Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/events/intel/ds.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/bitops.h>
3
#include <linux/types.h>
4
#include <linux/slab.h>
5
#include <linux/sched/clock.h>
6
7
#include <asm/cpu_entry_area.h>
8
#include <asm/debugreg.h>
9
#include <asm/perf_event.h>
10
#include <asm/tlbflush.h>
11
#include <asm/insn.h>
12
#include <asm/io.h>
13
#include <asm/msr.h>
14
#include <asm/timer.h>
15
16
#include "../perf_event.h"
17
18
/* Waste a full page so it can be mapped into the cpu_entry_area */
19
DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
20
21
/* The size of a BTS record in bytes: */
22
#define BTS_RECORD_SIZE 24
23
24
#define PEBS_FIXUP_SIZE PAGE_SIZE
25
26
/*
27
* pebs_record_32 for p4 and core not supported
28
29
struct pebs_record_32 {
30
u32 flags, ip;
31
u32 ax, bc, cx, dx;
32
u32 si, di, bp, sp;
33
};
34
35
*/
36
37
union intel_x86_pebs_dse {
38
u64 val;
39
struct {
40
unsigned int ld_dse:4;
41
unsigned int ld_stlb_miss:1;
42
unsigned int ld_locked:1;
43
unsigned int ld_data_blk:1;
44
unsigned int ld_addr_blk:1;
45
unsigned int ld_reserved:24;
46
};
47
struct {
48
unsigned int st_l1d_hit:1;
49
unsigned int st_reserved1:3;
50
unsigned int st_stlb_miss:1;
51
unsigned int st_locked:1;
52
unsigned int st_reserved2:26;
53
};
54
struct {
55
unsigned int st_lat_dse:4;
56
unsigned int st_lat_stlb_miss:1;
57
unsigned int st_lat_locked:1;
58
unsigned int ld_reserved3:26;
59
};
60
struct {
61
unsigned int mtl_dse:5;
62
unsigned int mtl_locked:1;
63
unsigned int mtl_stlb_miss:1;
64
unsigned int mtl_fwd_blk:1;
65
unsigned int ld_reserved4:24;
66
};
67
struct {
68
unsigned int lnc_dse:8;
69
unsigned int ld_reserved5:2;
70
unsigned int lnc_stlb_miss:1;
71
unsigned int lnc_locked:1;
72
unsigned int lnc_data_blk:1;
73
unsigned int lnc_addr_blk:1;
74
unsigned int ld_reserved6:18;
75
};
76
};
77
78
79
/*
80
* Map PEBS Load Latency Data Source encodings to generic
81
* memory data source information
82
*/
83
#define P(a, b) PERF_MEM_S(a, b)
84
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
85
#define LEVEL(x) P(LVLNUM, x)
86
#define REM P(REMOTE, REMOTE)
87
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
88
89
/* Version for Sandy Bridge and later */
90
static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
91
P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
92
OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
93
OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
94
OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
95
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
96
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
97
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
98
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
99
OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
100
OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
101
OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
102
OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
103
OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
104
OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
105
OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
106
OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
107
};
108
109
/* Patch up minor differences in the bits */
110
void __init intel_pmu_pebs_data_source_nhm(void)
111
{
112
pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
113
pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114
pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
115
}
116
117
static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
118
{
119
u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
120
121
data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
122
data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
123
data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
124
data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
125
data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
126
}
127
128
void __init intel_pmu_pebs_data_source_skl(bool pmem)
129
{
130
__intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
131
}
132
133
static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
134
{
135
data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
136
data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
137
data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
138
}
139
140
void __init intel_pmu_pebs_data_source_grt(void)
141
{
142
__intel_pmu_pebs_data_source_grt(pebs_data_source);
143
}
144
145
void __init intel_pmu_pebs_data_source_adl(void)
146
{
147
u64 *data_source;
148
149
data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
150
memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
151
__intel_pmu_pebs_data_source_skl(false, data_source);
152
153
data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
154
memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
155
__intel_pmu_pebs_data_source_grt(data_source);
156
}
157
158
static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
159
{
160
data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
161
data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
162
data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE);
163
data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
164
data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
165
data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
166
}
167
168
void __init intel_pmu_pebs_data_source_mtl(void)
169
{
170
u64 *data_source;
171
172
data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
173
memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
174
__intel_pmu_pebs_data_source_skl(false, data_source);
175
176
data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
177
memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
178
__intel_pmu_pebs_data_source_cmt(data_source);
179
}
180
181
void __init intel_pmu_pebs_data_source_arl_h(void)
182
{
183
u64 *data_source;
184
185
intel_pmu_pebs_data_source_lnl();
186
187
data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX].pebs_data_source;
188
memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
189
__intel_pmu_pebs_data_source_cmt(data_source);
190
}
191
192
void __init intel_pmu_pebs_data_source_cmt(void)
193
{
194
__intel_pmu_pebs_data_source_cmt(pebs_data_source);
195
}
196
197
/* Version for Lion Cove and later */
198
static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
199
P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA), /* 0x00: ukn L3 */
200
OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 hit */
201
OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x02: L1 hit */
202
OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x03: LFB/L1 Miss Handling Buffer hit */
203
0, /* 0x04: Reserved */
204
OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x05: L2 Hit */
205
OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE), /* 0x06: L2 Miss Handling Buffer Hit */
206
0, /* 0x07: Reserved */
207
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x08: L3 Hit */
208
0, /* 0x09: Reserved */
209
0, /* 0x0a: Reserved */
210
0, /* 0x0b: Reserved */
211
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD), /* 0x0c: L3 Hit Snoop Fwd */
212
OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0d: L3 Hit Snoop HitM */
213
0, /* 0x0e: Reserved */
214
P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0f: L3 Miss Snoop HitM */
215
OP_LH | LEVEL(MSC) | P(SNOOP, NONE), /* 0x10: Memory-side Cache Hit */
216
OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
217
};
218
219
void __init intel_pmu_pebs_data_source_lnl(void)
220
{
221
u64 *data_source;
222
223
data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
224
memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
225
226
data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
227
memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
228
__intel_pmu_pebs_data_source_cmt(data_source);
229
}
230
231
static u64 precise_store_data(u64 status)
232
{
233
union intel_x86_pebs_dse dse;
234
u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
235
236
dse.val = status;
237
238
/*
239
* bit 4: TLB access
240
* 1 = stored missed 2nd level TLB
241
*
242
* so it either hit the walker or the OS
243
* otherwise hit 2nd level TLB
244
*/
245
if (dse.st_stlb_miss)
246
val |= P(TLB, MISS);
247
else
248
val |= P(TLB, HIT);
249
250
/*
251
* bit 0: hit L1 data cache
252
* if not set, then all we know is that
253
* it missed L1D
254
*/
255
if (dse.st_l1d_hit)
256
val |= P(LVL, HIT);
257
else
258
val |= P(LVL, MISS);
259
260
/*
261
* bit 5: Locked prefix
262
*/
263
if (dse.st_locked)
264
val |= P(LOCK, LOCKED);
265
266
return val;
267
}
268
269
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
270
{
271
union perf_mem_data_src dse;
272
273
dse.val = PERF_MEM_NA;
274
275
if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
276
dse.mem_op = PERF_MEM_OP_STORE;
277
else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
278
dse.mem_op = PERF_MEM_OP_LOAD;
279
280
/*
281
* L1 info only valid for following events:
282
*
283
* MEM_UOPS_RETIRED.STLB_MISS_STORES
284
* MEM_UOPS_RETIRED.LOCK_STORES
285
* MEM_UOPS_RETIRED.SPLIT_STORES
286
* MEM_UOPS_RETIRED.ALL_STORES
287
*/
288
if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
289
if (status & 1)
290
dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
291
else
292
dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
293
}
294
return dse.val;
295
}
296
297
static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
298
{
299
/*
300
* TLB access
301
* 0 = did not miss 2nd level TLB
302
* 1 = missed 2nd level TLB
303
*/
304
if (tlb)
305
*val |= P(TLB, MISS) | P(TLB, L2);
306
else
307
*val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
308
309
/* locked prefix */
310
if (lock)
311
*val |= P(LOCK, LOCKED);
312
}
313
314
/* Retrieve the latency data for e-core of ADL */
315
static u64 __grt_latency_data(struct perf_event *event, u64 status,
316
u8 dse, bool tlb, bool lock, bool blk)
317
{
318
u64 val;
319
320
WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
321
322
dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
323
val = hybrid_var(event->pmu, pebs_data_source)[dse];
324
325
pebs_set_tlb_lock(&val, tlb, lock);
326
327
if (blk)
328
val |= P(BLK, DATA);
329
else
330
val |= P(BLK, NA);
331
332
return val;
333
}
334
335
u64 grt_latency_data(struct perf_event *event, u64 status)
336
{
337
union intel_x86_pebs_dse dse;
338
339
dse.val = status;
340
341
return __grt_latency_data(event, status, dse.ld_dse,
342
dse.ld_locked, dse.ld_stlb_miss,
343
dse.ld_data_blk);
344
}
345
346
/* Retrieve the latency data for e-core of MTL */
347
u64 cmt_latency_data(struct perf_event *event, u64 status)
348
{
349
union intel_x86_pebs_dse dse;
350
351
dse.val = status;
352
353
return __grt_latency_data(event, status, dse.mtl_dse,
354
dse.mtl_stlb_miss, dse.mtl_locked,
355
dse.mtl_fwd_blk);
356
}
357
358
static u64 lnc_latency_data(struct perf_event *event, u64 status)
359
{
360
union intel_x86_pebs_dse dse;
361
union perf_mem_data_src src;
362
u64 val;
363
364
dse.val = status;
365
366
/* LNC core latency data */
367
val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
368
if (!val)
369
val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
370
371
if (dse.lnc_stlb_miss)
372
val |= P(TLB, MISS) | P(TLB, L2);
373
else
374
val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
375
376
if (dse.lnc_locked)
377
val |= P(LOCK, LOCKED);
378
379
if (dse.lnc_data_blk)
380
val |= P(BLK, DATA);
381
if (dse.lnc_addr_blk)
382
val |= P(BLK, ADDR);
383
if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
384
val |= P(BLK, NA);
385
386
src.val = val;
387
if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
388
src.mem_op = P(OP, STORE);
389
390
return src.val;
391
}
392
393
u64 lnl_latency_data(struct perf_event *event, u64 status)
394
{
395
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
396
397
if (pmu->pmu_type == hybrid_small)
398
return cmt_latency_data(event, status);
399
400
return lnc_latency_data(event, status);
401
}
402
403
u64 arl_h_latency_data(struct perf_event *event, u64 status)
404
{
405
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
406
407
if (pmu->pmu_type == hybrid_tiny)
408
return cmt_latency_data(event, status);
409
410
return lnl_latency_data(event, status);
411
}
412
413
static u64 load_latency_data(struct perf_event *event, u64 status)
414
{
415
union intel_x86_pebs_dse dse;
416
u64 val;
417
418
dse.val = status;
419
420
/*
421
* use the mapping table for bit 0-3
422
*/
423
val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
424
425
/*
426
* Nehalem models do not support TLB, Lock infos
427
*/
428
if (x86_pmu.pebs_no_tlb) {
429
val |= P(TLB, NA) | P(LOCK, NA);
430
return val;
431
}
432
433
pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
434
435
/*
436
* Ice Lake and earlier models do not support block infos.
437
*/
438
if (!x86_pmu.pebs_block) {
439
val |= P(BLK, NA);
440
return val;
441
}
442
/*
443
* bit 6: load was blocked since its data could not be forwarded
444
* from a preceding store
445
*/
446
if (dse.ld_data_blk)
447
val |= P(BLK, DATA);
448
449
/*
450
* bit 7: load was blocked due to potential address conflict with
451
* a preceding store
452
*/
453
if (dse.ld_addr_blk)
454
val |= P(BLK, ADDR);
455
456
if (!dse.ld_data_blk && !dse.ld_addr_blk)
457
val |= P(BLK, NA);
458
459
return val;
460
}
461
462
static u64 store_latency_data(struct perf_event *event, u64 status)
463
{
464
union intel_x86_pebs_dse dse;
465
union perf_mem_data_src src;
466
u64 val;
467
468
dse.val = status;
469
470
/*
471
* use the mapping table for bit 0-3
472
*/
473
val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
474
475
pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
476
477
val |= P(BLK, NA);
478
479
/*
480
* the pebs_data_source table is only for loads
481
* so override the mem_op to say STORE instead
482
*/
483
src.val = val;
484
src.mem_op = P(OP,STORE);
485
486
return src.val;
487
}
488
489
struct pebs_record_core {
490
u64 flags, ip;
491
u64 ax, bx, cx, dx;
492
u64 si, di, bp, sp;
493
u64 r8, r9, r10, r11;
494
u64 r12, r13, r14, r15;
495
};
496
497
struct pebs_record_nhm {
498
u64 flags, ip;
499
u64 ax, bx, cx, dx;
500
u64 si, di, bp, sp;
501
u64 r8, r9, r10, r11;
502
u64 r12, r13, r14, r15;
503
u64 status, dla, dse, lat;
504
};
505
506
/*
507
* Same as pebs_record_nhm, with two additional fields.
508
*/
509
struct pebs_record_hsw {
510
u64 flags, ip;
511
u64 ax, bx, cx, dx;
512
u64 si, di, bp, sp;
513
u64 r8, r9, r10, r11;
514
u64 r12, r13, r14, r15;
515
u64 status, dla, dse, lat;
516
u64 real_ip, tsx_tuning;
517
};
518
519
union hsw_tsx_tuning {
520
struct {
521
u32 cycles_last_block : 32,
522
hle_abort : 1,
523
rtm_abort : 1,
524
instruction_abort : 1,
525
non_instruction_abort : 1,
526
retry : 1,
527
data_conflict : 1,
528
capacity_writes : 1,
529
capacity_reads : 1;
530
};
531
u64 value;
532
};
533
534
#define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
535
536
/* Same as HSW, plus TSC */
537
538
struct pebs_record_skl {
539
u64 flags, ip;
540
u64 ax, bx, cx, dx;
541
u64 si, di, bp, sp;
542
u64 r8, r9, r10, r11;
543
u64 r12, r13, r14, r15;
544
u64 status, dla, dse, lat;
545
u64 real_ip, tsx_tuning;
546
u64 tsc;
547
};
548
549
void init_debug_store_on_cpu(int cpu)
550
{
551
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
552
553
if (!ds)
554
return;
555
556
wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
557
(u32)((u64)(unsigned long)ds),
558
(u32)((u64)(unsigned long)ds >> 32));
559
}
560
561
void fini_debug_store_on_cpu(int cpu)
562
{
563
if (!per_cpu(cpu_hw_events, cpu).ds)
564
return;
565
566
wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
567
}
568
569
static DEFINE_PER_CPU(void *, insn_buffer);
570
571
static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
572
{
573
unsigned long start = (unsigned long)cea;
574
phys_addr_t pa;
575
size_t msz = 0;
576
577
pa = virt_to_phys(addr);
578
579
preempt_disable();
580
for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
581
cea_set_pte(cea, pa, prot);
582
583
/*
584
* This is a cross-CPU update of the cpu_entry_area, we must shoot down
585
* all TLB entries for it.
586
*/
587
flush_tlb_kernel_range(start, start + size);
588
preempt_enable();
589
}
590
591
static void ds_clear_cea(void *cea, size_t size)
592
{
593
unsigned long start = (unsigned long)cea;
594
size_t msz = 0;
595
596
preempt_disable();
597
for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
598
cea_set_pte(cea, 0, PAGE_NONE);
599
600
flush_tlb_kernel_range(start, start + size);
601
preempt_enable();
602
}
603
604
static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
605
{
606
unsigned int order = get_order(size);
607
int node = cpu_to_node(cpu);
608
struct page *page;
609
610
page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
611
return page ? page_address(page) : NULL;
612
}
613
614
static void dsfree_pages(const void *buffer, size_t size)
615
{
616
if (buffer)
617
free_pages((unsigned long)buffer, get_order(size));
618
}
619
620
static int alloc_pebs_buffer(int cpu)
621
{
622
struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
623
struct debug_store *ds = hwev->ds;
624
size_t bsiz = x86_pmu.pebs_buffer_size;
625
int max, node = cpu_to_node(cpu);
626
void *buffer, *insn_buff, *cea;
627
628
if (!x86_pmu.ds_pebs)
629
return 0;
630
631
buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
632
if (unlikely(!buffer))
633
return -ENOMEM;
634
635
/*
636
* HSW+ already provides us the eventing ip; no need to allocate this
637
* buffer then.
638
*/
639
if (x86_pmu.intel_cap.pebs_format < 2) {
640
insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
641
if (!insn_buff) {
642
dsfree_pages(buffer, bsiz);
643
return -ENOMEM;
644
}
645
per_cpu(insn_buffer, cpu) = insn_buff;
646
}
647
hwev->ds_pebs_vaddr = buffer;
648
/* Update the cpu entry area mapping */
649
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
650
ds->pebs_buffer_base = (unsigned long) cea;
651
ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
652
ds->pebs_index = ds->pebs_buffer_base;
653
max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
654
ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
655
return 0;
656
}
657
658
static void release_pebs_buffer(int cpu)
659
{
660
struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
661
void *cea;
662
663
if (!x86_pmu.ds_pebs)
664
return;
665
666
kfree(per_cpu(insn_buffer, cpu));
667
per_cpu(insn_buffer, cpu) = NULL;
668
669
/* Clear the fixmap */
670
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
671
ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
672
dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
673
hwev->ds_pebs_vaddr = NULL;
674
}
675
676
static int alloc_bts_buffer(int cpu)
677
{
678
struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
679
struct debug_store *ds = hwev->ds;
680
void *buffer, *cea;
681
int max;
682
683
if (!x86_pmu.bts)
684
return 0;
685
686
buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
687
if (unlikely(!buffer)) {
688
WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
689
return -ENOMEM;
690
}
691
hwev->ds_bts_vaddr = buffer;
692
/* Update the fixmap */
693
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
694
ds->bts_buffer_base = (unsigned long) cea;
695
ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
696
ds->bts_index = ds->bts_buffer_base;
697
max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
698
ds->bts_absolute_maximum = ds->bts_buffer_base +
699
max * BTS_RECORD_SIZE;
700
ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
701
(max / 16) * BTS_RECORD_SIZE;
702
return 0;
703
}
704
705
static void release_bts_buffer(int cpu)
706
{
707
struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
708
void *cea;
709
710
if (!x86_pmu.bts)
711
return;
712
713
/* Clear the fixmap */
714
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
715
ds_clear_cea(cea, BTS_BUFFER_SIZE);
716
dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
717
hwev->ds_bts_vaddr = NULL;
718
}
719
720
static int alloc_ds_buffer(int cpu)
721
{
722
struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
723
724
memset(ds, 0, sizeof(*ds));
725
per_cpu(cpu_hw_events, cpu).ds = ds;
726
return 0;
727
}
728
729
static void release_ds_buffer(int cpu)
730
{
731
per_cpu(cpu_hw_events, cpu).ds = NULL;
732
}
733
734
void release_ds_buffers(void)
735
{
736
int cpu;
737
738
if (!x86_pmu.bts && !x86_pmu.ds_pebs)
739
return;
740
741
for_each_possible_cpu(cpu)
742
release_ds_buffer(cpu);
743
744
for_each_possible_cpu(cpu) {
745
/*
746
* Again, ignore errors from offline CPUs, they will no longer
747
* observe cpu_hw_events.ds and not program the DS_AREA when
748
* they come up.
749
*/
750
fini_debug_store_on_cpu(cpu);
751
}
752
753
for_each_possible_cpu(cpu) {
754
if (x86_pmu.ds_pebs)
755
release_pebs_buffer(cpu);
756
release_bts_buffer(cpu);
757
}
758
}
759
760
void reserve_ds_buffers(void)
761
{
762
int bts_err = 0, pebs_err = 0;
763
int cpu;
764
765
x86_pmu.bts_active = 0;
766
767
if (x86_pmu.ds_pebs)
768
x86_pmu.pebs_active = 0;
769
770
if (!x86_pmu.bts && !x86_pmu.ds_pebs)
771
return;
772
773
if (!x86_pmu.bts)
774
bts_err = 1;
775
776
if (!x86_pmu.ds_pebs)
777
pebs_err = 1;
778
779
for_each_possible_cpu(cpu) {
780
if (alloc_ds_buffer(cpu)) {
781
bts_err = 1;
782
pebs_err = 1;
783
}
784
785
if (!bts_err && alloc_bts_buffer(cpu))
786
bts_err = 1;
787
788
if (x86_pmu.ds_pebs && !pebs_err &&
789
alloc_pebs_buffer(cpu))
790
pebs_err = 1;
791
792
if (bts_err && pebs_err)
793
break;
794
}
795
796
if (bts_err) {
797
for_each_possible_cpu(cpu)
798
release_bts_buffer(cpu);
799
}
800
801
if (x86_pmu.ds_pebs && pebs_err) {
802
for_each_possible_cpu(cpu)
803
release_pebs_buffer(cpu);
804
}
805
806
if (bts_err && pebs_err) {
807
for_each_possible_cpu(cpu)
808
release_ds_buffer(cpu);
809
} else {
810
if (x86_pmu.bts && !bts_err)
811
x86_pmu.bts_active = 1;
812
813
if (x86_pmu.ds_pebs && !pebs_err)
814
x86_pmu.pebs_active = 1;
815
816
for_each_possible_cpu(cpu) {
817
/*
818
* Ignores wrmsr_on_cpu() errors for offline CPUs they
819
* will get this call through intel_pmu_cpu_starting().
820
*/
821
init_debug_store_on_cpu(cpu);
822
}
823
}
824
}
825
826
/*
827
* BTS
828
*/
829
830
struct event_constraint bts_constraint =
831
EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
832
833
void intel_pmu_enable_bts(u64 config)
834
{
835
unsigned long debugctlmsr;
836
837
debugctlmsr = get_debugctlmsr();
838
839
debugctlmsr |= DEBUGCTLMSR_TR;
840
debugctlmsr |= DEBUGCTLMSR_BTS;
841
if (config & ARCH_PERFMON_EVENTSEL_INT)
842
debugctlmsr |= DEBUGCTLMSR_BTINT;
843
844
if (!(config & ARCH_PERFMON_EVENTSEL_OS))
845
debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
846
847
if (!(config & ARCH_PERFMON_EVENTSEL_USR))
848
debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
849
850
update_debugctlmsr(debugctlmsr);
851
}
852
853
void intel_pmu_disable_bts(void)
854
{
855
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
856
unsigned long debugctlmsr;
857
858
if (!cpuc->ds)
859
return;
860
861
debugctlmsr = get_debugctlmsr();
862
863
debugctlmsr &=
864
~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
865
DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
866
867
update_debugctlmsr(debugctlmsr);
868
}
869
870
int intel_pmu_drain_bts_buffer(void)
871
{
872
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
873
struct debug_store *ds = cpuc->ds;
874
struct bts_record {
875
u64 from;
876
u64 to;
877
u64 flags;
878
};
879
struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
880
struct bts_record *at, *base, *top;
881
struct perf_output_handle handle;
882
struct perf_event_header header;
883
struct perf_sample_data data;
884
unsigned long skip = 0;
885
struct pt_regs regs;
886
887
if (!event)
888
return 0;
889
890
if (!x86_pmu.bts_active)
891
return 0;
892
893
base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
894
top = (struct bts_record *)(unsigned long)ds->bts_index;
895
896
if (top <= base)
897
return 0;
898
899
memset(&regs, 0, sizeof(regs));
900
901
ds->bts_index = ds->bts_buffer_base;
902
903
perf_sample_data_init(&data, 0, event->hw.last_period);
904
905
/*
906
* BTS leaks kernel addresses in branches across the cpl boundary,
907
* such as traps or system calls, so unless the user is asking for
908
* kernel tracing (and right now it's not possible), we'd need to
909
* filter them out. But first we need to count how many of those we
910
* have in the current batch. This is an extra O(n) pass, however,
911
* it's much faster than the other one especially considering that
912
* n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
913
* alloc_bts_buffer()).
914
*/
915
for (at = base; at < top; at++) {
916
/*
917
* Note that right now *this* BTS code only works if
918
* attr::exclude_kernel is set, but let's keep this extra
919
* check here in case that changes.
920
*/
921
if (event->attr.exclude_kernel &&
922
(kernel_ip(at->from) || kernel_ip(at->to)))
923
skip++;
924
}
925
926
/*
927
* Prepare a generic sample, i.e. fill in the invariant fields.
928
* We will overwrite the from and to address before we output
929
* the sample.
930
*/
931
rcu_read_lock();
932
perf_prepare_sample(&data, event, &regs);
933
perf_prepare_header(&header, &data, event, &regs);
934
935
if (perf_output_begin(&handle, &data, event,
936
header.size * (top - base - skip)))
937
goto unlock;
938
939
for (at = base; at < top; at++) {
940
/* Filter out any records that contain kernel addresses. */
941
if (event->attr.exclude_kernel &&
942
(kernel_ip(at->from) || kernel_ip(at->to)))
943
continue;
944
945
data.ip = at->from;
946
data.addr = at->to;
947
948
perf_output_sample(&handle, &header, &data, event);
949
}
950
951
perf_output_end(&handle);
952
953
/* There's new data available. */
954
event->hw.interrupts++;
955
event->pending_kill = POLL_IN;
956
unlock:
957
rcu_read_unlock();
958
return 1;
959
}
960
961
void intel_pmu_drain_pebs_buffer(void)
962
{
963
struct perf_sample_data data;
964
965
static_call(x86_pmu_drain_pebs)(NULL, &data);
966
}
967
968
/*
969
* PEBS
970
*/
971
struct event_constraint intel_core2_pebs_event_constraints[] = {
972
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
973
INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
974
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
975
INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
976
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
977
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
978
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
979
EVENT_CONSTRAINT_END
980
};
981
982
struct event_constraint intel_atom_pebs_event_constraints[] = {
983
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
984
INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
985
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
986
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
987
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
988
/* Allow all events as PEBS with no flags */
989
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
990
EVENT_CONSTRAINT_END
991
};
992
993
struct event_constraint intel_slm_pebs_event_constraints[] = {
994
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
995
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
996
/* Allow all events as PEBS with no flags */
997
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
998
EVENT_CONSTRAINT_END
999
};
1000
1001
struct event_constraint intel_glm_pebs_event_constraints[] = {
1002
/* Allow all events as PEBS with no flags */
1003
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
1004
EVENT_CONSTRAINT_END
1005
};
1006
1007
struct event_constraint intel_grt_pebs_event_constraints[] = {
1008
/* Allow all events as PEBS with no flags */
1009
INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
1010
INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
1011
EVENT_CONSTRAINT_END
1012
};
1013
1014
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
1015
INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
1016
INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
1017
INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1018
INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
1019
INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
1020
INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
1021
INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
1022
INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
1023
INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1024
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
1025
INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
1026
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1027
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1028
EVENT_CONSTRAINT_END
1029
};
1030
1031
struct event_constraint intel_westmere_pebs_event_constraints[] = {
1032
INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
1033
INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
1034
INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1035
INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
1036
INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
1037
INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
1038
INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
1039
INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
1040
INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1041
INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
1042
INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
1043
/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1044
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1045
EVENT_CONSTRAINT_END
1046
};
1047
1048
struct event_constraint intel_snb_pebs_event_constraints[] = {
1049
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1050
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1051
INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
1052
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1053
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1054
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
1055
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1056
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1057
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1058
/* Allow all events as PEBS with no flags */
1059
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1060
EVENT_CONSTRAINT_END
1061
};
1062
1063
struct event_constraint intel_ivb_pebs_event_constraints[] = {
1064
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1065
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1066
INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
1067
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1068
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1069
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1070
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1071
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
1072
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1073
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1074
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1075
/* Allow all events as PEBS with no flags */
1076
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1077
EVENT_CONSTRAINT_END
1078
};
1079
1080
struct event_constraint intel_hsw_pebs_event_constraints[] = {
1081
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1082
INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
1083
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1084
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1085
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1086
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1087
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1088
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1089
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1090
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1091
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1092
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1093
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1094
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1095
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1096
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1097
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1098
/* Allow all events as PEBS with no flags */
1099
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1100
EVENT_CONSTRAINT_END
1101
};
1102
1103
struct event_constraint intel_bdw_pebs_event_constraints[] = {
1104
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1105
INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
1106
/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1107
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1108
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1109
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1110
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1111
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1112
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1113
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1114
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1115
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1116
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1117
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1118
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1119
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1120
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1121
/* Allow all events as PEBS with no flags */
1122
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1123
EVENT_CONSTRAINT_END
1124
};
1125
1126
1127
struct event_constraint intel_skl_pebs_event_constraints[] = {
1128
INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
1129
/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1130
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1131
/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1132
INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1133
INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
1134
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1135
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1136
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1137
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1138
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1139
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1140
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1141
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1142
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
1143
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
1144
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
1145
/* Allow all events as PEBS with no flags */
1146
INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1147
EVENT_CONSTRAINT_END
1148
};
1149
1150
struct event_constraint intel_icl_pebs_event_constraints[] = {
1151
INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */
1152
INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1153
INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
1154
1155
INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
1156
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1157
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1158
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1159
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1160
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1161
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1162
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1163
1164
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1165
1166
INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
1167
1168
/*
1169
* Everything else is handled by PMU_FL_PEBS_ALL, because we
1170
* need the full constraints from the main table.
1171
*/
1172
1173
EVENT_CONSTRAINT_END
1174
};
1175
1176
struct event_constraint intel_glc_pebs_event_constraints[] = {
1177
INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1178
INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1179
1180
INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1181
INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1182
INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1183
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1184
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1185
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1186
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1187
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1188
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1189
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1190
1191
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1192
1193
INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1194
1195
/*
1196
* Everything else is handled by PMU_FL_PEBS_ALL, because we
1197
* need the full constraints from the main table.
1198
*/
1199
1200
EVENT_CONSTRAINT_END
1201
};
1202
1203
struct event_constraint intel_lnc_pebs_event_constraints[] = {
1204
INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1205
INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1206
1207
INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3fc),
1208
INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1209
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1210
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1211
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1212
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1213
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1214
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1215
INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1216
1217
INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1218
1219
INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1220
1221
/*
1222
* Everything else is handled by PMU_FL_PEBS_ALL, because we
1223
* need the full constraints from the main table.
1224
*/
1225
1226
EVENT_CONSTRAINT_END
1227
};
1228
1229
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1230
{
1231
struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1232
struct event_constraint *c;
1233
1234
if (!event->attr.precise_ip)
1235
return NULL;
1236
1237
if (pebs_constraints) {
1238
for_each_event_constraint(c, pebs_constraints) {
1239
if (constraint_match(c, event->hw.config)) {
1240
event->hw.flags |= c->flags;
1241
return c;
1242
}
1243
}
1244
}
1245
1246
/*
1247
* Extended PEBS support
1248
* Makes the PEBS code search the normal constraints.
1249
*/
1250
if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1251
return NULL;
1252
1253
return &emptyconstraint;
1254
}
1255
1256
/*
1257
* We need the sched_task callback even for per-cpu events when we use
1258
* the large interrupt threshold, such that we can provide PID and TID
1259
* to PEBS samples.
1260
*/
1261
static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1262
{
1263
if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1264
return false;
1265
1266
return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1267
}
1268
1269
void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1270
{
1271
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1272
1273
if (!sched_in && pebs_needs_sched_cb(cpuc))
1274
intel_pmu_drain_pebs_buffer();
1275
}
1276
1277
static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1278
{
1279
struct debug_store *ds = cpuc->ds;
1280
int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1281
u64 threshold;
1282
int reserved;
1283
1284
if (cpuc->n_pebs_via_pt)
1285
return;
1286
1287
if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1288
reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1289
else
1290
reserved = max_pebs_events;
1291
1292
if (cpuc->n_pebs == cpuc->n_large_pebs) {
1293
threshold = ds->pebs_absolute_maximum -
1294
reserved * cpuc->pebs_record_size;
1295
} else {
1296
threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1297
}
1298
1299
ds->pebs_interrupt_threshold = threshold;
1300
}
1301
1302
#define PEBS_DATACFG_CNTRS(x) \
1303
((x >> PEBS_DATACFG_CNTR_SHIFT) & PEBS_DATACFG_CNTR_MASK)
1304
1305
#define PEBS_DATACFG_CNTR_BIT(x) \
1306
(((1ULL << x) & PEBS_DATACFG_CNTR_MASK) << PEBS_DATACFG_CNTR_SHIFT)
1307
1308
#define PEBS_DATACFG_FIX(x) \
1309
((x >> PEBS_DATACFG_FIX_SHIFT) & PEBS_DATACFG_FIX_MASK)
1310
1311
#define PEBS_DATACFG_FIX_BIT(x) \
1312
(((1ULL << (x)) & PEBS_DATACFG_FIX_MASK) \
1313
<< PEBS_DATACFG_FIX_SHIFT)
1314
1315
static void adaptive_pebs_record_size_update(void)
1316
{
1317
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1318
u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1319
int sz = sizeof(struct pebs_basic);
1320
1321
if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1322
sz += sizeof(struct pebs_meminfo);
1323
if (pebs_data_cfg & PEBS_DATACFG_GP)
1324
sz += sizeof(struct pebs_gprs);
1325
if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1326
sz += sizeof(struct pebs_xmm);
1327
if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1328
sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1329
if (pebs_data_cfg & (PEBS_DATACFG_METRICS | PEBS_DATACFG_CNTR)) {
1330
sz += sizeof(struct pebs_cntr_header);
1331
1332
/* Metrics base and Metrics Data */
1333
if (pebs_data_cfg & PEBS_DATACFG_METRICS)
1334
sz += 2 * sizeof(u64);
1335
1336
if (pebs_data_cfg & PEBS_DATACFG_CNTR) {
1337
sz += (hweight64(PEBS_DATACFG_CNTRS(pebs_data_cfg)) +
1338
hweight64(PEBS_DATACFG_FIX(pebs_data_cfg))) *
1339
sizeof(u64);
1340
}
1341
}
1342
1343
cpuc->pebs_record_size = sz;
1344
}
1345
1346
static void __intel_pmu_pebs_update_cfg(struct perf_event *event,
1347
int idx, u64 *pebs_data_cfg)
1348
{
1349
if (is_metric_event(event)) {
1350
*pebs_data_cfg |= PEBS_DATACFG_METRICS;
1351
return;
1352
}
1353
1354
*pebs_data_cfg |= PEBS_DATACFG_CNTR;
1355
1356
if (idx >= INTEL_PMC_IDX_FIXED)
1357
*pebs_data_cfg |= PEBS_DATACFG_FIX_BIT(idx - INTEL_PMC_IDX_FIXED);
1358
else
1359
*pebs_data_cfg |= PEBS_DATACFG_CNTR_BIT(idx);
1360
}
1361
1362
1363
void intel_pmu_pebs_late_setup(struct cpu_hw_events *cpuc)
1364
{
1365
struct perf_event *event;
1366
u64 pebs_data_cfg = 0;
1367
int i;
1368
1369
for (i = 0; i < cpuc->n_events; i++) {
1370
event = cpuc->event_list[i];
1371
if (!is_pebs_counter_event_group(event))
1372
continue;
1373
__intel_pmu_pebs_update_cfg(event, cpuc->assign[i], &pebs_data_cfg);
1374
}
1375
1376
if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1377
cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1378
}
1379
1380
#define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
1381
PERF_SAMPLE_PHYS_ADDR | \
1382
PERF_SAMPLE_WEIGHT_TYPE | \
1383
PERF_SAMPLE_TRANSACTION | \
1384
PERF_SAMPLE_DATA_PAGE_SIZE)
1385
1386
static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1387
{
1388
struct perf_event_attr *attr = &event->attr;
1389
u64 sample_type = attr->sample_type;
1390
u64 pebs_data_cfg = 0;
1391
bool gprs, tsx_weight;
1392
1393
if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1394
attr->precise_ip > 1)
1395
return pebs_data_cfg;
1396
1397
if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1398
pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1399
1400
/*
1401
* We need GPRs when:
1402
* + user requested them
1403
* + precise_ip < 2 for the non event IP
1404
* + For RTM TSX weight we need GPRs for the abort code.
1405
*/
1406
gprs = ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1407
(attr->sample_regs_intr & PEBS_GP_REGS)) ||
1408
((sample_type & PERF_SAMPLE_REGS_USER) &&
1409
(attr->sample_regs_user & PEBS_GP_REGS));
1410
1411
tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1412
((attr->config & INTEL_ARCH_EVENT_MASK) ==
1413
x86_pmu.rtm_abort_event);
1414
1415
if (gprs || (attr->precise_ip < 2) || tsx_weight)
1416
pebs_data_cfg |= PEBS_DATACFG_GP;
1417
1418
if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1419
(attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1420
pebs_data_cfg |= PEBS_DATACFG_XMMS;
1421
1422
if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1423
/*
1424
* For now always log all LBRs. Could configure this
1425
* later.
1426
*/
1427
pebs_data_cfg |= PEBS_DATACFG_LBRS |
1428
((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1429
}
1430
1431
return pebs_data_cfg;
1432
}
1433
1434
static void
1435
pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1436
struct perf_event *event, bool add)
1437
{
1438
struct pmu *pmu = event->pmu;
1439
1440
/*
1441
* Make sure we get updated with the first PEBS event.
1442
* During removal, ->pebs_data_cfg is still valid for
1443
* the last PEBS event. Don't clear it.
1444
*/
1445
if ((cpuc->n_pebs == 1) && add)
1446
cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1447
1448
if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1449
if (!needed_cb)
1450
perf_sched_cb_inc(pmu);
1451
else
1452
perf_sched_cb_dec(pmu);
1453
1454
cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1455
}
1456
1457
/*
1458
* The PEBS record doesn't shrink on pmu::del(). Doing so would require
1459
* iterating all remaining PEBS events to reconstruct the config.
1460
*/
1461
if (x86_pmu.intel_cap.pebs_baseline && add) {
1462
u64 pebs_data_cfg;
1463
1464
pebs_data_cfg = pebs_update_adaptive_cfg(event);
1465
/*
1466
* Be sure to update the thresholds when we change the record.
1467
*/
1468
if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1469
cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1470
}
1471
}
1472
1473
void intel_pmu_pebs_add(struct perf_event *event)
1474
{
1475
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1476
struct hw_perf_event *hwc = &event->hw;
1477
bool needed_cb = pebs_needs_sched_cb(cpuc);
1478
1479
cpuc->n_pebs++;
1480
if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1481
cpuc->n_large_pebs++;
1482
if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1483
cpuc->n_pebs_via_pt++;
1484
1485
pebs_update_state(needed_cb, cpuc, event, true);
1486
}
1487
1488
static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1489
{
1490
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1491
1492
if (!is_pebs_pt(event))
1493
return;
1494
1495
if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1496
cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1497
}
1498
1499
static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1500
{
1501
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1502
struct hw_perf_event *hwc = &event->hw;
1503
struct debug_store *ds = cpuc->ds;
1504
u64 value = ds->pebs_event_reset[hwc->idx];
1505
u32 base = MSR_RELOAD_PMC0;
1506
unsigned int idx = hwc->idx;
1507
1508
if (!is_pebs_pt(event))
1509
return;
1510
1511
if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1512
cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1513
1514
cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1515
1516
if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1517
base = MSR_RELOAD_FIXED_CTR0;
1518
idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1519
if (x86_pmu.intel_cap.pebs_format < 5)
1520
value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1521
else
1522
value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1523
}
1524
wrmsrq(base + idx, value);
1525
}
1526
1527
static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1528
{
1529
if (cpuc->n_pebs == cpuc->n_large_pebs &&
1530
cpuc->n_pebs != cpuc->n_pebs_via_pt)
1531
intel_pmu_drain_pebs_buffer();
1532
}
1533
1534
void intel_pmu_pebs_enable(struct perf_event *event)
1535
{
1536
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1537
u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1538
struct hw_perf_event *hwc = &event->hw;
1539
struct debug_store *ds = cpuc->ds;
1540
unsigned int idx = hwc->idx;
1541
1542
hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1543
1544
cpuc->pebs_enabled |= 1ULL << hwc->idx;
1545
1546
if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1547
cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1548
else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1549
cpuc->pebs_enabled |= 1ULL << 63;
1550
1551
if (x86_pmu.intel_cap.pebs_baseline) {
1552
hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1553
if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1554
/*
1555
* drain_pebs() assumes uniform record size;
1556
* hence we need to drain when changing said
1557
* size.
1558
*/
1559
intel_pmu_drain_pebs_buffer();
1560
adaptive_pebs_record_size_update();
1561
wrmsrq(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1562
cpuc->active_pebs_data_cfg = pebs_data_cfg;
1563
}
1564
}
1565
if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1566
cpuc->pebs_data_cfg = pebs_data_cfg;
1567
pebs_update_threshold(cpuc);
1568
}
1569
1570
if (idx >= INTEL_PMC_IDX_FIXED) {
1571
if (x86_pmu.intel_cap.pebs_format < 5)
1572
idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1573
else
1574
idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1575
}
1576
1577
/*
1578
* Use auto-reload if possible to save a MSR write in the PMI.
1579
* This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1580
*/
1581
if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1582
ds->pebs_event_reset[idx] =
1583
(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1584
} else {
1585
ds->pebs_event_reset[idx] = 0;
1586
}
1587
1588
intel_pmu_pebs_via_pt_enable(event);
1589
}
1590
1591
void intel_pmu_pebs_del(struct perf_event *event)
1592
{
1593
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1594
struct hw_perf_event *hwc = &event->hw;
1595
bool needed_cb = pebs_needs_sched_cb(cpuc);
1596
1597
cpuc->n_pebs--;
1598
if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1599
cpuc->n_large_pebs--;
1600
if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1601
cpuc->n_pebs_via_pt--;
1602
1603
pebs_update_state(needed_cb, cpuc, event, false);
1604
}
1605
1606
void intel_pmu_pebs_disable(struct perf_event *event)
1607
{
1608
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1609
struct hw_perf_event *hwc = &event->hw;
1610
1611
intel_pmu_drain_large_pebs(cpuc);
1612
1613
cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1614
1615
if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1616
(x86_pmu.version < 5))
1617
cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1618
else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1619
cpuc->pebs_enabled &= ~(1ULL << 63);
1620
1621
intel_pmu_pebs_via_pt_disable(event);
1622
1623
if (cpuc->enabled)
1624
wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1625
1626
hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1627
}
1628
1629
void intel_pmu_pebs_enable_all(void)
1630
{
1631
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1632
1633
if (cpuc->pebs_enabled)
1634
wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1635
}
1636
1637
void intel_pmu_pebs_disable_all(void)
1638
{
1639
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1640
1641
if (cpuc->pebs_enabled)
1642
__intel_pmu_pebs_disable_all();
1643
}
1644
1645
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1646
{
1647
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1648
unsigned long from = cpuc->lbr_entries[0].from;
1649
unsigned long old_to, to = cpuc->lbr_entries[0].to;
1650
unsigned long ip = regs->ip;
1651
int is_64bit = 0;
1652
void *kaddr;
1653
int size;
1654
1655
/*
1656
* We don't need to fixup if the PEBS assist is fault like
1657
*/
1658
if (!x86_pmu.intel_cap.pebs_trap)
1659
return 1;
1660
1661
/*
1662
* No LBR entry, no basic block, no rewinding
1663
*/
1664
if (!cpuc->lbr_stack.nr || !from || !to)
1665
return 0;
1666
1667
/*
1668
* Basic blocks should never cross user/kernel boundaries
1669
*/
1670
if (kernel_ip(ip) != kernel_ip(to))
1671
return 0;
1672
1673
/*
1674
* unsigned math, either ip is before the start (impossible) or
1675
* the basic block is larger than 1 page (sanity)
1676
*/
1677
if ((ip - to) > PEBS_FIXUP_SIZE)
1678
return 0;
1679
1680
/*
1681
* We sampled a branch insn, rewind using the LBR stack
1682
*/
1683
if (ip == to) {
1684
set_linear_ip(regs, from);
1685
return 1;
1686
}
1687
1688
size = ip - to;
1689
if (!kernel_ip(ip)) {
1690
int bytes;
1691
u8 *buf = this_cpu_read(insn_buffer);
1692
1693
/* 'size' must fit our buffer, see above */
1694
bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1695
if (bytes != 0)
1696
return 0;
1697
1698
kaddr = buf;
1699
} else {
1700
kaddr = (void *)to;
1701
}
1702
1703
do {
1704
struct insn insn;
1705
1706
old_to = to;
1707
1708
#ifdef CONFIG_X86_64
1709
is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1710
#endif
1711
insn_init(&insn, kaddr, size, is_64bit);
1712
1713
/*
1714
* Make sure there was not a problem decoding the instruction.
1715
* This is doubly important because we have an infinite loop if
1716
* insn.length=0.
1717
*/
1718
if (insn_get_length(&insn))
1719
break;
1720
1721
to += insn.length;
1722
kaddr += insn.length;
1723
size -= insn.length;
1724
} while (to < ip);
1725
1726
if (to == ip) {
1727
set_linear_ip(regs, old_to);
1728
return 1;
1729
}
1730
1731
/*
1732
* Even though we decoded the basic block, the instruction stream
1733
* never matched the given IP, either the TO or the IP got corrupted.
1734
*/
1735
return 0;
1736
}
1737
1738
static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1739
{
1740
if (tsx_tuning) {
1741
union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1742
return tsx.cycles_last_block;
1743
}
1744
return 0;
1745
}
1746
1747
static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1748
{
1749
u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1750
1751
/* For RTM XABORTs also log the abort code from AX */
1752
if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1753
txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1754
return txn;
1755
}
1756
1757
static inline u64 get_pebs_status(void *n)
1758
{
1759
if (x86_pmu.intel_cap.pebs_format < 4)
1760
return ((struct pebs_record_nhm *)n)->status;
1761
return ((struct pebs_basic *)n)->applicable_counters;
1762
}
1763
1764
#define PERF_X86_EVENT_PEBS_HSW_PREC \
1765
(PERF_X86_EVENT_PEBS_ST_HSW | \
1766
PERF_X86_EVENT_PEBS_LD_HSW | \
1767
PERF_X86_EVENT_PEBS_NA_HSW)
1768
1769
static u64 get_data_src(struct perf_event *event, u64 aux)
1770
{
1771
u64 val = PERF_MEM_NA;
1772
int fl = event->hw.flags;
1773
bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1774
1775
if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1776
val = load_latency_data(event, aux);
1777
else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1778
val = store_latency_data(event, aux);
1779
else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1780
val = x86_pmu.pebs_latency_data(event, aux);
1781
else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1782
val = precise_datala_hsw(event, aux);
1783
else if (fst)
1784
val = precise_store_data(aux);
1785
return val;
1786
}
1787
1788
static void setup_pebs_time(struct perf_event *event,
1789
struct perf_sample_data *data,
1790
u64 tsc)
1791
{
1792
/* Converting to a user-defined clock is not supported yet. */
1793
if (event->attr.use_clockid != 0)
1794
return;
1795
1796
/*
1797
* Doesn't support the conversion when the TSC is unstable.
1798
* The TSC unstable case is a corner case and very unlikely to
1799
* happen. If it happens, the TSC in a PEBS record will be
1800
* dropped and fall back to perf_event_clock().
1801
*/
1802
if (!using_native_sched_clock() || !sched_clock_stable())
1803
return;
1804
1805
data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1806
data->sample_flags |= PERF_SAMPLE_TIME;
1807
}
1808
1809
#define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
1810
PERF_SAMPLE_PHYS_ADDR | \
1811
PERF_SAMPLE_DATA_PAGE_SIZE)
1812
1813
static void setup_pebs_fixed_sample_data(struct perf_event *event,
1814
struct pt_regs *iregs, void *__pebs,
1815
struct perf_sample_data *data,
1816
struct pt_regs *regs)
1817
{
1818
/*
1819
* We cast to the biggest pebs_record but are careful not to
1820
* unconditionally access the 'extra' entries.
1821
*/
1822
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1823
struct pebs_record_skl *pebs = __pebs;
1824
u64 sample_type;
1825
int fll;
1826
1827
if (pebs == NULL)
1828
return;
1829
1830
sample_type = event->attr.sample_type;
1831
fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1832
1833
perf_sample_data_init(data, 0, event->hw.last_period);
1834
1835
/*
1836
* Use latency for weight (only avail with PEBS-LL)
1837
*/
1838
if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1839
data->weight.full = pebs->lat;
1840
data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1841
}
1842
1843
/*
1844
* data.data_src encodes the data source
1845
*/
1846
if (sample_type & PERF_SAMPLE_DATA_SRC) {
1847
data->data_src.val = get_data_src(event, pebs->dse);
1848
data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1849
}
1850
1851
/*
1852
* We must however always use iregs for the unwinder to stay sane; the
1853
* record BP,SP,IP can point into thin air when the record is from a
1854
* previous PMI context or an (I)RET happened between the record and
1855
* PMI.
1856
*/
1857
perf_sample_save_callchain(data, event, iregs);
1858
1859
/*
1860
* We use the interrupt regs as a base because the PEBS record does not
1861
* contain a full regs set, specifically it seems to lack segment
1862
* descriptors, which get used by things like user_mode().
1863
*
1864
* In the simple case fix up only the IP for PERF_SAMPLE_IP.
1865
*/
1866
*regs = *iregs;
1867
1868
/*
1869
* Initialize regs_>flags from PEBS,
1870
* Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1871
* i.e., do not rely on it being zero:
1872
*/
1873
regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1874
1875
if (sample_type & PERF_SAMPLE_REGS_INTR) {
1876
regs->ax = pebs->ax;
1877
regs->bx = pebs->bx;
1878
regs->cx = pebs->cx;
1879
regs->dx = pebs->dx;
1880
regs->si = pebs->si;
1881
regs->di = pebs->di;
1882
1883
regs->bp = pebs->bp;
1884
regs->sp = pebs->sp;
1885
1886
#ifndef CONFIG_X86_32
1887
regs->r8 = pebs->r8;
1888
regs->r9 = pebs->r9;
1889
regs->r10 = pebs->r10;
1890
regs->r11 = pebs->r11;
1891
regs->r12 = pebs->r12;
1892
regs->r13 = pebs->r13;
1893
regs->r14 = pebs->r14;
1894
regs->r15 = pebs->r15;
1895
#endif
1896
}
1897
1898
if (event->attr.precise_ip > 1) {
1899
/*
1900
* Haswell and later processors have an 'eventing IP'
1901
* (real IP) which fixes the off-by-1 skid in hardware.
1902
* Use it when precise_ip >= 2 :
1903
*/
1904
if (x86_pmu.intel_cap.pebs_format >= 2) {
1905
set_linear_ip(regs, pebs->real_ip);
1906
regs->flags |= PERF_EFLAGS_EXACT;
1907
} else {
1908
/* Otherwise, use PEBS off-by-1 IP: */
1909
set_linear_ip(regs, pebs->ip);
1910
1911
/*
1912
* With precise_ip >= 2, try to fix up the off-by-1 IP
1913
* using the LBR. If successful, the fixup function
1914
* corrects regs->ip and calls set_linear_ip() on regs:
1915
*/
1916
if (intel_pmu_pebs_fixup_ip(regs))
1917
regs->flags |= PERF_EFLAGS_EXACT;
1918
}
1919
} else {
1920
/*
1921
* When precise_ip == 1, return the PEBS off-by-1 IP,
1922
* no fixup attempted:
1923
*/
1924
set_linear_ip(regs, pebs->ip);
1925
}
1926
1927
1928
if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1929
x86_pmu.intel_cap.pebs_format >= 1) {
1930
data->addr = pebs->dla;
1931
data->sample_flags |= PERF_SAMPLE_ADDR;
1932
}
1933
1934
if (x86_pmu.intel_cap.pebs_format >= 2) {
1935
/* Only set the TSX weight when no memory weight. */
1936
if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1937
data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1938
data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1939
}
1940
if (sample_type & PERF_SAMPLE_TRANSACTION) {
1941
data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1942
pebs->ax);
1943
data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1944
}
1945
}
1946
1947
/*
1948
* v3 supplies an accurate time stamp, so we use that
1949
* for the time stamp.
1950
*
1951
* We can only do this for the default trace clock.
1952
*/
1953
if (x86_pmu.intel_cap.pebs_format >= 3)
1954
setup_pebs_time(event, data, pebs->tsc);
1955
1956
perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1957
}
1958
1959
static void adaptive_pebs_save_regs(struct pt_regs *regs,
1960
struct pebs_gprs *gprs)
1961
{
1962
regs->ax = gprs->ax;
1963
regs->bx = gprs->bx;
1964
regs->cx = gprs->cx;
1965
regs->dx = gprs->dx;
1966
regs->si = gprs->si;
1967
regs->di = gprs->di;
1968
regs->bp = gprs->bp;
1969
regs->sp = gprs->sp;
1970
#ifndef CONFIG_X86_32
1971
regs->r8 = gprs->r8;
1972
regs->r9 = gprs->r9;
1973
regs->r10 = gprs->r10;
1974
regs->r11 = gprs->r11;
1975
regs->r12 = gprs->r12;
1976
regs->r13 = gprs->r13;
1977
regs->r14 = gprs->r14;
1978
regs->r15 = gprs->r15;
1979
#endif
1980
}
1981
1982
static void intel_perf_event_update_pmc(struct perf_event *event, u64 pmc)
1983
{
1984
int shift = 64 - x86_pmu.cntval_bits;
1985
struct hw_perf_event *hwc;
1986
u64 delta, prev_pmc;
1987
1988
/*
1989
* A recorded counter may not have an assigned event in the
1990
* following cases. The value should be dropped.
1991
* - An event is deleted. There is still an active PEBS event.
1992
* The PEBS record doesn't shrink on pmu::del().
1993
* If the counter of the deleted event once occurred in a PEBS
1994
* record, PEBS still records the counter until the counter is
1995
* reassigned.
1996
* - An event is stopped for some reason, e.g., throttled.
1997
* During this period, another event is added and takes the
1998
* counter of the stopped event. The stopped event is assigned
1999
* to another new and uninitialized counter, since the
2000
* x86_pmu_start(RELOAD) is not invoked for a stopped event.
2001
* The PEBS__DATA_CFG is updated regardless of the event state.
2002
* The uninitialized counter can be recorded in a PEBS record.
2003
* But the cpuc->events[uninitialized_counter] is always NULL,
2004
* because the event is stopped. The uninitialized value is
2005
* safely dropped.
2006
*/
2007
if (!event)
2008
return;
2009
2010
hwc = &event->hw;
2011
prev_pmc = local64_read(&hwc->prev_count);
2012
2013
/* Only update the count when the PMU is disabled */
2014
WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2015
local64_set(&hwc->prev_count, pmc);
2016
2017
delta = (pmc << shift) - (prev_pmc << shift);
2018
delta >>= shift;
2019
2020
local64_add(delta, &event->count);
2021
local64_sub(delta, &hwc->period_left);
2022
}
2023
2024
static inline void __setup_pebs_counter_group(struct cpu_hw_events *cpuc,
2025
struct perf_event *event,
2026
struct pebs_cntr_header *cntr,
2027
void *next_record)
2028
{
2029
int bit;
2030
2031
for_each_set_bit(bit, (unsigned long *)&cntr->cntr, INTEL_PMC_MAX_GENERIC) {
2032
intel_perf_event_update_pmc(cpuc->events[bit], *(u64 *)next_record);
2033
next_record += sizeof(u64);
2034
}
2035
2036
for_each_set_bit(bit, (unsigned long *)&cntr->fixed, INTEL_PMC_MAX_FIXED) {
2037
/* The slots event will be handled with perf_metric later */
2038
if ((cntr->metrics == INTEL_CNTR_METRICS) &&
2039
(bit + INTEL_PMC_IDX_FIXED == INTEL_PMC_IDX_FIXED_SLOTS)) {
2040
next_record += sizeof(u64);
2041
continue;
2042
}
2043
intel_perf_event_update_pmc(cpuc->events[bit + INTEL_PMC_IDX_FIXED],
2044
*(u64 *)next_record);
2045
next_record += sizeof(u64);
2046
}
2047
2048
/* HW will reload the value right after the overflow. */
2049
if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2050
local64_set(&event->hw.prev_count, (u64)-event->hw.sample_period);
2051
2052
if (cntr->metrics == INTEL_CNTR_METRICS) {
2053
static_call(intel_pmu_update_topdown_event)
2054
(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS],
2055
(u64 *)next_record);
2056
next_record += 2 * sizeof(u64);
2057
}
2058
}
2059
2060
#define PEBS_LATENCY_MASK 0xffff
2061
2062
/*
2063
* With adaptive PEBS the layout depends on what fields are configured.
2064
*/
2065
static void setup_pebs_adaptive_sample_data(struct perf_event *event,
2066
struct pt_regs *iregs, void *__pebs,
2067
struct perf_sample_data *data,
2068
struct pt_regs *regs)
2069
{
2070
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2071
struct pebs_basic *basic = __pebs;
2072
void *next_record = basic + 1;
2073
u64 sample_type, format_group;
2074
struct pebs_meminfo *meminfo = NULL;
2075
struct pebs_gprs *gprs = NULL;
2076
struct x86_perf_regs *perf_regs;
2077
2078
if (basic == NULL)
2079
return;
2080
2081
perf_regs = container_of(regs, struct x86_perf_regs, regs);
2082
perf_regs->xmm_regs = NULL;
2083
2084
sample_type = event->attr.sample_type;
2085
format_group = basic->format_group;
2086
perf_sample_data_init(data, 0, event->hw.last_period);
2087
2088
setup_pebs_time(event, data, basic->tsc);
2089
2090
/*
2091
* We must however always use iregs for the unwinder to stay sane; the
2092
* record BP,SP,IP can point into thin air when the record is from a
2093
* previous PMI context or an (I)RET happened between the record and
2094
* PMI.
2095
*/
2096
perf_sample_save_callchain(data, event, iregs);
2097
2098
*regs = *iregs;
2099
/* The ip in basic is EventingIP */
2100
set_linear_ip(regs, basic->ip);
2101
regs->flags = PERF_EFLAGS_EXACT;
2102
2103
if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
2104
if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
2105
data->weight.var3_w = basic->retire_latency;
2106
else
2107
data->weight.var3_w = 0;
2108
}
2109
2110
/*
2111
* The record for MEMINFO is in front of GP
2112
* But PERF_SAMPLE_TRANSACTION needs gprs->ax.
2113
* Save the pointer here but process later.
2114
*/
2115
if (format_group & PEBS_DATACFG_MEMINFO) {
2116
meminfo = next_record;
2117
next_record = meminfo + 1;
2118
}
2119
2120
if (format_group & PEBS_DATACFG_GP) {
2121
gprs = next_record;
2122
next_record = gprs + 1;
2123
2124
if (event->attr.precise_ip < 2) {
2125
set_linear_ip(regs, gprs->ip);
2126
regs->flags &= ~PERF_EFLAGS_EXACT;
2127
}
2128
2129
if (sample_type & (PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER))
2130
adaptive_pebs_save_regs(regs, gprs);
2131
}
2132
2133
if (format_group & PEBS_DATACFG_MEMINFO) {
2134
if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2135
u64 latency = x86_pmu.flags & PMU_FL_INSTR_LATENCY ?
2136
meminfo->cache_latency : meminfo->mem_latency;
2137
2138
if (x86_pmu.flags & PMU_FL_INSTR_LATENCY)
2139
data->weight.var2_w = meminfo->instr_latency;
2140
2141
/*
2142
* Although meminfo::latency is defined as a u64,
2143
* only the lower 32 bits include the valid data
2144
* in practice on Ice Lake and earlier platforms.
2145
*/
2146
if (sample_type & PERF_SAMPLE_WEIGHT) {
2147
data->weight.full = latency ?:
2148
intel_get_tsx_weight(meminfo->tsx_tuning);
2149
} else {
2150
data->weight.var1_dw = (u32)latency ?:
2151
intel_get_tsx_weight(meminfo->tsx_tuning);
2152
}
2153
2154
data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2155
}
2156
2157
if (sample_type & PERF_SAMPLE_DATA_SRC) {
2158
data->data_src.val = get_data_src(event, meminfo->aux);
2159
data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2160
}
2161
2162
if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2163
data->addr = meminfo->address;
2164
data->sample_flags |= PERF_SAMPLE_ADDR;
2165
}
2166
2167
if (sample_type & PERF_SAMPLE_TRANSACTION) {
2168
data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2169
gprs ? gprs->ax : 0);
2170
data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2171
}
2172
}
2173
2174
if (format_group & PEBS_DATACFG_XMMS) {
2175
struct pebs_xmm *xmm = next_record;
2176
2177
next_record = xmm + 1;
2178
perf_regs->xmm_regs = xmm->xmm;
2179
}
2180
2181
if (format_group & PEBS_DATACFG_LBRS) {
2182
struct lbr_entry *lbr = next_record;
2183
int num_lbr = ((format_group >> PEBS_DATACFG_LBR_SHIFT)
2184
& 0xff) + 1;
2185
next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2186
2187
if (has_branch_stack(event)) {
2188
intel_pmu_store_pebs_lbrs(lbr);
2189
intel_pmu_lbr_save_brstack(data, cpuc, event);
2190
}
2191
}
2192
2193
if (format_group & (PEBS_DATACFG_CNTR | PEBS_DATACFG_METRICS)) {
2194
struct pebs_cntr_header *cntr = next_record;
2195
unsigned int nr;
2196
2197
next_record += sizeof(struct pebs_cntr_header);
2198
/*
2199
* The PEBS_DATA_CFG is a global register, which is the
2200
* superset configuration for all PEBS events.
2201
* For the PEBS record of non-sample-read group, ignore
2202
* the counter snapshot fields.
2203
*/
2204
if (is_pebs_counter_event_group(event)) {
2205
__setup_pebs_counter_group(cpuc, event, cntr, next_record);
2206
data->sample_flags |= PERF_SAMPLE_READ;
2207
}
2208
2209
nr = hweight32(cntr->cntr) + hweight32(cntr->fixed);
2210
if (cntr->metrics == INTEL_CNTR_METRICS)
2211
nr += 2;
2212
next_record += nr * sizeof(u64);
2213
}
2214
2215
WARN_ONCE(next_record != __pebs + basic->format_size,
2216
"PEBS record size %u, expected %llu, config %llx\n",
2217
basic->format_size,
2218
(u64)(next_record - __pebs),
2219
format_group);
2220
}
2221
2222
static inline void *
2223
get_next_pebs_record_by_bit(void *base, void *top, int bit)
2224
{
2225
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2226
void *at;
2227
u64 pebs_status;
2228
2229
/*
2230
* fmt0 does not have a status bitfield (does not use
2231
* perf_record_nhm format)
2232
*/
2233
if (x86_pmu.intel_cap.pebs_format < 1)
2234
return base;
2235
2236
if (base == NULL)
2237
return NULL;
2238
2239
for (at = base; at < top; at += cpuc->pebs_record_size) {
2240
unsigned long status = get_pebs_status(at);
2241
2242
if (test_bit(bit, (unsigned long *)&status)) {
2243
/* PEBS v3 has accurate status bits */
2244
if (x86_pmu.intel_cap.pebs_format >= 3)
2245
return at;
2246
2247
if (status == (1 << bit))
2248
return at;
2249
2250
/* clear non-PEBS bit and re-check */
2251
pebs_status = status & cpuc->pebs_enabled;
2252
pebs_status &= PEBS_COUNTER_MASK;
2253
if (pebs_status == (1 << bit))
2254
return at;
2255
}
2256
}
2257
return NULL;
2258
}
2259
2260
/*
2261
* Special variant of intel_pmu_save_and_restart() for auto-reload.
2262
*/
2263
static int
2264
intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2265
{
2266
struct hw_perf_event *hwc = &event->hw;
2267
int shift = 64 - x86_pmu.cntval_bits;
2268
u64 period = hwc->sample_period;
2269
u64 prev_raw_count, new_raw_count;
2270
s64 new, old;
2271
2272
WARN_ON(!period);
2273
2274
/*
2275
* drain_pebs() only happens when the PMU is disabled.
2276
*/
2277
WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2278
2279
prev_raw_count = local64_read(&hwc->prev_count);
2280
new_raw_count = rdpmc(hwc->event_base_rdpmc);
2281
local64_set(&hwc->prev_count, new_raw_count);
2282
2283
/*
2284
* Since the counter increments a negative counter value and
2285
* overflows on the sign switch, giving the interval:
2286
*
2287
* [-period, 0]
2288
*
2289
* the difference between two consecutive reads is:
2290
*
2291
* A) value2 - value1;
2292
* when no overflows have happened in between,
2293
*
2294
* B) (0 - value1) + (value2 - (-period));
2295
* when one overflow happened in between,
2296
*
2297
* C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2298
* when @n overflows happened in between.
2299
*
2300
* Here A) is the obvious difference, B) is the extension to the
2301
* discrete interval, where the first term is to the top of the
2302
* interval and the second term is from the bottom of the next
2303
* interval and C) the extension to multiple intervals, where the
2304
* middle term is the whole intervals covered.
2305
*
2306
* An equivalent of C, by reduction, is:
2307
*
2308
* value2 - value1 + n * period
2309
*/
2310
new = ((s64)(new_raw_count << shift) >> shift);
2311
old = ((s64)(prev_raw_count << shift) >> shift);
2312
local64_add(new - old + count * period, &event->count);
2313
2314
local64_set(&hwc->period_left, -new);
2315
2316
perf_event_update_userpage(event);
2317
2318
return 0;
2319
}
2320
2321
typedef void (*setup_fn)(struct perf_event *, struct pt_regs *, void *,
2322
struct perf_sample_data *, struct pt_regs *);
2323
2324
static struct pt_regs dummy_iregs;
2325
2326
static __always_inline void
2327
__intel_pmu_pebs_event(struct perf_event *event,
2328
struct pt_regs *iregs,
2329
struct pt_regs *regs,
2330
struct perf_sample_data *data,
2331
void *at,
2332
setup_fn setup_sample)
2333
{
2334
setup_sample(event, iregs, at, data, regs);
2335
perf_event_output(event, data, regs);
2336
}
2337
2338
static __always_inline void
2339
__intel_pmu_pebs_last_event(struct perf_event *event,
2340
struct pt_regs *iregs,
2341
struct pt_regs *regs,
2342
struct perf_sample_data *data,
2343
void *at,
2344
int count,
2345
setup_fn setup_sample)
2346
{
2347
struct hw_perf_event *hwc = &event->hw;
2348
2349
setup_sample(event, iregs, at, data, regs);
2350
if (iregs == &dummy_iregs) {
2351
/*
2352
* The PEBS records may be drained in the non-overflow context,
2353
* e.g., large PEBS + context switch. Perf should treat the
2354
* last record the same as other PEBS records, and doesn't
2355
* invoke the generic overflow handler.
2356
*/
2357
perf_event_output(event, data, regs);
2358
} else {
2359
/*
2360
* All but the last records are processed.
2361
* The last one is left to be able to call the overflow handler.
2362
*/
2363
perf_event_overflow(event, data, regs);
2364
}
2365
2366
if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2367
if ((is_pebs_counter_event_group(event))) {
2368
/*
2369
* The value of each sample has been updated when setup
2370
* the corresponding sample data.
2371
*/
2372
perf_event_update_userpage(event);
2373
} else {
2374
/*
2375
* Now, auto-reload is only enabled in fixed period mode.
2376
* The reload value is always hwc->sample_period.
2377
* May need to change it, if auto-reload is enabled in
2378
* freq mode later.
2379
*/
2380
intel_pmu_save_and_restart_reload(event, count);
2381
}
2382
} else {
2383
/*
2384
* For a non-precise event, it's possible the
2385
* counters-snapshotting records a positive value for the
2386
* overflowed event. Then the HW auto-reload mechanism
2387
* reset the counter to 0 immediately, because the
2388
* pebs_event_reset is cleared if the PERF_X86_EVENT_AUTO_RELOAD
2389
* is not set. The counter backwards may be observed in a
2390
* PMI handler.
2391
*
2392
* Since the event value has been updated when processing the
2393
* counters-snapshotting record, only needs to set the new
2394
* period for the counter.
2395
*/
2396
if (is_pebs_counter_event_group(event))
2397
static_call(x86_pmu_set_period)(event);
2398
else
2399
intel_pmu_save_and_restart(event);
2400
}
2401
}
2402
2403
static __always_inline void
2404
__intel_pmu_pebs_events(struct perf_event *event,
2405
struct pt_regs *iregs,
2406
struct perf_sample_data *data,
2407
void *base, void *top,
2408
int bit, int count,
2409
setup_fn setup_sample)
2410
{
2411
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2412
struct x86_perf_regs perf_regs;
2413
struct pt_regs *regs = &perf_regs.regs;
2414
void *at = get_next_pebs_record_by_bit(base, top, bit);
2415
int cnt = count;
2416
2417
if (!iregs)
2418
iregs = &dummy_iregs;
2419
2420
while (cnt > 1) {
2421
__intel_pmu_pebs_event(event, iregs, regs, data, at, setup_sample);
2422
at += cpuc->pebs_record_size;
2423
at = get_next_pebs_record_by_bit(at, top, bit);
2424
cnt--;
2425
}
2426
2427
__intel_pmu_pebs_last_event(event, iregs, regs, data, at, count, setup_sample);
2428
}
2429
2430
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2431
{
2432
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2433
struct debug_store *ds = cpuc->ds;
2434
struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2435
struct pebs_record_core *at, *top;
2436
int n;
2437
2438
if (!x86_pmu.pebs_active)
2439
return;
2440
2441
at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2442
top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2443
2444
/*
2445
* Whatever else happens, drain the thing
2446
*/
2447
ds->pebs_index = ds->pebs_buffer_base;
2448
2449
if (!test_bit(0, cpuc->active_mask))
2450
return;
2451
2452
WARN_ON_ONCE(!event);
2453
2454
if (!event->attr.precise_ip)
2455
return;
2456
2457
n = top - at;
2458
if (n <= 0) {
2459
if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2460
intel_pmu_save_and_restart_reload(event, 0);
2461
return;
2462
}
2463
2464
__intel_pmu_pebs_events(event, iregs, data, at, top, 0, n,
2465
setup_pebs_fixed_sample_data);
2466
}
2467
2468
static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, u64 mask)
2469
{
2470
u64 pebs_enabled = cpuc->pebs_enabled & mask;
2471
struct perf_event *event;
2472
int bit;
2473
2474
/*
2475
* The drain_pebs() could be called twice in a short period
2476
* for auto-reload event in pmu::read(). There are no
2477
* overflows have happened in between.
2478
* It needs to call intel_pmu_save_and_restart_reload() to
2479
* update the event->count for this case.
2480
*/
2481
for_each_set_bit(bit, (unsigned long *)&pebs_enabled, X86_PMC_IDX_MAX) {
2482
event = cpuc->events[bit];
2483
if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2484
intel_pmu_save_and_restart_reload(event, 0);
2485
}
2486
}
2487
2488
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2489
{
2490
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2491
struct debug_store *ds = cpuc->ds;
2492
struct perf_event *event;
2493
void *base, *at, *top;
2494
short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2495
short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2496
int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2497
int bit, i, size;
2498
u64 mask;
2499
2500
if (!x86_pmu.pebs_active)
2501
return;
2502
2503
base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2504
top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2505
2506
ds->pebs_index = ds->pebs_buffer_base;
2507
2508
mask = x86_pmu.pebs_events_mask;
2509
size = max_pebs_events;
2510
if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2511
mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2512
size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2513
}
2514
2515
if (unlikely(base >= top)) {
2516
intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2517
return;
2518
}
2519
2520
for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2521
struct pebs_record_nhm *p = at;
2522
u64 pebs_status;
2523
2524
pebs_status = p->status & cpuc->pebs_enabled;
2525
pebs_status &= mask;
2526
2527
/* PEBS v3 has more accurate status bits */
2528
if (x86_pmu.intel_cap.pebs_format >= 3) {
2529
for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2530
counts[bit]++;
2531
2532
continue;
2533
}
2534
2535
/*
2536
* On some CPUs the PEBS status can be zero when PEBS is
2537
* racing with clearing of GLOBAL_STATUS.
2538
*
2539
* Normally we would drop that record, but in the
2540
* case when there is only a single active PEBS event
2541
* we can assume it's for that event.
2542
*/
2543
if (!pebs_status && cpuc->pebs_enabled &&
2544
!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2545
pebs_status = p->status = cpuc->pebs_enabled;
2546
2547
bit = find_first_bit((unsigned long *)&pebs_status,
2548
max_pebs_events);
2549
2550
if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2551
continue;
2552
2553
/*
2554
* The PEBS hardware does not deal well with the situation
2555
* when events happen near to each other and multiple bits
2556
* are set. But it should happen rarely.
2557
*
2558
* If these events include one PEBS and multiple non-PEBS
2559
* events, it doesn't impact PEBS record. The record will
2560
* be handled normally. (slow path)
2561
*
2562
* If these events include two or more PEBS events, the
2563
* records for the events can be collapsed into a single
2564
* one, and it's not possible to reconstruct all events
2565
* that caused the PEBS record. It's called collision.
2566
* If collision happened, the record will be dropped.
2567
*/
2568
if (pebs_status != (1ULL << bit)) {
2569
for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2570
error[i]++;
2571
continue;
2572
}
2573
2574
counts[bit]++;
2575
}
2576
2577
for_each_set_bit(bit, (unsigned long *)&mask, size) {
2578
if ((counts[bit] == 0) && (error[bit] == 0))
2579
continue;
2580
2581
event = cpuc->events[bit];
2582
if (WARN_ON_ONCE(!event))
2583
continue;
2584
2585
if (WARN_ON_ONCE(!event->attr.precise_ip))
2586
continue;
2587
2588
/* log dropped samples number */
2589
if (error[bit]) {
2590
perf_log_lost_samples(event, error[bit]);
2591
2592
if (iregs)
2593
perf_event_account_interrupt(event);
2594
}
2595
2596
if (counts[bit]) {
2597
__intel_pmu_pebs_events(event, iregs, data, base,
2598
top, bit, counts[bit],
2599
setup_pebs_fixed_sample_data);
2600
}
2601
}
2602
}
2603
2604
static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2605
{
2606
short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2607
void *last[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS];
2608
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2609
struct debug_store *ds = cpuc->ds;
2610
struct x86_perf_regs perf_regs;
2611
struct pt_regs *regs = &perf_regs.regs;
2612
struct pebs_basic *basic;
2613
struct perf_event *event;
2614
void *base, *at, *top;
2615
int bit;
2616
u64 mask;
2617
2618
if (!x86_pmu.pebs_active)
2619
return;
2620
2621
base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2622
top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2623
2624
ds->pebs_index = ds->pebs_buffer_base;
2625
2626
mask = hybrid(cpuc->pmu, pebs_events_mask) |
2627
(hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2628
2629
if (unlikely(base >= top)) {
2630
intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2631
return;
2632
}
2633
2634
if (!iregs)
2635
iregs = &dummy_iregs;
2636
2637
/* Process all but the last event for each counter. */
2638
for (at = base; at < top; at += basic->format_size) {
2639
u64 pebs_status;
2640
2641
basic = at;
2642
if (basic->format_size != cpuc->pebs_record_size)
2643
continue;
2644
2645
pebs_status = basic->applicable_counters & cpuc->pebs_enabled & mask;
2646
for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX) {
2647
event = cpuc->events[bit];
2648
2649
if (WARN_ON_ONCE(!event) ||
2650
WARN_ON_ONCE(!event->attr.precise_ip))
2651
continue;
2652
2653
if (counts[bit]++) {
2654
__intel_pmu_pebs_event(event, iregs, regs, data, last[bit],
2655
setup_pebs_adaptive_sample_data);
2656
}
2657
last[bit] = at;
2658
}
2659
}
2660
2661
for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2662
if (!counts[bit])
2663
continue;
2664
2665
event = cpuc->events[bit];
2666
2667
__intel_pmu_pebs_last_event(event, iregs, regs, data, last[bit],
2668
counts[bit], setup_pebs_adaptive_sample_data);
2669
}
2670
}
2671
2672
/*
2673
* PEBS probe and setup
2674
*/
2675
2676
void __init intel_pebs_init(void)
2677
{
2678
/*
2679
* No support for 32bit formats
2680
*/
2681
if (!boot_cpu_has(X86_FEATURE_DTES64))
2682
return;
2683
2684
x86_pmu.ds_pebs = boot_cpu_has(X86_FEATURE_PEBS);
2685
x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2686
if (x86_pmu.version <= 4)
2687
x86_pmu.pebs_no_isolation = 1;
2688
2689
if (x86_pmu.ds_pebs) {
2690
char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2691
char *pebs_qual = "";
2692
int format = x86_pmu.intel_cap.pebs_format;
2693
2694
if (format < 4)
2695
x86_pmu.intel_cap.pebs_baseline = 0;
2696
2697
x86_pmu.pebs_enable = intel_pmu_pebs_enable;
2698
x86_pmu.pebs_disable = intel_pmu_pebs_disable;
2699
x86_pmu.pebs_enable_all = intel_pmu_pebs_enable_all;
2700
x86_pmu.pebs_disable_all = intel_pmu_pebs_disable_all;
2701
2702
switch (format) {
2703
case 0:
2704
pr_cont("PEBS fmt0%c, ", pebs_type);
2705
x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2706
/*
2707
* Using >PAGE_SIZE buffers makes the WRMSR to
2708
* PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2709
* mysteriously hang on Core2.
2710
*
2711
* As a workaround, we don't do this.
2712
*/
2713
x86_pmu.pebs_buffer_size = PAGE_SIZE;
2714
x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2715
break;
2716
2717
case 1:
2718
pr_cont("PEBS fmt1%c, ", pebs_type);
2719
x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2720
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2721
break;
2722
2723
case 2:
2724
pr_cont("PEBS fmt2%c, ", pebs_type);
2725
x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2726
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2727
break;
2728
2729
case 3:
2730
pr_cont("PEBS fmt3%c, ", pebs_type);
2731
x86_pmu.pebs_record_size =
2732
sizeof(struct pebs_record_skl);
2733
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2734
x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2735
break;
2736
2737
case 6:
2738
if (x86_pmu.intel_cap.pebs_baseline) {
2739
x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ;
2740
x86_pmu.late_setup = intel_pmu_late_setup;
2741
}
2742
fallthrough;
2743
case 5:
2744
x86_pmu.pebs_ept = 1;
2745
fallthrough;
2746
case 4:
2747
x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2748
x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2749
if (x86_pmu.intel_cap.pebs_baseline) {
2750
x86_pmu.large_pebs_flags |=
2751
PERF_SAMPLE_BRANCH_STACK |
2752
PERF_SAMPLE_TIME;
2753
x86_pmu.flags |= PMU_FL_PEBS_ALL;
2754
x86_pmu.pebs_capable = ~0ULL;
2755
pebs_qual = "-baseline";
2756
x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2757
} else {
2758
/* Only basic record supported */
2759
x86_pmu.large_pebs_flags &=
2760
~(PERF_SAMPLE_ADDR |
2761
PERF_SAMPLE_TIME |
2762
PERF_SAMPLE_DATA_SRC |
2763
PERF_SAMPLE_TRANSACTION |
2764
PERF_SAMPLE_REGS_USER |
2765
PERF_SAMPLE_REGS_INTR);
2766
}
2767
pr_cont("PEBS fmt%d%c%s, ", format, pebs_type, pebs_qual);
2768
2769
/*
2770
* The PEBS-via-PT is not supported on hybrid platforms,
2771
* because not all CPUs of a hybrid machine support it.
2772
* The global x86_pmu.intel_cap, which only contains the
2773
* common capabilities, is used to check the availability
2774
* of the feature. The per-PMU pebs_output_pt_available
2775
* in a hybrid machine should be ignored.
2776
*/
2777
if (x86_pmu.intel_cap.pebs_output_pt_available) {
2778
pr_cont("PEBS-via-PT, ");
2779
x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2780
}
2781
2782
break;
2783
2784
default:
2785
pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2786
x86_pmu.ds_pebs = 0;
2787
}
2788
}
2789
}
2790
2791
void perf_restore_debug_store(void)
2792
{
2793
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2794
2795
if (!x86_pmu.bts && !x86_pmu.ds_pebs)
2796
return;
2797
2798
wrmsrq(MSR_IA32_DS_AREA, (unsigned long)ds);
2799
}
2800
2801