Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/include/asm/bitops.h
26481 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _ASM_X86_BITOPS_H
3
#define _ASM_X86_BITOPS_H
4
5
/*
6
* Copyright 1992, Linus Torvalds.
7
*
8
* Note: inlines with more than a single statement should be marked
9
* __always_inline to avoid problems with older gcc's inlining heuristics.
10
*/
11
12
#ifndef _LINUX_BITOPS_H
13
#error only <linux/bitops.h> can be included directly
14
#endif
15
16
#include <linux/compiler.h>
17
#include <asm/alternative.h>
18
#include <asm/rmwcc.h>
19
#include <asm/barrier.h>
20
21
#if BITS_PER_LONG == 32
22
# define _BITOPS_LONG_SHIFT 5
23
#elif BITS_PER_LONG == 64
24
# define _BITOPS_LONG_SHIFT 6
25
#else
26
# error "Unexpected BITS_PER_LONG"
27
#endif
28
29
#define BIT_64(n) (U64_C(1) << (n))
30
31
/*
32
* These have to be done with inline assembly: that way the bit-setting
33
* is guaranteed to be atomic. All bit operations return 0 if the bit
34
* was cleared before the operation and != 0 if it was not.
35
*
36
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37
*/
38
39
#define RLONG_ADDR(x) "m" (*(volatile long *) (x))
40
#define WBYTE_ADDR(x) "+m" (*(volatile char *) (x))
41
42
#define ADDR RLONG_ADDR(addr)
43
44
/*
45
* We do the locked ops that don't return the old value as
46
* a mask operation on a byte.
47
*/
48
#define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3))
49
#define CONST_MASK(nr) (1 << ((nr) & 7))
50
51
static __always_inline void
52
arch_set_bit(long nr, volatile unsigned long *addr)
53
{
54
if (__builtin_constant_p(nr)) {
55
asm_inline volatile(LOCK_PREFIX "orb %b1,%0"
56
: CONST_MASK_ADDR(nr, addr)
57
: "iq" (CONST_MASK(nr))
58
: "memory");
59
} else {
60
asm_inline volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
61
: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
62
}
63
}
64
65
static __always_inline void
66
arch___set_bit(unsigned long nr, volatile unsigned long *addr)
67
{
68
asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
69
}
70
71
static __always_inline void
72
arch_clear_bit(long nr, volatile unsigned long *addr)
73
{
74
if (__builtin_constant_p(nr)) {
75
asm_inline volatile(LOCK_PREFIX "andb %b1,%0"
76
: CONST_MASK_ADDR(nr, addr)
77
: "iq" (~CONST_MASK(nr)));
78
} else {
79
asm_inline volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
80
: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
81
}
82
}
83
84
static __always_inline void
85
arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
86
{
87
barrier();
88
arch_clear_bit(nr, addr);
89
}
90
91
static __always_inline void
92
arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
93
{
94
asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
95
}
96
97
static __always_inline bool arch_xor_unlock_is_negative_byte(unsigned long mask,
98
volatile unsigned long *addr)
99
{
100
bool negative;
101
asm_inline volatile(LOCK_PREFIX "xorb %2,%1"
102
CC_SET(s)
103
: CC_OUT(s) (negative), WBYTE_ADDR(addr)
104
: "iq" ((char)mask) : "memory");
105
return negative;
106
}
107
#define arch_xor_unlock_is_negative_byte arch_xor_unlock_is_negative_byte
108
109
static __always_inline void
110
arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
111
{
112
arch___clear_bit(nr, addr);
113
}
114
115
static __always_inline void
116
arch___change_bit(unsigned long nr, volatile unsigned long *addr)
117
{
118
asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
119
}
120
121
static __always_inline void
122
arch_change_bit(long nr, volatile unsigned long *addr)
123
{
124
if (__builtin_constant_p(nr)) {
125
asm_inline volatile(LOCK_PREFIX "xorb %b1,%0"
126
: CONST_MASK_ADDR(nr, addr)
127
: "iq" (CONST_MASK(nr)));
128
} else {
129
asm_inline volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
130
: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
131
}
132
}
133
134
static __always_inline bool
135
arch_test_and_set_bit(long nr, volatile unsigned long *addr)
136
{
137
return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
138
}
139
140
static __always_inline bool
141
arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
142
{
143
return arch_test_and_set_bit(nr, addr);
144
}
145
146
static __always_inline bool
147
arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
148
{
149
bool oldbit;
150
151
asm(__ASM_SIZE(bts) " %2,%1"
152
CC_SET(c)
153
: CC_OUT(c) (oldbit)
154
: ADDR, "Ir" (nr) : "memory");
155
return oldbit;
156
}
157
158
static __always_inline bool
159
arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
160
{
161
return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
162
}
163
164
/*
165
* Note: the operation is performed atomically with respect to
166
* the local CPU, but not other CPUs. Portable code should not
167
* rely on this behaviour.
168
* KVM relies on this behaviour on x86 for modifying memory that is also
169
* accessed from a hypervisor on the same CPU if running in a VM: don't change
170
* this without also updating arch/x86/kernel/kvm.c
171
*/
172
static __always_inline bool
173
arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
174
{
175
bool oldbit;
176
177
asm volatile(__ASM_SIZE(btr) " %2,%1"
178
CC_SET(c)
179
: CC_OUT(c) (oldbit)
180
: ADDR, "Ir" (nr) : "memory");
181
return oldbit;
182
}
183
184
static __always_inline bool
185
arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
186
{
187
bool oldbit;
188
189
asm volatile(__ASM_SIZE(btc) " %2,%1"
190
CC_SET(c)
191
: CC_OUT(c) (oldbit)
192
: ADDR, "Ir" (nr) : "memory");
193
194
return oldbit;
195
}
196
197
static __always_inline bool
198
arch_test_and_change_bit(long nr, volatile unsigned long *addr)
199
{
200
return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
201
}
202
203
static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
204
{
205
return ((1UL << (nr & (BITS_PER_LONG-1))) &
206
(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
207
}
208
209
static __always_inline bool constant_test_bit_acquire(long nr, const volatile unsigned long *addr)
210
{
211
bool oldbit;
212
213
asm volatile("testb %2,%1"
214
CC_SET(nz)
215
: CC_OUT(nz) (oldbit)
216
: "m" (((unsigned char *)addr)[nr >> 3]),
217
"i" (1 << (nr & 7))
218
:"memory");
219
220
return oldbit;
221
}
222
223
static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
224
{
225
bool oldbit;
226
227
asm volatile(__ASM_SIZE(bt) " %2,%1"
228
CC_SET(c)
229
: CC_OUT(c) (oldbit)
230
: "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");
231
232
return oldbit;
233
}
234
235
static __always_inline bool
236
arch_test_bit(unsigned long nr, const volatile unsigned long *addr)
237
{
238
return __builtin_constant_p(nr) ? constant_test_bit(nr, addr) :
239
variable_test_bit(nr, addr);
240
}
241
242
static __always_inline bool
243
arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr)
244
{
245
return __builtin_constant_p(nr) ? constant_test_bit_acquire(nr, addr) :
246
variable_test_bit(nr, addr);
247
}
248
249
static __always_inline unsigned long variable__ffs(unsigned long word)
250
{
251
asm("tzcnt %1,%0"
252
: "=r" (word)
253
: ASM_INPUT_RM (word));
254
return word;
255
}
256
257
/**
258
* __ffs - find first set bit in word
259
* @word: The word to search
260
*
261
* Undefined if no bit exists, so code should check against 0 first.
262
*/
263
#define __ffs(word) \
264
(__builtin_constant_p(word) ? \
265
(unsigned long)__builtin_ctzl(word) : \
266
variable__ffs(word))
267
268
static __always_inline unsigned long variable_ffz(unsigned long word)
269
{
270
return variable__ffs(~word);
271
}
272
273
/**
274
* ffz - find first zero bit in word
275
* @word: The word to search
276
*
277
* Undefined if no zero exists, so code should check against ~0UL first.
278
*/
279
#define ffz(word) \
280
(__builtin_constant_p(word) ? \
281
(unsigned long)__builtin_ctzl(~word) : \
282
variable_ffz(word))
283
284
/*
285
* __fls: find last set bit in word
286
* @word: The word to search
287
*
288
* Undefined if no set bit exists, so code should check against 0 first.
289
*/
290
static __always_inline unsigned long __fls(unsigned long word)
291
{
292
if (__builtin_constant_p(word))
293
return BITS_PER_LONG - 1 - __builtin_clzl(word);
294
295
asm("bsr %1,%0"
296
: "=r" (word)
297
: ASM_INPUT_RM (word));
298
return word;
299
}
300
301
#undef ADDR
302
303
#ifdef __KERNEL__
304
static __always_inline int variable_ffs(int x)
305
{
306
int r;
307
308
#ifdef CONFIG_X86_64
309
/*
310
* AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
311
* dest reg is undefined if x==0, but their CPU architect says its
312
* value is written to set it to the same as before, except that the
313
* top 32 bits will be cleared.
314
*
315
* We cannot do this on 32 bits because at the very least some
316
* 486 CPUs did not behave this way.
317
*/
318
asm("bsfl %1,%0"
319
: "=r" (r)
320
: ASM_INPUT_RM (x), "0" (-1));
321
#elif defined(CONFIG_X86_CMOV)
322
asm("bsfl %1,%0\n\t"
323
"cmovzl %2,%0"
324
: "=&r" (r) : "rm" (x), "r" (-1));
325
#else
326
asm("bsfl %1,%0\n\t"
327
"jnz 1f\n\t"
328
"movl $-1,%0\n"
329
"1:" : "=r" (r) : "rm" (x));
330
#endif
331
return r + 1;
332
}
333
334
/**
335
* ffs - find first set bit in word
336
* @x: the word to search
337
*
338
* This is defined the same way as the libc and compiler builtin ffs
339
* routines, therefore differs in spirit from the other bitops.
340
*
341
* ffs(value) returns 0 if value is 0 or the position of the first
342
* set bit if value is nonzero. The first (least significant) bit
343
* is at position 1.
344
*/
345
#define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))
346
347
/**
348
* fls - find last set bit in word
349
* @x: the word to search
350
*
351
* This is defined in a similar way as the libc and compiler builtin
352
* ffs, but returns the position of the most significant set bit.
353
*
354
* fls(value) returns 0 if value is 0 or the position of the last
355
* set bit if value is nonzero. The last (most significant) bit is
356
* at position 32.
357
*/
358
static __always_inline int fls(unsigned int x)
359
{
360
int r;
361
362
if (__builtin_constant_p(x))
363
return x ? 32 - __builtin_clz(x) : 0;
364
365
#ifdef CONFIG_X86_64
366
/*
367
* AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
368
* dest reg is undefined if x==0, but their CPU architect says its
369
* value is written to set it to the same as before, except that the
370
* top 32 bits will be cleared.
371
*
372
* We cannot do this on 32 bits because at the very least some
373
* 486 CPUs did not behave this way.
374
*/
375
asm("bsrl %1,%0"
376
: "=r" (r)
377
: ASM_INPUT_RM (x), "0" (-1));
378
#elif defined(CONFIG_X86_CMOV)
379
asm("bsrl %1,%0\n\t"
380
"cmovzl %2,%0"
381
: "=&r" (r) : "rm" (x), "rm" (-1));
382
#else
383
asm("bsrl %1,%0\n\t"
384
"jnz 1f\n\t"
385
"movl $-1,%0\n"
386
"1:" : "=r" (r) : "rm" (x));
387
#endif
388
return r + 1;
389
}
390
391
/**
392
* fls64 - find last set bit in a 64-bit word
393
* @x: the word to search
394
*
395
* This is defined in a similar way as the libc and compiler builtin
396
* ffsll, but returns the position of the most significant set bit.
397
*
398
* fls64(value) returns 0 if value is 0 or the position of the last
399
* set bit if value is nonzero. The last (most significant) bit is
400
* at position 64.
401
*/
402
#ifdef CONFIG_X86_64
403
static __always_inline int fls64(__u64 x)
404
{
405
int bitpos = -1;
406
407
if (__builtin_constant_p(x))
408
return x ? 64 - __builtin_clzll(x) : 0;
409
/*
410
* AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
411
* dest reg is undefined if x==0, but their CPU architect says its
412
* value is written to set it to the same as before.
413
*/
414
asm("bsrq %1,%q0"
415
: "+r" (bitpos)
416
: ASM_INPUT_RM (x));
417
return bitpos + 1;
418
}
419
#else
420
#include <asm-generic/bitops/fls64.h>
421
#endif
422
423
#include <asm-generic/bitops/sched.h>
424
425
#include <asm/arch_hweight.h>
426
427
#include <asm-generic/bitops/const_hweight.h>
428
429
#include <asm-generic/bitops/instrumented-atomic.h>
430
#include <asm-generic/bitops/instrumented-non-atomic.h>
431
#include <asm-generic/bitops/instrumented-lock.h>
432
433
#include <asm-generic/bitops/le.h>
434
435
#include <asm-generic/bitops/ext2-atomic-setbit.h>
436
437
#endif /* __KERNEL__ */
438
#endif /* _ASM_X86_BITOPS_H */
439
440