Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/events/intel/pt.c
51282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Intel(R) Processor Trace PMU driver for perf
4
* Copyright (c) 2013-2014, Intel Corporation.
5
*
6
* Intel PT is specified in the Intel Architecture Instruction Set Extensions
7
* Programming Reference:
8
* http://software.intel.com/en-us/intel-isa-extensions
9
*/
10
11
#undef DEBUG
12
13
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15
#include <linux/types.h>
16
#include <linux/bits.h>
17
#include <linux/limits.h>
18
#include <linux/slab.h>
19
#include <linux/device.h>
20
#include <linux/kvm_types.h>
21
22
#include <asm/cpuid/api.h>
23
#include <asm/perf_event.h>
24
#include <asm/insn.h>
25
#include <asm/io.h>
26
#include <asm/intel_pt.h>
27
#include <asm/cpu_device_id.h>
28
#include <asm/msr.h>
29
30
#include "../perf_event.h"
31
#include "pt.h"
32
33
static DEFINE_PER_CPU(struct pt, pt_ctx);
34
35
static struct pt_pmu pt_pmu;
36
37
/*
38
* Capabilities of Intel PT hardware, such as number of address bits or
39
* supported output schemes, are cached and exported to userspace as "caps"
40
* attribute group of pt pmu device
41
* (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
42
* relevant bits together with intel_pt traces.
43
*
44
* These are necessary for both trace decoding (payloads_lip, contains address
45
* width encoded in IP-related packets), and event configuration (bitmasks with
46
* permitted values for certain bit fields).
47
*/
48
#define PT_CAP(_n, _l, _r, _m) \
49
[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \
50
.reg = _r, .mask = _m }
51
52
static struct pt_cap_desc {
53
const char *name;
54
u32 leaf;
55
u8 reg;
56
u32 mask;
57
} pt_caps[] = {
58
PT_CAP(max_subleaf, 0, CPUID_EAX, 0xffffffff),
59
PT_CAP(cr3_filtering, 0, CPUID_EBX, BIT(0)),
60
PT_CAP(psb_cyc, 0, CPUID_EBX, BIT(1)),
61
PT_CAP(ip_filtering, 0, CPUID_EBX, BIT(2)),
62
PT_CAP(mtc, 0, CPUID_EBX, BIT(3)),
63
PT_CAP(ptwrite, 0, CPUID_EBX, BIT(4)),
64
PT_CAP(power_event_trace, 0, CPUID_EBX, BIT(5)),
65
PT_CAP(event_trace, 0, CPUID_EBX, BIT(7)),
66
PT_CAP(tnt_disable, 0, CPUID_EBX, BIT(8)),
67
PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)),
68
PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)),
69
PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)),
70
PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)),
71
PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)),
72
PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x7),
73
PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000),
74
PT_CAP(cycle_thresholds, 1, CPUID_EBX, 0xffff),
75
PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000),
76
};
77
78
u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
79
{
80
struct pt_cap_desc *cd = &pt_caps[capability];
81
u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
82
unsigned int shift = __ffs(cd->mask);
83
84
return (c & cd->mask) >> shift;
85
}
86
EXPORT_SYMBOL_FOR_KVM(intel_pt_validate_cap);
87
88
u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
89
{
90
return intel_pt_validate_cap(pt_pmu.caps, cap);
91
}
92
EXPORT_SYMBOL_FOR_KVM(intel_pt_validate_hw_cap);
93
94
static ssize_t pt_cap_show(struct device *cdev,
95
struct device_attribute *attr,
96
char *buf)
97
{
98
struct dev_ext_attribute *ea =
99
container_of(attr, struct dev_ext_attribute, attr);
100
enum pt_capabilities cap = (long)ea->var;
101
102
return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
103
}
104
105
static struct attribute_group pt_cap_group __ro_after_init = {
106
.name = "caps",
107
};
108
109
PMU_FORMAT_ATTR(pt, "config:0" );
110
PMU_FORMAT_ATTR(cyc, "config:1" );
111
PMU_FORMAT_ATTR(pwr_evt, "config:4" );
112
PMU_FORMAT_ATTR(fup_on_ptw, "config:5" );
113
PMU_FORMAT_ATTR(mtc, "config:9" );
114
PMU_FORMAT_ATTR(tsc, "config:10" );
115
PMU_FORMAT_ATTR(noretcomp, "config:11" );
116
PMU_FORMAT_ATTR(ptw, "config:12" );
117
PMU_FORMAT_ATTR(branch, "config:13" );
118
PMU_FORMAT_ATTR(event, "config:31" );
119
PMU_FORMAT_ATTR(notnt, "config:55" );
120
PMU_FORMAT_ATTR(mtc_period, "config:14-17" );
121
PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" );
122
PMU_FORMAT_ATTR(psb_period, "config:24-27" );
123
124
static struct attribute *pt_formats_attr[] = {
125
&format_attr_pt.attr,
126
&format_attr_cyc.attr,
127
&format_attr_pwr_evt.attr,
128
&format_attr_event.attr,
129
&format_attr_notnt.attr,
130
&format_attr_fup_on_ptw.attr,
131
&format_attr_mtc.attr,
132
&format_attr_tsc.attr,
133
&format_attr_noretcomp.attr,
134
&format_attr_ptw.attr,
135
&format_attr_branch.attr,
136
&format_attr_mtc_period.attr,
137
&format_attr_cyc_thresh.attr,
138
&format_attr_psb_period.attr,
139
NULL,
140
};
141
142
static struct attribute_group pt_format_group = {
143
.name = "format",
144
.attrs = pt_formats_attr,
145
};
146
147
static ssize_t
148
pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
149
char *page)
150
{
151
struct perf_pmu_events_attr *pmu_attr =
152
container_of(attr, struct perf_pmu_events_attr, attr);
153
154
switch (pmu_attr->id) {
155
case 0:
156
return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
157
case 1:
158
return sprintf(page, "%u:%u\n",
159
pt_pmu.tsc_art_num,
160
pt_pmu.tsc_art_den);
161
default:
162
break;
163
}
164
165
return -EINVAL;
166
}
167
168
PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
169
pt_timing_attr_show);
170
PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
171
pt_timing_attr_show);
172
173
static struct attribute *pt_timing_attr[] = {
174
&timing_attr_max_nonturbo_ratio.attr.attr,
175
&timing_attr_tsc_art_ratio.attr.attr,
176
NULL,
177
};
178
179
static struct attribute_group pt_timing_group = {
180
.attrs = pt_timing_attr,
181
};
182
183
static const struct attribute_group *pt_attr_groups[] = {
184
&pt_cap_group,
185
&pt_format_group,
186
&pt_timing_group,
187
NULL,
188
};
189
190
static int __init pt_pmu_hw_init(void)
191
{
192
struct dev_ext_attribute *de_attrs;
193
struct attribute **attrs;
194
size_t size;
195
u64 reg;
196
int ret;
197
long i;
198
199
rdmsrq(MSR_PLATFORM_INFO, reg);
200
pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
201
202
/*
203
* if available, read in TSC to core crystal clock ratio,
204
* otherwise, zero for numerator stands for "not enumerated"
205
* as per SDM
206
*/
207
if (boot_cpu_data.cpuid_level >= CPUID_LEAF_TSC) {
208
u32 eax, ebx, ecx, edx;
209
210
cpuid(CPUID_LEAF_TSC, &eax, &ebx, &ecx, &edx);
211
212
pt_pmu.tsc_art_num = ebx;
213
pt_pmu.tsc_art_den = eax;
214
}
215
216
/* model-specific quirks */
217
switch (boot_cpu_data.x86_vfm) {
218
case INTEL_BROADWELL:
219
case INTEL_BROADWELL_D:
220
case INTEL_BROADWELL_G:
221
case INTEL_BROADWELL_X:
222
/* not setting BRANCH_EN will #GP, erratum BDM106 */
223
pt_pmu.branch_en_always_on = true;
224
break;
225
default:
226
break;
227
}
228
229
if (boot_cpu_has(X86_FEATURE_VMX)) {
230
/*
231
* Intel SDM, 36.5 "Tracing post-VMXON" says that
232
* "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
233
* post-VMXON.
234
*/
235
rdmsrq(MSR_IA32_VMX_MISC, reg);
236
if (reg & BIT(14))
237
pt_pmu.vmx = true;
238
}
239
240
for (i = 0; i < PT_CPUID_LEAVES; i++) {
241
cpuid_count(20, i,
242
&pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
243
&pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
244
&pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
245
&pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
246
}
247
248
ret = -ENOMEM;
249
size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
250
attrs = kzalloc(size, GFP_KERNEL);
251
if (!attrs)
252
goto fail;
253
254
size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
255
de_attrs = kzalloc(size, GFP_KERNEL);
256
if (!de_attrs)
257
goto fail;
258
259
for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
260
struct dev_ext_attribute *de_attr = de_attrs + i;
261
262
de_attr->attr.attr.name = pt_caps[i].name;
263
264
sysfs_attr_init(&de_attr->attr.attr);
265
266
de_attr->attr.attr.mode = S_IRUGO;
267
de_attr->attr.show = pt_cap_show;
268
de_attr->var = (void *)i;
269
270
attrs[i] = &de_attr->attr.attr;
271
}
272
273
pt_cap_group.attrs = attrs;
274
275
return 0;
276
277
fail:
278
kfree(attrs);
279
280
return ret;
281
}
282
283
#define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \
284
RTIT_CTL_CYC_THRESH | \
285
RTIT_CTL_PSB_FREQ)
286
287
#define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \
288
RTIT_CTL_MTC_RANGE)
289
290
#define RTIT_CTL_PTW (RTIT_CTL_PTW_EN | \
291
RTIT_CTL_FUP_ON_PTW)
292
293
/*
294
* Bit 0 (TraceEn) in the attr.config is meaningless as the
295
* corresponding bit in the RTIT_CTL can only be controlled
296
* by the driver; therefore, repurpose it to mean: pass
297
* through the bit that was previously assumed to be always
298
* on for PT, thereby allowing the user to *not* set it if
299
* they so wish. See also pt_event_valid() and pt_config().
300
*/
301
#define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
302
303
#define PT_CONFIG_MASK (RTIT_CTL_TRACEEN | \
304
RTIT_CTL_TSC_EN | \
305
RTIT_CTL_DISRETC | \
306
RTIT_CTL_BRANCH_EN | \
307
RTIT_CTL_CYC_PSB | \
308
RTIT_CTL_MTC | \
309
RTIT_CTL_PWR_EVT_EN | \
310
RTIT_CTL_EVENT_EN | \
311
RTIT_CTL_NOTNT | \
312
RTIT_CTL_FUP_ON_PTW | \
313
RTIT_CTL_PTW_EN)
314
315
static bool pt_event_valid(struct perf_event *event)
316
{
317
u64 config = event->attr.config;
318
u64 allowed, requested;
319
320
if ((config & PT_CONFIG_MASK) != config)
321
return false;
322
323
if (config & RTIT_CTL_CYC_PSB) {
324
if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
325
return false;
326
327
allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
328
requested = (config & RTIT_CTL_PSB_FREQ) >>
329
RTIT_CTL_PSB_FREQ_OFFSET;
330
if (requested && (!(allowed & BIT(requested))))
331
return false;
332
333
allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
334
requested = (config & RTIT_CTL_CYC_THRESH) >>
335
RTIT_CTL_CYC_THRESH_OFFSET;
336
if (requested && (!(allowed & BIT(requested))))
337
return false;
338
}
339
340
if (config & RTIT_CTL_MTC) {
341
/*
342
* In the unlikely case that CPUID lists valid mtc periods,
343
* but not the mtc capability, drop out here.
344
*
345
* Spec says that setting mtc period bits while mtc bit in
346
* CPUID is 0 will #GP, so better safe than sorry.
347
*/
348
if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
349
return false;
350
351
allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
352
if (!allowed)
353
return false;
354
355
requested = (config & RTIT_CTL_MTC_RANGE) >>
356
RTIT_CTL_MTC_RANGE_OFFSET;
357
358
if (!(allowed & BIT(requested)))
359
return false;
360
}
361
362
if (config & RTIT_CTL_PWR_EVT_EN &&
363
!intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
364
return false;
365
366
if (config & RTIT_CTL_EVENT_EN &&
367
!intel_pt_validate_hw_cap(PT_CAP_event_trace))
368
return false;
369
370
if (config & RTIT_CTL_NOTNT &&
371
!intel_pt_validate_hw_cap(PT_CAP_tnt_disable))
372
return false;
373
374
if (config & RTIT_CTL_PTW) {
375
if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
376
return false;
377
378
/* FUPonPTW without PTW doesn't make sense */
379
if ((config & RTIT_CTL_FUP_ON_PTW) &&
380
!(config & RTIT_CTL_PTW_EN))
381
return false;
382
}
383
384
/*
385
* Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
386
* clears the assumption that BranchEn must always be enabled,
387
* as was the case with the first implementation of PT.
388
* If this bit is not set, the legacy behavior is preserved
389
* for compatibility with the older userspace.
390
*
391
* Re-using bit 0 for this purpose is fine because it is never
392
* directly set by the user; previous attempts at setting it in
393
* the attr.config resulted in -EINVAL.
394
*/
395
if (config & RTIT_CTL_PASSTHROUGH) {
396
/*
397
* Disallow not setting BRANCH_EN where BRANCH_EN is
398
* always required.
399
*/
400
if (pt_pmu.branch_en_always_on &&
401
!(config & RTIT_CTL_BRANCH_EN))
402
return false;
403
} else {
404
/*
405
* Disallow BRANCH_EN without the PASSTHROUGH.
406
*/
407
if (config & RTIT_CTL_BRANCH_EN)
408
return false;
409
}
410
411
return true;
412
}
413
414
/*
415
* PT configuration helpers
416
* These all are cpu affine and operate on a local PT
417
*/
418
419
static void pt_config_start(struct perf_event *event)
420
{
421
struct pt *pt = this_cpu_ptr(&pt_ctx);
422
u64 ctl = event->hw.aux_config;
423
424
if (READ_ONCE(event->hw.aux_paused))
425
return;
426
427
ctl |= RTIT_CTL_TRACEEN;
428
if (READ_ONCE(pt->vmx_on))
429
perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
430
else
431
wrmsrq(MSR_IA32_RTIT_CTL, ctl);
432
433
WRITE_ONCE(event->hw.aux_config, ctl);
434
}
435
436
/* Address ranges and their corresponding msr configuration registers */
437
static const struct pt_address_range {
438
unsigned long msr_a;
439
unsigned long msr_b;
440
unsigned int reg_off;
441
} pt_address_ranges[] = {
442
{
443
.msr_a = MSR_IA32_RTIT_ADDR0_A,
444
.msr_b = MSR_IA32_RTIT_ADDR0_B,
445
.reg_off = RTIT_CTL_ADDR0_OFFSET,
446
},
447
{
448
.msr_a = MSR_IA32_RTIT_ADDR1_A,
449
.msr_b = MSR_IA32_RTIT_ADDR1_B,
450
.reg_off = RTIT_CTL_ADDR1_OFFSET,
451
},
452
{
453
.msr_a = MSR_IA32_RTIT_ADDR2_A,
454
.msr_b = MSR_IA32_RTIT_ADDR2_B,
455
.reg_off = RTIT_CTL_ADDR2_OFFSET,
456
},
457
{
458
.msr_a = MSR_IA32_RTIT_ADDR3_A,
459
.msr_b = MSR_IA32_RTIT_ADDR3_B,
460
.reg_off = RTIT_CTL_ADDR3_OFFSET,
461
}
462
};
463
464
static u64 pt_config_filters(struct perf_event *event)
465
{
466
struct pt_filters *filters = event->hw.addr_filters;
467
struct pt *pt = this_cpu_ptr(&pt_ctx);
468
unsigned int range = 0;
469
u64 rtit_ctl = 0;
470
471
if (!filters)
472
return 0;
473
474
perf_event_addr_filters_sync(event);
475
476
for (range = 0; range < filters->nr_filters; range++) {
477
struct pt_filter *filter = &filters->filter[range];
478
479
/*
480
* Note, if the range has zero start/end addresses due
481
* to its dynamic object not being loaded yet, we just
482
* go ahead and program zeroed range, which will simply
483
* produce no data. Note^2: if executable code at 0x0
484
* is a concern, we can set up an "invalid" configuration
485
* such as msr_b < msr_a.
486
*/
487
488
/* avoid redundant msr writes */
489
if (pt->filters.filter[range].msr_a != filter->msr_a) {
490
wrmsrq(pt_address_ranges[range].msr_a, filter->msr_a);
491
pt->filters.filter[range].msr_a = filter->msr_a;
492
}
493
494
if (pt->filters.filter[range].msr_b != filter->msr_b) {
495
wrmsrq(pt_address_ranges[range].msr_b, filter->msr_b);
496
pt->filters.filter[range].msr_b = filter->msr_b;
497
}
498
499
rtit_ctl |= (u64)filter->config << pt_address_ranges[range].reg_off;
500
}
501
502
return rtit_ctl;
503
}
504
505
static void pt_config(struct perf_event *event)
506
{
507
struct pt *pt = this_cpu_ptr(&pt_ctx);
508
struct pt_buffer *buf = perf_get_aux(&pt->handle);
509
u64 reg;
510
511
/* First round: clear STATUS, in particular the PSB byte counter. */
512
if (!event->hw.aux_config) {
513
perf_event_itrace_started(event);
514
wrmsrq(MSR_IA32_RTIT_STATUS, 0);
515
}
516
517
reg = pt_config_filters(event);
518
reg |= RTIT_CTL_TRACEEN;
519
if (!buf->single)
520
reg |= RTIT_CTL_TOPA;
521
522
/*
523
* Previously, we had BRANCH_EN on by default, but now that PT has
524
* grown features outside of branch tracing, it is useful to allow
525
* the user to disable it. Setting bit 0 in the event's attr.config
526
* allows BRANCH_EN to pass through instead of being always on. See
527
* also the comment in pt_event_valid().
528
*/
529
if (event->attr.config & BIT(0)) {
530
reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
531
} else {
532
reg |= RTIT_CTL_BRANCH_EN;
533
}
534
535
if (!event->attr.exclude_kernel)
536
reg |= RTIT_CTL_OS;
537
if (!event->attr.exclude_user)
538
reg |= RTIT_CTL_USR;
539
540
reg |= (event->attr.config & PT_CONFIG_MASK);
541
542
event->hw.aux_config = reg;
543
544
/*
545
* Allow resume before starting so as not to overwrite a value set by a
546
* PMI.
547
*/
548
barrier();
549
WRITE_ONCE(pt->resume_allowed, 1);
550
/* Configuration is complete, it is now OK to handle an NMI */
551
barrier();
552
WRITE_ONCE(pt->handle_nmi, 1);
553
barrier();
554
pt_config_start(event);
555
barrier();
556
/*
557
* Allow pause after starting so its pt_config_stop() doesn't race with
558
* pt_config_start().
559
*/
560
WRITE_ONCE(pt->pause_allowed, 1);
561
}
562
563
static void pt_config_stop(struct perf_event *event)
564
{
565
struct pt *pt = this_cpu_ptr(&pt_ctx);
566
u64 ctl = READ_ONCE(event->hw.aux_config);
567
568
/* may be already stopped by a PMI */
569
if (!(ctl & RTIT_CTL_TRACEEN))
570
return;
571
572
ctl &= ~RTIT_CTL_TRACEEN;
573
if (!READ_ONCE(pt->vmx_on))
574
wrmsrq(MSR_IA32_RTIT_CTL, ctl);
575
576
WRITE_ONCE(event->hw.aux_config, ctl);
577
578
/*
579
* A wrmsr that disables trace generation serializes other PT
580
* registers and causes all data packets to be written to memory,
581
* but a fence is required for the data to become globally visible.
582
*
583
* The below WMB, separating data store and aux_head store matches
584
* the consumer's RMB that separates aux_head load and data load.
585
*/
586
wmb();
587
}
588
589
/**
590
* struct topa - ToPA metadata
591
* @list: linkage to struct pt_buffer's list of tables
592
* @offset: offset of the first entry in this table in the buffer
593
* @size: total size of all entries in this table
594
* @last: index of the last initialized entry in this table
595
* @z_count: how many times the first entry repeats
596
*/
597
struct topa {
598
struct list_head list;
599
u64 offset;
600
size_t size;
601
int last;
602
unsigned int z_count;
603
};
604
605
/*
606
* Keep ToPA table-related metadata on the same page as the actual table,
607
* taking up a few words from the top
608
*/
609
610
#define TENTS_PER_PAGE \
611
((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
612
613
/**
614
* struct topa_page - page-sized ToPA table with metadata at the top
615
* @table: actual ToPA table entries, as understood by PT hardware
616
* @topa: metadata
617
*/
618
struct topa_page {
619
struct topa_entry table[TENTS_PER_PAGE];
620
struct topa topa;
621
};
622
623
static inline struct topa_page *topa_to_page(struct topa *topa)
624
{
625
return container_of(topa, struct topa_page, topa);
626
}
627
628
static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
629
{
630
return (struct topa_page *)((unsigned long)te & PAGE_MASK);
631
}
632
633
static inline phys_addr_t topa_pfn(struct topa *topa)
634
{
635
return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
636
}
637
638
/* make -1 stand for the last table entry */
639
#define TOPA_ENTRY(t, i) \
640
((i) == -1 \
641
? &topa_to_page(t)->table[(t)->last] \
642
: &topa_to_page(t)->table[(i)])
643
#define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
644
#define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
645
646
static void pt_config_buffer(struct pt_buffer *buf)
647
{
648
struct pt *pt = this_cpu_ptr(&pt_ctx);
649
u64 reg, mask;
650
void *base;
651
652
if (buf->single) {
653
base = buf->data_pages[0];
654
mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7;
655
} else {
656
base = topa_to_page(buf->cur)->table;
657
mask = (u64)buf->cur_idx;
658
}
659
660
reg = virt_to_phys(base);
661
if (pt->output_base != reg) {
662
pt->output_base = reg;
663
wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, reg);
664
}
665
666
reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32);
667
if (pt->output_mask != reg) {
668
pt->output_mask = reg;
669
wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, reg);
670
}
671
}
672
673
/**
674
* topa_alloc() - allocate page-sized ToPA table
675
* @cpu: CPU on which to allocate.
676
* @gfp: Allocation flags.
677
*
678
* Return: On success, return the pointer to ToPA table page.
679
*/
680
static struct topa *topa_alloc(int cpu, gfp_t gfp)
681
{
682
int node = cpu_to_node(cpu);
683
struct topa_page *tp;
684
struct page *p;
685
686
p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
687
if (!p)
688
return NULL;
689
690
tp = page_address(p);
691
tp->topa.last = 0;
692
693
/*
694
* In case of singe-entry ToPA, always put the self-referencing END
695
* link as the 2nd entry in the table
696
*/
697
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
698
TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT;
699
TOPA_ENTRY(&tp->topa, 1)->end = 1;
700
}
701
702
return &tp->topa;
703
}
704
705
/**
706
* topa_free() - free a page-sized ToPA table
707
* @topa: Table to deallocate.
708
*/
709
static void topa_free(struct topa *topa)
710
{
711
free_page((unsigned long)topa);
712
}
713
714
/**
715
* topa_insert_table() - insert a ToPA table into a buffer
716
* @buf: PT buffer that's being extended.
717
* @topa: New topa table to be inserted.
718
*
719
* If it's the first table in this buffer, set up buffer's pointers
720
* accordingly; otherwise, add a END=1 link entry to @topa to the current
721
* "last" table and adjust the last table pointer to @topa.
722
*/
723
static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
724
{
725
struct topa *last = buf->last;
726
727
list_add_tail(&topa->list, &buf->tables);
728
729
if (!buf->first) {
730
buf->first = buf->last = buf->cur = topa;
731
return;
732
}
733
734
topa->offset = last->offset + last->size;
735
buf->last = topa;
736
737
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
738
return;
739
740
BUG_ON(last->last != TENTS_PER_PAGE - 1);
741
742
TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
743
TOPA_ENTRY(last, -1)->end = 1;
744
}
745
746
/**
747
* topa_table_full() - check if a ToPA table is filled up
748
* @topa: ToPA table.
749
*/
750
static bool topa_table_full(struct topa *topa)
751
{
752
/* single-entry ToPA is a special case */
753
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
754
return !!topa->last;
755
756
return topa->last == TENTS_PER_PAGE - 1;
757
}
758
759
/**
760
* topa_insert_pages() - create a list of ToPA tables
761
* @buf: PT buffer being initialized.
762
* @cpu: CPU on which to allocate.
763
* @gfp: Allocation flags.
764
*
765
* This initializes a list of ToPA tables with entries from
766
* the data_pages provided by rb_alloc_aux().
767
*
768
* Return: 0 on success or error code.
769
*/
770
static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
771
{
772
struct topa *topa = buf->last;
773
int order = 0;
774
struct page *p;
775
776
p = virt_to_page(buf->data_pages[buf->nr_pages]);
777
if (PagePrivate(p))
778
order = page_private(p);
779
780
if (topa_table_full(topa)) {
781
topa = topa_alloc(cpu, gfp);
782
if (!topa)
783
return -ENOMEM;
784
785
topa_insert_table(buf, topa);
786
}
787
788
if (topa->z_count == topa->last - 1) {
789
if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
790
topa->z_count++;
791
}
792
793
TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
794
TOPA_ENTRY(topa, -1)->size = order;
795
if (!buf->snapshot &&
796
!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
797
TOPA_ENTRY(topa, -1)->intr = 1;
798
TOPA_ENTRY(topa, -1)->stop = 1;
799
}
800
801
topa->last++;
802
topa->size += sizes(order);
803
804
buf->nr_pages += 1ul << order;
805
806
return 0;
807
}
808
809
/**
810
* pt_topa_dump() - print ToPA tables and their entries
811
* @buf: PT buffer.
812
*/
813
static void pt_topa_dump(struct pt_buffer *buf)
814
{
815
struct topa *topa;
816
817
list_for_each_entry(topa, &buf->tables, list) {
818
struct topa_page *tp = topa_to_page(topa);
819
int i;
820
821
pr_debug("# table @%p, off %llx size %zx\n", tp->table,
822
topa->offset, topa->size);
823
for (i = 0; i < TENTS_PER_PAGE; i++) {
824
pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
825
&tp->table[i],
826
(unsigned long)tp->table[i].base << TOPA_SHIFT,
827
sizes(tp->table[i].size),
828
tp->table[i].end ? 'E' : ' ',
829
tp->table[i].intr ? 'I' : ' ',
830
tp->table[i].stop ? 'S' : ' ',
831
*(u64 *)&tp->table[i]);
832
if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
833
tp->table[i].stop) ||
834
tp->table[i].end)
835
break;
836
if (!i && topa->z_count)
837
i += topa->z_count;
838
}
839
}
840
}
841
842
/**
843
* pt_buffer_advance() - advance to the next output region
844
* @buf: PT buffer.
845
*
846
* Advance the current pointers in the buffer to the next ToPA entry.
847
*/
848
static void pt_buffer_advance(struct pt_buffer *buf)
849
{
850
buf->output_off = 0;
851
buf->cur_idx++;
852
853
if (buf->cur_idx == buf->cur->last) {
854
if (buf->cur == buf->last) {
855
buf->cur = buf->first;
856
buf->wrapped = true;
857
} else {
858
buf->cur = list_entry(buf->cur->list.next, struct topa,
859
list);
860
}
861
buf->cur_idx = 0;
862
}
863
}
864
865
/**
866
* pt_update_head() - calculate current offsets and sizes
867
* @pt: Per-cpu pt context.
868
*
869
* Update buffer's current write pointer position and data size.
870
*/
871
static void pt_update_head(struct pt *pt)
872
{
873
struct pt_buffer *buf = perf_get_aux(&pt->handle);
874
bool wrapped = buf->wrapped;
875
u64 topa_idx, base, old;
876
877
buf->wrapped = false;
878
879
if (buf->single) {
880
local_set(&buf->data_size, buf->output_off);
881
return;
882
}
883
884
/* offset of the first region in this table from the beginning of buf */
885
base = buf->cur->offset + buf->output_off;
886
887
/* offset of the current output region within this table */
888
for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
889
base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
890
891
if (buf->snapshot) {
892
local_set(&buf->data_size, base);
893
} else {
894
old = (local64_xchg(&buf->head, base) &
895
((buf->nr_pages << PAGE_SHIFT) - 1));
896
if (base < old || (base == old && wrapped))
897
base += buf->nr_pages << PAGE_SHIFT;
898
899
local_add(base - old, &buf->data_size);
900
}
901
}
902
903
/**
904
* pt_buffer_region() - obtain current output region's address
905
* @buf: PT buffer.
906
*/
907
static void *pt_buffer_region(struct pt_buffer *buf)
908
{
909
return phys_to_virt((phys_addr_t)TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
910
}
911
912
/**
913
* pt_buffer_region_size() - obtain current output region's size
914
* @buf: PT buffer.
915
*/
916
static size_t pt_buffer_region_size(struct pt_buffer *buf)
917
{
918
return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
919
}
920
921
/**
922
* pt_handle_status() - take care of possible status conditions
923
* @pt: Per-cpu pt context.
924
*/
925
static void pt_handle_status(struct pt *pt)
926
{
927
struct pt_buffer *buf = perf_get_aux(&pt->handle);
928
int advance = 0;
929
u64 status;
930
931
rdmsrq(MSR_IA32_RTIT_STATUS, status);
932
933
if (status & RTIT_STATUS_ERROR) {
934
pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
935
pt_topa_dump(buf);
936
status &= ~RTIT_STATUS_ERROR;
937
}
938
939
if (status & RTIT_STATUS_STOPPED) {
940
status &= ~RTIT_STATUS_STOPPED;
941
942
/*
943
* On systems that only do single-entry ToPA, hitting STOP
944
* means we are already losing data; need to let the decoder
945
* know.
946
*/
947
if (!buf->single &&
948
(!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
949
buf->output_off == pt_buffer_region_size(buf))) {
950
perf_aux_output_flag(&pt->handle,
951
PERF_AUX_FLAG_TRUNCATED);
952
advance++;
953
}
954
}
955
956
/*
957
* Also on single-entry ToPA implementations, interrupt will come
958
* before the output reaches its output region's boundary.
959
*/
960
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
961
!buf->snapshot &&
962
pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
963
void *head = pt_buffer_region(buf);
964
965
/* everything within this margin needs to be zeroed out */
966
memset(head + buf->output_off, 0,
967
pt_buffer_region_size(buf) -
968
buf->output_off);
969
advance++;
970
}
971
972
if (advance)
973
pt_buffer_advance(buf);
974
975
wrmsrq(MSR_IA32_RTIT_STATUS, status);
976
}
977
978
/**
979
* pt_read_offset() - translate registers into buffer pointers
980
* @buf: PT buffer.
981
*
982
* Set buffer's output pointers from MSR values.
983
*/
984
static void pt_read_offset(struct pt_buffer *buf)
985
{
986
struct pt *pt = this_cpu_ptr(&pt_ctx);
987
struct topa_page *tp;
988
989
if (!buf->single) {
990
rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base);
991
tp = phys_to_virt(pt->output_base);
992
buf->cur = &tp->topa;
993
}
994
995
rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask);
996
/* offset within current output region */
997
buf->output_off = pt->output_mask >> 32;
998
/* index of current output region within this table */
999
if (!buf->single)
1000
buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7;
1001
}
1002
1003
static struct topa_entry *
1004
pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
1005
{
1006
struct topa_page *tp;
1007
struct topa *topa;
1008
unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
1009
1010
/*
1011
* Indicates a bug in the caller.
1012
*/
1013
if (WARN_ON_ONCE(pg >= buf->nr_pages))
1014
return NULL;
1015
1016
/*
1017
* First, find the ToPA table where @pg fits. With high
1018
* order allocations, there shouldn't be many of these.
1019
*/
1020
list_for_each_entry(topa, &buf->tables, list) {
1021
if (topa->offset + topa->size > (unsigned long)pg << PAGE_SHIFT)
1022
goto found;
1023
}
1024
1025
/*
1026
* Hitting this means we have a problem in the ToPA
1027
* allocation code.
1028
*/
1029
WARN_ON_ONCE(1);
1030
1031
return NULL;
1032
1033
found:
1034
/*
1035
* Indicates a problem in the ToPA allocation code.
1036
*/
1037
if (WARN_ON_ONCE(topa->last == -1))
1038
return NULL;
1039
1040
tp = topa_to_page(topa);
1041
cur_pg = PFN_DOWN(topa->offset);
1042
if (topa->z_count) {
1043
z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
1044
start_idx = topa->z_count + 1;
1045
}
1046
1047
/*
1048
* Multiple entries at the beginning of the table have the same size,
1049
* ideally all of them; if @pg falls there, the search is done.
1050
*/
1051
if (pg >= cur_pg && pg < cur_pg + z_pg) {
1052
idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
1053
return &tp->table[idx];
1054
}
1055
1056
/*
1057
* Otherwise, slow path: iterate through the remaining entries.
1058
*/
1059
for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
1060
if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
1061
return &tp->table[idx];
1062
1063
cur_pg += TOPA_ENTRY_PAGES(topa, idx);
1064
}
1065
1066
/*
1067
* Means we couldn't find a ToPA entry in the table that does match.
1068
*/
1069
WARN_ON_ONCE(1);
1070
1071
return NULL;
1072
}
1073
1074
static struct topa_entry *
1075
pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
1076
{
1077
unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
1078
struct topa_page *tp;
1079
struct topa *topa;
1080
1081
tp = (struct topa_page *)table;
1082
if (tp->table != te)
1083
return --te;
1084
1085
topa = &tp->topa;
1086
if (topa == buf->first)
1087
topa = buf->last;
1088
else
1089
topa = list_prev_entry(topa, list);
1090
1091
tp = topa_to_page(topa);
1092
1093
return &tp->table[topa->last - 1];
1094
}
1095
1096
/**
1097
* pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1098
* @buf: PT buffer.
1099
* @handle: Current output handle.
1100
*
1101
* Place INT and STOP marks to prevent overwriting old data that the consumer
1102
* hasn't yet collected and waking up the consumer after a certain fraction of
1103
* the buffer has filled up. Only needed and sensible for non-snapshot counters.
1104
*
1105
* This obviously relies on buf::head to figure out buffer markers, so it has
1106
* to be called after pt_buffer_reset_offsets() and before the hardware tracing
1107
* is enabled.
1108
*/
1109
static int pt_buffer_reset_markers(struct pt_buffer *buf,
1110
struct perf_output_handle *handle)
1111
1112
{
1113
unsigned long head = local64_read(&buf->head);
1114
unsigned long idx, npages, wakeup;
1115
1116
if (buf->single)
1117
return 0;
1118
1119
/* can't stop in the middle of an output region */
1120
if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1121
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1122
return -EINVAL;
1123
}
1124
1125
1126
/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1127
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1128
return 0;
1129
1130
/* clear STOP and INT from current entry */
1131
if (buf->stop_te) {
1132
buf->stop_te->stop = 0;
1133
buf->stop_te->intr = 0;
1134
}
1135
1136
if (buf->intr_te)
1137
buf->intr_te->intr = 0;
1138
1139
/* how many pages till the STOP marker */
1140
npages = handle->size >> PAGE_SHIFT;
1141
1142
/* if it's on a page boundary, fill up one more page */
1143
if (!offset_in_page(head + handle->size + 1))
1144
npages++;
1145
1146
idx = (head >> PAGE_SHIFT) + npages;
1147
idx &= buf->nr_pages - 1;
1148
1149
if (idx != buf->stop_pos) {
1150
buf->stop_pos = idx;
1151
buf->stop_te = pt_topa_entry_for_page(buf, idx);
1152
buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1153
}
1154
1155
wakeup = handle->wakeup >> PAGE_SHIFT;
1156
1157
/* in the worst case, wake up the consumer one page before hard stop */
1158
idx = (head >> PAGE_SHIFT) + npages - 1;
1159
if (idx > wakeup)
1160
idx = wakeup;
1161
1162
idx &= buf->nr_pages - 1;
1163
if (idx != buf->intr_pos) {
1164
buf->intr_pos = idx;
1165
buf->intr_te = pt_topa_entry_for_page(buf, idx);
1166
buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1167
}
1168
1169
buf->stop_te->stop = 1;
1170
buf->stop_te->intr = 1;
1171
buf->intr_te->intr = 1;
1172
1173
return 0;
1174
}
1175
1176
/**
1177
* pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1178
* @buf: PT buffer.
1179
* @head: Write pointer (aux_head) from AUX buffer.
1180
*
1181
* Find the ToPA table and entry corresponding to given @head and set buffer's
1182
* "current" pointers accordingly. This is done after we have obtained the
1183
* current aux_head position from a successful call to perf_aux_output_begin()
1184
* to make sure the hardware is writing to the right place.
1185
*
1186
* This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1187
* into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1188
* which are used to determine INT and STOP markers' locations by a subsequent
1189
* call to pt_buffer_reset_markers().
1190
*/
1191
static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1192
{
1193
struct topa_page *cur_tp;
1194
struct topa_entry *te;
1195
int pg;
1196
1197
if (buf->snapshot)
1198
head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1199
1200
if (!buf->single) {
1201
pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1202
te = pt_topa_entry_for_page(buf, pg);
1203
1204
cur_tp = topa_entry_to_page(te);
1205
buf->cur = &cur_tp->topa;
1206
buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1207
buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1208
} else {
1209
buf->output_off = head;
1210
}
1211
1212
local64_set(&buf->head, head);
1213
local_set(&buf->data_size, 0);
1214
}
1215
1216
/**
1217
* pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1218
* @buf: PT buffer.
1219
*/
1220
static void pt_buffer_fini_topa(struct pt_buffer *buf)
1221
{
1222
struct topa *topa, *iter;
1223
1224
if (buf->single)
1225
return;
1226
1227
list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1228
/*
1229
* right now, this is in free_aux() path only, so
1230
* no need to unlink this table from the list
1231
*/
1232
topa_free(topa);
1233
}
1234
}
1235
1236
/**
1237
* pt_buffer_init_topa() - initialize ToPA table for pt buffer
1238
* @buf: PT buffer.
1239
* @cpu: CPU on which to allocate.
1240
* @nr_pages: No. of pages to allocate.
1241
* @gfp: Allocation flags.
1242
*
1243
* Return: 0 on success or error code.
1244
*/
1245
static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1246
unsigned long nr_pages, gfp_t gfp)
1247
{
1248
struct topa *topa;
1249
int err;
1250
1251
topa = topa_alloc(cpu, gfp);
1252
if (!topa)
1253
return -ENOMEM;
1254
1255
topa_insert_table(buf, topa);
1256
1257
while (buf->nr_pages < nr_pages) {
1258
err = topa_insert_pages(buf, cpu, gfp);
1259
if (err) {
1260
pt_buffer_fini_topa(buf);
1261
return -ENOMEM;
1262
}
1263
}
1264
1265
/* link last table to the first one, unless we're double buffering */
1266
if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1267
TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1268
TOPA_ENTRY(buf->last, -1)->end = 1;
1269
}
1270
1271
pt_topa_dump(buf);
1272
return 0;
1273
}
1274
1275
static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages)
1276
{
1277
struct page *p = virt_to_page(buf->data_pages[0]);
1278
int ret = -ENOTSUPP, order = 0;
1279
1280
/*
1281
* We can use single range output mode
1282
* + in snapshot mode, where we don't need interrupts;
1283
* + if the hardware supports it;
1284
* + if the entire buffer is one contiguous allocation.
1285
*/
1286
if (!buf->snapshot)
1287
goto out;
1288
1289
if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output))
1290
goto out;
1291
1292
if (PagePrivate(p))
1293
order = page_private(p);
1294
1295
if (1 << order != nr_pages)
1296
goto out;
1297
1298
/*
1299
* Some processors cannot always support single range for more than
1300
* 4KB - refer errata TGL052, ADL037 and RPL017. Future processors might
1301
* also be affected, so for now rather than trying to keep track of
1302
* which ones, just disable it for all.
1303
*/
1304
if (nr_pages > 1)
1305
goto out;
1306
1307
buf->single = true;
1308
buf->nr_pages = nr_pages;
1309
ret = 0;
1310
out:
1311
return ret;
1312
}
1313
1314
/**
1315
* pt_buffer_setup_aux() - set up topa tables for a PT buffer
1316
* @event: Performance event
1317
* @pages: Array of pointers to buffer pages passed from perf core.
1318
* @nr_pages: Number of pages in the buffer.
1319
* @snapshot: If this is a snapshot/overwrite counter.
1320
*
1321
* This is a pmu::setup_aux callback that sets up ToPA tables and all the
1322
* bookkeeping for an AUX buffer.
1323
*
1324
* Return: Our private PT buffer structure.
1325
*/
1326
static void *
1327
pt_buffer_setup_aux(struct perf_event *event, void **pages,
1328
int nr_pages, bool snapshot)
1329
{
1330
struct pt_buffer *buf;
1331
int node, ret, cpu = event->cpu;
1332
1333
if (!nr_pages)
1334
return NULL;
1335
1336
/*
1337
* Only support AUX sampling in snapshot mode, where we don't
1338
* generate NMIs.
1339
*/
1340
if (event->attr.aux_sample_size && !snapshot)
1341
return NULL;
1342
1343
if (cpu == -1)
1344
cpu = raw_smp_processor_id();
1345
node = cpu_to_node(cpu);
1346
1347
buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1348
if (!buf)
1349
return NULL;
1350
1351
buf->snapshot = snapshot;
1352
buf->data_pages = pages;
1353
buf->stop_pos = -1;
1354
buf->intr_pos = -1;
1355
1356
INIT_LIST_HEAD(&buf->tables);
1357
1358
ret = pt_buffer_try_single(buf, nr_pages);
1359
if (!ret)
1360
return buf;
1361
1362
ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1363
if (ret) {
1364
kfree(buf);
1365
return NULL;
1366
}
1367
1368
return buf;
1369
}
1370
1371
/**
1372
* pt_buffer_free_aux() - perf AUX deallocation path callback
1373
* @data: PT buffer.
1374
*/
1375
static void pt_buffer_free_aux(void *data)
1376
{
1377
struct pt_buffer *buf = data;
1378
1379
pt_buffer_fini_topa(buf);
1380
kfree(buf);
1381
}
1382
1383
static int pt_addr_filters_init(struct perf_event *event)
1384
{
1385
struct pt_filters *filters;
1386
int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1387
1388
if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1389
return 0;
1390
1391
filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1392
if (!filters)
1393
return -ENOMEM;
1394
1395
if (event->parent)
1396
memcpy(filters, event->parent->hw.addr_filters,
1397
sizeof(*filters));
1398
1399
event->hw.addr_filters = filters;
1400
1401
return 0;
1402
}
1403
1404
static void pt_addr_filters_fini(struct perf_event *event)
1405
{
1406
kfree(event->hw.addr_filters);
1407
event->hw.addr_filters = NULL;
1408
}
1409
1410
#ifdef CONFIG_X86_64
1411
/* Clamp to a canonical address greater-than-or-equal-to the address given */
1412
static u64 clamp_to_ge_canonical_addr(u64 vaddr, u8 vaddr_bits)
1413
{
1414
return __is_canonical_address(vaddr, vaddr_bits) ?
1415
vaddr :
1416
-BIT_ULL(vaddr_bits - 1);
1417
}
1418
1419
/* Clamp to a canonical address less-than-or-equal-to the address given */
1420
static u64 clamp_to_le_canonical_addr(u64 vaddr, u8 vaddr_bits)
1421
{
1422
return __is_canonical_address(vaddr, vaddr_bits) ?
1423
vaddr :
1424
BIT_ULL(vaddr_bits - 1) - 1;
1425
}
1426
#else
1427
#define clamp_to_ge_canonical_addr(x, y) (x)
1428
#define clamp_to_le_canonical_addr(x, y) (x)
1429
#endif
1430
1431
static int pt_event_addr_filters_validate(struct list_head *filters)
1432
{
1433
struct perf_addr_filter *filter;
1434
int range = 0;
1435
1436
list_for_each_entry(filter, filters, entry) {
1437
/*
1438
* PT doesn't support single address triggers and
1439
* 'start' filters.
1440
*/
1441
if (!filter->size ||
1442
filter->action == PERF_ADDR_FILTER_ACTION_START)
1443
return -EOPNOTSUPP;
1444
1445
if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1446
return -EOPNOTSUPP;
1447
}
1448
1449
return 0;
1450
}
1451
1452
static void pt_event_addr_filters_sync(struct perf_event *event)
1453
{
1454
struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1455
unsigned long msr_a, msr_b;
1456
struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1457
struct pt_filters *filters = event->hw.addr_filters;
1458
struct perf_addr_filter *filter;
1459
int range = 0;
1460
1461
if (!filters)
1462
return;
1463
1464
list_for_each_entry(filter, &head->list, entry) {
1465
if (filter->path.dentry && !fr[range].start) {
1466
msr_a = msr_b = 0;
1467
} else {
1468
unsigned long n = fr[range].size - 1;
1469
unsigned long a = fr[range].start;
1470
unsigned long b;
1471
1472
if (a > ULONG_MAX - n)
1473
b = ULONG_MAX;
1474
else
1475
b = a + n;
1476
/*
1477
* Apply the offset. 64-bit addresses written to the
1478
* MSRs must be canonical, but the range can encompass
1479
* non-canonical addresses. Since software cannot
1480
* execute at non-canonical addresses, adjusting to
1481
* canonical addresses does not affect the result of the
1482
* address filter.
1483
*/
1484
msr_a = clamp_to_ge_canonical_addr(a, boot_cpu_data.x86_virt_bits);
1485
msr_b = clamp_to_le_canonical_addr(b, boot_cpu_data.x86_virt_bits);
1486
if (msr_b < msr_a)
1487
msr_a = msr_b = 0;
1488
}
1489
1490
filters->filter[range].msr_a = msr_a;
1491
filters->filter[range].msr_b = msr_b;
1492
if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1493
filters->filter[range].config = 1;
1494
else
1495
filters->filter[range].config = 2;
1496
range++;
1497
}
1498
1499
filters->nr_filters = range;
1500
}
1501
1502
/**
1503
* intel_pt_interrupt() - PT PMI handler
1504
*/
1505
void intel_pt_interrupt(void)
1506
{
1507
struct pt *pt = this_cpu_ptr(&pt_ctx);
1508
struct pt_buffer *buf;
1509
struct perf_event *event = pt->handle.event;
1510
1511
/*
1512
* There may be a dangling PT bit in the interrupt status register
1513
* after PT has been disabled by pt_event_stop(). Make sure we don't
1514
* do anything (particularly, re-enable) for this event here.
1515
*/
1516
if (!READ_ONCE(pt->handle_nmi))
1517
return;
1518
1519
if (!event)
1520
return;
1521
1522
pt_config_stop(event);
1523
1524
buf = perf_get_aux(&pt->handle);
1525
if (!buf)
1526
return;
1527
1528
pt_read_offset(buf);
1529
1530
pt_handle_status(pt);
1531
1532
pt_update_head(pt);
1533
1534
perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1535
1536
if (!event->hw.state) {
1537
int ret;
1538
1539
buf = perf_aux_output_begin(&pt->handle, event);
1540
if (!buf) {
1541
event->hw.state = PERF_HES_STOPPED;
1542
WRITE_ONCE(pt->resume_allowed, 0);
1543
return;
1544
}
1545
1546
pt_buffer_reset_offsets(buf, pt->handle.head);
1547
/* snapshot counters don't use PMI, so it's safe */
1548
ret = pt_buffer_reset_markers(buf, &pt->handle);
1549
if (ret) {
1550
perf_aux_output_end(&pt->handle, 0);
1551
WRITE_ONCE(pt->resume_allowed, 0);
1552
return;
1553
}
1554
1555
pt_config_buffer(buf);
1556
pt_config_start(event);
1557
}
1558
}
1559
1560
void intel_pt_handle_vmx(int on)
1561
{
1562
struct pt *pt = this_cpu_ptr(&pt_ctx);
1563
struct perf_event *event;
1564
unsigned long flags;
1565
1566
/* PT plays nice with VMX, do nothing */
1567
if (pt_pmu.vmx)
1568
return;
1569
1570
/*
1571
* VMXON will clear RTIT_CTL.TraceEn; we need to make
1572
* sure to not try to set it while VMX is on. Disable
1573
* interrupts to avoid racing with pmu callbacks;
1574
* concurrent PMI should be handled fine.
1575
*/
1576
local_irq_save(flags);
1577
WRITE_ONCE(pt->vmx_on, on);
1578
1579
/*
1580
* If an AUX transaction is in progress, it will contain
1581
* gap(s), so flag it PARTIAL to inform the user.
1582
*/
1583
event = pt->handle.event;
1584
if (event)
1585
perf_aux_output_flag(&pt->handle,
1586
PERF_AUX_FLAG_PARTIAL);
1587
1588
/* Turn PTs back on */
1589
if (!on && event)
1590
wrmsrq(MSR_IA32_RTIT_CTL, event->hw.aux_config);
1591
1592
local_irq_restore(flags);
1593
}
1594
EXPORT_SYMBOL_FOR_KVM(intel_pt_handle_vmx);
1595
1596
/*
1597
* PMU callbacks
1598
*/
1599
1600
static void pt_event_start(struct perf_event *event, int mode)
1601
{
1602
struct hw_perf_event *hwc = &event->hw;
1603
struct pt *pt = this_cpu_ptr(&pt_ctx);
1604
struct pt_buffer *buf;
1605
1606
if (mode & PERF_EF_RESUME) {
1607
if (READ_ONCE(pt->resume_allowed)) {
1608
u64 status;
1609
1610
/*
1611
* Only if the trace is not active and the error and
1612
* stopped bits are clear, is it safe to start, but a
1613
* PMI might have just cleared these, so resume_allowed
1614
* must be checked again also.
1615
*/
1616
rdmsrq(MSR_IA32_RTIT_STATUS, status);
1617
if (!(status & (RTIT_STATUS_TRIGGEREN |
1618
RTIT_STATUS_ERROR |
1619
RTIT_STATUS_STOPPED)) &&
1620
READ_ONCE(pt->resume_allowed))
1621
pt_config_start(event);
1622
}
1623
return;
1624
}
1625
1626
buf = perf_aux_output_begin(&pt->handle, event);
1627
if (!buf)
1628
goto fail_stop;
1629
1630
pt_buffer_reset_offsets(buf, pt->handle.head);
1631
if (!buf->snapshot) {
1632
if (pt_buffer_reset_markers(buf, &pt->handle))
1633
goto fail_end_stop;
1634
}
1635
1636
hwc->state = 0;
1637
1638
pt_config_buffer(buf);
1639
pt_config(event);
1640
1641
return;
1642
1643
fail_end_stop:
1644
perf_aux_output_end(&pt->handle, 0);
1645
fail_stop:
1646
hwc->state = PERF_HES_STOPPED;
1647
}
1648
1649
static void pt_event_stop(struct perf_event *event, int mode)
1650
{
1651
struct pt *pt = this_cpu_ptr(&pt_ctx);
1652
1653
if (mode & PERF_EF_PAUSE) {
1654
if (READ_ONCE(pt->pause_allowed))
1655
pt_config_stop(event);
1656
return;
1657
}
1658
1659
/*
1660
* Protect against the PMI racing with disabling wrmsr,
1661
* see comment in intel_pt_interrupt().
1662
*/
1663
WRITE_ONCE(pt->handle_nmi, 0);
1664
barrier();
1665
1666
/*
1667
* Prevent a resume from attempting to restart tracing, or a pause
1668
* during a subsequent start. Do this after clearing handle_nmi so that
1669
* pt_event_snapshot_aux() will not re-allow them.
1670
*/
1671
WRITE_ONCE(pt->pause_allowed, 0);
1672
WRITE_ONCE(pt->resume_allowed, 0);
1673
barrier();
1674
1675
pt_config_stop(event);
1676
1677
if (event->hw.state == PERF_HES_STOPPED)
1678
return;
1679
1680
event->hw.state = PERF_HES_STOPPED;
1681
1682
if (mode & PERF_EF_UPDATE) {
1683
struct pt_buffer *buf = perf_get_aux(&pt->handle);
1684
1685
if (!buf)
1686
return;
1687
1688
if (WARN_ON_ONCE(pt->handle.event != event))
1689
return;
1690
1691
pt_read_offset(buf);
1692
1693
pt_handle_status(pt);
1694
1695
pt_update_head(pt);
1696
1697
if (buf->snapshot)
1698
pt->handle.head =
1699
local_xchg(&buf->data_size,
1700
buf->nr_pages << PAGE_SHIFT);
1701
perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1702
}
1703
}
1704
1705
static long pt_event_snapshot_aux(struct perf_event *event,
1706
struct perf_output_handle *handle,
1707
unsigned long size)
1708
{
1709
struct pt *pt = this_cpu_ptr(&pt_ctx);
1710
struct pt_buffer *buf = perf_get_aux(&pt->handle);
1711
unsigned long from = 0, to;
1712
long ret;
1713
1714
if (WARN_ON_ONCE(!buf))
1715
return 0;
1716
1717
/*
1718
* Sampling is only allowed on snapshot events;
1719
* see pt_buffer_setup_aux().
1720
*/
1721
if (WARN_ON_ONCE(!buf->snapshot))
1722
return 0;
1723
1724
/* Prevent pause/resume from attempting to start/stop tracing */
1725
WRITE_ONCE(pt->pause_allowed, 0);
1726
WRITE_ONCE(pt->resume_allowed, 0);
1727
barrier();
1728
/*
1729
* There is no PT interrupt in this mode, so stop the trace and it will
1730
* remain stopped while the buffer is copied.
1731
*/
1732
pt_config_stop(event);
1733
pt_read_offset(buf);
1734
pt_update_head(pt);
1735
1736
to = local_read(&buf->data_size);
1737
if (to < size)
1738
from = buf->nr_pages << PAGE_SHIFT;
1739
from += to - size;
1740
1741
ret = perf_output_copy_aux(&pt->handle, handle, from, to);
1742
1743
/*
1744
* Here, handle_nmi tells us if the tracing was on.
1745
* If the tracing was on, restart it.
1746
*/
1747
if (READ_ONCE(pt->handle_nmi)) {
1748
WRITE_ONCE(pt->resume_allowed, 1);
1749
barrier();
1750
pt_config_start(event);
1751
barrier();
1752
WRITE_ONCE(pt->pause_allowed, 1);
1753
}
1754
1755
return ret;
1756
}
1757
1758
static void pt_event_del(struct perf_event *event, int mode)
1759
{
1760
pt_event_stop(event, PERF_EF_UPDATE);
1761
}
1762
1763
static int pt_event_add(struct perf_event *event, int mode)
1764
{
1765
struct pt *pt = this_cpu_ptr(&pt_ctx);
1766
struct hw_perf_event *hwc = &event->hw;
1767
int ret = -EBUSY;
1768
1769
if (pt->handle.event)
1770
goto fail;
1771
1772
if (mode & PERF_EF_START) {
1773
pt_event_start(event, 0);
1774
ret = -EINVAL;
1775
if (hwc->state == PERF_HES_STOPPED)
1776
goto fail;
1777
} else {
1778
hwc->state = PERF_HES_STOPPED;
1779
}
1780
1781
ret = 0;
1782
fail:
1783
1784
return ret;
1785
}
1786
1787
static void pt_event_read(struct perf_event *event)
1788
{
1789
}
1790
1791
static void pt_event_destroy(struct perf_event *event)
1792
{
1793
pt_addr_filters_fini(event);
1794
x86_del_exclusive(x86_lbr_exclusive_pt);
1795
}
1796
1797
static int pt_event_init(struct perf_event *event)
1798
{
1799
if (event->attr.type != pt_pmu.pmu.type)
1800
return -ENOENT;
1801
1802
if (!pt_event_valid(event))
1803
return -EINVAL;
1804
1805
if (x86_add_exclusive(x86_lbr_exclusive_pt))
1806
return -EBUSY;
1807
1808
if (pt_addr_filters_init(event)) {
1809
x86_del_exclusive(x86_lbr_exclusive_pt);
1810
return -ENOMEM;
1811
}
1812
1813
event->destroy = pt_event_destroy;
1814
1815
return 0;
1816
}
1817
1818
void cpu_emergency_stop_pt(void)
1819
{
1820
struct pt *pt = this_cpu_ptr(&pt_ctx);
1821
1822
if (pt->handle.event)
1823
pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1824
}
1825
1826
int is_intel_pt_event(struct perf_event *event)
1827
{
1828
return event->pmu == &pt_pmu.pmu;
1829
}
1830
1831
static __init int pt_init(void)
1832
{
1833
int ret, cpu, prior_warn = 0;
1834
1835
BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1836
1837
if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1838
return -ENODEV;
1839
1840
cpus_read_lock();
1841
for_each_online_cpu(cpu) {
1842
u64 ctl;
1843
1844
ret = rdmsrq_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1845
if (!ret && (ctl & RTIT_CTL_TRACEEN))
1846
prior_warn++;
1847
}
1848
cpus_read_unlock();
1849
1850
if (prior_warn) {
1851
x86_add_exclusive(x86_lbr_exclusive_pt);
1852
pr_warn("PT is enabled at boot time, doing nothing\n");
1853
1854
return -EBUSY;
1855
}
1856
1857
ret = pt_pmu_hw_init();
1858
if (ret)
1859
return ret;
1860
1861
if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1862
pr_warn("ToPA output is not supported on this CPU\n");
1863
return -ENODEV;
1864
}
1865
1866
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1867
pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1868
else
1869
pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_PREFER_LARGE;
1870
1871
pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE |
1872
PERF_PMU_CAP_ITRACE |
1873
PERF_PMU_CAP_AUX_PAUSE;
1874
pt_pmu.pmu.attr_groups = pt_attr_groups;
1875
pt_pmu.pmu.task_ctx_nr = perf_sw_context;
1876
pt_pmu.pmu.event_init = pt_event_init;
1877
pt_pmu.pmu.add = pt_event_add;
1878
pt_pmu.pmu.del = pt_event_del;
1879
pt_pmu.pmu.start = pt_event_start;
1880
pt_pmu.pmu.stop = pt_event_stop;
1881
pt_pmu.pmu.snapshot_aux = pt_event_snapshot_aux;
1882
pt_pmu.pmu.read = pt_event_read;
1883
pt_pmu.pmu.setup_aux = pt_buffer_setup_aux;
1884
pt_pmu.pmu.free_aux = pt_buffer_free_aux;
1885
pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync;
1886
pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1887
pt_pmu.pmu.nr_addr_filters =
1888
intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1889
1890
ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1891
1892
return ret;
1893
}
1894
arch_initcall(pt_init);
1895
1896