
if (WARN_ON_ONCE(!excl_cntrs))
4020
return;
4021
4022
xl = &excl_cntrs->states[tid];
4023
4024
xl->sched_started = true;
4025
/*
4026
* lock shared state until we are done scheduling
4027
* in stop_event_scheduling()
4028
* makes scheduling appear as a transaction
4029
*/
4030
raw_spin_lock(&excl_cntrs->lock);
4031
}
4032
4033
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
4034
{
4035
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4036
struct event_constraint *c = cpuc->event_constraint[idx];
4037
struct intel_excl_states *xl;
4038
int tid = cpuc->excl_thread_id;
4039
4040
if (cpuc->is_fake || !is_ht_workaround_enabled())
4041
return;
4042
4043
if (WARN_ON_ONCE(!excl_cntrs))
4044
return;
4045
4046
if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
4047
return;
4048
4049
xl = &excl_cntrs->states[tid];
4050
4051
lockdep_assert_held(&excl_cntrs->lock);
4052
4053
if (c->flags & PERF_X86_EVENT_EXCL)
4054
xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
4055
else
4056
xl->state[cntr] = INTEL_EXCL_SHARED;
4057
}
4058
4059
static void
4060
intel_stop_scheduling(struct cpu_hw_events *cpuc)
4061
{
4062
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4063
struct intel_excl_states *xl;
4064
int tid = cpuc->excl_thread_id;
4065
4066
/*
4067
* nothing needed if in group validation mode
4068
*/
4069
if (cpuc->is_fake || !is_ht_workaround_enabled())
4070
return;
4071
/*
4072
* no exclusion needed
4073
*/
4074
if (WARN_ON_ONCE(!excl_cntrs))
4075
return;
4076
4077
xl = &excl_cntrs->states[tid];
4078
4079
xl->sched_started = false;
4080
/*
4081
* release shared state lock (acquired in intel_start_scheduling())
4082
*/
4083
raw_spin_unlock(&excl_cntrs->lock);
4084
}
4085
4086
static struct event_constraint *
4087
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
4088
{
4089
WARN_ON_ONCE(!cpuc->constraint_list);
4090
4091
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
4092
struct event_constraint *cx;
4093
4094
/*
4095
* grab pre-allocated constraint entry
4096
*/
4097
cx = &cpuc->constraint_list[idx];
4098
4099
/*
4100
* initialize dynamic constraint
4101
* with static constraint
4102
*/
4103
*cx = *c;
4104
4105
/*
4106
* mark constraint as dynamic
4107
*/
4108
cx->flags |= PERF_X86_EVENT_DYNAMIC;
4109
c = cx;
4110
}
4111
4112
return c;
4113
}
4114
4115
static struct event_constraint *
4116
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
4117
int idx, struct event_constraint *c)
4118
{
4119
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4120
struct intel_excl_states *xlo;
4121
int tid = cpuc->excl_thread_id;
4122
int is_excl, i, w;
4123
4124
/*
4125
* validating a group does not require
4126
* enforcing cross-thread exclusion
4127
*/
4128
if (cpuc->is_fake || !is_ht_workaround_enabled())
4129
return c;
4130
4131
/*
4132
* no exclusion needed
4133
*/
4134
if (WARN_ON_ONCE(!excl_cntrs))
4135
return c;
4136
4137
/*
4138
* because we modify the constraint, we need
4139
* to make a copy. Static constraints come
4140
* from static const tables.
4141
*
4142
* only needed when constraint has not yet
4143
* been cloned (marked dynamic)
4144
*/
4145
c = dyn_constraint(cpuc, c, idx);
4146
4147
/*
4148
* From here on, the constraint is dynamic.
4149
* Either it was just allocated above, or it
4150
* was allocated during a earlier invocation
4151
* of this function
4152
*/
4153
4154
/*
4155
* state of sibling HT
4156
*/
4157
xlo = &excl_cntrs->states[tid ^ 1];
4158
4159
/*
4160
* event requires exclusive counter access
4161
* across HT threads
4162
*/
4163
is_excl = c->flags & PERF_X86_EVENT_EXCL;
4164
if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
4165
event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
4166
if (!cpuc->n_excl++)
4167
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
4168
}
4169
4170
/*
4171
* Modify static constraint with current dynamic
4172
* state of thread
4173
*
4174
* EXCLUSIVE: sibling counter measuring exclusive event
4175
* SHARED : sibling counter measuring non-exclusive event
4176
* UNUSED : sibling counter unused
4177
*/
4178
w = c->weight;
4179
for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
4180
/*
4181
* exclusive event in sibling counter
4182
* our corresponding counter cannot be used
4183
* regardless of our event
4184
*/
4185
if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
4186
__clear_bit(i, c->idxmsk);
4187
w--;
4188
continue;
4189
}
4190
/*
4191
* if measuring an exclusive event, sibling
4192
* measuring non-exclusive, then counter cannot
4193
* be used
4194
*/
4195
if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
4196
__clear_bit(i, c->idxmsk);
4197
w--;
4198
continue;
4199
}
4200
}
4201
4202
/*
4203
* if we return an empty mask, then switch
4204
* back to static empty constraint to avoid
4205
* the cost of freeing later on
4206
*/
4207
if (!w)
4208
c = &emptyconstraint;
4209
4210
c->weight = w;
4211
4212
return c;
4213
}
4214
4215
static struct event_constraint *
4216
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4217
struct perf_event *event)
4218
{
4219
struct event_constraint *c1, *c2;
4220
4221
c1 = cpuc->event_constraint[idx];
4222
4223
/*
4224
* first time only
4225
* - static constraint: no change across incremental scheduling calls
4226
* - dynamic constraint: handled by intel_get_excl_constraints()
4227
*/
4228
c2 = __intel_get_event_constraints(cpuc, idx, event);
4229
if (c1) {
4230
WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
4231
bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
4232
c1->weight = c2->weight;
4233
c2 = c1;
4234
}
4235
4236
if (cpuc->excl_cntrs)
4237
return intel_get_excl_constraints(cpuc, event, idx, c2);
4238
4239
if (event->hw.dyn_constraint != ~0ULL) {
4240
c2 = dyn_constraint(cpuc, c2, idx);
4241
c2->idxmsk64 &= event->hw.dyn_constraint;
4242
c2->weight = hweight64(c2->idxmsk64);
4243
}
4244
4245
return c2;
4246
}
4247
4248
static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
4249
struct perf_event *event)
4250
{
4251
struct hw_perf_event *hwc = &event->hw;
4252
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
4253
int tid = cpuc->excl_thread_id;
4254
struct intel_excl_states *xl;
4255
4256
/*
4257
* nothing needed if in group validation mode
4258
*/
4259
if (cpuc->is_fake)
4260
return;
4261
4262
if (WARN_ON_ONCE(!excl_cntrs))
4263
return;
4264
4265
if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
4266
hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
4267
if (!--cpuc->n_excl)
4268
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
4269
}
4270
4271
/*
4272
* If event was actually assigned, then mark the counter state as
4273
* unused now.
4274
*/
4275
if (hwc->idx >= 0) {
4276
xl = &excl_cntrs->states[tid];
4277
4278
/*
4279
* put_constraint may be called from x86_schedule_events()
4280
* which already has the lock held so here make locking
4281
* conditional.
4282
*/
4283
if (!xl->sched_started)
4284
raw_spin_lock(&excl_cntrs->lock);
4285
4286
xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
4287
4288
if (!xl->sched_started)
4289
raw_spin_unlock(&excl_cntrs->lock);
4290
}
4291
}
4292
4293
static void
4294
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
4295
struct perf_event *event)
4296
{
4297
struct hw_perf_event_extra *reg;
4298
4299
reg = &event->hw.extra_reg;
4300
if (reg->idx != EXTRA_REG_NONE)
4301
__intel_shared_reg_put_constraints(cpuc, reg);
4302
4303
reg = &event->hw.branch_reg;
4304
if (reg->idx != EXTRA_REG_NONE)
4305
__intel_shared_reg_put_constraints(cpuc, reg);
4306
}
4307
4308
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
4309
struct perf_event *event)
4310
{
4311
intel_put_shared_regs_event_constraints(cpuc, event);
4312
4313
/*
4314
* is PMU has exclusive counter restrictions, then
4315
* all events are subject to and must call the
4316
* put_excl_constraints() routine
4317
*/
4318
if (cpuc->excl_cntrs)
4319
intel_put_excl_constraints(cpuc, event);
4320
}
4321
4322
static void intel_pebs_aliases_core2(struct perf_event *event)
4323
{
4324
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4325
/*
4326
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4327
* (0x003c) so that we can use it with PEBS.
4328
*
4329
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4330
* PEBS capable. However we can use INST_RETIRED.ANY_P
4331
* (0x00c0), which is a PEBS capable event, to get the same
4332
* count.
4333
*
4334
* INST_RETIRED.ANY_P counts the number of cycles that retires
4335
* CNTMASK instructions. By setting CNTMASK to a value (16)
4336
* larger than the maximum number of instructions that can be
4337
* retired per cycle (4) and then inverting the condition, we
4338
* count all cycles that retire 16 or less instructions, which
4339
* is every cycle.
4340
*
4341
* Thereby we gain a PEBS capable cycle counter.
4342
*/
4343
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
4344
4345
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4346
event->hw.config = alt_config;
4347
}
4348
}
4349
4350
static void intel_pebs_aliases_snb(struct perf_event *event)
4351
{
4352
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4353
/*
4354
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4355
* (0x003c) so that we can use it with PEBS.
4356
*
4357
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4358
* PEBS capable. However we can use UOPS_RETIRED.ALL
4359
* (0x01c2), which is a PEBS capable event, to get the same
4360
* count.
4361
*
4362
* UOPS_RETIRED.ALL counts the number of cycles that retires
4363
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
4364
* larger than the maximum number of micro-ops that can be
4365
* retired per cycle (4) and then inverting the condition, we
4366
* count all cycles that retire 16 or less micro-ops, which
4367
* is every cycle.
4368
*
4369
* Thereby we gain a PEBS capable cycle counter.
4370
*/
4371
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
4372
4373
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4374
event->hw.config = alt_config;
4375
}
4376
}
4377
4378
static void intel_pebs_aliases_precdist(struct perf_event *event)
4379
{
4380
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
4381
/*
4382
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
4383
* (0x003c) so that we can use it with PEBS.
4384
*
4385
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
4386
* PEBS capable. However we can use INST_RETIRED.PREC_DIST
4387
* (0x01c0), which is a PEBS capable event, to get the same
4388
* count.
4389
*
4390
* The PREC_DIST event has special support to minimize sample
4391
* shadowing effects. One drawback is that it can be
4392
* only programmed on counter 1, but that seems like an
4393
* acceptable trade off.
4394
*/
4395
u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
4396
4397
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4398
event->hw.config = alt_config;
4399
}
4400
}
4401
4402
static void intel_pebs_aliases_ivb(struct perf_event *event)
4403
{
4404
if (event->attr.precise_ip < 3)
4405
return intel_pebs_aliases_snb(event);
4406
return intel_pebs_aliases_precdist(event);
4407
}
4408
4409
static void intel_pebs_aliases_skl(struct perf_event *event)
4410
{
4411
if (event->attr.precise_ip < 3)
4412
return intel_pebs_aliases_core2(event);
4413
return intel_pebs_aliases_precdist(event);
4414
}
4415
4416
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
4417
{
4418
unsigned long flags = x86_pmu.large_pebs_flags;
4419
4420
if (event->attr.use_clockid)
4421
flags &= ~PERF_SAMPLE_TIME;
4422
if (!event->attr.exclude_kernel)
4423
flags &= ~PERF_SAMPLE_REGS_USER;
4424
if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
4425
flags &= ~PERF_SAMPLE_REGS_USER;
4426
if (event->attr.sample_regs_intr & ~PEBS_GP_REGS)
4427
flags &= ~PERF_SAMPLE_REGS_INTR;
4428
return flags;
4429
}
4430
4431
static int intel_pmu_bts_config(struct perf_event *event)
4432
{
4433
struct perf_event_attr *attr = &event->attr;
4434
4435
if (unlikely(intel_pmu_has_bts(event))) {
4436
/* BTS is not supported by this architecture. */
4437
if (!x86_pmu.bts_active)
4438
return -EOPNOTSUPP;
4439
4440
/* BTS is currently only allowed for user-mode. */
4441
if (!attr->exclude_kernel)
4442
return -EOPNOTSUPP;
4443
4444
/* BTS is not allowed for precise events. */
4445
if (attr->precise_ip)
4446
return -EOPNOTSUPP;
4447
4448
/* disallow bts if conflicting events are present */
4449
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4450
return -EBUSY;
4451
4452
event->destroy = hw_perf_lbr_event_destroy;
4453
}
4454
4455
return 0;
4456
}
4457
4458
static int core_pmu_hw_config(struct perf_event *event)
4459
{
4460
int ret = x86_pmu_hw_config(event);
4461
4462
if (ret)
4463
return ret;
4464
4465
return intel_pmu_bts_config(event);
4466
}
4467
4468
#define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
4469
((x86_pmu.num_topdown_events - 1) << 8))
4470
4471
static bool is_available_metric_event(struct perf_event *event)
4472
{
4473
return is_metric_event(event) &&
4474
event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
4475
}
4476
4477
static inline bool is_mem_loads_event(struct perf_event *event)
4478
{
4479
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
4480
}
4481
4482
static inline bool is_mem_loads_aux_event(struct perf_event *event)
4483
{
4484
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
4485
}
4486
4487
static inline bool require_mem_loads_aux_event(struct perf_event *event)
4488
{
4489
if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
4490
return false;
4491
4492
if (is_hybrid())
4493
return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
4494
4495
return true;
4496
}
4497
4498
static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
4499
{
4500
union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
4501
4502
return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
4503
}
4504
4505
static u64 intel_pmu_freq_start_period(struct perf_event *event)
4506
{
4507
int type = event->attr.type;
4508
u64 config, factor;
4509
s64 start;
4510
4511
/*
4512
* The 127 is the lowest possible recommended SAV (sample after value)
4513
* for a 4000 freq (default freq), according to the event list JSON file.
4514
* Also, assume the workload is idle 50% time.
4515
*/
4516
factor = 64 * 4000;
4517
if (type != PERF_TYPE_HARDWARE && type != PERF_TYPE_HW_CACHE)
4518
goto end;
4519
4520
/*
4521
* The estimation of the start period in the freq mode is
4522
* based on the below assumption.
4523
*
4524
* For a cycles or an instructions event, 1GHZ of the
4525
* underlying platform, 1 IPC. The workload is idle 50% time.
4526
* The start period = 1,000,000,000 * 1 / freq / 2.
4527
* = 500,000,000 / freq
4528
*
4529
* Usually, the branch-related events occur less than the
4530
* instructions event. According to the Intel event list JSON
4531
* file, the SAV (sample after value) of a branch-related event
4532
* is usually 1/4 of an instruction event.
4533
* The start period of branch-related events = 125,000,000 / freq.
4534
*
4535
* The cache-related events occurs even less. The SAV is usually
4536
* 1/20 of an instruction event.
4537
* The start period of cache-related events = 25,000,000 / freq.
4538
*/
4539
config = event->attr.config & PERF_HW_EVENT_MASK;
4540
if (type == PERF_TYPE_HARDWARE) {
4541
switch (config) {
4542
case PERF_COUNT_HW_CPU_CYCLES:
4543
case PERF_COUNT_HW_INSTRUCTIONS:
4544
case PERF_COUNT_HW_BUS_CYCLES:
4545
case PERF_COUNT_HW_STALLED_CYCLES_FRONTEND:
4546
case PERF_COUNT_HW_STALLED_CYCLES_BACKEND:
4547
case PERF_COUNT_HW_REF_CPU_CYCLES:
4548
factor = 500000000;
4549
break;
4550
case PERF_COUNT_HW_BRANCH_INSTRUCTIONS:
4551
case PERF_COUNT_HW_BRANCH_MISSES:
4552
factor = 125000000;
4553
break;
4554
case PERF_COUNT_HW_CACHE_REFERENCES:
4555
case PERF_COUNT_HW_CACHE_MISSES:
4556
factor = 25000000;
4557
break;
4558
default:
4559
goto end;
4560
}
4561
}
4562
4563
if (type == PERF_TYPE_HW_CACHE)
4564
factor = 25000000;
4565
end:
4566
/*
4567
* Usually, a prime or a number with less factors (close to prime)
4568
* is chosen as an SAV, which makes it less likely that the sampling
4569
* period synchronizes with some periodic event in the workload.
4570
* Minus 1 to make it at least avoiding values near power of twos
4571
* for the default freq.
4572
*/
4573
start = DIV_ROUND_UP_ULL(factor, event->attr.sample_freq) - 1;
4574
4575
if (start > x86_pmu.max_period)
4576
start = x86_pmu.max_period;
4577
4578
if (x86_pmu.limit_period)
4579
x86_pmu.limit_period(event, &start);
4580
4581
return start;
4582
}
4583
4584
static inline bool intel_pmu_has_acr(struct pmu *pmu)
4585
{
4586
return !!hybrid(pmu, acr_cause_mask64);
4587
}
4588
4589
static bool intel_pmu_is_acr_group(struct perf_event *event)
4590
{
4591
/* The group leader has the ACR flag set */
4592
if (is_acr_event_group(event))
4593
return true;
4594
4595
/* The acr_mask is set */
4596
if (event->attr.config2)
4597
return true;
4598
4599
return false;
4600
}
4601
4602
static inline bool intel_pmu_has_pebs_counter_group(struct pmu *pmu)
4603
{
4604
u64 caps;
4605
4606
if (x86_pmu.intel_cap.pebs_format >= 6 && x86_pmu.intel_cap.pebs_baseline)
4607
return true;
4608
4609
caps = hybrid(pmu, arch_pebs_cap).caps;
4610
if (x86_pmu.arch_pebs && (caps & ARCH_PEBS_CNTR_MASK))
4611
return true;
4612
4613
return false;
4614
}
4615
4616
static inline void intel_pmu_set_acr_cntr_constr(struct perf_event *event,
4617
u64 *cause_mask, int *num)
4618
{
4619
event->hw.dyn_constraint &= hybrid(event->pmu, acr_cntr_mask64);
4620
*cause_mask |= event->attr.config2;
4621
*num += 1;
4622
}
4623
4624
static inline void intel_pmu_set_acr_caused_constr(struct perf_event *event,
4625
int idx, u64 cause_mask)
4626
{
4627
if (test_bit(idx, (unsigned long *)&cause_mask))
4628
event->hw.dyn_constraint &= hybrid(event->pmu, acr_cause_mask64);
4629
}
4630
4631
static int intel_pmu_hw_config(struct perf_event *event)
4632
{
4633
int ret = x86_pmu_hw_config(event);
4634
4635
if (ret)
4636
return ret;
4637
4638
ret = intel_pmu_bts_config(event);
4639
if (ret)
4640
return ret;
4641
4642
if (event->attr.freq && event->attr.sample_freq) {
4643
event->hw.sample_period = intel_pmu_freq_start_period(event);
4644
event->hw.last_period = event->hw.sample_period;
4645
local64_set(&event->hw.period_left, event->hw.sample_period);
4646
}
4647
4648
if (event->attr.precise_ip) {
4649
struct arch_pebs_cap pebs_cap = hybrid(event->pmu, arch_pebs_cap);
4650
4651
if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
4652
return -EINVAL;
4653
4654
if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
4655
event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
4656
if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event)) &&
4657
!has_aux_action(event)) {
4658
event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
4659
event->attach_state |= PERF_ATTACH_SCHED_CB;
4660
}
4661
}
4662
if (x86_pmu.pebs_aliases)
4663
x86_pmu.pebs_aliases(event);
4664
4665
if (x86_pmu.arch_pebs) {
4666
u64 cntr_mask = hybrid(event->pmu, intel_ctrl) &
4667
~GLOBAL_CTRL_EN_PERF_METRICS;
4668
u64 pebs_mask = event->attr.precise_ip >= 3 ?
4669
pebs_cap.pdists : pebs_cap.counters;
4670
if (cntr_mask != pebs_mask)
4671
event->hw.dyn_constraint &= pebs_mask;
4672
}
4673
}
4674
4675
if (needs_branch_stack(event)) {
4676
/* Avoid branch stack setup for counting events in SAMPLE READ */
4677
if (is_sampling_event(event) ||
4678
!(event->attr.sample_type & PERF_SAMPLE_READ))
4679
event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4680
}
4681
4682
if (branch_sample_counters(event)) {
4683
struct perf_event *leader, *sibling;
4684
int num = 0;
4685
4686
if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
4687
(event->attr.config & ~INTEL_ARCH_EVENT_MASK))
4688
return -EINVAL;
4689
4690
/*
4691
* The branch counter logging is not supported in the call stack
4692
* mode yet, since we cannot simply flush the LBR during e.g.,
4693
* multiplexing. Also, there is no obvious usage with the call
4694
* stack mode. Simply forbids it for now.
4695
*
4696
* If any events in the group enable the branch counter logging
4697
* feature, the group is treated as a branch counter logging
4698
* group, which requires the extra space to store the counters.
4699
*/
4700
leader = event->group_leader;
4701
if (branch_sample_call_stack(leader))
4702
return -EINVAL;
4703
if (branch_sample_counters(leader)) {
4704
num++;
4705
leader->hw.dyn_constraint &= x86_pmu.lbr_counters;
4706
}
4707
leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
4708
4709
for_each_sibling_event(sibling, leader) {
4710
if (branch_sample_call_stack(sibling))
4711
return -EINVAL;
4712
if (branch_sample_counters(sibling)) {
4713
num++;
4714
sibling->hw.dyn_constraint &= x86_pmu.lbr_counters;
4715
}
4716
}
4717
4718
if (num > fls(x86_pmu.lbr_counters))
4719
return -EINVAL;
4720
/*
4721
* Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
4722
* require any branch stack setup.
4723
* Clear the bit to avoid unnecessary branch stack setup.
4724
*/
4725
if (0 == (event->attr.branch_sample_type &
4726
~(PERF_SAMPLE_BRANCH_PLM_ALL |
4727
PERF_SAMPLE_BRANCH_COUNTERS)))
4728
event->hw.flags &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4729
4730
/*
4731
* Force the leader to be a LBR event. So LBRs can be reset
4732
* with the leader event. See intel_pmu_lbr_del() for details.
4733
*/
4734
if (!intel_pmu_needs_branch_stack(leader))
4735
return -EINVAL;
4736
}
4737
4738
if (intel_pmu_needs_branch_stack(event)) {
4739
ret = intel_pmu_setup_lbr_filter(event);
4740
if (ret)
4741
return ret;
4742
event->attach_state |= PERF_ATTACH_SCHED_CB;
4743
4744
/*
4745
* BTS is set up earlier in this path, so don't account twice
4746
*/
4747
if (!unlikely(intel_pmu_has_bts(event))) {
4748
/* disallow lbr if conflicting events are present */
4749
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4750
return -EBUSY;
4751
4752
event->destroy = hw_perf_lbr_event_destroy;
4753
}
4754
}
4755
4756
if (event->attr.aux_output) {
4757
if (!event->attr.precise_ip)
4758
return -EINVAL;
4759
4760
event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4761
}
4762
4763
if ((event->attr.sample_type & PERF_SAMPLE_READ) &&
4764
intel_pmu_has_pebs_counter_group(event->pmu) &&
4765
is_sampling_event(event) &&
4766
event->attr.precise_ip)
4767
event->group_leader->hw.flags |= PERF_X86_EVENT_PEBS_CNTR;
4768
4769
if (intel_pmu_has_acr(event->pmu) && intel_pmu_is_acr_group(event)) {
4770
struct perf_event *sibling, *leader = event->group_leader;
4771
struct pmu *pmu = event->pmu;
4772
bool has_sw_event = false;
4773
int num = 0, idx = 0;
4774
u64 cause_mask = 0;
4775
4776
/* Not support perf metrics */
4777
if (is_metric_event(event))
4778
return -EINVAL;
4779
4780
/* Not support freq mode */
4781
if (event->attr.freq)
4782
return -EINVAL;
4783
4784
/* PDist is not supported */
4785
if (event->attr.config2 && event->attr.precise_ip > 2)
4786
return -EINVAL;
4787
4788
/* The reload value cannot exceeds the max period */
4789
if (event->attr.sample_period > x86_pmu.max_period)
4790
return -EINVAL;
4791
/*
4792
* The counter-constraints of each event cannot be finalized
4793
* unless the whole group is scanned. However, it's hard
4794
* to know whether the event is the last one of the group.
4795
* Recalculate the counter-constraints for each event when
4796
* adding a new event.
4797
*
4798
* The group is traversed twice, which may be optimized later.
4799
* In the first round,
4800
* - Find all events which do reload when other events
4801
* overflow and set the corresponding counter-constraints
4802
* - Add all events, which can cause other events reload,
4803
* in the cause_mask
4804
* - Error out if the number of events exceeds the HW limit
4805
* - The ACR events must be contiguous.
4806
* Error out if there are non-X86 events between ACR events.
4807
* This is not a HW limit, but a SW limit.
4808
* With the assumption, the intel_pmu_acr_late_setup() can
4809
* easily convert the event idx to counter idx without
4810
* traversing the whole event list.
4811
*/
4812
if (!is_x86_event(leader))
4813
return -EINVAL;
4814
4815
if (leader->attr.config2)
4816
intel_pmu_set_acr_cntr_constr(leader, &cause_mask, &num);
4817
4818
if (leader->nr_siblings) {
4819
for_each_sibling_event(sibling, leader) {
4820
if (!is_x86_event(sibling)) {
4821
has_sw_event = true;
4822
continue;
4823
}
4824
if (!sibling->attr.config2)
4825
continue;
4826
if (has_sw_event)
4827
return -EINVAL;
4828
intel_pmu_set_acr_cntr_constr(sibling, &cause_mask, &num);
4829
}
4830
}
4831
if (leader != event && event->attr.config2) {
4832
if (has_sw_event)
4833
return -EINVAL;
4834
intel_pmu_set_acr_cntr_constr(event, &cause_mask, &num);
4835
}
4836
4837
if (hweight64(cause_mask) > hweight64(hybrid(pmu, acr_cause_mask64)) ||
4838
num > hweight64(hybrid(event->pmu, acr_cntr_mask64)))
4839
return -EINVAL;
4840
/*
4841
* In the second round, apply the counter-constraints for
4842
* the events which can cause other events reload.
4843
*/
4844
intel_pmu_set_acr_caused_constr(leader, idx++, cause_mask);
4845
4846
if (leader->nr_siblings) {
4847
for_each_sibling_event(sibling, leader)
4848
intel_pmu_set_acr_caused_constr(sibling, idx++, cause_mask);
4849
}
4850
4851
if (leader != event)
4852
intel_pmu_set_acr_caused_constr(event, idx, cause_mask);
4853
4854
leader->hw.flags |= PERF_X86_EVENT_ACR;
4855
}
4856
4857
if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4858
(event->attr.type == PERF_TYPE_HW_CACHE))
4859
return 0;
4860
4861
/*
4862
* Config Topdown slots and metric events
4863
*
4864
* The slots event on Fixed Counter 3 can support sampling,
4865
* which will be handled normally in x86_perf_event_update().
4866
*
4867
* Metric events don't support sampling and require being paired
4868
* with a slots event as group leader. When the slots event
4869
* is used in a metrics group, it too cannot support sampling.
4870
*/
4871
if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4872
/* The metrics_clear can only be set for the slots event */
4873
if (event->attr.config1 &&
4874
(!is_slots_event(event) || (event->attr.config1 & ~INTEL_TD_CFG_METRIC_CLEAR)))
4875
return -EINVAL;
4876
4877
if (event->attr.config2)
4878
return -EINVAL;
4879
4880
/*
4881
* The TopDown metrics events and slots event don't
4882
* support any filters.
4883
*/
4884
if (event->attr.config & X86_ALL_EVENT_FLAGS)
4885
return -EINVAL;
4886
4887
if (is_available_metric_event(event)) {
4888
struct perf_event *leader = event->group_leader;
4889
4890
/* The metric events don't support sampling. */
4891
if (is_sampling_event(event))
4892
return -EINVAL;
4893
4894
/* The metric events require a slots group leader. */
4895
if (!is_slots_event(leader))
4896
return -EINVAL;
4897
4898
/*
4899
* The leader/SLOTS must not be a sampling event for
4900
* metric use; hardware requires it starts at 0 when used
4901
* in conjunction with MSR_PERF_METRICS.
4902
*/
4903
if (is_sampling_event(leader))
4904
return -EINVAL;
4905
4906
event->event_caps |= PERF_EV_CAP_SIBLING;
4907
/*
4908
* Only once we have a METRICs sibling do we
4909
* need TopDown magic.
4910
*/
4911
leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4912
event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4913
}
4914
}
4915
4916
/*
4917
* The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4918
* doesn't function quite right. As a work-around it needs to always be
4919
* co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4920
* The actual count of this second event is irrelevant it just needs
4921
* to be active to make the first event function correctly.
4922
*
4923
* In a group, the auxiliary event must be in front of the load latency
4924
* event. The rule is to simplify the implementation of the check.
4925
* That's because perf cannot have a complete group at the moment.
4926
*/
4927
if (require_mem_loads_aux_event(event) &&
4928
(event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4929
is_mem_loads_event(event)) {
4930
struct perf_event *leader = event->group_leader;
4931
struct perf_event *sibling = NULL;
4932
4933
/*
4934
* When this memload event is also the first event (no group
4935
* exists yet), then there is no aux event before it.
4936
*/
4937
if (leader == event)
4938
return -ENODATA;
4939
4940
if (!is_mem_loads_aux_event(leader)) {
4941
for_each_sibling_event(sibling, leader) {
4942
if (is_mem_loads_aux_event(sibling))
4943
break;
4944
}
4945
if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4946
return -ENODATA;
4947
}
4948
}
4949
4950
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4951
return 0;
4952
4953
if (x86_pmu.version < 3)
4954
return -EINVAL;
4955
4956
ret = perf_allow_cpu();
4957
if (ret)
4958
return ret;
4959
4960
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4961
4962
return 0;
4963
}
4964
4965
/*
4966
* Currently, the only caller of this function is the atomic_switch_perf_msrs().
4967
* The host perf context helps to prepare the values of the real hardware for
4968
* a set of msrs that need to be switched atomically in a vmx transaction.
4969
*
4970
* For example, the pseudocode needed to add a new msr should look like:
4971
*
4972
* arr[(*nr)++] = (struct perf_guest_switch_msr){
4973
* .msr = the hardware msr address,
4974
* .host = the value the hardware has when it doesn't run a guest,
4975
* .guest = the value the hardware has when it runs a guest,
4976
* };
4977
*
4978
* These values have nothing to do with the emulated values the guest sees
4979
* when it uses {RD,WR}MSR, which should be handled by the KVM context,
4980
* specifically in the intel_pmu_{get,set}_msr().
4981
*/
4982
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4983
{
4984
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4985
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4986
struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4987
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4988
u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4989
int global_ctrl, pebs_enable;
4990
4991
/*
4992
* In addition to obeying exclude_guest/exclude_host, remove bits being
4993
* used for PEBS when running a guest, because PEBS writes to virtual
4994
* addresses (not physical addresses).
4995
*/
4996
*nr = 0;
4997
global_ctrl = (*nr)++;
4998
arr[global_ctrl] = (struct perf_guest_switch_msr){
4999
.msr = MSR_CORE_PERF_GLOBAL_CTRL,
5000
.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
5001
.guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
5002
};
5003
5004
if (!x86_pmu.ds_pebs)
5005
return arr;
5006
5007
/*
5008
* If PMU counter has PEBS enabled it is not enough to
5009
* disable counter on a guest entry since PEBS memory
5010
* write can overshoot guest entry and corrupt guest
5011
* memory. Disabling PEBS solves the problem.
5012
*
5013
* Don't do this if the CPU already enforces it.
5014
*/
5015
if (x86_pmu.pebs_no_isolation) {
5016
arr[(*nr)++] = (struct perf_guest_switch_msr){
5017
.msr = MSR_IA32_PEBS_ENABLE,
5018
.host = cpuc->pebs_enabled,
5019
.guest = 0,
5020
};
5021
return arr;
5022
}
5023
5024
if (!kvm_pmu || !x86_pmu.pebs_ept)
5025
return arr;
5026
5027
arr[(*nr)++] = (struct perf_guest_switch_msr){
5028
.msr = MSR_IA32_DS_AREA,
5029
.host = (unsigned long)cpuc->ds,
5030
.guest = kvm_pmu->ds_area,
5031
};
5032
5033
if (x86_pmu.intel_cap.pebs_baseline) {
5034
arr[(*nr)++] = (struct perf_guest_switch_msr){
5035
.msr = MSR_PEBS_DATA_CFG,
5036
.host = cpuc->active_pebs_data_cfg,
5037
.guest = kvm_pmu->pebs_data_cfg,
5038
};
5039
}
5040
5041
pebs_enable = (*nr)++;
5042
arr[pebs_enable] = (struct perf_guest_switch_msr){
5043
.msr = MSR_IA32_PEBS_ENABLE,
5044
.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
5045
.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask & kvm_pmu->pebs_enable,
5046
};
5047
5048
if (arr[pebs_enable].host) {
5049
/* Disable guest PEBS if host PEBS is enabled. */
5050
arr[pebs_enable].guest = 0;
5051
} else {
5052
/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
5053
arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
5054
arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
5055
/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
5056
arr[global_ctrl].guest |= arr[pebs_enable].guest;
5057
}
5058
5059
return arr;
5060
}
5061
5062
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
5063
{
5064
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5065
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
5066
int idx;
5067
5068
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
5069
struct perf_event *event = cpuc->events[idx];
5070
5071
arr[idx].msr = x86_pmu_config_addr(idx);
5072
arr[idx].host = arr[idx].guest = 0;
5073
5074
if (!test_bit(idx, cpuc->active_mask))
5075
continue;
5076
5077
arr[idx].host = arr[idx].guest =
5078
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
5079
5080
if (event->attr.exclude_host)
5081
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
5082
else if (event->attr.exclude_guest)
5083
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
5084
}
5085
5086
*nr = x86_pmu_max_num_counters(cpuc->pmu);
5087
return arr;
5088
}
5089
5090
static void core_pmu_enable_event(struct perf_event *event)
5091
{
5092
if (!event->attr.exclude_host)
5093
x86_pmu_enable_event(event);
5094
}
5095
5096
static void core_pmu_enable_all(int added)
5097
{
5098
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5099
int idx;
5100
5101
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
5102
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
5103
5104
if (!test_bit(idx, cpuc->active_mask) ||
5105
cpuc->events[idx]->attr.exclude_host)
5106
continue;
5107
5108
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
5109
}
5110
}
5111
5112
static int hsw_hw_config(struct perf_event *event)
5113
{
5114
int ret = intel_pmu_hw_config(event);
5115
5116
if (ret)
5117
return ret;
5118
if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
5119
return 0;
5120
event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
5121
5122
/*
5123
* IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
5124
* PEBS or in ANY thread mode. Since the results are non-sensical forbid
5125
* this combination.
5126
*/
5127
if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
5128
((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
5129
event->attr.precise_ip > 0))
5130
return -EOPNOTSUPP;
5131
5132
if (event_is_checkpointed(event)) {
5133
/*
5134
* Sampling of checkpointed events can cause situations where
5135
* the CPU constantly aborts because of a overflow, which is
5136
* then checkpointed back and ignored. Forbid checkpointing
5137
* for sampling.
5138
*
5139
* But still allow a long sampling period, so that perf stat
5140
* from KVM works.
5141
*/
5142
if (event->attr.sample_period > 0 &&
5143
event->attr.sample_period < 0x7fffffff)
5144
return -EOPNOTSUPP;
5145
}
5146
return 0;
5147
}
5148
5149
static struct event_constraint counter0_constraint =
5150
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
5151
5152
static struct event_constraint counter1_constraint =
5153
INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
5154
5155
static struct event_constraint counter0_1_constraint =
5156
INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
5157
5158
static struct event_constraint counter2_constraint =
5159
EVENT_CONSTRAINT(0, 0x4, 0);
5160
5161
static struct event_constraint fixed0_constraint =
5162
FIXED_EVENT_CONSTRAINT(0x00c0, 0);
5163
5164
static struct event_constraint fixed0_counter0_constraint =
5165
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
5166
5167
static struct event_constraint fixed0_counter0_1_constraint =
5168
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
5169
5170
static struct event_constraint counters_1_7_constraint =
5171
INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
5172
5173
static struct event_constraint *
5174
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5175
struct perf_event *event)
5176
{
5177
struct event_constraint *c;
5178
5179
c = intel_get_event_constraints(cpuc, idx, event);
5180
5181
/* Handle special quirk on in_tx_checkpointed only in counter 2 */
5182
if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
5183
if (c->idxmsk64 & (1U << 2))
5184
return &counter2_constraint;
5185
return &emptyconstraint;
5186
}
5187
5188
return c;
5189
}
5190
5191
static struct event_constraint *
5192
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5193
struct perf_event *event)
5194
{
5195
/*
5196
* Fixed counter 0 has less skid.
5197
* Force instruction:ppp in Fixed counter 0
5198
*/
5199
if ((event->attr.precise_ip == 3) &&
5200
constraint_match(&fixed0_constraint, event->hw.config))
5201
return &fixed0_constraint;
5202
5203
return hsw_get_event_constraints(cpuc, idx, event);
5204
}
5205
5206
static struct event_constraint *
5207
glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5208
struct perf_event *event)
5209
{
5210
struct event_constraint *c;
5211
5212
c = icl_get_event_constraints(cpuc, idx, event);
5213
5214
/*
5215
* The :ppp indicates the Precise Distribution (PDist) facility, which
5216
* is only supported on the GP counter 0. If a :ppp event which is not
5217
* available on the GP counter 0, error out.
5218
* Exception: Instruction PDIR is only available on the fixed counter 0.
5219
*/
5220
if ((event->attr.precise_ip == 3) &&
5221
!constraint_match(&fixed0_constraint, event->hw.config)) {
5222
if (c->idxmsk64 & BIT_ULL(0))
5223
return &counter0_constraint;
5224
5225
return &emptyconstraint;
5226
}
5227
5228
return c;
5229
}
5230
5231
static struct event_constraint *
5232
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5233
struct perf_event *event)
5234
{
5235
struct event_constraint *c;
5236
5237
/* :ppp means to do reduced skid PEBS which is PMC0 only. */
5238
if (event->attr.precise_ip == 3)
5239
return &counter0_constraint;
5240
5241
c = intel_get_event_constraints(cpuc, idx, event);
5242
5243
return c;
5244
}
5245
5246
static struct event_constraint *
5247
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5248
struct perf_event *event)
5249
{
5250
struct event_constraint *c;
5251
5252
c = intel_get_event_constraints(cpuc, idx, event);
5253
5254
/*
5255
* :ppp means to do reduced skid PEBS,
5256
* which is available on PMC0 and fixed counter 0.
5257
*/
5258
if (event->attr.precise_ip == 3) {
5259
/* Force instruction:ppp on PMC0 and Fixed counter 0 */
5260
if (constraint_match(&fixed0_constraint, event->hw.config))
5261
return &fixed0_counter0_constraint;
5262
5263
return &counter0_constraint;
5264
}
5265
5266
return c;
5267
}
5268
5269
static bool allow_tsx_force_abort = true;
5270
5271
static struct event_constraint *
5272
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5273
struct perf_event *event)
5274
{
5275
struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
5276
5277
/*
5278
* Without TFA we must not use PMC3.
5279
*/
5280
if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
5281
c = dyn_constraint(cpuc, c, idx);
5282
c->idxmsk64 &= ~(1ULL << 3);
5283
c->weight--;
5284
}
5285
5286
return c;
5287
}
5288
5289
static struct event_constraint *
5290
adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5291
struct perf_event *event)
5292
{
5293
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5294
5295
if (pmu->pmu_type == hybrid_big)
5296
return glc_get_event_constraints(cpuc, idx, event);
5297
else if (pmu->pmu_type == hybrid_small)
5298
return tnt_get_event_constraints(cpuc, idx, event);
5299
5300
WARN_ON(1);
5301
return &emptyconstraint;
5302
}
5303
5304
static struct event_constraint *
5305
cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5306
struct perf_event *event)
5307
{
5308
struct event_constraint *c;
5309
5310
c = intel_get_event_constraints(cpuc, idx, event);
5311
5312
/*
5313
* The :ppp indicates the Precise Distribution (PDist) facility, which
5314
* is only supported on the GP counter 0 & 1 and Fixed counter 0.
5315
* If a :ppp event which is not available on the above eligible counters,
5316
* error out.
5317
*/
5318
if (event->attr.precise_ip == 3) {
5319
/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
5320
if (constraint_match(&fixed0_constraint, event->hw.config)) {
5321
/* The fixed counter 0 doesn't support LBR event logging. */
5322
if (branch_sample_counters(event))
5323
return &counter0_1_constraint;
5324
else
5325
return &fixed0_counter0_1_constraint;
5326
}
5327
5328
switch (c->idxmsk64 & 0x3ull) {
5329
case 0x1:
5330
return &counter0_constraint;
5331
case 0x2:
5332
return &counter1_constraint;
5333
case 0x3:
5334
return &counter0_1_constraint;
5335
}
5336
return &emptyconstraint;
5337
}
5338
5339
return c;
5340
}
5341
5342
static struct event_constraint *
5343
rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5344
struct perf_event *event)
5345
{
5346
struct event_constraint *c;
5347
5348
c = glc_get_event_constraints(cpuc, idx, event);
5349
5350
/* The Retire Latency is not supported by the fixed counter 0. */
5351
if (event->attr.precise_ip &&
5352
(event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
5353
constraint_match(&fixed0_constraint, event->hw.config)) {
5354
/*
5355
* The Instruction PDIR is only available
5356
* on the fixed counter 0. Error out for this case.
5357
*/
5358
if (event->attr.precise_ip == 3)
5359
return &emptyconstraint;
5360
return &counters_1_7_constraint;
5361
}
5362
5363
return c;
5364
}
5365
5366
static struct event_constraint *
5367
mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5368
struct perf_event *event)
5369
{
5370
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5371
5372
if (pmu->pmu_type == hybrid_big)
5373
return rwc_get_event_constraints(cpuc, idx, event);
5374
if (pmu->pmu_type == hybrid_small)
5375
return cmt_get_event_constraints(cpuc, idx, event);
5376
5377
WARN_ON(1);
5378
return &emptyconstraint;
5379
}
5380
5381
static int adl_hw_config(struct perf_event *event)
5382
{
5383
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5384
5385
if (pmu->pmu_type == hybrid_big)
5386
return hsw_hw_config(event);
5387
else if (pmu->pmu_type == hybrid_small)
5388
return intel_pmu_hw_config(event);
5389
5390
WARN_ON(1);
5391
return -EOPNOTSUPP;
5392
}
5393
5394
static enum intel_cpu_type adl_get_hybrid_cpu_type(void)
5395
{
5396
return INTEL_CPU_TYPE_CORE;
5397
}
5398
5399
static inline bool erratum_hsw11(struct perf_event *event)
5400
{
5401
return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
5402
X86_CONFIG(.event=0xc0, .umask=0x01);
5403
}
5404
5405
static struct event_constraint *
5406
arl_h_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
5407
struct perf_event *event)
5408
{
5409
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5410
5411
if (pmu->pmu_type == hybrid_tiny)
5412
return cmt_get_event_constraints(cpuc, idx, event);
5413
5414
return mtl_get_event_constraints(cpuc, idx, event);
5415
}
5416
5417
static int arl_h_hw_config(struct perf_event *event)
5418
{
5419
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5420
5421
if (pmu->pmu_type == hybrid_tiny)
5422
return intel_pmu_hw_config(event);
5423
5424
return adl_hw_config(event);
5425
}
5426
5427
/*
5428
* The HSW11 requires a period larger than 100 which is the same as the BDM11.
5429
* A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
5430
*
5431
* The message 'interrupt took too long' can be observed on any counter which
5432
* was armed with a period < 32 and two events expired in the same NMI.
5433
* A minimum period of 32 is enforced for the rest of the events.
5434
*/
5435
static void hsw_limit_period(struct perf_event *event, s64 *left)
5436
{
5437
*left = max(*left, erratum_hsw11(event) ? 128 : 32);
5438
}
5439
5440
/*
5441
* Broadwell:
5442
*
5443
* The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
5444
* (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
5445
* the two to enforce a minimum period of 128 (the smallest value that has bits
5446
* 0-5 cleared and >= 100).
5447
*
5448
* Because of how the code in x86_perf_event_set_period() works, the truncation
5449
* of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
5450
* to make up for the 'lost' events due to carrying the 'error' in period_left.
5451
*
5452
* Therefore the effective (average) period matches the requested period,
5453
* despite coarser hardware granularity.
5454
*/
5455
static void bdw_limit_period(struct perf_event *event, s64 *left)
5456
{
5457
if (erratum_hsw11(event)) {
5458
if (*left < 128)
5459
*left = 128;
5460
*left &= ~0x3fULL;
5461
}
5462
}
5463
5464
static void nhm_limit_period(struct perf_event *event, s64 *left)
5465
{
5466
*left = max(*left, 32LL);
5467
}
5468
5469
static void glc_limit_period(struct perf_event *event, s64 *left)
5470
{
5471
if (event->attr.precise_ip == 3)
5472
*left = max(*left, 128LL);
5473
}
5474
5475
PMU_FORMAT_ATTR(event, "config:0-7" );
5476
PMU_FORMAT_ATTR(umask, "config:8-15" );
5477
PMU_FORMAT_ATTR(edge, "config:18" );
5478
PMU_FORMAT_ATTR(pc, "config:19" );
5479
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
5480
PMU_FORMAT_ATTR(inv, "config:23" );
5481
PMU_FORMAT_ATTR(cmask, "config:24-31" );
5482
PMU_FORMAT_ATTR(in_tx, "config:32" );
5483
PMU_FORMAT_ATTR(in_tx_cp, "config:33" );
5484
PMU_FORMAT_ATTR(eq, "config:36" ); /* v6 + */
5485
5486
PMU_FORMAT_ATTR(metrics_clear, "config1:0"); /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5487
5488
static ssize_t umask2_show(struct device *dev,
5489
struct device_attribute *attr,
5490
char *page)
5491
{
5492
u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2;
5493
5494
if (mask == ARCH_PERFMON_EVENTSEL_UMASK2)
5495
return sprintf(page, "config:8-15,40-47\n");
5496
5497
/* Roll back to the old format if umask2 is not supported. */
5498
return sprintf(page, "config:8-15\n");
5499
}
5500
5501
static struct device_attribute format_attr_umask2 =
5502
__ATTR(umask, 0444, umask2_show, NULL);
5503
5504
static struct attribute *format_evtsel_ext_attrs[] = {
5505
&format_attr_umask2.attr,
5506
&format_attr_eq.attr,
5507
&format_attr_metrics_clear.attr,
5508
NULL
5509
};
5510
5511
static umode_t
5512
evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5513
{
5514
struct device *dev = kobj_to_dev(kobj);
5515
u64 mask;
5516
5517
/*
5518
* The umask and umask2 have different formats but share the
5519
* same attr name. In update mode, the previous value of the
5520
* umask is unconditionally removed before is_visible. If
5521
* umask2 format is not enumerated, it's impossible to roll
5522
* back to the old format.
5523
* Does the check in umask2_show rather than is_visible.
5524
*/
5525
if (i == 0)
5526
return attr->mode;
5527
5528
mask = hybrid(dev_get_drvdata(dev), config_mask);
5529
if (i == 1)
5530
return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0;
5531
5532
/* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5533
if (i == 2) {
5534
union perf_capabilities intel_cap = hybrid(dev_get_drvdata(dev), intel_cap);
5535
5536
return intel_cap.rdpmc_metrics_clear ? attr->mode : 0;
5537
}
5538
5539
return 0;
5540
}
5541
5542
static struct attribute *intel_arch_formats_attr[] = {
5543
&format_attr_event.attr,
5544
&format_attr_umask.attr,
5545
&format_attr_edge.attr,
5546
&format_attr_pc.attr,
5547
&format_attr_inv.attr,
5548
&format_attr_cmask.attr,
5549
NULL,
5550
};
5551
5552
ssize_t intel_event_sysfs_show(char *page, u64 config)
5553
{
5554
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
5555
5556
return x86_event_sysfs_show(page, config, event);
5557
}
5558
5559
static struct intel_shared_regs *allocate_shared_regs(int cpu)
5560
{
5561
struct intel_shared_regs *regs;
5562
int i;
5563
5564
regs = kzalloc_node(sizeof(struct intel_shared_regs),
5565
GFP_KERNEL, cpu_to_node(cpu));
5566
if (regs) {
5567
/*
5568
* initialize the locks to keep lockdep happy
5569
*/
5570
for (i = 0; i < EXTRA_REG_MAX; i++)
5571
raw_spin_lock_init(&regs->regs[i].lock);
5572
5573
regs->core_id = -1;
5574
}
5575
return regs;
5576
}
5577
5578
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
5579
{
5580
struct intel_excl_cntrs *c;
5581
5582
c = kzalloc_node(sizeof(struct intel_excl_cntrs),
5583
GFP_KERNEL, cpu_to_node(cpu));
5584
if (c) {
5585
raw_spin_lock_init(&c->lock);
5586
c->core_id = -1;
5587
}
5588
return c;
5589
}
5590
5591
5592
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
5593
{
5594
cpuc->pebs_record_size = x86_pmu.pebs_record_size;
5595
5596
if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
5597
cpuc->shared_regs = allocate_shared_regs(cpu);
5598
if (!cpuc->shared_regs)
5599
goto err;
5600
}
5601
5602
if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_DYN_CONSTRAINT)) {
5603
size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
5604
5605
cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
5606
if (!cpuc->constraint_list)
5607
goto err_shared_regs;
5608
}
5609
5610
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5611
cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
5612
if (!cpuc->excl_cntrs)
5613
goto err_constraint_list;
5614
5615
cpuc->excl_thread_id = 0;
5616
}
5617
5618
return 0;
5619
5620
err_constraint_list:
5621
kfree(cpuc->constraint_list);
5622
cpuc->constraint_list = NULL;
5623
5624
err_shared_regs:
5625
kfree(cpuc->shared_regs);
5626
cpuc->shared_regs = NULL;
5627
5628
err:
5629
return -ENOMEM;
5630
}
5631
5632
static int intel_pmu_cpu_prepare(int cpu)
5633
{
5634
int ret;
5635
5636
ret = intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
5637
if (ret)
5638
return ret;
5639
5640
return alloc_arch_pebs_buf_on_cpu(cpu);
5641
}
5642
5643
static void flip_smm_bit(void *data)
5644
{
5645
unsigned long set = *(unsigned long *)data;
5646
5647
if (set > 0) {
5648
msr_set_bit(MSR_IA32_DEBUGCTLMSR,
5649
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5650
} else {
5651
msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
5652
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5653
}
5654
}
5655
5656
static void intel_pmu_check_counters_mask(u64 *cntr_mask,
5657
u64 *fixed_cntr_mask,
5658
u64 *intel_ctrl)
5659
{
5660
unsigned int bit;
5661
5662
bit = fls64(*cntr_mask);
5663
if (bit > INTEL_PMC_MAX_GENERIC) {
5664
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5665
bit, INTEL_PMC_MAX_GENERIC);
5666
*cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5667
}
5668
*intel_ctrl = *cntr_mask;
5669
5670
bit = fls64(*fixed_cntr_mask);
5671
if (bit > INTEL_PMC_MAX_FIXED) {
5672
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5673
bit, INTEL_PMC_MAX_FIXED);
5674
*fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
5675
}
5676
5677
*intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED;
5678
}
5679
5680
static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5681
u64 cntr_mask,
5682
u64 fixed_cntr_mask,
5683
u64 intel_ctrl);
5684
5685
enum dyn_constr_type {
5686
DYN_CONSTR_NONE,
5687
DYN_CONSTR_BR_CNTR,
5688
DYN_CONSTR_ACR_CNTR,
5689
DYN_CONSTR_ACR_CAUSE,
5690
DYN_CONSTR_PEBS,
5691
DYN_CONSTR_PDIST,
5692
5693
DYN_CONSTR_MAX,
5694
};
5695
5696
static const char * const dyn_constr_type_name[] = {
5697
[DYN_CONSTR_NONE] = "a normal event",
5698
[DYN_CONSTR_BR_CNTR] = "a branch counter logging event",
5699
[DYN_CONSTR_ACR_CNTR] = "an auto-counter reload event",
5700
[DYN_CONSTR_ACR_CAUSE] = "an auto-counter reload cause event",
5701
[DYN_CONSTR_PEBS] = "a PEBS event",
5702
[DYN_CONSTR_PDIST] = "a PEBS PDIST event",
5703
};
5704
5705
static void __intel_pmu_check_dyn_constr(struct event_constraint *constr,
5706
enum dyn_constr_type type, u64 mask)
5707
{
5708
struct event_constraint *c1, *c2;
5709
int new_weight, check_weight;
5710
u64 new_mask, check_mask;
5711
5712
for_each_event_constraint(c1, constr) {
5713
new_mask = c1->idxmsk64 & mask;
5714
new_weight = hweight64(new_mask);
5715
5716
/* ignore topdown perf metrics event */
5717
if (c1->idxmsk64 & INTEL_PMC_MSK_TOPDOWN)
5718
continue;
5719
5720
if (!new_weight && fls64(c1->idxmsk64) < INTEL_PMC_IDX_FIXED) {
5721
pr_info("The event 0x%llx is not supported as %s.\n",
5722
c1->code, dyn_constr_type_name[type]);
5723
}
5724
5725
if (new_weight <= 1)
5726
continue;
5727
5728
for_each_event_constraint(c2, c1 + 1) {
5729
bool check_fail = false;
5730
5731
check_mask = c2->idxmsk64 & mask;
5732
check_weight = hweight64(check_mask);
5733
5734
if (c2->idxmsk64 & INTEL_PMC_MSK_TOPDOWN ||
5735
!check_weight)
5736
continue;
5737
5738
/* The same constraints or no overlap */
5739
if (new_mask == check_mask ||
5740
(new_mask ^ check_mask) == (new_mask | check_mask))
5741
continue;
5742
5743
/*
5744
* A scheduler issue may be triggered in the following cases.
5745
* - Two overlap constraints have the same weight.
5746
* E.g., A constraints: 0x3, B constraints: 0x6
5747
* event counter failure case
5748
* B PMC[2:1] 1
5749
* A PMC[1:0] 0
5750
* A PMC[1:0] FAIL
5751
* - Two overlap constraints have different weight.
5752
* The constraint has a low weight, but has high last bit.
5753
* E.g., A constraints: 0x7, B constraints: 0xC
5754
* event counter failure case
5755
* B PMC[3:2] 2
5756
* A PMC[2:0] 0
5757
* A PMC[2:0] 1
5758
* A PMC[2:0] FAIL
5759
*/
5760
if (new_weight == check_weight) {
5761
check_fail = true;
5762
} else if (new_weight < check_weight) {
5763
if ((new_mask | check_mask) != check_mask &&
5764
fls64(new_mask) > fls64(check_mask))
5765
check_fail = true;
5766
} else {
5767
if ((new_mask | check_mask) != new_mask &&
5768
fls64(new_mask) < fls64(check_mask))
5769
check_fail = true;
5770
}
5771
5772
if (check_fail) {
5773
pr_info("The two events 0x%llx and 0x%llx may not be "
5774
"fully scheduled under some circumstances as "
5775
"%s.\n",
5776
c1->code, c2->code, dyn_constr_type_name[type]);
5777
}
5778
}
5779
}
5780
}
5781
5782
static void intel_pmu_check_dyn_constr(struct pmu *pmu,
5783
struct event_constraint *constr,
5784
u64 cntr_mask)
5785
{
5786
enum dyn_constr_type i;
5787
u64 mask;
5788
5789
for (i = DYN_CONSTR_NONE; i < DYN_CONSTR_MAX; i++) {
5790
mask = 0;
5791
switch (i) {
5792
case DYN_CONSTR_NONE:
5793
mask = cntr_mask;
5794
break;
5795
case DYN_CONSTR_BR_CNTR:
5796
if (x86_pmu.flags & PMU_FL_BR_CNTR)
5797
mask = x86_pmu.lbr_counters;
5798
break;
5799
case DYN_CONSTR_ACR_CNTR:
5800
mask = hybrid(pmu, acr_cntr_mask64) & GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5801
break;
5802
case DYN_CONSTR_ACR_CAUSE:
5803
if (hybrid(pmu, acr_cntr_mask64) == hybrid(pmu, acr_cause_mask64))
5804
continue;
5805
mask = hybrid(pmu, acr_cause_mask64) & GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5806
break;
5807
case DYN_CONSTR_PEBS:
5808
if (x86_pmu.arch_pebs)
5809
mask = hybrid(pmu, arch_pebs_cap).counters;
5810
break;
5811
case DYN_CONSTR_PDIST:
5812
if (x86_pmu.arch_pebs)
5813
mask = hybrid(pmu, arch_pebs_cap).pdists;
5814
break;
5815
default:
5816
pr_warn("Unsupported dynamic constraint type %d\n", i);
5817
}
5818
5819
if (mask)
5820
__intel_pmu_check_dyn_constr(constr, i, mask);
5821
}
5822
}
5823
5824
static void intel_pmu_check_event_constraints_all(struct pmu *pmu)
5825
{
5826
struct event_constraint *event_constraints = hybrid(pmu, event_constraints);
5827
struct event_constraint *pebs_constraints = hybrid(pmu, pebs_constraints);
5828
u64 cntr_mask = hybrid(pmu, cntr_mask64);
5829
u64 fixed_cntr_mask = hybrid(pmu, fixed_cntr_mask64);
5830
u64 intel_ctrl = hybrid(pmu, intel_ctrl);
5831
5832
intel_pmu_check_event_constraints(event_constraints, cntr_mask,
5833
fixed_cntr_mask, intel_ctrl);
5834
5835
if (event_constraints)
5836
intel_pmu_check_dyn_constr(pmu, event_constraints, cntr_mask);
5837
5838
if (pebs_constraints)
5839
intel_pmu_check_dyn_constr(pmu, pebs_constraints, cntr_mask);
5840
}
5841
5842
static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
5843
5844
static inline bool intel_pmu_broken_perf_cap(void)
5845
{
5846
/* The Perf Metric (Bit 15) is always cleared */
5847
if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE ||
5848
boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L)
5849
return true;
5850
5851
return false;
5852
}
5853
5854
static inline void __intel_update_pmu_caps(struct pmu *pmu)
5855
{
5856
struct pmu *dest_pmu = pmu ? pmu : x86_get_pmu(smp_processor_id());
5857
5858
if (hybrid(pmu, arch_pebs_cap).caps & ARCH_PEBS_VECR_XMM)
5859
dest_pmu->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
5860
}
5861
5862
static inline void __intel_update_large_pebs_flags(struct pmu *pmu)
5863
{
5864
u64 caps = hybrid(pmu, arch_pebs_cap).caps;
5865
5866
x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
5867
if (caps & ARCH_PEBS_LBR)
5868
x86_pmu.large_pebs_flags |= PERF_SAMPLE_BRANCH_STACK;
5869
if (caps & ARCH_PEBS_CNTR_MASK)
5870
x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ;
5871
5872
if (!(caps & ARCH_PEBS_AUX))
5873
x86_pmu.large_pebs_flags &= ~PERF_SAMPLE_DATA_SRC;
5874
if (!(caps & ARCH_PEBS_GPR)) {
5875
x86_pmu.large_pebs_flags &=
5876
~(PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER);
5877
}
5878
}
5879
5880
#define counter_mask(_gp, _fixed) ((_gp) | ((u64)(_fixed) << INTEL_PMC_IDX_FIXED))
5881
5882
static void update_pmu_cap(struct pmu *pmu)
5883
{
5884
unsigned int eax, ebx, ecx, edx;
5885
union cpuid35_eax eax_0;
5886
union cpuid35_ebx ebx_0;
5887
u64 cntrs_mask = 0;
5888
u64 pebs_mask = 0;
5889
u64 pdists_mask = 0;
5890
5891
cpuid(ARCH_PERFMON_EXT_LEAF, &eax_0.full, &ebx_0.full, &ecx, &edx);
5892
5893
if (ebx_0.split.umask2)
5894
hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_UMASK2;
5895
if (ebx_0.split.eq)
5896
hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_EQ;
5897
if (ebx_0.split.rdpmc_user_disable)
5898
hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_RDPMC_USER_DISABLE;
5899
5900
if (eax_0.split.cntr_subleaf) {
5901
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
5902
&eax, &ebx, &ecx, &edx);
5903
hybrid(pmu, cntr_mask64) = eax;
5904
hybrid(pmu, fixed_cntr_mask64) = ebx;
5905
cntrs_mask = counter_mask(eax, ebx);
5906
}
5907
5908
if (eax_0.split.acr_subleaf) {
5909
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_ACR_LEAF,
5910
&eax, &ebx, &ecx, &edx);
5911
/* The mask of the counters which can be reloaded */
5912
hybrid(pmu, acr_cntr_mask64) = counter_mask(eax, ebx);
5913
/* The mask of the counters which can cause a reload of reloadable counters */
5914
hybrid(pmu, acr_cause_mask64) = counter_mask(ecx, edx);
5915
}
5916
5917
/* Bits[5:4] should be set simultaneously if arch-PEBS is supported */
5918
if (eax_0.split.pebs_caps_subleaf && eax_0.split.pebs_cnts_subleaf) {
5919
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_PEBS_CAP_LEAF,
5920
&eax, &ebx, &ecx, &edx);
5921
hybrid(pmu, arch_pebs_cap).caps = (u64)ebx << 32;
5922
5923
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_PEBS_COUNTER_LEAF,
5924
&eax, &ebx, &ecx, &edx);
5925
pebs_mask = counter_mask(eax, ecx);
5926
pdists_mask = counter_mask(ebx, edx);
5927
hybrid(pmu, arch_pebs_cap).counters = pebs_mask;
5928
hybrid(pmu, arch_pebs_cap).pdists = pdists_mask;
5929
5930
if (WARN_ON((pebs_mask | pdists_mask) & ~cntrs_mask)) {
5931
x86_pmu.arch_pebs = 0;
5932
} else {
5933
__intel_update_pmu_caps(pmu);
5934
__intel_update_large_pebs_flags(pmu);
5935
}
5936
} else {
5937
WARN_ON(x86_pmu.arch_pebs == 1);
5938
x86_pmu.arch_pebs = 0;
5939
}
5940
5941
if (!intel_pmu_broken_perf_cap()) {
5942
/* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
5943
rdmsrq(MSR_IA32_PERF_CAPABILITIES, hybrid(pmu, intel_cap).capabilities);
5944
}
5945
}
5946
5947
static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
5948
{
5949
intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64,
5950
&pmu->intel_ctrl);
5951
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
5952
pmu->unconstrained = (struct event_constraint)
5953
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
5954
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
5955
5956
if (pmu->intel_cap.perf_metrics)
5957
pmu->intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
5958
else
5959
pmu->intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
5960
5961
pmu->pmu.capabilities |= PERF_PMU_CAP_MEDIATED_VPMU;
5962
5963
intel_pmu_check_event_constraints_all(&pmu->pmu);
5964
5965
intel_pmu_check_extra_regs(pmu->extra_regs);
5966
}
5967
5968
static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
5969
{
5970
struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
5971
enum intel_cpu_type cpu_type = c->topo.intel_type;
5972
int i;
5973
5974
/*
5975
* This is running on a CPU model that is known to have hybrid
5976
* configurations. But the CPU told us it is not hybrid, shame
5977
* on it. There should be a fixup function provided for these
5978
* troublesome CPUs (->get_hybrid_cpu_type).
5979
*/
5980
if (cpu_type == INTEL_CPU_TYPE_UNKNOWN) {
5981
if (x86_pmu.get_hybrid_cpu_type)
5982
cpu_type = x86_pmu.get_hybrid_cpu_type();
5983
else
5984
return NULL;
5985
}
5986
5987
/*
5988
* This essentially just maps between the 'hybrid_cpu_type'
5989
* and 'hybrid_pmu_type' enums except for ARL-H processor
5990
* which needs to compare atom uarch native id since ARL-H
5991
* contains two different atom uarchs.
5992
*/
5993
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5994
enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
5995
u32 native_id;
5996
5997
if (cpu_type == INTEL_CPU_TYPE_CORE && pmu_type == hybrid_big)
5998
return &x86_pmu.hybrid_pmu[i];
5999
if (cpu_type == INTEL_CPU_TYPE_ATOM) {
6000
if (x86_pmu.num_hybrid_pmus == 2 && pmu_type == hybrid_small)
6001
return &x86_pmu.hybrid_pmu[i];
6002
6003
native_id = c->topo.intel_native_model_id;
6004
if (native_id == INTEL_ATOM_SKT_NATIVE_ID && pmu_type == hybrid_small)
6005
return &x86_pmu.hybrid_pmu[i];
6006
if (native_id == INTEL_ATOM_CMT_NATIVE_ID && pmu_type == hybrid_tiny)
6007
return &x86_pmu.hybrid_pmu[i];
6008
}
6009
}
6010
6011
return NULL;
6012
}
6013
6014
static bool init_hybrid_pmu(int cpu)
6015
{
6016
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6017
struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
6018
6019
if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
6020
cpuc->pmu = NULL;
6021
return false;
6022
}
6023
6024
/* Only check and dump the PMU information for the first CPU */
6025
if (!cpumask_empty(&pmu->supported_cpus))
6026
goto end;
6027
6028
if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
6029
update_pmu_cap(&pmu->pmu);
6030
6031
intel_pmu_check_hybrid_pmus(pmu);
6032
6033
if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask))
6034
return false;
6035
6036
pr_info("%s PMU driver: ", pmu->name);
6037
6038
pr_cont("\n");
6039
6040
x86_pmu_show_pmu_cap(&pmu->pmu);
6041
6042
end:
6043
cpumask_set_cpu(cpu, &pmu->supported_cpus);
6044
cpuc->pmu = &pmu->pmu;
6045
6046
return true;
6047
}
6048
6049
static void intel_pmu_cpu_starting(int cpu)
6050
{
6051
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6052
int core_id = topology_core_id(cpu);
6053
int i;
6054
6055
if (is_hybrid() && !init_hybrid_pmu(cpu))
6056
return;
6057
6058
init_debug_store_on_cpu(cpu);
6059
init_arch_pebs_on_cpu(cpu);
6060
/*
6061
* Deal with CPUs that don't clear their LBRs on power-up, and that may
6062
* even boot with LBRs enabled.
6063
*/
6064
if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && x86_pmu.lbr_nr)
6065
msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR_BIT);
6066
intel_pmu_lbr_reset();
6067
6068
cpuc->lbr_sel = NULL;
6069
6070
if (x86_pmu.flags & PMU_FL_TFA) {
6071
WARN_ON_ONCE(cpuc->tfa_shadow);
6072
cpuc->tfa_shadow = ~0ULL;
6073
intel_set_tfa(cpuc, false);
6074
}
6075
6076
if (x86_pmu.version > 1)
6077
flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
6078
6079
/*
6080
* Disable perf metrics if any added CPU doesn't support it.
6081
*
6082
* Turn off the check for a hybrid architecture, because the
6083
* architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
6084
* the architecture features. The perf metrics is a model-specific
6085
* feature for now. The corresponding bit should always be 0 on
6086
* a hybrid platform, e.g., Alder Lake.
6087
*/
6088
if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
6089
union perf_capabilities perf_cap;
6090
6091
rdmsrq(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
6092
if (!perf_cap.perf_metrics) {
6093
x86_pmu.intel_cap.perf_metrics = 0;
6094
x86_pmu.intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
6095
}
6096
}
6097
6098
__intel_update_pmu_caps(cpuc->pmu);
6099
6100
if (!cpuc->shared_regs)
6101
return;
6102
6103
if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
6104
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
6105
struct intel_shared_regs *pc;
6106
6107
pc = per_cpu(cpu_hw_events, i).shared_regs;
6108
if (pc && pc->core_id == core_id) {
6109
cpuc->kfree_on_online[0] = cpuc->shared_regs;
6110
cpuc->shared_regs = pc;
6111
break;
6112
}
6113
}
6114
cpuc->shared_regs->core_id = core_id;
6115
cpuc->shared_regs->refcnt++;
6116
}
6117
6118
if (x86_pmu.lbr_sel_map)
6119
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
6120
6121
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
6122
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
6123
struct cpu_hw_events *sibling;
6124
struct intel_excl_cntrs *c;
6125
6126
sibling = &per_cpu(cpu_hw_events, i);
6127
c = sibling->excl_cntrs;
6128
if (c && c->core_id == core_id) {
6129
cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
6130
cpuc->excl_cntrs = c;
6131
if (!sibling->excl_thread_id)
6132
cpuc->excl_thread_id = 1;
6133
break;
6134
}
6135
}
6136
cpuc->excl_cntrs->core_id = core_id;
6137
cpuc->excl_cntrs->refcnt++;
6138
}
6139
}
6140
6141
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
6142
{
6143
struct intel_excl_cntrs *c;
6144
6145
c = cpuc->excl_cntrs;
6146
if (c) {
6147
if (c->core_id == -1 || --c->refcnt == 0)
6148
kfree(c);
6149
cpuc->excl_cntrs = NULL;
6150
}
6151
6152
kfree(cpuc->constraint_list);
6153
cpuc->constraint_list = NULL;
6154
}
6155
6156
static void intel_pmu_cpu_dying(int cpu)
6157
{
6158
fini_debug_store_on_cpu(cpu);
6159
fini_arch_pebs_on_cpu(cpu);
6160
}
6161
6162
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
6163
{
6164
struct intel_shared_regs *pc;
6165
6166
pc = cpuc->shared_regs;
6167
if (pc) {
6168
if (pc->core_id == -1 || --pc->refcnt == 0)
6169
kfree(pc);
6170
cpuc->shared_regs = NULL;
6171
}
6172
6173
free_excl_cntrs(cpuc);
6174
}
6175
6176
static void intel_pmu_cpu_dead(int cpu)
6177
{
6178
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6179
6180
release_arch_pebs_buf_on_cpu(cpu);
6181
intel_cpuc_finish(cpuc);
6182
6183
if (is_hybrid() && cpuc->pmu)
6184
cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
6185
}
6186
6187
static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
6188
struct task_struct *task, bool sched_in)
6189
{
6190
intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
6191
intel_pmu_lbr_sched_task(pmu_ctx, task, sched_in);
6192
}
6193
6194
static int intel_pmu_check_period(struct perf_event *event, u64 value)
6195
{
6196
return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
6197
}
6198
6199
static void intel_aux_output_init(void)
6200
{
6201
/* Refer also intel_pmu_aux_output_match() */
6202
if (x86_pmu.intel_cap.pebs_output_pt_available)
6203
x86_pmu.assign = intel_pmu_assign_event;
6204
}
6205
6206
static int intel_pmu_aux_output_match(struct perf_event *event)
6207
{
6208
/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
6209
if (!x86_pmu.intel_cap.pebs_output_pt_available)
6210
return 0;
6211
6212
return is_intel_pt_event(event);
6213
}
6214
6215
static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
6216
{
6217
struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
6218
6219
*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
6220
}
6221
6222
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
6223
6224
PMU_FORMAT_ATTR(ldlat, "config1:0-15");
6225
6226
PMU_FORMAT_ATTR(frontend, "config1:0-23");
6227
6228
PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
6229
6230
static struct attribute *intel_arch3_formats_attr[] = {
6231
&format_attr_event.attr,
6232
&format_attr_umask.attr,
6233
&format_attr_edge.attr,
6234
&format_attr_pc.attr,
6235
&format_attr_any.attr,
6236
&format_attr_inv.attr,
6237
&format_attr_cmask.attr,
6238
NULL,
6239
};
6240
6241
static struct attribute *hsw_format_attr[] = {
6242
&format_attr_in_tx.attr,
6243
&format_attr_in_tx_cp.attr,
6244
&format_attr_offcore_rsp.attr,
6245
&format_attr_ldlat.attr,
6246
NULL
6247
};
6248
6249
static struct attribute *nhm_format_attr[] = {
6250
&format_attr_offcore_rsp.attr,
6251
&format_attr_ldlat.attr,
6252
NULL
6253
};
6254
6255
static struct attribute *slm_format_attr[] = {
6256
&format_attr_offcore_rsp.attr,
6257
NULL
6258
};
6259
6260
static struct attribute *cmt_format_attr[] = {
6261
&format_attr_offcore_rsp.attr,
6262
&format_attr_ldlat.attr,
6263
&format_attr_snoop_rsp.attr,
6264
NULL
6265
};
6266
6267
static struct attribute *skl_format_attr[] = {
6268
&format_attr_frontend.attr,
6269
NULL,
6270
};
6271
6272
static __initconst const struct x86_pmu core_pmu = {
6273
.name = "core",
6274
.handle_irq = x86_pmu_handle_irq,
6275
.disable_all = x86_pmu_disable_all,
6276
.enable_all = core_pmu_enable_all,
6277
.enable = core_pmu_enable_event,
6278
.disable = x86_pmu_disable_event,
6279
.hw_config = core_pmu_hw_config,
6280
.schedule_events = x86_schedule_events,
6281
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
6282
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
6283
.fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
6284
.event_map = intel_pmu_event_map,
6285
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
6286
.apic = 1,
6287
.large_pebs_flags = LARGE_PEBS_FLAGS,
6288
6289
/*
6290
* Intel PMCs cannot be accessed sanely above 32-bit width,
6291
* so we install an artificial 1<<31 period regardless of
6292
* the generic event period:
6293
*/
6294
.max_period = (1ULL<<31) - 1,
6295
.get_event_constraints = intel_get_event_constraints,
6296
.put_event_constraints = intel_put_event_constraints,
6297
.event_constraints = intel_core_event_constraints,
6298
.guest_get_msrs = core_guest_get_msrs,
6299
.format_attrs = intel_arch_formats_attr,
6300
.events_sysfs_show = intel_event_sysfs_show,
6301
6302
/*
6303
* Virtual (or funny metal) CPU can define x86_pmu.extra_regs
6304
* together with PMU version 1 and thus be using core_pmu with
6305
* shared_regs. We need following callbacks here to allocate
6306
* it properly.
6307
*/
6308
.cpu_prepare = intel_pmu_cpu_prepare,
6309
.cpu_starting = intel_pmu_cpu_starting,
6310
.cpu_dying = intel_pmu_cpu_dying,
6311
.cpu_dead = intel_pmu_cpu_dead,
6312
6313
.check_period = intel_pmu_check_period,
6314
6315
.lbr_reset = intel_pmu_lbr_reset_64,
6316
.lbr_read = intel_pmu_lbr_read_64,
6317
.lbr_save = intel_pmu_lbr_save,
6318
.lbr_restore = intel_pmu_lbr_restore,
6319
};
6320
6321
static __initconst const struct x86_pmu intel_pmu = {
6322
.name = "Intel",
6323
.handle_irq = intel_pmu_handle_irq,
6324
.disable_all = intel_pmu_disable_all,
6325
.enable_all = intel_pmu_enable_all,
6326
.enable = intel_pmu_enable_event,
6327
.disable = intel_pmu_disable_event,
6328
.add = intel_pmu_add_event,
6329
.del = intel_pmu_del_event,
6330
.read = intel_pmu_read_event,
6331
.set_period = intel_pmu_set_period,
6332
.update = intel_pmu_update,
6333
.hw_config = intel_pmu_hw_config,
6334
.schedule_events = x86_schedule_events,
6335
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
6336
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
6337
.fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
6338
.event_map = intel_pmu_event_map,
6339
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
6340
.apic = 1,
6341
.large_pebs_flags = LARGE_PEBS_FLAGS,
6342
/*
6343
* Intel PMCs cannot be accessed sanely above 32 bit width,
6344
* so we install an artificial 1<<31 period regardless of
6345
* the generic event period:
6346
*/
6347
.max_period = (1ULL << 31) - 1,
6348
.get_event_constraints = intel_get_event_constraints,
6349
.put_event_constraints = intel_put_event_constraints,
6350
.pebs_aliases = intel_pebs_aliases_core2,
6351
6352
.format_attrs = intel_arch3_formats_attr,
6353
.events_sysfs_show = intel_event_sysfs_show,
6354
6355
.cpu_prepare = intel_pmu_cpu_prepare,
6356
.cpu_starting = intel_pmu_cpu_starting,
6357
.cpu_dying = intel_pmu_cpu_dying,
6358
.cpu_dead = intel_pmu_cpu_dead,
6359
6360
.guest_get_msrs = intel_guest_get_msrs,
6361
.sched_task = intel_pmu_sched_task,
6362
6363
.check_period = intel_pmu_check_period,
6364
6365
.aux_output_match = intel_pmu_aux_output_match,
6366
6367
.lbr_reset = intel_pmu_lbr_reset_64,
6368
.lbr_read = intel_pmu_lbr_read_64,
6369
.lbr_save = intel_pmu_lbr_save,
6370
.lbr_restore = intel_pmu_lbr_restore,
6371
6372
/*
6373
* SMM has access to all 4 rings and while traditionally SMM code only
6374
* ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
6375
*
6376
* Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
6377
* between SMM or not, this results in what should be pure userspace
6378
* counters including SMM data.
6379
*
6380
* This is a clear privilege issue, therefore globally disable
6381
* counting SMM by default.
6382
*/
6383
.attr_freeze_on_smi = 1,
6384
};
6385
6386
static __init void intel_clovertown_quirk(void)
6387
{
6388
/*
6389
* PEBS is unreliable due to:
6390
*
6391
* AJ67 - PEBS may experience CPL leaks
6392
* AJ68 - PEBS PMI may be delayed by one event
6393
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
6394
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
6395
*
6396
* AJ67 could be worked around by restricting the OS/USR flags.
6397
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
6398
*
6399
* AJ106 could possibly be worked around by not allowing LBR
6400
* usage from PEBS, including the fixup.
6401
* AJ68 could possibly be worked around by always programming
6402
* a pebs_event_reset[0] value and coping with the lost events.
6403
*
6404
* But taken together it might just make sense to not enable PEBS on
6405
* these chips.
6406
*/
6407
pr_warn("PEBS disabled due to CPU errata\n");
6408
x86_pmu.ds_pebs = 0;
6409
x86_pmu.pebs_constraints = NULL;
6410
}
6411
6412
static const struct x86_cpu_id isolation_ucodes[] = {
6413
X86_MATCH_VFM_STEPS(INTEL_HASWELL, 3, 3, 0x0000001f),
6414
X86_MATCH_VFM_STEPS(INTEL_HASWELL_L, 1, 1, 0x0000001e),
6415
X86_MATCH_VFM_STEPS(INTEL_HASWELL_G, 1, 1, 0x00000015),
6416
X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 2, 2, 0x00000037),
6417
X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 4, 4, 0x0000000a),
6418
X86_MATCH_VFM_STEPS(INTEL_BROADWELL, 4, 4, 0x00000023),
6419
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_G, 1, 1, 0x00000014),
6420
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 2, 2, 0x00000010),
6421
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 3, 3, 0x07000009),
6422
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 4, 4, 0x0f000009),
6423
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 5, 5, 0x0e000002),
6424
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_X, 1, 1, 0x0b000014),
6425
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 3, 3, 0x00000021),
6426
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 4, 7, 0x00000000),
6427
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 11, 11, 0x00000000),
6428
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_L, 3, 3, 0x0000007c),
6429
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE, 3, 3, 0x0000007c),
6430
X86_MATCH_VFM_STEPS(INTEL_KABYLAKE, 9, 13, 0x0000004e),
6431
X86_MATCH_VFM_STEPS(INTEL_KABYLAKE_L, 9, 12, 0x0000004e),
6432
{}
6433
};
6434
6435
static void intel_check_pebs_isolation(void)
6436
{
6437
x86_pmu.pebs_no_isolation = !x86_match_min_microcode_rev(isolation_ucodes);
6438
}
6439
6440
static __init void intel_pebs_isolation_quirk(void)
6441
{
6442
WARN_ON_ONCE(x86_pmu.check_microcode);
6443
x86_pmu.check_microcode = intel_check_pebs_isolation;
6444
intel_check_pebs_isolation();
6445
}
6446
6447
static const struct x86_cpu_id pebs_ucodes[] = {
6448
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE, 7, 7, 0x00000028),
6449
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 6, 6, 0x00000618),
6450
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 7, 7, 0x0000070c),
6451
{}
6452
};
6453
6454
static bool intel_snb_pebs_broken(void)
6455
{
6456
return !x86_match_min_microcode_rev(pebs_ucodes);
6457
}
6458
6459
static void intel_snb_check_microcode(void)
6460
{
6461
if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
6462
return;
6463
6464
/*
6465
* Serialized by the microcode lock..
6466
*/
6467
if (x86_pmu.pebs_broken) {
6468
pr_info("PEBS enabled due to microcode update\n");
6469
x86_pmu.pebs_broken = 0;
6470
} else {
6471
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
6472
x86_pmu.pebs_broken = 1;
6473
}
6474
}
6475
6476
static bool is_lbr_from(unsigned long msr)
6477
{
6478
unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
6479
6480
return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
6481
}
6482
6483
/*
6484
* Under certain circumstances, access certain MSR may cause #GP.
6485
* The function tests if the input MSR can be safely accessed.
6486
*/
6487
static bool check_msr(unsigned long msr, u64 mask)
6488
{
6489
u64 val_old, val_new, val_tmp;
6490
6491
/*
6492
* Disable the check for real HW, so we don't
6493
* mess with potentially enabled registers:
6494
*/
6495
if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
6496
return true;
6497
6498
/*
6499
* Read the current value, change it and read it back to see if it
6500
* matches, this is needed to detect certain hardware emulators
6501
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
6502
*/
6503
if (rdmsrq_safe(msr, &val_old))
6504
return false;
6505
6506
/*
6507
* Only change the bits which can be updated by wrmsrq.
6508
*/
6509
val_tmp = val_old ^ mask;
6510
6511
if (is_lbr_from(msr))
6512
val_tmp = lbr_from_signext_quirk_wr(val_tmp);
6513
6514
if (wrmsrq_safe(msr, val_tmp) ||
6515
rdmsrq_safe(msr, &val_new))
6516
return false;
6517
6518
/*
6519
* Quirk only affects validation in wrmsr(), so wrmsrq()'s value
6520
* should equal rdmsrq()'s even with the quirk.
6521
*/
6522
if (val_new != val_tmp)
6523
return false;
6524
6525
if (is_lbr_from(msr))
6526
val_old = lbr_from_signext_quirk_wr(val_old);
6527
6528
/* Here it's sure that the MSR can be safely accessed.
6529
* Restore the old value and return.
6530
*/
6531
wrmsrq(msr, val_old);
6532
6533
return true;
6534
}
6535
6536
static __init void intel_sandybridge_quirk(void)
6537
{
6538
x86_pmu.check_microcode = intel_snb_check_microcode;
6539
cpus_read_lock();
6540
intel_snb_check_microcode();
6541
cpus_read_unlock();
6542
}
6543
6544
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
6545
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
6546
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
6547
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
6548
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
6549
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
6550
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
6551
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
6552
};
6553
6554
static __init void intel_arch_events_quirk(void)
6555
{
6556
int bit;
6557
6558
/* disable event that reported as not present by cpuid */
6559
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
6560
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
6561
pr_warn("CPUID marked event: \'%s\' unavailable\n",
6562
intel_arch_events_map[bit].name);
6563
}
6564
}
6565
6566
static __init void intel_nehalem_quirk(void)
6567
{
6568
union cpuid10_ebx ebx;
6569
6570
ebx.full = x86_pmu.events_maskl;
6571
if (ebx.split.no_branch_misses_retired) {
6572
/*
6573
* Erratum AAJ80 detected, we work it around by using
6574
* the BR_MISP_EXEC.ANY event. This will over-count
6575
* branch-misses, but it's still much better than the
6576
* architectural event which is often completely bogus:
6577
*/
6578
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
6579
ebx.split.no_branch_misses_retired = 0;
6580
x86_pmu.events_maskl = ebx.full;
6581
pr_info("CPU erratum AAJ80 worked around\n");
6582
}
6583
}
6584
6585
/*
6586
* enable software workaround for errata:
6587
* SNB: BJ122
6588
* IVB: BV98
6589
* HSW: HSD29
6590
*
6591
* Only needed when HT is enabled. However detecting
6592
* if HT is enabled is difficult (model specific). So instead,
6593
* we enable the workaround in the early boot, and verify if
6594
* it is needed in a later initcall phase once we have valid
6595
* topology information to check if HT is actually enabled
6596
*/
6597
static __init void intel_ht_bug(void)
6598
{
6599
x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
6600
6601
x86_pmu.start_scheduling = intel_start_scheduling;
6602
x86_pmu.commit_scheduling = intel_commit_scheduling;
6603
x86_pmu.stop_scheduling = intel_stop_scheduling;
6604
}
6605
6606
EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
6607
EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
6608
6609
/* Haswell special events */
6610
EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
6611
EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
6612
EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
6613
EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
6614
EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
6615
EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
6616
EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
6617
EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
6618
EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
6619
EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
6620
EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
6621
EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
6622
6623
static struct attribute *hsw_events_attrs[] = {
6624
EVENT_PTR(td_slots_issued),
6625
EVENT_PTR(td_slots_retired),
6626
EVENT_PTR(td_fetch_bubbles),
6627
EVENT_PTR(td_total_slots),
6628
EVENT_PTR(td_total_slots_scale),
6629
EVENT_PTR(td_recovery_bubbles),
6630
EVENT_PTR(td_recovery_bubbles_scale),
6631
NULL
6632
};
6633
6634
static struct attribute *hsw_mem_events_attrs[] = {
6635
EVENT_PTR(mem_ld_hsw),
6636
EVENT_PTR(mem_st_hsw),
6637
NULL,
6638
};
6639
6640
static struct attribute *hsw_tsx_events_attrs[] = {
6641
EVENT_PTR(tx_start),
6642
EVENT_PTR(tx_commit),
6643
EVENT_PTR(tx_abort),
6644
EVENT_PTR(tx_capacity),
6645
EVENT_PTR(tx_conflict),
6646
EVENT_PTR(el_start),
6647
EVENT_PTR(el_commit),
6648
EVENT_PTR(el_abort),
6649
EVENT_PTR(el_capacity),
6650
EVENT_PTR(el_conflict),
6651
EVENT_PTR(cycles_t),
6652
EVENT_PTR(cycles_ct),
6653
NULL
6654
};
6655
6656
EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
6657
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
6658
EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
6659
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
6660
6661
static struct attribute *icl_events_attrs[] = {
6662
EVENT_PTR(mem_ld_hsw),
6663
EVENT_PTR(mem_st_hsw),
6664
NULL,
6665
};
6666
6667
static struct attribute *icl_td_events_attrs[] = {
6668
EVENT_PTR(slots),
6669
EVENT_PTR(td_retiring),
6670
EVENT_PTR(td_bad_spec),
6671
EVENT_PTR(td_fe_bound),
6672
EVENT_PTR(td_be_bound),
6673
NULL,
6674
};
6675
6676
static struct attribute *icl_tsx_events_attrs[] = {
6677
EVENT_PTR(tx_start),
6678
EVENT_PTR(tx_abort),
6679
EVENT_PTR(tx_commit),
6680
EVENT_PTR(tx_capacity_read),
6681
EVENT_PTR(tx_capacity_write),
6682
EVENT_PTR(tx_conflict),
6683
EVENT_PTR(el_start),
6684
EVENT_PTR(el_abort),
6685
EVENT_PTR(el_commit),
6686
EVENT_PTR(el_capacity_read),
6687
EVENT_PTR(el_capacity_write),
6688
EVENT_PTR(el_conflict),
6689
EVENT_PTR(cycles_t),
6690
EVENT_PTR(cycles_ct),
6691
NULL,
6692
};
6693
6694
6695
EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
6696
EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
6697
6698
static struct attribute *glc_events_attrs[] = {
6699
EVENT_PTR(mem_ld_hsw),
6700
EVENT_PTR(mem_st_spr),
6701
EVENT_PTR(mem_ld_aux),
6702
NULL,
6703
};
6704
6705
static struct attribute *glc_td_events_attrs[] = {
6706
EVENT_PTR(slots),
6707
EVENT_PTR(td_retiring),
6708
EVENT_PTR(td_bad_spec),
6709
EVENT_PTR(td_fe_bound),
6710
EVENT_PTR(td_be_bound),
6711
EVENT_PTR(td_heavy_ops),
6712
EVENT_PTR(td_br_mispredict),
6713
EVENT_PTR(td_fetch_lat),
6714
EVENT_PTR(td_mem_bound),
6715
NULL,
6716
};
6717
6718
static struct attribute *glc_tsx_events_attrs[] = {
6719
EVENT_PTR(tx_start),
6720
EVENT_PTR(tx_abort),
6721
EVENT_PTR(tx_commit),
6722
EVENT_PTR(tx_capacity_read),
6723
EVENT_PTR(tx_capacity_write),
6724
EVENT_PTR(tx_conflict),
6725
EVENT_PTR(cycles_t),
6726
EVENT_PTR(cycles_ct),
6727
NULL,
6728
};
6729
6730
static ssize_t freeze_on_smi_show(struct device *cdev,
6731
struct device_attribute *attr,
6732
char *buf)
6733
{
6734
return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
6735
}
6736
6737
static DEFINE_MUTEX(freeze_on_smi_mutex);
6738
6739
static ssize_t freeze_on_smi_store(struct device *cdev,
6740
struct device_attribute *attr,
6741
const char *buf, size_t count)
6742
{
6743
unsigned long val;
6744
ssize_t ret;
6745
6746
ret = kstrtoul(buf, 0, &val);
6747
if (ret)
6748
return ret;
6749
6750
if (val > 1)
6751
return -EINVAL;
6752
6753
mutex_lock(&freeze_on_smi_mutex);
6754
6755
if (x86_pmu.attr_freeze_on_smi == val)
6756
goto done;
6757
6758
x86_pmu.attr_freeze_on_smi = val;
6759
6760
cpus_read_lock();
6761
on_each_cpu(flip_smm_bit, &val, 1);
6762
cpus_read_unlock();
6763
done:
6764
mutex_unlock(&freeze_on_smi_mutex);
6765
6766
return count;
6767
}
6768
6769
static void update_tfa_sched(void *ignored)
6770
{
6771
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
6772
6773
/*
6774
* check if PMC3 is used
6775
* and if so force schedule out for all event types all contexts
6776
*/
6777
if (test_bit(3, cpuc->active_mask))
6778
perf_pmu_resched(x86_get_pmu(smp_processor_id()));
6779
}
6780
6781
static ssize_t show_sysctl_tfa(struct device *cdev,
6782
struct device_attribute *attr,
6783
char *buf)
6784
{
6785
return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
6786
}
6787
6788
static ssize_t set_sysctl_tfa(struct device *cdev,
6789
struct device_attribute *attr,
6790
const char *buf, size_t count)
6791
{
6792
bool val;
6793
ssize_t ret;
6794
6795
ret = kstrtobool(buf, &val);
6796
if (ret)
6797
return ret;
6798
6799
/* no change */
6800
if (val == allow_tsx_force_abort)
6801
return count;
6802
6803
allow_tsx_force_abort = val;
6804
6805
cpus_read_lock();
6806
on_each_cpu(update_tfa_sched, NULL, 1);
6807
cpus_read_unlock();
6808
6809
return count;
6810
}
6811
6812
6813
static DEVICE_ATTR_RW(freeze_on_smi);
6814
6815
static ssize_t branches_show(struct device *cdev,
6816
struct device_attribute *attr,
6817
char *buf)
6818
{
6819
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
6820
}
6821
6822
static DEVICE_ATTR_RO(branches);
6823
6824
static ssize_t branch_counter_nr_show(struct device *cdev,
6825
struct device_attribute *attr,
6826
char *buf)
6827
{
6828
return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
6829
}
6830
6831
static DEVICE_ATTR_RO(branch_counter_nr);
6832
6833
static ssize_t branch_counter_width_show(struct device *cdev,
6834
struct device_attribute *attr,
6835
char *buf)
6836
{
6837
return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
6838
}
6839
6840
static DEVICE_ATTR_RO(branch_counter_width);
6841
6842
static struct attribute *lbr_attrs[] = {
6843
&dev_attr_branches.attr,
6844
&dev_attr_branch_counter_nr.attr,
6845
&dev_attr_branch_counter_width.attr,
6846
NULL
6847
};
6848
6849
static umode_t
6850
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6851
{
6852
/* branches */
6853
if (i == 0)
6854
return x86_pmu.lbr_nr ? attr->mode : 0;
6855
6856
return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
6857
}
6858
6859
static char pmu_name_str[30];
6860
6861
static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
6862
6863
static struct attribute *intel_pmu_caps_attrs[] = {
6864
&dev_attr_pmu_name.attr.attr,
6865
NULL
6866
};
6867
6868
static DEVICE_ATTR(allow_tsx_force_abort, 0644,
6869
show_sysctl_tfa,
6870
set_sysctl_tfa);
6871
6872
static struct attribute *intel_pmu_attrs[] = {
6873
&dev_attr_freeze_on_smi.attr,
6874
&dev_attr_allow_tsx_force_abort.attr,
6875
NULL,
6876
};
6877
6878
static umode_t
6879
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6880
{
6881
if (attr == &dev_attr_allow_tsx_force_abort.attr)
6882
return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
6883
6884
return attr->mode;
6885
}
6886
6887
static umode_t
6888
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6889
{
6890
return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
6891
}
6892
6893
static umode_t
6894
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6895
{
6896
return intel_pmu_has_pebs() ? attr->mode : 0;
6897
}
6898
6899
static umode_t
6900
mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6901
{
6902
if (attr == &event_attr_mem_ld_aux.attr.attr)
6903
return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
6904
6905
return pebs_is_visible(kobj, attr, i);
6906
}
6907
6908
static umode_t
6909
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6910
{
6911
return x86_pmu.version >= 2 ? attr->mode : 0;
6912
}
6913
6914
static umode_t
6915
td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6916
{
6917
/*
6918
* Hide the perf metrics topdown events
6919
* if the feature is not enumerated.
6920
*/
6921
if (x86_pmu.num_topdown_events)
6922
return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
6923
6924
return attr->mode;
6925
}
6926
6927
PMU_FORMAT_ATTR(acr_mask, "config2:0-63");
6928
6929
static struct attribute *format_acr_attrs[] = {
6930
&format_attr_acr_mask.attr,
6931
NULL
6932
};
6933
6934
static umode_t
6935
acr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6936
{
6937
struct device *dev = kobj_to_dev(kobj);
6938
6939
return intel_pmu_has_acr(dev_get_drvdata(dev)) ? attr->mode : 0;
6940
}
6941
6942
static struct attribute_group group_events_td = {
6943
.name = "events",
6944
.is_visible = td_is_visible,
6945
};
6946
6947
static struct attribute_group group_events_mem = {
6948
.name = "events",
6949
.is_visible = mem_is_visible,
6950
};
6951
6952
static struct attribute_group group_events_tsx = {
6953
.name = "events",
6954
.is_visible = tsx_is_visible,
6955
};
6956
6957
static struct attribute_group group_caps_gen = {
6958
.name = "caps",
6959
.attrs = intel_pmu_caps_attrs,
6960
};
6961
6962
static struct attribute_group group_caps_lbr = {
6963
.name = "caps",
6964
.attrs = lbr_attrs,
6965
.is_visible = lbr_is_visible,
6966
};
6967
6968
static struct attribute_group group_format_extra = {
6969
.name = "format",
6970
.is_visible = exra_is_visible,
6971
};
6972
6973
static struct attribute_group group_format_extra_skl = {
6974
.name = "format",
6975
.is_visible = exra_is_visible,
6976
};
6977
6978
static struct attribute_group group_format_evtsel_ext = {
6979
.name = "format",
6980
.attrs = format_evtsel_ext_attrs,
6981
.is_visible = evtsel_ext_is_visible,
6982
};
6983
6984
static struct attribute_group group_format_acr = {
6985
.name = "format",
6986
.attrs = format_acr_attrs,
6987
.is_visible = acr_is_visible,
6988
};
6989
6990
static struct attribute_group group_default = {
6991
.attrs = intel_pmu_attrs,
6992
.is_visible = default_is_visible,
6993
};
6994
6995
static const struct attribute_group *attr_update[] = {
6996
&group_events_td,
6997
&group_events_mem,
6998
&group_events_tsx,
6999
&group_caps_gen,
7000
&group_caps_lbr,
7001
&group_format_extra,
7002
&group_format_extra_skl,
7003
&group_format_evtsel_ext,
7004
&group_format_acr,
7005
&group_default,
7006
NULL,
7007
};
7008
7009
EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
7010
EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
7011
EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
7012
EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
7013
EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
7014
EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
7015
EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
7016
EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
7017
EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
7018
7019
static struct attribute *adl_hybrid_events_attrs[] = {
7020
EVENT_PTR(slots_adl),
7021
EVENT_PTR(td_retiring_adl),
7022
EVENT_PTR(td_bad_spec_adl),
7023
EVENT_PTR(td_fe_bound_adl),
7024
EVENT_PTR(td_be_bound_adl),
7025
EVENT_PTR(td_heavy_ops_adl),
7026
EVENT_PTR(td_br_mis_adl),
7027
EVENT_PTR(td_fetch_lat_adl),
7028
EVENT_PTR(td_mem_bound_adl),
7029
NULL,
7030
};
7031
7032
EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_lnl, "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small);
7033
EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_lnl, "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small);
7034
EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_lnl, "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small);
7035
7036
static struct attribute *lnl_hybrid_events_attrs[] = {
7037
EVENT_PTR(slots_adl),
7038
EVENT_PTR(td_retiring_lnl),
7039
EVENT_PTR(td_bad_spec_adl),
7040
EVENT_PTR(td_fe_bound_lnl),
7041
EVENT_PTR(td_be_bound_lnl),
7042
EVENT_PTR(td_heavy_ops_adl),
7043
EVENT_PTR(td_br_mis_adl),
7044
EVENT_PTR(td_fetch_lat_adl),
7045
EVENT_PTR(td_mem_bound_adl),
7046
NULL
7047
};
7048
7049
/* The event string must be in PMU IDX order. */
7050
EVENT_ATTR_STR_HYBRID(topdown-retiring,
7051
td_retiring_arl_h,
7052
"event=0xc2,umask=0x02;event=0x00,umask=0x80;event=0xc2,umask=0x0",
7053
hybrid_big_small_tiny);
7054
EVENT_ATTR_STR_HYBRID(topdown-bad-spec,
7055
td_bad_spec_arl_h,
7056
"event=0x73,umask=0x0;event=0x00,umask=0x81;event=0x73,umask=0x0",
7057
hybrid_big_small_tiny);
7058
EVENT_ATTR_STR_HYBRID(topdown-fe-bound,
7059
td_fe_bound_arl_h,
7060
"event=0x9c,umask=0x01;event=0x00,umask=0x82;event=0x71,umask=0x0",
7061
hybrid_big_small_tiny);
7062
EVENT_ATTR_STR_HYBRID(topdown-be-bound,
7063
td_be_bound_arl_h,
7064
"event=0xa4,umask=0x02;event=0x00,umask=0x83;event=0x74,umask=0x0",
7065
hybrid_big_small_tiny);
7066
7067
static struct attribute *arl_h_hybrid_events_attrs[] = {
7068
EVENT_PTR(slots_adl),
7069
EVENT_PTR(td_retiring_arl_h),
7070
EVENT_PTR(td_bad_spec_arl_h),
7071
EVENT_PTR(td_fe_bound_arl_h),
7072
EVENT_PTR(td_be_bound_arl_h),
7073
EVENT_PTR(td_heavy_ops_adl),
7074
EVENT_PTR(td_br_mis_adl),
7075
EVENT_PTR(td_fetch_lat_adl),
7076
EVENT_PTR(td_mem_bound_adl),
7077
NULL,
7078
};
7079
7080
/* Must be in IDX order */
7081
EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
7082
EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
7083
EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
7084
7085
static struct attribute *adl_hybrid_mem_attrs[] = {
7086
EVENT_PTR(mem_ld_adl),
7087
EVENT_PTR(mem_st_adl),
7088
EVENT_PTR(mem_ld_aux_adl),
7089
NULL,
7090
};
7091
7092
static struct attribute *mtl_hybrid_mem_attrs[] = {
7093
EVENT_PTR(mem_ld_adl),
7094
EVENT_PTR(mem_st_adl),
7095
NULL
7096
};
7097
7098
EVENT_ATTR_STR_HYBRID(mem-loads,
7099
mem_ld_arl_h,
7100
"event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3;event=0xd0,umask=0x5,ldlat=3",
7101
hybrid_big_small_tiny);
7102
EVENT_ATTR_STR_HYBRID(mem-stores,
7103
mem_st_arl_h,
7104
"event=0xd0,umask=0x6;event=0xcd,umask=0x2;event=0xd0,umask=0x6",
7105
hybrid_big_small_tiny);
7106
7107
static struct attribute *arl_h_hybrid_mem_attrs[] = {
7108
EVENT_PTR(mem_ld_arl_h),
7109
EVENT_PTR(mem_st_arl_h),
7110
NULL,
7111
};
7112
7113
EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
7114
EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
7115
EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
7116
EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
7117
EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
7118
EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
7119
EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
7120
EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
7121
7122
static struct attribute *adl_hybrid_tsx_attrs[] = {
7123
EVENT_PTR(tx_start_adl),
7124
EVENT_PTR(tx_abort_adl),
7125
EVENT_PTR(tx_commit_adl),
7126
EVENT_PTR(tx_capacity_read_adl),
7127
EVENT_PTR(tx_capacity_write_adl),
7128
EVENT_PTR(tx_conflict_adl),
7129
EVENT_PTR(cycles_t_adl),
7130
EVENT_PTR(cycles_ct_adl),
7131
NULL,
7132
};
7133
7134
FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
7135
FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
7136
FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small_tiny);
7137
FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small_tiny);
7138
FORMAT_ATTR_HYBRID(frontend, hybrid_big);
7139
7140
#define ADL_HYBRID_RTM_FORMAT_ATTR \
7141
FORMAT_HYBRID_PTR(in_tx), \
7142
FORMAT_HYBRID_PTR(in_tx_cp)
7143
7144
#define ADL_HYBRID_FORMAT_ATTR \
7145
FORMAT_HYBRID_PTR(offcore_rsp), \
7146
FORMAT_HYBRID_PTR(ldlat), \
7147
FORMAT_HYBRID_PTR(frontend)
7148
7149
static struct attribute *adl_hybrid_extra_attr_rtm[] = {
7150
ADL_HYBRID_RTM_FORMAT_ATTR,
7151
ADL_HYBRID_FORMAT_ATTR,
7152
NULL
7153
};
7154
7155
static struct attribute *adl_hybrid_extra_attr[] = {
7156
ADL_HYBRID_FORMAT_ATTR,
7157
NULL
7158
};
7159
7160
FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small_tiny);
7161
7162
static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
7163
ADL_HYBRID_RTM_FORMAT_ATTR,
7164
ADL_HYBRID_FORMAT_ATTR,
7165
FORMAT_HYBRID_PTR(snoop_rsp),
7166
NULL
7167
};
7168
7169
static struct attribute *mtl_hybrid_extra_attr[] = {
7170
ADL_HYBRID_FORMAT_ATTR,
7171
FORMAT_HYBRID_PTR(snoop_rsp),
7172
NULL
7173
};
7174
7175
static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
7176
{
7177
struct device *dev = kobj_to_dev(kobj);
7178
struct x86_hybrid_pmu *pmu =
7179
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7180
struct perf_pmu_events_hybrid_attr *pmu_attr =
7181
container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
7182
7183
return pmu->pmu_type & pmu_attr->pmu_type;
7184
}
7185
7186
static umode_t hybrid_events_is_visible(struct kobject *kobj,
7187
struct attribute *attr, int i)
7188
{
7189
return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
7190
}
7191
7192
static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
7193
{
7194
int cpu = cpumask_first(&pmu->supported_cpus);
7195
7196
return (cpu >= nr_cpu_ids) ? -1 : cpu;
7197
}
7198
7199
static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
7200
struct attribute *attr, int i)
7201
{
7202
struct device *dev = kobj_to_dev(kobj);
7203
struct x86_hybrid_pmu *pmu =
7204
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7205
int cpu = hybrid_find_supported_cpu(pmu);
7206
7207
return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
7208
}
7209
7210
static umode_t hybrid_format_is_visible(struct kobject *kobj,
7211
struct attribute *attr, int i)
7212
{
7213
struct device *dev = kobj_to_dev(kobj);
7214
struct x86_hybrid_pmu *pmu =
7215
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7216
struct perf_pmu_format_hybrid_attr *pmu_attr =
7217
container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
7218
int cpu = hybrid_find_supported_cpu(pmu);
7219
7220
return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
7221
}
7222
7223
static umode_t hybrid_td_is_visible(struct kobject *kobj,
7224
struct attribute *attr, int i)
7225
{
7226
struct device *dev = kobj_to_dev(kobj);
7227
struct x86_hybrid_pmu *pmu =
7228
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7229
7230
if (!is_attr_for_this_pmu(kobj, attr))
7231
return 0;
7232
7233
7234
/* Only the big core supports perf metrics */
7235
if (pmu->pmu_type == hybrid_big)
7236
return pmu->intel_cap.perf_metrics ? attr->mode : 0;
7237
7238
return attr->mode;
7239
}
7240
7241
static struct attribute_group hybrid_group_events_td = {
7242
.name = "events",
7243
.is_visible = hybrid_td_is_visible,
7244
};
7245
7246
static struct attribute_group hybrid_group_events_mem = {
7247
.name = "events",
7248
.is_visible = hybrid_events_is_visible,
7249
};
7250
7251
static struct attribute_group hybrid_group_events_tsx = {
7252
.name = "events",
7253
.is_visible = hybrid_tsx_is_visible,
7254
};
7255
7256
static struct attribute_group hybrid_group_format_extra = {
7257
.name = "format",
7258
.is_visible = hybrid_format_is_visible,
7259
};
7260
7261
static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
7262
struct device_attribute *attr,
7263
char *buf)
7264
{
7265
struct x86_hybrid_pmu *pmu =
7266
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
7267
7268
return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
7269
}
7270
7271
static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
7272
static struct attribute *intel_hybrid_cpus_attrs[] = {
7273
&dev_attr_cpus.attr,
7274
NULL,
7275
};
7276
7277
static struct attribute_group hybrid_group_cpus = {
7278
.attrs = intel_hybrid_cpus_attrs,
7279
};
7280
7281
static const struct attribute_group *hybrid_attr_update[] = {
7282
&hybrid_group_events_td,
7283
&hybrid_group_events_mem,
7284
&hybrid_group_events_tsx,
7285
&group_caps_gen,
7286
&group_caps_lbr,
7287
&hybrid_group_format_extra,
7288
&group_format_evtsel_ext,
7289
&group_format_acr,
7290
&group_default,
7291
&hybrid_group_cpus,
7292
NULL,
7293
};
7294
7295
static struct attribute *empty_attrs;
7296
7297
static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
7298
u64 cntr_mask,
7299
u64 fixed_cntr_mask,
7300
u64 intel_ctrl)
7301
{
7302
struct event_constraint *c;
7303
7304
if (!event_constraints)
7305
return;
7306
7307
/*
7308
* event on fixed counter2 (REF_CYCLES) only works on this
7309
* counter, so do not extend mask to generic counters
7310
*/
7311
for_each_event_constraint(c, event_constraints) {
7312
/*
7313
* Don't extend the topdown slots and metrics
7314
* events to the generic counters.
7315
*/
7316
if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
7317
/*
7318
* Disable topdown slots and metrics events,
7319
* if slots event is not in CPUID.
7320
*/
7321
if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
7322
c->idxmsk64 = 0;
7323
c->weight = hweight64(c->idxmsk64);
7324
continue;
7325
}
7326
7327
if (c->cmask == FIXED_EVENT_FLAGS) {
7328
/* Disabled fixed counters which are not in CPUID */
7329
c->idxmsk64 &= intel_ctrl;
7330
7331
/*
7332
* Don't extend the pseudo-encoding to the
7333
* generic counters
7334
*/
7335
if (!use_fixed_pseudo_encoding(c->code))
7336
c->idxmsk64 |= cntr_mask;
7337
}
7338
c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED);
7339
c->weight = hweight64(c->idxmsk64);
7340
}
7341
}
7342
7343
static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
7344
{
7345
struct extra_reg *er;
7346
7347
/*
7348
* Access extra MSR may cause #GP under certain circumstances.
7349
* E.g. KVM doesn't support offcore event
7350
* Check all extra_regs here.
7351
*/
7352
if (!extra_regs)
7353
return;
7354
7355
for (er = extra_regs; er->msr; er++) {
7356
er->extra_msr_access = check_msr(er->msr, 0x11UL);
7357
/* Disable LBR select mapping */
7358
if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
7359
x86_pmu.lbr_sel_map = NULL;
7360
}
7361
}
7362
7363
static inline int intel_pmu_v6_addr_offset(int index, bool eventsel)
7364
{
7365
return MSR_IA32_PMC_V6_STEP * index;
7366
}
7367
7368
static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
7369
{ hybrid_small, "cpu_atom" },
7370
{ hybrid_big, "cpu_core" },
7371
{ hybrid_tiny, "cpu_lowpower" },
7372
};
7373
7374
static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
7375
{
7376
unsigned long pmus_mask = pmus;
7377
struct x86_hybrid_pmu *pmu;
7378
int idx = 0, bit;
7379
7380
x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
7381
x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
7382
sizeof(struct x86_hybrid_pmu),
7383
GFP_KERNEL);
7384
if (!x86_pmu.hybrid_pmu)
7385
return -ENOMEM;
7386
7387
static_branch_enable(&perf_is_hybrid);
7388
x86_pmu.filter = intel_pmu_filter;
7389
7390
for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
7391
pmu = &x86_pmu.hybrid_pmu[idx++];
7392
pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
7393
pmu->name = intel_hybrid_pmu_type_map[bit].name;
7394
7395
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7396
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7397
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7398
pmu->config_mask = X86_RAW_EVENT_MASK;
7399
pmu->unconstrained = (struct event_constraint)
7400
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7401
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7402
7403
pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
7404
if (pmu->pmu_type & hybrid_small_tiny) {
7405
pmu->intel_cap.perf_metrics = 0;
7406
pmu->mid_ack = true;
7407
} else if (pmu->pmu_type & hybrid_big) {
7408
pmu->intel_cap.perf_metrics = 1;
7409
pmu->late_ack = true;
7410
}
7411
}
7412
7413
return 0;
7414
}
7415
7416
static __always_inline void intel_pmu_ref_cycles_ext(void)
7417
{
7418
if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
7419
intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
7420
}
7421
7422
static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
7423
{
7424
x86_pmu.late_ack = true;
7425
x86_pmu.limit_period = glc_limit_period;
7426
x86_pmu.pebs_aliases = NULL;
7427
x86_pmu.pebs_prec_dist = true;
7428
x86_pmu.pebs_block = true;
7429
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7430
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7431
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
7432
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
7433
x86_pmu.lbr_pt_coexist = true;
7434
x86_pmu.num_topdown_events = 8;
7435
static_call_update(intel_pmu_update_topdown_event,
7436
&icl_update_topdown_event);
7437
static_call_update(intel_pmu_set_topdown_event_period,
7438
&icl_set_topdown_event_period);
7439
7440
memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7441
memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7442
hybrid(pmu, event_constraints) = intel_glc_event_constraints;
7443
hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
7444
7445
intel_pmu_ref_cycles_ext();
7446
}
7447
7448
static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
7449
{
7450
x86_pmu.mid_ack = true;
7451
x86_pmu.limit_period = glc_limit_period;
7452
x86_pmu.pebs_aliases = NULL;
7453
x86_pmu.pebs_prec_dist = true;
7454
x86_pmu.pebs_block = true;
7455
x86_pmu.lbr_pt_coexist = true;
7456
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7457
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
7458
7459
memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7460
memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7461
hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7462
hybrid(pmu, event_constraints) = intel_grt_event_constraints;
7463
hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
7464
hybrid(pmu, extra_regs) = intel_grt_extra_regs;
7465
7466
intel_pmu_ref_cycles_ext();
7467
}
7468
7469
static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
7470
{
7471
intel_pmu_init_glc(pmu);
7472
hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
7473
hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
7474
hybrid(pmu, extra_regs) = intel_lnc_extra_regs;
7475
}
7476
7477
static __always_inline void intel_pmu_init_pnc(struct pmu *pmu)
7478
{
7479
intel_pmu_init_glc(pmu);
7480
x86_pmu.flags &= ~PMU_FL_HAS_RSP_1;
7481
x86_pmu.flags |= PMU_FL_HAS_OMR;
7482
memcpy(hybrid_var(pmu, hw_cache_event_ids),
7483
pnc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7484
memcpy(hybrid_var(pmu, hw_cache_extra_regs),
7485
pnc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7486
hybrid(pmu, event_constraints) = intel_pnc_event_constraints;
7487
hybrid(pmu, pebs_constraints) = intel_pnc_pebs_event_constraints;
7488
hybrid(pmu, extra_regs) = intel_pnc_extra_regs;
7489
}
7490
7491
static __always_inline void intel_pmu_init_skt(struct pmu *pmu)
7492
{
7493
intel_pmu_init_grt(pmu);
7494
hybrid(pmu, event_constraints) = intel_skt_event_constraints;
7495
hybrid(pmu, extra_regs) = intel_cmt_extra_regs;
7496
static_call_update(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
7497
}
7498
7499
static __always_inline void intel_pmu_init_arw(struct pmu *pmu)
7500
{
7501
intel_pmu_init_grt(pmu);
7502
x86_pmu.flags &= ~PMU_FL_HAS_RSP_1;
7503
x86_pmu.flags |= PMU_FL_HAS_OMR;
7504
memcpy(hybrid_var(pmu, hw_cache_extra_regs),
7505
arw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7506
hybrid(pmu, event_constraints) = intel_arw_event_constraints;
7507
hybrid(pmu, pebs_constraints) = intel_arw_pebs_event_constraints;
7508
hybrid(pmu, extra_regs) = intel_arw_extra_regs;
7509
static_call_update(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
7510
}
7511
7512
__init int intel_pmu_init(void)
7513
{
7514
struct attribute **extra_skl_attr = &empty_attrs;
7515
struct attribute **extra_attr = &empty_attrs;
7516
struct attribute **td_attr = &empty_attrs;
7517
struct attribute **mem_attr = &empty_attrs;
7518
struct attribute **tsx_attr = &empty_attrs;
7519
union cpuid10_edx edx;
7520
union cpuid10_eax eax;
7521
union cpuid10_ebx ebx;
7522
unsigned int fixed_mask;
7523
bool pmem = false;
7524
int version, i;
7525
char *name;
7526
struct x86_hybrid_pmu *pmu;
7527
7528
/* Architectural Perfmon was introduced starting with Core "Yonah" */
7529
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
7530
switch (boot_cpu_data.x86) {
7531
case 6:
7532
if (boot_cpu_data.x86_vfm < INTEL_CORE_YONAH)
7533
return p6_pmu_init();
7534
break;
7535
case 11:
7536
return knc_pmu_init();
7537
case 15:
7538
return p4_pmu_init();
7539
}
7540
7541
pr_cont("unsupported CPU family %d model %d ",
7542
boot_cpu_data.x86, boot_cpu_data.x86_model);
7543
return -ENODEV;
7544
}
7545
7546
/*
7547
* Check whether the Architectural PerfMon supports
7548
* Branch Misses Retired hw_event or not.
7549
*/
7550
cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
7551
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
7552
return -ENODEV;
7553
7554
version = eax.split.version_id;
7555
if (version < 2)
7556
x86_pmu = core_pmu;
7557
else
7558
x86_pmu = intel_pmu;
7559
7560
x86_pmu.version = version;
7561
x86_pmu.cntr_mask64 = GENMASK_ULL(eax.split.num_counters - 1, 0);
7562
x86_pmu.cntval_bits = eax.split.bit_width;
7563
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
7564
7565
x86_pmu.events_maskl = ebx.full;
7566
x86_pmu.events_mask_len = eax.split.mask_length;
7567
7568
x86_pmu.pebs_events_mask = intel_pmu_pebs_mask(x86_pmu.cntr_mask64);
7569
x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
7570
x86_pmu.config_mask = X86_RAW_EVENT_MASK;
7571
7572
/*
7573
* Quirk: v2 perfmon does not report fixed-purpose events, so
7574
* assume at least 3 events, when not running in a hypervisor:
7575
*/
7576
if (version > 1 && version < 5) {
7577
int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
7578
7579
x86_pmu.fixed_cntr_mask64 =
7580
GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0);
7581
} else if (version >= 5)
7582
x86_pmu.fixed_cntr_mask64 = fixed_mask;
7583
7584
if (boot_cpu_has(X86_FEATURE_PDCM)) {
7585
u64 capabilities;
7586
7587
rdmsrq(MSR_IA32_PERF_CAPABILITIES, capabilities);
7588
x86_pmu.intel_cap.capabilities = capabilities;
7589
}
7590
7591
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
7592
x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
7593
x86_pmu.lbr_read = intel_pmu_lbr_read_32;
7594
}
7595
7596
if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
7597
intel_pmu_arch_lbr_init();
7598
7599
intel_pebs_init();
7600
7601
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
7602
7603
if (version >= 5) {
7604
x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
7605
if (x86_pmu.intel_cap.anythread_deprecated)
7606
pr_cont(" AnyThread deprecated, ");
7607
}
7608
7609
/* The perf side of core PMU is ready to support the mediated vPMU. */
7610
x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_MEDIATED_VPMU;
7611
7612
/*
7613
* Many features on and after V6 require dynamic constraint,
7614
* e.g., Arch PEBS, ACR.
7615
*/
7616
if (version >= 6) {
7617
x86_pmu.flags |= PMU_FL_DYN_CONSTRAINT;
7618
x86_pmu.late_setup = intel_pmu_late_setup;
7619
}
7620
7621
/*
7622
* Install the hw-cache-events table:
7623
*/
7624
switch (boot_cpu_data.x86_vfm) {
7625
case INTEL_CORE_YONAH:
7626
pr_cont("Core events, ");
7627
name = "core";
7628
break;
7629
7630
case INTEL_CORE2_MEROM:
7631
x86_add_quirk(intel_clovertown_quirk);
7632
fallthrough;
7633
7634
case INTEL_CORE2_MEROM_L:
7635
case INTEL_CORE2_PENRYN:
7636
case INTEL_CORE2_DUNNINGTON:
7637
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
7638
sizeof(hw_cache_event_ids));
7639
7640
intel_pmu_lbr_init_core();
7641
7642
x86_pmu.event_constraints = intel_core2_event_constraints;
7643
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
7644
pr_cont("Core2 events, ");
7645
name = "core2";
7646
break;
7647
7648
case INTEL_NEHALEM:
7649
case INTEL_NEHALEM_EP:
7650
case INTEL_NEHALEM_EX:
7651
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
7652
sizeof(hw_cache_event_ids));
7653
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7654
sizeof(hw_cache_extra_regs));
7655
7656
intel_pmu_lbr_init_nhm();
7657
7658
x86_pmu.event_constraints = intel_nehalem_event_constraints;
7659
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
7660
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7661
x86_pmu.extra_regs = intel_nehalem_extra_regs;
7662
x86_pmu.limit_period = nhm_limit_period;
7663
7664
mem_attr = nhm_mem_events_attrs;
7665
7666
/* UOPS_ISSUED.STALLED_CYCLES */
7667
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7668
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7669
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7670
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7671
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7672
7673
intel_pmu_pebs_data_source_nhm();
7674
x86_add_quirk(intel_nehalem_quirk);
7675
x86_pmu.pebs_no_tlb = 1;
7676
extra_attr = nhm_format_attr;
7677
7678
pr_cont("Nehalem events, ");
7679
name = "nehalem";
7680
break;
7681
7682
case INTEL_ATOM_BONNELL:
7683
case INTEL_ATOM_BONNELL_MID:
7684
case INTEL_ATOM_SALTWELL:
7685
case INTEL_ATOM_SALTWELL_MID:
7686
case INTEL_ATOM_SALTWELL_TABLET:
7687
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
7688
sizeof(hw_cache_event_ids));
7689
7690
intel_pmu_lbr_init_atom();
7691
7692
x86_pmu.event_constraints = intel_gen_event_constraints;
7693
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
7694
x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
7695
pr_cont("Atom events, ");
7696
name = "bonnell";
7697
break;
7698
7699
case INTEL_ATOM_SILVERMONT:
7700
case INTEL_ATOM_SILVERMONT_D:
7701
case INTEL_ATOM_SILVERMONT_MID:
7702
case INTEL_ATOM_AIRMONT:
7703
case INTEL_ATOM_AIRMONT_NP:
7704
case INTEL_ATOM_SILVERMONT_MID2:
7705
memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
7706
sizeof(hw_cache_event_ids));
7707
memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
7708
sizeof(hw_cache_extra_regs));
7709
7710
intel_pmu_lbr_init_slm();
7711
7712
x86_pmu.event_constraints = intel_slm_event_constraints;
7713
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7714
x86_pmu.extra_regs = intel_slm_extra_regs;
7715
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7716
td_attr = slm_events_attrs;
7717
extra_attr = slm_format_attr;
7718
pr_cont("Silvermont events, ");
7719
name = "silvermont";
7720
break;
7721
7722
case INTEL_ATOM_GOLDMONT:
7723
case INTEL_ATOM_GOLDMONT_D:
7724
memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
7725
sizeof(hw_cache_event_ids));
7726
memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
7727
sizeof(hw_cache_extra_regs));
7728
7729
intel_pmu_lbr_init_skl();
7730
7731
x86_pmu.event_constraints = intel_slm_event_constraints;
7732
x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
7733
x86_pmu.extra_regs = intel_glm_extra_regs;
7734
/*
7735
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7736
* for precise cycles.
7737
* :pp is identical to :ppp
7738
*/
7739
x86_pmu.pebs_aliases = NULL;
7740
x86_pmu.pebs_prec_dist = true;
7741
x86_pmu.lbr_pt_coexist = true;
7742
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7743
td_attr = glm_events_attrs;
7744
extra_attr = slm_format_attr;
7745
pr_cont("Goldmont events, ");
7746
name = "goldmont";
7747
break;
7748
7749
case INTEL_ATOM_GOLDMONT_PLUS:
7750
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7751
sizeof(hw_cache_event_ids));
7752
memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
7753
sizeof(hw_cache_extra_regs));
7754
7755
intel_pmu_lbr_init_skl();
7756
7757
x86_pmu.event_constraints = intel_slm_event_constraints;
7758
x86_pmu.extra_regs = intel_glm_extra_regs;
7759
/*
7760
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7761
* for precise cycles.
7762
*/
7763
x86_pmu.pebs_aliases = NULL;
7764
x86_pmu.pebs_prec_dist = true;
7765
x86_pmu.lbr_pt_coexist = true;
7766
x86_pmu.pebs_capable = ~0ULL;
7767
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7768
x86_pmu.flags |= PMU_FL_PEBS_ALL;
7769
x86_pmu.get_event_constraints = glp_get_event_constraints;
7770
td_attr = glm_events_attrs;
7771
/* Goldmont Plus has 4-wide pipeline */
7772
event_attr_td_total_slots_scale_glm.event_str = "4";
7773
extra_attr = slm_format_attr;
7774
pr_cont("Goldmont plus events, ");
7775
name = "goldmont_plus";
7776
break;
7777
7778
case INTEL_ATOM_TREMONT_D:
7779
case INTEL_ATOM_TREMONT:
7780
case INTEL_ATOM_TREMONT_L:
7781
x86_pmu.late_ack = true;
7782
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7783
sizeof(hw_cache_event_ids));
7784
memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
7785
sizeof(hw_cache_extra_regs));
7786
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7787
7788
intel_pmu_lbr_init_skl();
7789
7790
x86_pmu.event_constraints = intel_slm_event_constraints;
7791
x86_pmu.extra_regs = intel_tnt_extra_regs;
7792
/*
7793
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7794
* for precise cycles.
7795
*/
7796
x86_pmu.pebs_aliases = NULL;
7797
x86_pmu.pebs_prec_dist = true;
7798
x86_pmu.lbr_pt_coexist = true;
7799
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7800
x86_pmu.get_event_constraints = tnt_get_event_constraints;
7801
td_attr = tnt_events_attrs;
7802
extra_attr = slm_format_attr;
7803
pr_cont("Tremont events, ");
7804
name = "Tremont";
7805
break;
7806
7807
case INTEL_ATOM_GRACEMONT:
7808
intel_pmu_init_grt(NULL);
7809
intel_pmu_pebs_data_source_grt();
7810
x86_pmu.pebs_latency_data = grt_latency_data;
7811
x86_pmu.get_event_constraints = tnt_get_event_constraints;
7812
td_attr = tnt_events_attrs;
7813
mem_attr = grt_mem_attrs;
7814
extra_attr = nhm_format_attr;
7815
pr_cont("Gracemont events, ");
7816
name = "gracemont";
7817
break;
7818
7819
case INTEL_ATOM_CRESTMONT:
7820
case INTEL_ATOM_CRESTMONT_X:
7821
intel_pmu_init_grt(NULL);
7822
x86_pmu.extra_regs = intel_cmt_extra_regs;
7823
intel_pmu_pebs_data_source_cmt();
7824
x86_pmu.pebs_latency_data = cmt_latency_data;
7825
x86_pmu.get_event_constraints = cmt_get_event_constraints;
7826
td_attr = cmt_events_attrs;
7827
mem_attr = grt_mem_attrs;
7828
extra_attr = cmt_format_attr;
7829
pr_cont("Crestmont events, ");
7830
name = "crestmont";
7831
break;
7832
7833
case INTEL_ATOM_DARKMONT_X:
7834
intel_pmu_init_skt(NULL);
7835
intel_pmu_pebs_data_source_cmt();
7836
x86_pmu.pebs_latency_data = cmt_latency_data;
7837
x86_pmu.get_event_constraints = cmt_get_event_constraints;
7838
td_attr = skt_events_attrs;
7839
mem_attr = grt_mem_attrs;
7840
extra_attr = cmt_format_attr;
7841
pr_cont("Darkmont events, ");
7842
name = "darkmont";
7843
break;
7844
7845
case INTEL_WESTMERE:
7846
case INTEL_WESTMERE_EP:
7847
case INTEL_WESTMERE_EX:
7848
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
7849
sizeof(hw_cache_event_ids));
7850
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7851
sizeof(hw_cache_extra_regs));
7852
7853
intel_pmu_lbr_init_nhm();
7854
7855
x86_pmu.event_constraints = intel_westmere_event_constraints;
7856
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7857
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
7858
x86_pmu.extra_regs = intel_westmere_extra_regs;
7859
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7860
7861
mem_attr = nhm_mem_events_attrs;
7862
7863
/* UOPS_ISSUED.STALLED_CYCLES */
7864
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7865
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7866
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7867
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7868
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7869
7870
intel_pmu_pebs_data_source_nhm();
7871
extra_attr = nhm_format_attr;
7872
pr_cont("Westmere events, ");
7873
name = "westmere";
7874
break;
7875
7876
case INTEL_SANDYBRIDGE:
7877
case INTEL_SANDYBRIDGE_X:
7878
x86_add_quirk(intel_sandybridge_quirk);
7879
x86_add_quirk(intel_ht_bug);
7880
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7881
sizeof(hw_cache_event_ids));
7882
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7883
sizeof(hw_cache_extra_regs));
7884
7885
intel_pmu_lbr_init_snb();
7886
7887
x86_pmu.event_constraints = intel_snb_event_constraints;
7888
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
7889
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
7890
if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X)
7891
x86_pmu.extra_regs = intel_snbep_extra_regs;
7892
else
7893
x86_pmu.extra_regs = intel_snb_extra_regs;
7894
7895
7896
/* all extra regs are per-cpu when HT is on */
7897
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7898
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7899
7900
td_attr = snb_events_attrs;
7901
mem_attr = snb_mem_events_attrs;
7902
7903
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7904
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7905
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7906
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
7907
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7908
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
7909
7910
extra_attr = nhm_format_attr;
7911
7912
pr_cont("SandyBridge events, ");
7913
name = "sandybridge";
7914
break;
7915
7916
case INTEL_IVYBRIDGE:
7917
case INTEL_IVYBRIDGE_X:
7918
x86_add_quirk(intel_ht_bug);
7919
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7920
sizeof(hw_cache_event_ids));
7921
/* dTLB-load-misses on IVB is different than SNB */
7922
hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
7923
7924
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7925
sizeof(hw_cache_extra_regs));
7926
7927
intel_pmu_lbr_init_snb();
7928
7929
x86_pmu.event_constraints = intel_ivb_event_constraints;
7930
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
7931
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7932
x86_pmu.pebs_prec_dist = true;
7933
if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X)
7934
x86_pmu.extra_regs = intel_snbep_extra_regs;
7935
else
7936
x86_pmu.extra_regs = intel_snb_extra_regs;
7937
/* all extra regs are per-cpu when HT is on */
7938
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7939
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7940
7941
td_attr = snb_events_attrs;
7942
mem_attr = snb_mem_events_attrs;
7943
7944
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7945
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7946
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7947
7948
extra_attr = nhm_format_attr;
7949
7950
pr_cont("IvyBridge events, ");
7951
name = "ivybridge";
7952
break;
7953
7954
7955
case INTEL_HASWELL:
7956
case INTEL_HASWELL_X:
7957
case INTEL_HASWELL_L:
7958
case INTEL_HASWELL_G:
7959
x86_add_quirk(intel_ht_bug);
7960
x86_add_quirk(intel_pebs_isolation_quirk);
7961
x86_pmu.late_ack = true;
7962
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7963
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7964
7965
intel_pmu_lbr_init_hsw();
7966
7967
x86_pmu.event_constraints = intel_hsw_event_constraints;
7968
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
7969
x86_pmu.extra_regs = intel_snbep_extra_regs;
7970
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7971
x86_pmu.pebs_prec_dist = true;
7972
/* all extra regs are per-cpu when HT is on */
7973
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7974
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7975
7976
x86_pmu.hw_config = hsw_hw_config;
7977
x86_pmu.get_event_constraints = hsw_get_event_constraints;
7978
x86_pmu.limit_period = hsw_limit_period;
7979
x86_pmu.lbr_double_abort = true;
7980
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7981
hsw_format_attr : nhm_format_attr;
7982
td_attr = hsw_events_attrs;
7983
mem_attr = hsw_mem_events_attrs;
7984
tsx_attr = hsw_tsx_events_attrs;
7985
pr_cont("Haswell events, ");
7986
name = "haswell";
7987
break;
7988
7989
case INTEL_BROADWELL:
7990
case INTEL_BROADWELL_D:
7991
case INTEL_BROADWELL_G:
7992
case INTEL_BROADWELL_X:
7993
x86_add_quirk(intel_pebs_isolation_quirk);
7994
x86_pmu.late_ack = true;
7995
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7996
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7997
7998
/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
7999
hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
8000
BDW_L3_MISS|HSW_SNOOP_DRAM;
8001
hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
8002
HSW_SNOOP_DRAM;
8003
hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
8004
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
8005
hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
8006
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
8007
8008
intel_pmu_lbr_init_hsw();
8009
8010
x86_pmu.event_constraints = intel_bdw_event_constraints;
8011
x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
8012
x86_pmu.extra_regs = intel_snbep_extra_regs;
8013
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
8014
x86_pmu.pebs_prec_dist = true;
8015
/* all extra regs are per-cpu when HT is on */
8016
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
8017
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
8018
8019
x86_pmu.hw_config = hsw_hw_config;
8020
x86_pmu.get_event_constraints = hsw_get_event_constraints;
8021
x86_pmu.limit_period = bdw_limit_period;
8022
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8023
hsw_format_attr : nhm_format_attr;
8024
td_attr = hsw_events_attrs;
8025
mem_attr = hsw_mem_events_attrs;
8026
tsx_attr = hsw_tsx_events_attrs;
8027
pr_cont("Broadwell events, ");
8028
name = "broadwell";
8029
break;
8030
8031
case INTEL_XEON_PHI_KNL:
8032
case INTEL_XEON_PHI_KNM:
8033
memcpy(hw_cache_event_ids,
8034
slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
8035
memcpy(hw_cache_extra_regs,
8036
knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
8037
intel_pmu_lbr_init_knl();
8038
8039
x86_pmu.event_constraints = intel_slm_event_constraints;
8040
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
8041
x86_pmu.extra_regs = intel_knl_extra_regs;
8042
8043
/* all extra regs are per-cpu when HT is on */
8044
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
8045
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
8046
extra_attr = slm_format_attr;
8047
pr_cont("Knights Landing/Mill events, ");
8048
name = "knights-landing";
8049
break;
8050
8051
case INTEL_SKYLAKE_X:
8052
pmem = true;
8053
fallthrough;
8054
case INTEL_SKYLAKE_L:
8055
case INTEL_SKYLAKE:
8056
case INTEL_KABYLAKE_L:
8057
case INTEL_KABYLAKE:
8058
case INTEL_COMETLAKE_L:
8059
case INTEL_COMETLAKE:
8060
x86_add_quirk(intel_pebs_isolation_quirk);
8061
x86_pmu.late_ack = true;
8062
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
8063
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
8064
intel_pmu_lbr_init_skl();
8065
8066
/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
8067
event_attr_td_recovery_bubbles.event_str_noht =
8068
"event=0xd,umask=0x1,cmask=1";
8069
event_attr_td_recovery_bubbles.event_str_ht =
8070
"event=0xd,umask=0x1,cmask=1,any=1";
8071
8072
x86_pmu.event_constraints = intel_skl_event_constraints;
8073
x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
8074
x86_pmu.extra_regs = intel_skl_extra_regs;
8075
x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
8076
x86_pmu.pebs_prec_dist = true;
8077
/* all extra regs are per-cpu when HT is on */
8078
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
8079
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
8080
8081
x86_pmu.hw_config = hsw_hw_config;
8082
x86_pmu.get_event_constraints = hsw_get_event_constraints;
8083
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8084
hsw_format_attr : nhm_format_attr;
8085
extra_skl_attr = skl_format_attr;
8086
td_attr = hsw_events_attrs;
8087
mem_attr = hsw_mem_events_attrs;
8088
tsx_attr = hsw_tsx_events_attrs;
8089
intel_pmu_pebs_data_source_skl(pmem);
8090
8091
/*
8092
* Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
8093
* TSX force abort hooks are not required on these systems. Only deploy
8094
* workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
8095
*/
8096
if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
8097
!boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
8098
x86_pmu.flags |= PMU_FL_TFA;
8099
x86_pmu.get_event_constraints = tfa_get_event_constraints;
8100
x86_pmu.enable_all = intel_tfa_pmu_enable_all;
8101
x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
8102
}
8103
8104
pr_cont("Skylake events, ");
8105
name = "skylake";
8106
break;
8107
8108
case INTEL_ICELAKE_X:
8109
case INTEL_ICELAKE_D:
8110
x86_pmu.pebs_ept = 1;
8111
pmem = true;
8112
fallthrough;
8113
case INTEL_ICELAKE_L:
8114
case INTEL_ICELAKE:
8115
case INTEL_TIGERLAKE_L:
8116
case INTEL_TIGERLAKE:
8117
case INTEL_ROCKETLAKE:
8118
x86_pmu.late_ack = true;
8119
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
8120
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
8121
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
8122
intel_pmu_lbr_init_skl();
8123
8124
x86_pmu.event_constraints = intel_icl_event_constraints;
8125
x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
8126
x86_pmu.extra_regs = intel_icl_extra_regs;
8127
x86_pmu.pebs_aliases = NULL;
8128
x86_pmu.pebs_prec_dist = true;
8129
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
8130
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
8131
8132
x86_pmu.hw_config = hsw_hw_config;
8133
x86_pmu.get_event_constraints = icl_get_event_constraints;
8134
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8135
hsw_format_attr : nhm_format_attr;
8136
extra_skl_attr = skl_format_attr;
8137
mem_attr = icl_events_attrs;
8138
td_attr = icl_td_events_attrs;
8139
tsx_attr = icl_tsx_events_attrs;
8140
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
8141
x86_pmu.lbr_pt_coexist = true;
8142
intel_pmu_pebs_data_source_skl(pmem);
8143
x86_pmu.num_topdown_events = 4;
8144
static_call_update(intel_pmu_update_topdown_event,
8145
&icl_update_topdown_event);
8146
static_call_update(intel_pmu_set_topdown_event_period,
8147
&icl_set_topdown_event_period);
8148
pr_cont("Icelake events, ");
8149
name = "icelake";
8150
break;
8151
8152
case INTEL_SAPPHIRERAPIDS_X:
8153
case INTEL_EMERALDRAPIDS_X:
8154
x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
8155
x86_pmu.extra_regs = intel_glc_extra_regs;
8156
pr_cont("Sapphire Rapids events, ");
8157
name = "sapphire_rapids";
8158
goto glc_common;
8159
8160
case INTEL_GRANITERAPIDS_X:
8161
case INTEL_GRANITERAPIDS_D:
8162
x86_pmu.extra_regs = intel_rwc_extra_regs;
8163
pr_cont("Granite Rapids events, ");
8164
name = "granite_rapids";
8165
goto glc_common;
8166
8167
case INTEL_DIAMONDRAPIDS_X:
8168
intel_pmu_init_pnc(NULL);
8169
x86_pmu.pebs_latency_data = pnc_latency_data;
8170
8171
pr_cont("Panthercove events, ");
8172
name = "panthercove";
8173
goto glc_base;
8174
8175
glc_common:
8176
intel_pmu_init_glc(NULL);
8177
intel_pmu_pebs_data_source_skl(true);
8178
8179
glc_base:
8180
x86_pmu.pebs_ept = 1;
8181
x86_pmu.hw_config = hsw_hw_config;
8182
x86_pmu.get_event_constraints = glc_get_event_constraints;
8183
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8184
hsw_format_attr : nhm_format_attr;
8185
extra_skl_attr = skl_format_attr;
8186
mem_attr = glc_events_attrs;
8187
td_attr = glc_td_events_attrs;
8188
tsx_attr = glc_tsx_events_attrs;
8189
break;
8190
8191
case INTEL_ALDERLAKE:
8192
case INTEL_ALDERLAKE_L:
8193
case INTEL_RAPTORLAKE:
8194
case INTEL_RAPTORLAKE_P:
8195
case INTEL_RAPTORLAKE_S:
8196
/*
8197
* Alder Lake has 2 types of CPU, core and atom.
8198
*
8199
* Initialize the common PerfMon capabilities here.
8200
*/
8201
intel_pmu_init_hybrid(hybrid_big_small);
8202
8203
x86_pmu.pebs_latency_data = grt_latency_data;
8204
x86_pmu.get_event_constraints = adl_get_event_constraints;
8205
x86_pmu.hw_config = adl_hw_config;
8206
x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
8207
8208
td_attr = adl_hybrid_events_attrs;
8209
mem_attr = adl_hybrid_mem_attrs;
8210
tsx_attr = adl_hybrid_tsx_attrs;
8211
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8212
adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
8213
8214
/* Initialize big core specific PerfMon capabilities.*/
8215
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8216
intel_pmu_init_glc(&pmu->pmu);
8217
if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
8218
pmu->cntr_mask64 <<= 2;
8219
pmu->cntr_mask64 |= 0x3;
8220
pmu->fixed_cntr_mask64 <<= 1;
8221
pmu->fixed_cntr_mask64 |= 0x1;
8222
} else {
8223
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
8224
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
8225
}
8226
8227
/*
8228
* Quirk: For some Alder Lake machine, when all E-cores are disabled in
8229
* a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
8230
* the X86_FEATURE_HYBRID_CPU is still set. The above codes will
8231
* mistakenly add extra counters for P-cores. Correct the number of
8232
* counters here.
8233
*/
8234
if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) {
8235
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
8236
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
8237
}
8238
8239
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
8240
pmu->unconstrained = (struct event_constraint)
8241
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
8242
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
8243
8244
pmu->extra_regs = intel_glc_extra_regs;
8245
8246
/* Initialize Atom core specific PerfMon capabilities.*/
8247
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8248
intel_pmu_init_grt(&pmu->pmu);
8249
8250
x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
8251
intel_pmu_pebs_data_source_adl();
8252
pr_cont("Alderlake Hybrid events, ");
8253
name = "alderlake_hybrid";
8254
break;
8255
8256
case INTEL_METEORLAKE:
8257
case INTEL_METEORLAKE_L:
8258
case INTEL_ARROWLAKE_U:
8259
intel_pmu_init_hybrid(hybrid_big_small);
8260
8261
x86_pmu.pebs_latency_data = cmt_latency_data;
8262
x86_pmu.get_event_constraints = mtl_get_event_constraints;
8263
x86_pmu.hw_config = adl_hw_config;
8264
8265
td_attr = adl_hybrid_events_attrs;
8266
mem_attr = mtl_hybrid_mem_attrs;
8267
tsx_attr = adl_hybrid_tsx_attrs;
8268
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8269
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8270
8271
/* Initialize big core specific PerfMon capabilities.*/
8272
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8273
intel_pmu_init_glc(&pmu->pmu);
8274
pmu->extra_regs = intel_rwc_extra_regs;
8275
8276
/* Initialize Atom core specific PerfMon capabilities.*/
8277
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8278
intel_pmu_init_grt(&pmu->pmu);
8279
pmu->extra_regs = intel_cmt_extra_regs;
8280
8281
intel_pmu_pebs_data_source_mtl();
8282
pr_cont("Meteorlake Hybrid events, ");
8283
name = "meteorlake_hybrid";
8284
break;
8285
8286
case INTEL_PANTHERLAKE_L:
8287
case INTEL_WILDCATLAKE_L:
8288
pr_cont("Pantherlake Hybrid events, ");
8289
name = "pantherlake_hybrid";
8290
goto lnl_common;
8291
8292
case INTEL_LUNARLAKE_M:
8293
case INTEL_ARROWLAKE:
8294
pr_cont("Lunarlake Hybrid events, ");
8295
name = "lunarlake_hybrid";
8296
8297
lnl_common:
8298
intel_pmu_init_hybrid(hybrid_big_small);
8299
8300
x86_pmu.pebs_latency_data = lnl_latency_data;
8301
x86_pmu.get_event_constraints = mtl_get_event_constraints;
8302
x86_pmu.hw_config = adl_hw_config;
8303
8304
td_attr = lnl_hybrid_events_attrs;
8305
mem_attr = mtl_hybrid_mem_attrs;
8306
tsx_attr = adl_hybrid_tsx_attrs;
8307
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8308
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8309
8310
/* Initialize big core specific PerfMon capabilities.*/
8311
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8312
intel_pmu_init_lnc(&pmu->pmu);
8313
8314
/* Initialize Atom core specific PerfMon capabilities.*/
8315
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8316
intel_pmu_init_skt(&pmu->pmu);
8317
8318
intel_pmu_pebs_data_source_lnl();
8319
break;
8320
8321
case INTEL_ARROWLAKE_H:
8322
intel_pmu_init_hybrid(hybrid_big_small_tiny);
8323
8324
x86_pmu.pebs_latency_data = arl_h_latency_data;
8325
x86_pmu.get_event_constraints = arl_h_get_event_constraints;
8326
x86_pmu.hw_config = arl_h_hw_config;
8327
8328
td_attr = arl_h_hybrid_events_attrs;
8329
mem_attr = arl_h_hybrid_mem_attrs;
8330
tsx_attr = adl_hybrid_tsx_attrs;
8331
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8332
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8333
8334
/* Initialize big core specific PerfMon capabilities. */
8335
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8336
intel_pmu_init_lnc(&pmu->pmu);
8337
8338
/* Initialize Atom core specific PerfMon capabilities. */
8339
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8340
intel_pmu_init_skt(&pmu->pmu);
8341
8342
/* Initialize Lower Power Atom specific PerfMon capabilities. */
8343
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX];
8344
intel_pmu_init_grt(&pmu->pmu);
8345
pmu->extra_regs = intel_cmt_extra_regs;
8346
8347
intel_pmu_pebs_data_source_arl_h();
8348
pr_cont("ArrowLake-H Hybrid events, ");
8349
name = "arrowlake_h_hybrid";
8350
break;
8351
8352
case INTEL_NOVALAKE:
8353
case INTEL_NOVALAKE_L:
8354
pr_cont("Novalake Hybrid events, ");
8355
name = "novalake_hybrid";
8356
intel_pmu_init_hybrid(hybrid_big_small);
8357
8358
x86_pmu.pebs_latency_data = nvl_latency_data;
8359
x86_pmu.get_event_constraints = mtl_get_event_constraints;
8360
x86_pmu.hw_config = adl_hw_config;
8361
8362
td_attr = lnl_hybrid_events_attrs;
8363
mem_attr = mtl_hybrid_mem_attrs;
8364
tsx_attr = adl_hybrid_tsx_attrs;
8365
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
8366
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
8367
8368
/* Initialize big core specific PerfMon capabilities.*/
8369
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
8370
intel_pmu_init_pnc(&pmu->pmu);
8371
8372
/* Initialize Atom core specific PerfMon capabilities.*/
8373
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
8374
intel_pmu_init_arw(&pmu->pmu);
8375
8376
intel_pmu_pebs_data_source_lnl();
8377
break;
8378
8379
default:
8380
switch (x86_pmu.version) {
8381
case 1:
8382
x86_pmu.event_constraints = intel_v1_event_constraints;
8383
pr_cont("generic architected perfmon v1, ");
8384
name = "generic_arch_v1";
8385
break;
8386
case 2:
8387
case 3:
8388
case 4:
8389
/*
8390
* default constraints for v2 and up
8391
*/
8392
x86_pmu.event_constraints = intel_gen_event_constraints;
8393
pr_cont("generic architected perfmon, ");
8394
name = "generic_arch_v2+";
8395
break;
8396
default:
8397
/*
8398
* The default constraints for v5 and up can support up to
8399
* 16 fixed counters. For the fixed counters 4 and later,
8400
* the pseudo-encoding is applied.
8401
* The constraints may be cut according to the CPUID enumeration
8402
* by inserting the EVENT_CONSTRAINT_END.
8403
*/
8404
if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED)
8405
x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
8406
intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1;
8407
x86_pmu.event_constraints = intel_v5_gen_event_constraints;
8408
pr_cont("generic architected perfmon, ");
8409
name = "generic_arch_v5+";
8410
break;
8411
}
8412
}
8413
8414
snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
8415
8416
if (!is_hybrid()) {
8417
group_events_td.attrs = td_attr;
8418
group_events_mem.attrs = mem_attr;
8419
group_events_tsx.attrs = tsx_attr;
8420
group_format_extra.attrs = extra_attr;
8421
group_format_extra_skl.attrs = extra_skl_attr;
8422
8423
x86_pmu.attr_update = attr_update;
8424
} else {
8425
hybrid_group_events_td.attrs = td_attr;
8426
hybrid_group_events_mem.attrs = mem_attr;
8427
hybrid_group_events_tsx.attrs = tsx_attr;
8428
hybrid_group_format_extra.attrs = extra_attr;
8429
8430
x86_pmu.attr_update = hybrid_attr_update;
8431
}
8432
8433
/*
8434
* The archPerfmonExt (0x23) includes an enhanced enumeration of
8435
* PMU architectural features with a per-core view. For non-hybrid,
8436
* each core has the same PMU capabilities. It's good enough to
8437
* update the x86_pmu from the booting CPU. For hybrid, the x86_pmu
8438
* is used to keep the common capabilities. Still keep the values
8439
* from the leaf 0xa. The core specific update will be done later
8440
* when a new type is online.
8441
*/
8442
if (!is_hybrid() && boot_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
8443
update_pmu_cap(NULL);
8444
8445
if (x86_pmu.arch_pebs) {
8446
static_call_update(intel_pmu_disable_event_ext,
8447
intel_pmu_disable_event_ext);
8448
static_call_update(intel_pmu_enable_event_ext,
8449
intel_pmu_enable_event_ext);
8450
pr_cont("Architectural PEBS, ");
8451
}
8452
8453
intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64,
8454
&x86_pmu.fixed_cntr_mask64,
8455
&x86_pmu.intel_ctrl);
8456
8457
/* AnyThread may be deprecated on arch perfmon v5 or later */
8458
if (x86_pmu.intel_cap.anythread_deprecated)
8459
x86_pmu.format_attrs = intel_arch_formats_attr;
8460
8461
intel_pmu_check_event_constraints_all(NULL);
8462
8463
/*
8464
* Access LBR MSR may cause #GP under certain circumstances.
8465
* Check all LBR MSR here.
8466
* Disable LBR access if any LBR MSRs can not be accessed.
8467
*/
8468
if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
8469
x86_pmu.lbr_nr = 0;
8470
for (i = 0; i < x86_pmu.lbr_nr; i++) {
8471
if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
8472
check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
8473
x86_pmu.lbr_nr = 0;
8474
}
8475
8476
if (x86_pmu.lbr_nr) {
8477
intel_pmu_lbr_init();
8478
8479
pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
8480
8481
/* only support branch_stack snapshot for perfmon >= v2 */
8482
if (x86_pmu.disable_all == intel_pmu_disable_all) {
8483
if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
8484
static_call_update(perf_snapshot_branch_stack,
8485
intel_pmu_snapshot_arch_branch_stack);
8486
} else {
8487
static_call_update(perf_snapshot_branch_stack,
8488
intel_pmu_snapshot_branch_stack);
8489
}
8490
}
8491
}
8492
8493
intel_pmu_check_extra_regs(x86_pmu.extra_regs);
8494
8495
/* Support full width counters using alternative MSR range */
8496
if (x86_pmu.intel_cap.full_width_write) {
8497
x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
8498
x86_pmu.perfctr = MSR_IA32_PMC0;
8499
pr_cont("full-width counters, ");
8500
}
8501
8502
/* Support V6+ MSR Aliasing */
8503
if (x86_pmu.version >= 6) {
8504
x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR;
8505
x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A;
8506
x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR;
8507
x86_pmu.addr_offset = intel_pmu_v6_addr_offset;
8508
}
8509
8510
if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
8511
x86_pmu.intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
8512
8513
if (x86_pmu.intel_cap.pebs_timing_info)
8514
x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
8515
8516
intel_aux_output_init();
8517
8518
return 0;
8519
}
8520
8521
/*
8522
* HT bug: phase 2 init
8523
* Called once we have valid topology information to check
8524
* whether or not HT is enabled
8525
* If HT is off, then we disable the workaround
8526
*/
8527
static __init int fixup_ht_bug(void)
8528
{
8529
int c;
8530
/*
8531
* problem not present on this CPU model, nothing to do
8532
*/
8533
if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
8534
return 0;
8535
8536
if (topology_max_smt_threads() > 1) {
8537
pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
8538
return 0;
8539
}
8540
8541
cpus_read_lock();
8542
8543
hardlockup_detector_perf_stop();
8544
8545
x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
8546
8547
x86_pmu.start_scheduling = NULL;
8548
x86_pmu.commit_scheduling = NULL;
8549
x86_pmu.stop_scheduling = NULL;
8550
8551
hardlockup_detector_perf_restart();
8552
8553
for_each_online_cpu(c)
8554
free_excl_cntrs(&per_cpu(cpu_hw_events, c));
8555
8556
cpus_read_unlock();
8557
pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
8558
return 0;
8559
}
8560
subsys_initcall(fixup_ht_bug)
8561
8562