Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/alternative.c
49857 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#define pr_fmt(fmt) "SMP alternatives: " fmt
3
4
#include <linux/mmu_context.h>
5
#include <linux/perf_event.h>
6
#include <linux/vmalloc.h>
7
#include <linux/memory.h>
8
#include <linux/execmem.h>
9
10
#include <asm/text-patching.h>
11
#include <asm/insn.h>
12
#include <asm/insn-eval.h>
13
#include <asm/ibt.h>
14
#include <asm/set_memory.h>
15
#include <asm/nmi.h>
16
17
int __read_mostly alternatives_patched;
18
19
EXPORT_SYMBOL_GPL(alternatives_patched);
20
21
#define MAX_PATCH_LEN (255-1)
22
23
#define DA_ALL (~0)
24
#define DA_ALT 0x01
25
#define DA_RET 0x02
26
#define DA_RETPOLINE 0x04
27
#define DA_ENDBR 0x08
28
#define DA_SMP 0x10
29
30
static unsigned int debug_alternative;
31
32
static int __init debug_alt(char *str)
33
{
34
if (str && *str == '=')
35
str++;
36
37
if (!str || kstrtouint(str, 0, &debug_alternative))
38
debug_alternative = DA_ALL;
39
40
return 1;
41
}
42
__setup("debug-alternative", debug_alt);
43
44
static int noreplace_smp;
45
46
static int __init setup_noreplace_smp(char *str)
47
{
48
noreplace_smp = 1;
49
return 1;
50
}
51
__setup("noreplace-smp", setup_noreplace_smp);
52
53
#define DPRINTK(type, fmt, args...) \
54
do { \
55
if (debug_alternative & DA_##type) \
56
printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
57
} while (0)
58
59
#define DUMP_BYTES(type, buf, len, fmt, args...) \
60
do { \
61
if (unlikely(debug_alternative & DA_##type)) { \
62
int j; \
63
\
64
if (!(len)) \
65
break; \
66
\
67
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
68
for (j = 0; j < (len) - 1; j++) \
69
printk(KERN_CONT "%02hhx ", buf[j]); \
70
printk(KERN_CONT "%02hhx\n", buf[j]); \
71
} \
72
} while (0)
73
74
static const unsigned char x86nops[] =
75
{
76
BYTES_NOP1,
77
BYTES_NOP2,
78
BYTES_NOP3,
79
BYTES_NOP4,
80
BYTES_NOP5,
81
BYTES_NOP6,
82
BYTES_NOP7,
83
BYTES_NOP8,
84
#ifdef CONFIG_64BIT
85
BYTES_NOP9,
86
BYTES_NOP10,
87
BYTES_NOP11,
88
#endif
89
};
90
91
const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
92
{
93
NULL,
94
x86nops,
95
x86nops + 1,
96
x86nops + 1 + 2,
97
x86nops + 1 + 2 + 3,
98
x86nops + 1 + 2 + 3 + 4,
99
x86nops + 1 + 2 + 3 + 4 + 5,
100
x86nops + 1 + 2 + 3 + 4 + 5 + 6,
101
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
102
#ifdef CONFIG_64BIT
103
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
104
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
105
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
106
#endif
107
};
108
109
#ifdef CONFIG_FINEIBT
110
static bool cfi_paranoid __ro_after_init;
111
#endif
112
113
#ifdef CONFIG_MITIGATION_ITS
114
115
#ifdef CONFIG_MODULES
116
static struct module *its_mod;
117
#endif
118
static void *its_page;
119
static unsigned int its_offset;
120
struct its_array its_pages;
121
122
static void *__its_alloc(struct its_array *pages)
123
{
124
void *page __free(execmem) = execmem_alloc_rw(EXECMEM_MODULE_TEXT, PAGE_SIZE);
125
if (!page)
126
return NULL;
127
128
void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *),
129
GFP_KERNEL);
130
if (!tmp)
131
return NULL;
132
133
pages->pages = tmp;
134
pages->pages[pages->num++] = page;
135
136
return no_free_ptr(page);
137
}
138
139
/* Initialize a thunk with the "jmp *reg; int3" instructions. */
140
static void *its_init_thunk(void *thunk, int reg)
141
{
142
u8 *bytes = thunk;
143
int offset = 0;
144
int i = 0;
145
146
#ifdef CONFIG_FINEIBT
147
if (cfi_paranoid) {
148
/*
149
* When ITS uses indirect branch thunk the fineibt_paranoid
150
* caller sequence doesn't fit in the caller site. So put the
151
* remaining part of the sequence (UDB + JNE) into the ITS
152
* thunk.
153
*/
154
bytes[i++] = 0xd6; /* UDB */
155
bytes[i++] = 0x75; /* JNE */
156
bytes[i++] = 0xfd;
157
158
offset = 1;
159
}
160
#endif
161
162
if (reg >= 8) {
163
bytes[i++] = 0x41; /* REX.B prefix */
164
reg -= 8;
165
}
166
bytes[i++] = 0xff;
167
bytes[i++] = 0xe0 + reg; /* JMP *reg */
168
bytes[i++] = 0xcc;
169
170
return thunk + offset;
171
}
172
173
static void its_pages_protect(struct its_array *pages)
174
{
175
for (int i = 0; i < pages->num; i++) {
176
void *page = pages->pages[i];
177
execmem_restore_rox(page, PAGE_SIZE);
178
}
179
}
180
181
static void its_fini_core(void)
182
{
183
if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
184
its_pages_protect(&its_pages);
185
kfree(its_pages.pages);
186
}
187
188
#ifdef CONFIG_MODULES
189
void its_init_mod(struct module *mod)
190
{
191
if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
192
return;
193
194
mutex_lock(&text_mutex);
195
its_mod = mod;
196
its_page = NULL;
197
}
198
199
void its_fini_mod(struct module *mod)
200
{
201
if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
202
return;
203
204
WARN_ON_ONCE(its_mod != mod);
205
206
its_mod = NULL;
207
its_page = NULL;
208
mutex_unlock(&text_mutex);
209
210
if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
211
its_pages_protect(&mod->arch.its_pages);
212
}
213
214
void its_free_mod(struct module *mod)
215
{
216
if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
217
return;
218
219
for (int i = 0; i < mod->arch.its_pages.num; i++) {
220
void *page = mod->arch.its_pages.pages[i];
221
execmem_free(page);
222
}
223
kfree(mod->arch.its_pages.pages);
224
}
225
#endif /* CONFIG_MODULES */
226
227
static void *its_alloc(void)
228
{
229
struct its_array *pages = &its_pages;
230
void *page;
231
232
#ifdef CONFIG_MODULES
233
if (its_mod)
234
pages = &its_mod->arch.its_pages;
235
#endif
236
237
page = __its_alloc(pages);
238
if (!page)
239
return NULL;
240
241
if (pages == &its_pages)
242
set_memory_x((unsigned long)page, 1);
243
244
return page;
245
}
246
247
static void *its_allocate_thunk(int reg)
248
{
249
int size = 3 + (reg / 8);
250
void *thunk;
251
252
#ifdef CONFIG_FINEIBT
253
/*
254
* The ITS thunk contains an indirect jump and an int3 instruction so
255
* its size is 3 or 4 bytes depending on the register used. If CFI
256
* paranoid is used then 3 extra bytes are added in the ITS thunk to
257
* complete the fineibt_paranoid caller sequence.
258
*/
259
if (cfi_paranoid)
260
size += 3;
261
#endif
262
263
if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
264
its_page = its_alloc();
265
if (!its_page) {
266
pr_err("ITS page allocation failed\n");
267
return NULL;
268
}
269
memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
270
its_offset = 32;
271
}
272
273
/*
274
* If the indirect branch instruction will be in the lower half
275
* of a cacheline, then update the offset to reach the upper half.
276
*/
277
if ((its_offset + size - 1) % 64 < 32)
278
its_offset = ((its_offset - 1) | 0x3F) + 33;
279
280
thunk = its_page + its_offset;
281
its_offset += size;
282
283
return its_init_thunk(thunk, reg);
284
}
285
286
u8 *its_static_thunk(int reg)
287
{
288
u8 *thunk = __x86_indirect_its_thunk_array[reg];
289
290
#ifdef CONFIG_FINEIBT
291
/* Paranoid thunk starts 2 bytes before */
292
if (cfi_paranoid)
293
return thunk - 2;
294
#endif
295
return thunk;
296
}
297
298
#else
299
static inline void its_fini_core(void) {}
300
#endif /* CONFIG_MITIGATION_ITS */
301
302
/*
303
* Nomenclature for variable names to simplify and clarify this code and ease
304
* any potential staring at it:
305
*
306
* @instr: source address of the original instructions in the kernel text as
307
* generated by the compiler.
308
*
309
* @buf: temporary buffer on which the patching operates. This buffer is
310
* eventually text-poked into the kernel image.
311
*
312
* @replacement/@repl: pointer to the opcodes which are replacing @instr, located
313
* in the .altinstr_replacement section.
314
*/
315
316
/*
317
* Fill the buffer with a single effective instruction of size @len.
318
*
319
* In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
320
* for every single-byte NOP, try to generate the maximally available NOP of
321
* size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
322
* each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
323
* *jump* over instead of executing long and daft NOPs.
324
*/
325
static void add_nop(u8 *buf, unsigned int len)
326
{
327
u8 *target = buf + len;
328
329
if (!len)
330
return;
331
332
if (len <= ASM_NOP_MAX) {
333
memcpy(buf, x86_nops[len], len);
334
return;
335
}
336
337
if (len < 128) {
338
__text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
339
buf += JMP8_INSN_SIZE;
340
} else {
341
__text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
342
buf += JMP32_INSN_SIZE;
343
}
344
345
for (;buf < target; buf++)
346
*buf = INT3_INSN_OPCODE;
347
}
348
349
/*
350
* Find the offset of the first non-NOP instruction starting at @offset
351
* but no further than @len.
352
*/
353
static int skip_nops(u8 *buf, int offset, int len)
354
{
355
struct insn insn;
356
357
for (; offset < len; offset += insn.length) {
358
if (insn_decode_kernel(&insn, &buf[offset]))
359
break;
360
361
if (!insn_is_nop(&insn))
362
break;
363
}
364
365
return offset;
366
}
367
368
/*
369
* "noinline" to cause control flow change and thus invalidate I$ and
370
* cause refetch after modification.
371
*/
372
static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
373
{
374
for (int next, i = 0; i < len; i = next) {
375
struct insn insn;
376
377
if (insn_decode_kernel(&insn, &buf[i]))
378
return;
379
380
next = i + insn.length;
381
382
if (insn_is_nop(&insn)) {
383
int nop = i;
384
385
/* Has the NOP already been optimized? */
386
if (i + insn.length == len)
387
return;
388
389
next = skip_nops(buf, next, len);
390
391
add_nop(buf + nop, next - nop);
392
DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
393
}
394
}
395
}
396
397
/*
398
* In this context, "source" is where the instructions are placed in the
399
* section .altinstr_replacement, for example during kernel build by the
400
* toolchain.
401
* "Destination" is where the instructions are being patched in by this
402
* machinery.
403
*
404
* The source offset is:
405
*
406
* src_imm = target - src_next_ip (1)
407
*
408
* and the target offset is:
409
*
410
* dst_imm = target - dst_next_ip (2)
411
*
412
* so rework (1) as an expression for target like:
413
*
414
* target = src_imm + src_next_ip (1a)
415
*
416
* and substitute in (2) to get:
417
*
418
* dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
419
*
420
* Now, since the instruction stream is 'identical' at src and dst (it
421
* is being copied after all) it can be stated that:
422
*
423
* src_next_ip = src + ip_offset
424
* dst_next_ip = dst + ip_offset (4)
425
*
426
* Substitute (4) in (3) and observe ip_offset being cancelled out to
427
* obtain:
428
*
429
* dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
430
* = src_imm + src - dst + ip_offset - ip_offset
431
* = src_imm + src - dst (5)
432
*
433
* IOW, only the relative displacement of the code block matters.
434
*/
435
436
#define apply_reloc_n(n_, p_, d_) \
437
do { \
438
s32 v = *(s##n_ *)(p_); \
439
v += (d_); \
440
BUG_ON((v >> 31) != (v >> (n_-1))); \
441
*(s##n_ *)(p_) = (s##n_)v; \
442
} while (0)
443
444
445
static __always_inline
446
void apply_reloc(int n, void *ptr, uintptr_t diff)
447
{
448
switch (n) {
449
case 1: apply_reloc_n(8, ptr, diff); break;
450
case 2: apply_reloc_n(16, ptr, diff); break;
451
case 4: apply_reloc_n(32, ptr, diff); break;
452
default: BUG();
453
}
454
}
455
456
static __always_inline
457
bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
458
{
459
u8 *target = src + offset;
460
/*
461
* If the target is inside the patched block, it's relative to the
462
* block itself and does not need relocation.
463
*/
464
return (target < src || target > src + src_len);
465
}
466
467
static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
468
{
469
for (int next, i = 0; i < instrlen; i = next) {
470
struct insn insn;
471
472
if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
473
return;
474
475
next = i + insn.length;
476
477
switch (insn.opcode.bytes[0]) {
478
case 0x0f:
479
if (insn.opcode.bytes[1] < 0x80 ||
480
insn.opcode.bytes[1] > 0x8f)
481
break;
482
483
fallthrough; /* Jcc.d32 */
484
case 0x70 ... 0x7f: /* Jcc.d8 */
485
case JMP8_INSN_OPCODE:
486
case JMP32_INSN_OPCODE:
487
case CALL_INSN_OPCODE:
488
if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
489
apply_reloc(insn.immediate.nbytes,
490
buf + i + insn_offset_immediate(&insn),
491
repl - instr);
492
}
493
494
/*
495
* Where possible, convert JMP.d32 into JMP.d8.
496
*/
497
if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
498
s32 imm = insn.immediate.value;
499
imm += repl - instr;
500
imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
501
if ((imm >> 31) == (imm >> 7)) {
502
buf[i+0] = JMP8_INSN_OPCODE;
503
buf[i+1] = (s8)imm;
504
505
memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
506
}
507
}
508
break;
509
}
510
511
if (insn_rip_relative(&insn)) {
512
if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
513
apply_reloc(insn.displacement.nbytes,
514
buf + i + insn_offset_displacement(&insn),
515
repl - instr);
516
}
517
}
518
}
519
}
520
521
void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
522
{
523
__apply_relocation(buf, instr, instrlen, repl, repl_len);
524
optimize_nops(instr, buf, instrlen);
525
}
526
527
/* Low-level backend functions usable from alternative code replacements. */
528
DEFINE_ASM_FUNC(nop_func, "", .entry.text);
529
EXPORT_SYMBOL_GPL(nop_func);
530
531
noinstr void BUG_func(void)
532
{
533
BUG();
534
}
535
EXPORT_SYMBOL(BUG_func);
536
537
#define CALL_RIP_REL_OPCODE 0xff
538
#define CALL_RIP_REL_MODRM 0x15
539
540
/*
541
* Rewrite the "call BUG_func" replacement to point to the target of the
542
* indirect pv_ops call "call *disp(%ip)".
543
*/
544
static unsigned int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
545
{
546
void *target, *bug = &BUG_func;
547
s32 disp;
548
549
if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
550
pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
551
BUG();
552
}
553
554
if (a->instrlen != 6 ||
555
instr[0] != CALL_RIP_REL_OPCODE ||
556
instr[1] != CALL_RIP_REL_MODRM) {
557
pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
558
BUG();
559
}
560
561
/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
562
disp = *(s32 *)(instr + 2);
563
#ifdef CONFIG_X86_64
564
/* ff 15 00 00 00 00 call *0x0(%rip) */
565
/* target address is stored at "next instruction + disp". */
566
target = *(void **)(instr + a->instrlen + disp);
567
#else
568
/* ff 15 00 00 00 00 call *0x0 */
569
/* target address is stored at disp. */
570
target = *(void **)disp;
571
#endif
572
if (!target)
573
target = bug;
574
575
/* (BUG_func - .) + (target - BUG_func) := target - . */
576
*(s32 *)(insn_buff + 1) += target - bug;
577
578
if (target == &nop_func)
579
return 0;
580
581
return 5;
582
}
583
584
static inline u8 * instr_va(struct alt_instr *i)
585
{
586
return (u8 *)&i->instr_offset + i->instr_offset;
587
}
588
589
/*
590
* Replace instructions with better alternatives for this CPU type. This runs
591
* before SMP is initialized to avoid SMP problems with self modifying code.
592
* This implies that asymmetric systems where APs have less capabilities than
593
* the boot processor are not handled. Tough. Make sure you disable such
594
* features by hand.
595
*
596
* Marked "noinline" to cause control flow change and thus insn cache
597
* to refetch changed I$ lines.
598
*/
599
void __init_or_module noinline apply_alternatives(struct alt_instr *start,
600
struct alt_instr *end)
601
{
602
u8 insn_buff[MAX_PATCH_LEN];
603
u8 *instr, *replacement;
604
struct alt_instr *a, *b;
605
606
DPRINTK(ALT, "alt table %px, -> %px", start, end);
607
608
/*
609
* KASAN_SHADOW_START is defined using
610
* cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
611
* During the process, KASAN becomes confused seeing partial LA57
612
* conversion and triggers a false-positive out-of-bound report.
613
*
614
* Disable KASAN until the patching is complete.
615
*/
616
kasan_disable_current();
617
618
/*
619
* The scan order should be from start to end. A later scanned
620
* alternative code can overwrite previously scanned alternative code.
621
* Some kernel functions (e.g. memcpy, memset, etc) use this order to
622
* patch code.
623
*
624
* So be careful if you want to change the scan order to any other
625
* order.
626
*/
627
for (a = start; a < end; a++) {
628
unsigned int insn_buff_sz = 0;
629
630
/*
631
* In case of nested ALTERNATIVE()s the outer alternative might
632
* add more padding. To ensure consistent patching find the max
633
* padding for all alt_instr entries for this site (nested
634
* alternatives result in consecutive entries).
635
*/
636
for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
637
u8 len = max(a->instrlen, b->instrlen);
638
a->instrlen = b->instrlen = len;
639
}
640
641
instr = instr_va(a);
642
replacement = (u8 *)&a->repl_offset + a->repl_offset;
643
BUG_ON(a->instrlen > sizeof(insn_buff));
644
BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
645
646
/*
647
* Patch if either:
648
* - feature is present
649
* - feature not present but ALT_FLAG_NOT is set to mean,
650
* patch if feature is *NOT* present.
651
*/
652
if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
653
memcpy(insn_buff, instr, a->instrlen);
654
optimize_nops(instr, insn_buff, a->instrlen);
655
text_poke_early(instr, insn_buff, a->instrlen);
656
continue;
657
}
658
659
DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
660
a->cpuid >> 5,
661
a->cpuid & 0x1f,
662
instr, instr, a->instrlen,
663
replacement, a->replacementlen, a->flags);
664
665
memcpy(insn_buff, replacement, a->replacementlen);
666
insn_buff_sz = a->replacementlen;
667
668
if (a->flags & ALT_FLAG_DIRECT_CALL)
669
insn_buff_sz = alt_replace_call(instr, insn_buff, a);
670
671
for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
672
insn_buff[insn_buff_sz] = 0x90;
673
674
text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
675
676
DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr);
677
DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
678
DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
679
680
text_poke_early(instr, insn_buff, insn_buff_sz);
681
}
682
683
kasan_enable_current();
684
}
685
686
static inline bool is_jcc32(struct insn *insn)
687
{
688
/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
689
return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
690
}
691
692
#if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
693
694
/*
695
* [CS]{,3} CALL/JMP *%\reg [INT3]*
696
*/
697
static int emit_indirect(int op, int reg, u8 *bytes, int len)
698
{
699
int cs = 0, bp = 0;
700
int i = 0;
701
u8 modrm;
702
703
/*
704
* Set @len to the excess bytes after writing the instruction.
705
*/
706
len -= 2 + (reg >= 8);
707
WARN_ON_ONCE(len < 0);
708
709
switch (op) {
710
case CALL_INSN_OPCODE:
711
modrm = 0x10; /* Reg = 2; CALL r/m */
712
/*
713
* Additional NOP is better than prefix decode penalty.
714
*/
715
if (len <= 3)
716
cs = len;
717
break;
718
719
case JMP32_INSN_OPCODE:
720
modrm = 0x20; /* Reg = 4; JMP r/m */
721
bp = len;
722
break;
723
724
default:
725
WARN_ON_ONCE(1);
726
return -1;
727
}
728
729
while (cs--)
730
bytes[i++] = 0x2e; /* CS-prefix */
731
732
if (reg >= 8) {
733
bytes[i++] = 0x41; /* REX.B prefix */
734
reg -= 8;
735
}
736
737
modrm |= 0xc0; /* Mod = 3 */
738
modrm += reg;
739
740
bytes[i++] = 0xff; /* opcode */
741
bytes[i++] = modrm;
742
743
while (bp--)
744
bytes[i++] = 0xcc; /* INT3 */
745
746
return i;
747
}
748
749
static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
750
void *call_dest, void *jmp_dest)
751
{
752
u8 op = insn->opcode.bytes[0];
753
int i = 0;
754
755
/*
756
* Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
757
* tail-calls. Deal with them.
758
*/
759
if (is_jcc32(insn)) {
760
bytes[i++] = op;
761
op = insn->opcode.bytes[1];
762
goto clang_jcc;
763
}
764
765
if (insn->length == 6)
766
bytes[i++] = 0x2e; /* CS-prefix */
767
768
switch (op) {
769
case CALL_INSN_OPCODE:
770
__text_gen_insn(bytes+i, op, addr+i,
771
call_dest,
772
CALL_INSN_SIZE);
773
i += CALL_INSN_SIZE;
774
break;
775
776
case JMP32_INSN_OPCODE:
777
clang_jcc:
778
__text_gen_insn(bytes+i, op, addr+i,
779
jmp_dest,
780
JMP32_INSN_SIZE);
781
i += JMP32_INSN_SIZE;
782
break;
783
784
default:
785
WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
786
return -1;
787
}
788
789
WARN_ON_ONCE(i != insn->length);
790
791
return i;
792
}
793
794
static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
795
{
796
return __emit_trampoline(addr, insn, bytes,
797
__x86_indirect_call_thunk_array[reg],
798
__x86_indirect_jump_thunk_array[reg]);
799
}
800
801
#ifdef CONFIG_MITIGATION_ITS
802
static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
803
{
804
u8 *thunk = __x86_indirect_its_thunk_array[reg];
805
u8 *tmp = its_allocate_thunk(reg);
806
807
if (tmp)
808
thunk = tmp;
809
810
return __emit_trampoline(addr, insn, bytes, thunk, thunk);
811
}
812
813
/* Check if an indirect branch is at ITS-unsafe address */
814
static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
815
{
816
if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
817
return false;
818
819
/* Indirect branch opcode is 2 or 3 bytes depending on reg */
820
addr += 1 + reg / 8;
821
822
/* Lower-half of the cacheline? */
823
return !(addr & 0x20);
824
}
825
#else /* CONFIG_MITIGATION_ITS */
826
827
#ifdef CONFIG_FINEIBT
828
static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
829
{
830
return false;
831
}
832
#endif
833
834
#endif /* CONFIG_MITIGATION_ITS */
835
836
/*
837
* Rewrite the compiler generated retpoline thunk calls.
838
*
839
* For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
840
* indirect instructions, avoiding the extra indirection.
841
*
842
* For example, convert:
843
*
844
* CALL __x86_indirect_thunk_\reg
845
*
846
* into:
847
*
848
* CALL *%\reg
849
*
850
* It also tries to inline spectre_v2=retpoline,lfence when size permits.
851
*/
852
static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
853
{
854
retpoline_thunk_t *target;
855
int reg, ret, i = 0;
856
u8 op, cc;
857
858
target = addr + insn->length + insn->immediate.value;
859
reg = target - __x86_indirect_thunk_array;
860
861
if (WARN_ON_ONCE(reg & ~0xf))
862
return -1;
863
864
/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
865
BUG_ON(reg == 4);
866
867
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
868
!cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
869
if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
870
return emit_call_track_retpoline(addr, insn, reg, bytes);
871
872
return -1;
873
}
874
875
op = insn->opcode.bytes[0];
876
877
/*
878
* Convert:
879
*
880
* Jcc.d32 __x86_indirect_thunk_\reg
881
*
882
* into:
883
*
884
* Jncc.d8 1f
885
* [ LFENCE ]
886
* JMP *%\reg
887
* [ NOP ]
888
* 1:
889
*/
890
if (is_jcc32(insn)) {
891
cc = insn->opcode.bytes[1] & 0xf;
892
cc ^= 1; /* invert condition */
893
894
bytes[i++] = 0x70 + cc; /* Jcc.d8 */
895
bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
896
897
/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
898
op = JMP32_INSN_OPCODE;
899
}
900
901
/*
902
* For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
903
*/
904
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
905
bytes[i++] = 0x0f;
906
bytes[i++] = 0xae;
907
bytes[i++] = 0xe8; /* LFENCE */
908
}
909
910
#ifdef CONFIG_MITIGATION_ITS
911
/*
912
* Check if the address of last byte of emitted-indirect is in
913
* lower-half of the cacheline. Such branches need ITS mitigation.
914
*/
915
if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
916
return emit_its_trampoline(addr, insn, reg, bytes);
917
#endif
918
919
ret = emit_indirect(op, reg, bytes + i, insn->length - i);
920
if (ret < 0)
921
return ret;
922
i += ret;
923
924
for (; i < insn->length;)
925
bytes[i++] = BYTES_NOP1;
926
927
return i;
928
}
929
930
/*
931
* Generated by 'objtool --retpoline'.
932
*/
933
void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
934
{
935
s32 *s;
936
937
for (s = start; s < end; s++) {
938
void *addr = (void *)s + *s;
939
struct insn insn;
940
int len, ret;
941
u8 bytes[16];
942
u8 op1, op2;
943
u8 *dest;
944
945
ret = insn_decode_kernel(&insn, addr);
946
if (WARN_ON_ONCE(ret < 0))
947
continue;
948
949
op1 = insn.opcode.bytes[0];
950
op2 = insn.opcode.bytes[1];
951
952
switch (op1) {
953
case 0x70 ... 0x7f: /* Jcc.d8 */
954
/* See cfi_paranoid. */
955
WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
956
continue;
957
958
case CALL_INSN_OPCODE:
959
case JMP32_INSN_OPCODE:
960
/* Check for cfi_paranoid + ITS */
961
dest = addr + insn.length + insn.immediate.value;
962
if (dest[-1] == 0xd6 && (dest[0] & 0xf0) == 0x70) {
963
WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
964
continue;
965
}
966
break;
967
968
case 0x0f: /* escape */
969
if (op2 >= 0x80 && op2 <= 0x8f)
970
break;
971
fallthrough;
972
default:
973
WARN_ON_ONCE(1);
974
continue;
975
}
976
977
DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
978
addr, addr, insn.length,
979
addr + insn.length + insn.immediate.value);
980
981
len = patch_retpoline(addr, &insn, bytes);
982
if (len == insn.length) {
983
optimize_nops(addr, bytes, len);
984
DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr);
985
DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
986
text_poke_early(addr, bytes, len);
987
}
988
}
989
}
990
991
#ifdef CONFIG_MITIGATION_RETHUNK
992
993
bool cpu_wants_rethunk(void)
994
{
995
return cpu_feature_enabled(X86_FEATURE_RETHUNK);
996
}
997
998
bool cpu_wants_rethunk_at(void *addr)
999
{
1000
if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
1001
return false;
1002
if (x86_return_thunk != its_return_thunk)
1003
return true;
1004
1005
return !((unsigned long)addr & 0x20);
1006
}
1007
1008
/*
1009
* Rewrite the compiler generated return thunk tail-calls.
1010
*
1011
* For example, convert:
1012
*
1013
* JMP __x86_return_thunk
1014
*
1015
* into:
1016
*
1017
* RET
1018
*/
1019
static int patch_return(void *addr, struct insn *insn, u8 *bytes)
1020
{
1021
int i = 0;
1022
1023
/* Patch the custom return thunks... */
1024
if (cpu_wants_rethunk_at(addr)) {
1025
i = JMP32_INSN_SIZE;
1026
__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
1027
} else {
1028
/* ... or patch them out if not needed. */
1029
bytes[i++] = RET_INSN_OPCODE;
1030
}
1031
1032
for (; i < insn->length;)
1033
bytes[i++] = INT3_INSN_OPCODE;
1034
return i;
1035
}
1036
1037
void __init_or_module noinline apply_returns(s32 *start, s32 *end)
1038
{
1039
s32 *s;
1040
1041
if (cpu_wants_rethunk())
1042
static_call_force_reinit();
1043
1044
for (s = start; s < end; s++) {
1045
void *dest = NULL, *addr = (void *)s + *s;
1046
struct insn insn;
1047
int len, ret;
1048
u8 bytes[16];
1049
u8 op;
1050
1051
ret = insn_decode_kernel(&insn, addr);
1052
if (WARN_ON_ONCE(ret < 0))
1053
continue;
1054
1055
op = insn.opcode.bytes[0];
1056
if (op == JMP32_INSN_OPCODE)
1057
dest = addr + insn.length + insn.immediate.value;
1058
1059
if (__static_call_fixup(addr, op, dest) ||
1060
WARN_ONCE(dest != &__x86_return_thunk,
1061
"missing return thunk: %pS-%pS: %*ph",
1062
addr, dest, 5, addr))
1063
continue;
1064
1065
DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
1066
addr, addr, insn.length,
1067
addr + insn.length + insn.immediate.value);
1068
1069
len = patch_return(addr, &insn, bytes);
1070
if (len == insn.length) {
1071
DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr);
1072
DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
1073
text_poke_early(addr, bytes, len);
1074
}
1075
}
1076
}
1077
#else /* !CONFIG_MITIGATION_RETHUNK: */
1078
void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1079
#endif /* !CONFIG_MITIGATION_RETHUNK */
1080
1081
#else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1082
1083
void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
1084
void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1085
1086
#endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1087
1088
#ifdef CONFIG_X86_KERNEL_IBT
1089
1090
__noendbr bool is_endbr(u32 *val)
1091
{
1092
u32 endbr;
1093
1094
__get_kernel_nofault(&endbr, val, u32, Efault);
1095
return __is_endbr(endbr);
1096
1097
Efault:
1098
return false;
1099
}
1100
1101
#ifdef CONFIG_FINEIBT
1102
1103
static __noendbr bool exact_endbr(u32 *val)
1104
{
1105
u32 endbr;
1106
1107
__get_kernel_nofault(&endbr, val, u32, Efault);
1108
return endbr == gen_endbr();
1109
1110
Efault:
1111
return false;
1112
}
1113
1114
#endif
1115
1116
static void poison_cfi(void *addr);
1117
1118
static void __init_or_module poison_endbr(void *addr)
1119
{
1120
u32 poison = gen_endbr_poison();
1121
1122
if (WARN_ON_ONCE(!is_endbr(addr)))
1123
return;
1124
1125
DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1126
1127
/*
1128
* When we have IBT, the lack of ENDBR will trigger #CP
1129
*/
1130
DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1131
DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1132
text_poke_early(addr, &poison, 4);
1133
}
1134
1135
/*
1136
* Generated by: objtool --ibt
1137
*
1138
* Seal the functions for indirect calls by clobbering the ENDBR instructions
1139
* and the kCFI hash value.
1140
*/
1141
void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1142
{
1143
s32 *s;
1144
1145
for (s = start; s < end; s++) {
1146
void *addr = (void *)s + *s;
1147
1148
poison_endbr(addr);
1149
if (IS_ENABLED(CONFIG_FINEIBT))
1150
poison_cfi(addr - 16);
1151
}
1152
}
1153
1154
#else /* !CONFIG_X86_KERNEL_IBT: */
1155
1156
void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1157
1158
#endif /* !CONFIG_X86_KERNEL_IBT */
1159
1160
#ifdef CONFIG_CFI_AUTO_DEFAULT
1161
# define __CFI_DEFAULT CFI_AUTO
1162
#elif defined(CONFIG_CFI)
1163
# define __CFI_DEFAULT CFI_KCFI
1164
#else
1165
# define __CFI_DEFAULT CFI_OFF
1166
#endif
1167
1168
enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
1169
static bool cfi_debug __ro_after_init;
1170
1171
#ifdef CONFIG_FINEIBT_BHI
1172
bool cfi_bhi __ro_after_init = false;
1173
#endif
1174
1175
#ifdef CONFIG_CFI
1176
u32 cfi_get_func_hash(void *func)
1177
{
1178
u32 hash;
1179
1180
func -= cfi_get_offset();
1181
switch (cfi_mode) {
1182
case CFI_FINEIBT:
1183
func += 7;
1184
break;
1185
case CFI_KCFI:
1186
func += 1;
1187
break;
1188
default:
1189
return 0;
1190
}
1191
1192
if (get_kernel_nofault(hash, func))
1193
return 0;
1194
1195
return hash;
1196
}
1197
1198
int cfi_get_func_arity(void *func)
1199
{
1200
bhi_thunk *target;
1201
s32 disp;
1202
1203
if (cfi_mode != CFI_FINEIBT && !cfi_bhi)
1204
return 0;
1205
1206
if (get_kernel_nofault(disp, func - 4))
1207
return 0;
1208
1209
target = func + disp;
1210
return target - __bhi_args;
1211
}
1212
#endif
1213
1214
#ifdef CONFIG_FINEIBT
1215
1216
static bool cfi_rand __ro_after_init = true;
1217
static u32 cfi_seed __ro_after_init;
1218
1219
/*
1220
* Re-hash the CFI hash with a boot-time seed while making sure the result is
1221
* not a valid ENDBR instruction.
1222
*/
1223
static u32 cfi_rehash(u32 hash)
1224
{
1225
hash ^= cfi_seed;
1226
while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) {
1227
bool lsb = hash & 1;
1228
hash >>= 1;
1229
if (lsb)
1230
hash ^= 0x80200003;
1231
}
1232
return hash;
1233
}
1234
1235
static __init int cfi_parse_cmdline(char *str)
1236
{
1237
if (!str)
1238
return -EINVAL;
1239
1240
while (str) {
1241
char *next = strchr(str, ',');
1242
if (next) {
1243
*next = 0;
1244
next++;
1245
}
1246
1247
if (!strcmp(str, "auto")) {
1248
cfi_mode = CFI_AUTO;
1249
} else if (!strcmp(str, "off")) {
1250
cfi_mode = CFI_OFF;
1251
cfi_rand = false;
1252
} else if (!strcmp(str, "debug")) {
1253
cfi_debug = true;
1254
} else if (!strcmp(str, "kcfi")) {
1255
cfi_mode = CFI_KCFI;
1256
} else if (!strcmp(str, "fineibt")) {
1257
cfi_mode = CFI_FINEIBT;
1258
} else if (!strcmp(str, "norand")) {
1259
cfi_rand = false;
1260
} else if (!strcmp(str, "warn")) {
1261
pr_alert("CFI: mismatch non-fatal!\n");
1262
cfi_warn = true;
1263
} else if (!strcmp(str, "paranoid")) {
1264
if (cfi_mode == CFI_FINEIBT) {
1265
cfi_paranoid = true;
1266
} else {
1267
pr_err("CFI: ignoring paranoid; depends on fineibt.\n");
1268
}
1269
} else if (!strcmp(str, "bhi")) {
1270
#ifdef CONFIG_FINEIBT_BHI
1271
if (cfi_mode == CFI_FINEIBT) {
1272
cfi_bhi = true;
1273
} else {
1274
pr_err("CFI: ignoring bhi; depends on fineibt.\n");
1275
}
1276
#else
1277
pr_err("CFI: ignoring bhi; depends on FINEIBT_BHI=y.\n");
1278
#endif
1279
} else {
1280
pr_err("CFI: Ignoring unknown option (%s).", str);
1281
}
1282
1283
str = next;
1284
}
1285
1286
return 0;
1287
}
1288
early_param("cfi", cfi_parse_cmdline);
1289
1290
/*
1291
* kCFI FineIBT
1292
*
1293
* __cfi_\func: __cfi_\func:
1294
* movl $0x12345678,%eax // 5 endbr64 // 4
1295
* nop subl $0x12345678,%eax // 5
1296
* nop jne.d32,pn \func+3 // 7
1297
* nop
1298
* nop
1299
* nop
1300
* nop
1301
* nop
1302
* nop
1303
* nop
1304
* nop
1305
* nop
1306
* \func: \func:
1307
* endbr64 nopl -42(%rax)
1308
*
1309
*
1310
* caller: caller:
1311
* movl $(-0x12345678),%r10d // 6 movl $0x12345678,%eax // 5
1312
* addl $-15(%r11),%r10d // 4 lea -0x10(%r11),%r11 // 4
1313
* je 1f // 2 nop5 // 5
1314
* ud2 // 2
1315
* 1: cs call __x86_indirect_thunk_r11 // 6 call *%r11; nop3; // 6
1316
*
1317
*
1318
* Notably, the FineIBT sequences are crafted such that branches are presumed
1319
* non-taken. This is based on Agner Fog's optimization manual, which states:
1320
*
1321
* "Make conditional jumps most often not taken: The efficiency and throughput
1322
* for not-taken branches is better than for taken branches on most
1323
* processors. Therefore, it is good to place the most frequent branch first"
1324
*/
1325
1326
/*
1327
* <fineibt_preamble_start>:
1328
* 0: f3 0f 1e fa endbr64
1329
* 4: 2d 78 56 34 12 sub $0x12345678, %eax
1330
* 9: 2e 0f 85 03 00 00 00 jne,pn 13 <fineibt_preamble_start+0x13>
1331
* 10: 0f 1f 40 d6 nopl -0x2a(%rax)
1332
*
1333
* Note that the JNE target is the 0xD6 byte inside the NOPL, this decodes as
1334
* UDB on x86_64 and raises #UD.
1335
*/
1336
asm( ".pushsection .rodata \n"
1337
"fineibt_preamble_start: \n"
1338
" endbr64 \n"
1339
" subl $0x12345678, %eax \n"
1340
"fineibt_preamble_bhi: \n"
1341
" cs jne.d32 fineibt_preamble_start+0x13 \n"
1342
"#fineibt_func: \n"
1343
" nopl -42(%rax) \n"
1344
"fineibt_preamble_end: \n"
1345
".popsection\n"
1346
);
1347
1348
extern u8 fineibt_preamble_start[];
1349
extern u8 fineibt_preamble_bhi[];
1350
extern u8 fineibt_preamble_end[];
1351
1352
#define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1353
#define fineibt_preamble_bhi (fineibt_preamble_bhi - fineibt_preamble_start)
1354
#define fineibt_preamble_ud 0x13
1355
#define fineibt_preamble_hash 5
1356
1357
/*
1358
* <fineibt_caller_start>:
1359
* 0: b8 78 56 34 12 mov $0x12345678, %eax
1360
* 5: 4d 8d 5b f0 lea -0x10(%r11), %r11
1361
* 9: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
1362
*/
1363
asm( ".pushsection .rodata \n"
1364
"fineibt_caller_start: \n"
1365
" movl $0x12345678, %eax \n"
1366
" lea -0x10(%r11), %r11 \n"
1367
ASM_NOP5
1368
"fineibt_caller_end: \n"
1369
".popsection \n"
1370
);
1371
1372
extern u8 fineibt_caller_start[];
1373
extern u8 fineibt_caller_end[];
1374
1375
#define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1376
#define fineibt_caller_hash 1
1377
1378
#define fineibt_caller_jmp (fineibt_caller_size - 2)
1379
1380
/*
1381
* Since FineIBT does hash validation on the callee side it is prone to
1382
* circumvention attacks where a 'naked' ENDBR instruction exists that
1383
* is not part of the fineibt_preamble sequence.
1384
*
1385
* Notably the x86 entry points must be ENDBR and equally cannot be
1386
* fineibt_preamble.
1387
*
1388
* The fineibt_paranoid caller sequence adds additional caller side
1389
* hash validation. This stops such circumvention attacks dead, but at the cost
1390
* of adding a load.
1391
*
1392
* <fineibt_paranoid_start>:
1393
* 0: b8 78 56 34 12 mov $0x12345678, %eax
1394
* 5: 41 3b 43 f5 cmp -0x11(%r11), %eax
1395
* 9: 2e 4d 8d 5b <f0> cs lea -0x10(%r11), %r11
1396
* e: 75 fd jne d <fineibt_paranoid_start+0xd>
1397
* 10: 41 ff d3 call *%r11
1398
* 13: 90 nop
1399
*
1400
* Notably LEA does not modify flags and can be reordered with the CMP,
1401
* avoiding a dependency. Again, using a non-taken (backwards) branch
1402
* for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the
1403
* Jcc.d8, causing #UD.
1404
*/
1405
asm( ".pushsection .rodata \n"
1406
"fineibt_paranoid_start: \n"
1407
" mov $0x12345678, %eax \n"
1408
" cmpl -11(%r11), %eax \n"
1409
" cs lea -0x10(%r11), %r11 \n"
1410
"#fineibt_caller_size: \n"
1411
" jne fineibt_paranoid_start+0xd \n"
1412
"fineibt_paranoid_ind: \n"
1413
" cs call *%r11 \n"
1414
"fineibt_paranoid_end: \n"
1415
".popsection \n"
1416
);
1417
1418
extern u8 fineibt_paranoid_start[];
1419
extern u8 fineibt_paranoid_ind[];
1420
extern u8 fineibt_paranoid_end[];
1421
1422
#define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start)
1423
#define fineibt_paranoid_ind (fineibt_paranoid_ind - fineibt_paranoid_start)
1424
#define fineibt_paranoid_ud 0xd
1425
1426
static u32 decode_preamble_hash(void *addr, int *reg)
1427
{
1428
u8 *p = addr;
1429
1430
/* b8+reg 78 56 34 12 movl $0x12345678,\reg */
1431
if (p[0] >= 0xb8 && p[0] < 0xc0) {
1432
if (reg)
1433
*reg = p[0] - 0xb8;
1434
return *(u32 *)(addr + 1);
1435
}
1436
1437
return 0; /* invalid hash value */
1438
}
1439
1440
static u32 decode_caller_hash(void *addr)
1441
{
1442
u8 *p = addr;
1443
1444
/* 41 ba 88 a9 cb ed mov $(-0x12345678),%r10d */
1445
if (p[0] == 0x41 && p[1] == 0xba)
1446
return -*(u32 *)(addr + 2);
1447
1448
/* e8 0c 88 a9 cb ed jmp.d8 +12 */
1449
if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1450
return -*(u32 *)(addr + 2);
1451
1452
return 0; /* invalid hash value */
1453
}
1454
1455
/* .retpoline_sites */
1456
static int cfi_disable_callers(s32 *start, s32 *end)
1457
{
1458
/*
1459
* Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1460
* in tact for later usage. Also see decode_caller_hash() and
1461
* cfi_rewrite_callers().
1462
*/
1463
const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1464
s32 *s;
1465
1466
for (s = start; s < end; s++) {
1467
void *addr = (void *)s + *s;
1468
u32 hash;
1469
1470
addr -= fineibt_caller_size;
1471
hash = decode_caller_hash(addr);
1472
if (!hash) /* nocfi callers */
1473
continue;
1474
1475
text_poke_early(addr, jmp, 2);
1476
}
1477
1478
return 0;
1479
}
1480
1481
static int cfi_enable_callers(s32 *start, s32 *end)
1482
{
1483
/*
1484
* Re-enable kCFI, undo what cfi_disable_callers() did.
1485
*/
1486
const u8 mov[] = { 0x41, 0xba };
1487
s32 *s;
1488
1489
for (s = start; s < end; s++) {
1490
void *addr = (void *)s + *s;
1491
u32 hash;
1492
1493
addr -= fineibt_caller_size;
1494
hash = decode_caller_hash(addr);
1495
if (!hash) /* nocfi callers */
1496
continue;
1497
1498
text_poke_early(addr, mov, 2);
1499
}
1500
1501
return 0;
1502
}
1503
1504
/* .cfi_sites */
1505
static int cfi_rand_preamble(s32 *start, s32 *end)
1506
{
1507
s32 *s;
1508
1509
for (s = start; s < end; s++) {
1510
void *addr = (void *)s + *s;
1511
u32 hash;
1512
1513
hash = decode_preamble_hash(addr, NULL);
1514
if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1515
addr, addr, 5, addr))
1516
return -EINVAL;
1517
1518
hash = cfi_rehash(hash);
1519
text_poke_early(addr + 1, &hash, 4);
1520
}
1521
1522
return 0;
1523
}
1524
1525
/*
1526
* Inline the bhi-arity 1 case:
1527
*
1528
* __cfi_foo:
1529
* 0: f3 0f 1e fa endbr64
1530
* 4: 2d 78 56 34 12 sub $0x12345678, %eax
1531
* 9: 49 0f 45 fa cmovne %rax, %rdi
1532
* d: 2e 75 03 jne,pn foo+0x3
1533
*
1534
* foo:
1535
* 10: 0f 1f 40 <d6> nopl -42(%rax)
1536
*
1537
* Notably, this scheme is incompatible with permissive CFI
1538
* because the CMOVcc is unconditional and RDI will have been
1539
* clobbered.
1540
*/
1541
asm( ".pushsection .rodata \n"
1542
"fineibt_bhi1_start: \n"
1543
" cmovne %rax, %rdi \n"
1544
" cs jne fineibt_bhi1_func + 0x3 \n"
1545
"fineibt_bhi1_func: \n"
1546
" nopl -42(%rax) \n"
1547
"fineibt_bhi1_end: \n"
1548
".popsection \n"
1549
);
1550
1551
extern u8 fineibt_bhi1_start[];
1552
extern u8 fineibt_bhi1_end[];
1553
1554
#define fineibt_bhi1_size (fineibt_bhi1_end - fineibt_bhi1_start)
1555
1556
static void cfi_fineibt_bhi_preamble(void *addr, int arity)
1557
{
1558
u8 bytes[MAX_INSN_SIZE];
1559
1560
if (!arity)
1561
return;
1562
1563
if (!cfi_warn && arity == 1) {
1564
text_poke_early(addr + fineibt_preamble_bhi,
1565
fineibt_bhi1_start, fineibt_bhi1_size);
1566
return;
1567
}
1568
1569
/*
1570
* Replace the bytes at fineibt_preamble_bhi with a CALL instruction
1571
* that lines up exactly with the end of the preamble, such that the
1572
* return address will be foo+0.
1573
*
1574
* __cfi_foo:
1575
* 0: f3 0f 1e fa endbr64
1576
* 4: 2d 78 56 34 12 sub $0x12345678, %eax
1577
* 9: 2e 2e e8 DD DD DD DD cs cs call __bhi_args[arity]
1578
*/
1579
bytes[0] = 0x2e;
1580
bytes[1] = 0x2e;
1581
__text_gen_insn(bytes + 2, CALL_INSN_OPCODE,
1582
addr + fineibt_preamble_bhi + 2,
1583
__bhi_args[arity], CALL_INSN_SIZE);
1584
1585
text_poke_early(addr + fineibt_preamble_bhi, bytes, 7);
1586
}
1587
1588
static int cfi_rewrite_preamble(s32 *start, s32 *end)
1589
{
1590
s32 *s;
1591
1592
for (s = start; s < end; s++) {
1593
void *addr = (void *)s + *s;
1594
int arity;
1595
u32 hash;
1596
1597
/*
1598
* When the function doesn't start with ENDBR the compiler will
1599
* have determined there are no indirect calls to it and we
1600
* don't need no CFI either.
1601
*/
1602
if (!is_endbr(addr + 16))
1603
continue;
1604
1605
hash = decode_preamble_hash(addr, &arity);
1606
if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1607
addr, addr, 5, addr))
1608
return -EINVAL;
1609
1610
text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1611
WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1612
text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1613
1614
WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity,
1615
"kCFI preamble has wrong register at: %pS %*ph\n",
1616
addr, 5, addr);
1617
1618
if (cfi_bhi)
1619
cfi_fineibt_bhi_preamble(addr, arity);
1620
}
1621
1622
return 0;
1623
}
1624
1625
static void cfi_rewrite_endbr(s32 *start, s32 *end)
1626
{
1627
s32 *s;
1628
1629
for (s = start; s < end; s++) {
1630
void *addr = (void *)s + *s;
1631
1632
if (!exact_endbr(addr + 16))
1633
continue;
1634
1635
poison_endbr(addr + 16);
1636
}
1637
}
1638
1639
/* .retpoline_sites */
1640
static int cfi_rand_callers(s32 *start, s32 *end)
1641
{
1642
s32 *s;
1643
1644
for (s = start; s < end; s++) {
1645
void *addr = (void *)s + *s;
1646
u32 hash;
1647
1648
addr -= fineibt_caller_size;
1649
hash = decode_caller_hash(addr);
1650
if (hash) {
1651
hash = -cfi_rehash(hash);
1652
text_poke_early(addr + 2, &hash, 4);
1653
}
1654
}
1655
1656
return 0;
1657
}
1658
1659
static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
1660
{
1661
u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2;
1662
1663
#ifdef CONFIG_MITIGATION_ITS
1664
u8 *tmp = its_allocate_thunk(reg);
1665
if (tmp)
1666
thunk = tmp;
1667
#endif
1668
1669
return __emit_trampoline(addr, insn, bytes, thunk, thunk);
1670
}
1671
1672
static int cfi_rewrite_callers(s32 *start, s32 *end)
1673
{
1674
s32 *s;
1675
1676
for (s = start; s < end; s++) {
1677
void *addr = (void *)s + *s;
1678
struct insn insn;
1679
u8 bytes[20];
1680
u32 hash;
1681
int ret;
1682
u8 op;
1683
1684
addr -= fineibt_caller_size;
1685
hash = decode_caller_hash(addr);
1686
if (!hash)
1687
continue;
1688
1689
if (!cfi_paranoid) {
1690
text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1691
WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1692
text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1693
/* rely on apply_retpolines() */
1694
continue;
1695
}
1696
1697
/* cfi_paranoid */
1698
ret = insn_decode_kernel(&insn, addr + fineibt_caller_size);
1699
if (WARN_ON_ONCE(ret < 0))
1700
continue;
1701
1702
op = insn.opcode.bytes[0];
1703
if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) {
1704
WARN_ON_ONCE(1);
1705
continue;
1706
}
1707
1708
memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size);
1709
memcpy(bytes + fineibt_caller_hash, &hash, 4);
1710
1711
if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) {
1712
emit_paranoid_trampoline(addr + fineibt_caller_size,
1713
&insn, 11, bytes + fineibt_caller_size);
1714
} else {
1715
int len = fineibt_paranoid_size - fineibt_paranoid_ind;
1716
ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind, len);
1717
if (WARN_ON_ONCE(ret != len))
1718
continue;
1719
}
1720
1721
text_poke_early(addr, bytes, fineibt_paranoid_size);
1722
}
1723
1724
return 0;
1725
}
1726
1727
#define pr_cfi_debug(X...) if (cfi_debug) pr_info(X)
1728
1729
#define FINEIBT_WARN(_f, _v) \
1730
WARN_ONCE((_f) != (_v), "FineIBT: " #_f " %ld != %d\n", _f, _v)
1731
1732
static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1733
s32 *start_cfi, s32 *end_cfi, bool builtin)
1734
{
1735
int ret;
1736
1737
if (FINEIBT_WARN(fineibt_preamble_size, 20) ||
1738
FINEIBT_WARN(fineibt_preamble_bhi + fineibt_bhi1_size, 20) ||
1739
FINEIBT_WARN(fineibt_caller_size, 14) ||
1740
FINEIBT_WARN(fineibt_paranoid_size, 20))
1741
return;
1742
1743
if (cfi_mode == CFI_AUTO) {
1744
cfi_mode = CFI_KCFI;
1745
if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) {
1746
/*
1747
* FRED has much saner context on exception entry and
1748
* is less easy to take advantage of.
1749
*/
1750
if (!cpu_feature_enabled(X86_FEATURE_FRED))
1751
cfi_paranoid = true;
1752
cfi_mode = CFI_FINEIBT;
1753
}
1754
}
1755
1756
/*
1757
* Rewrite the callers to not use the __cfi_ stubs, such that we might
1758
* rewrite them. This disables all CFI. If this succeeds but any of the
1759
* later stages fails, we're without CFI.
1760
*/
1761
pr_cfi_debug("CFI: disabling all indirect call checking\n");
1762
ret = cfi_disable_callers(start_retpoline, end_retpoline);
1763
if (ret)
1764
goto err;
1765
1766
if (cfi_rand) {
1767
if (builtin) {
1768
cfi_seed = get_random_u32();
1769
cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1770
cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1771
}
1772
pr_cfi_debug("CFI: cfi_seed: 0x%08x\n", cfi_seed);
1773
1774
pr_cfi_debug("CFI: rehashing all preambles\n");
1775
ret = cfi_rand_preamble(start_cfi, end_cfi);
1776
if (ret)
1777
goto err;
1778
1779
pr_cfi_debug("CFI: rehashing all indirect calls\n");
1780
ret = cfi_rand_callers(start_retpoline, end_retpoline);
1781
if (ret)
1782
goto err;
1783
} else {
1784
pr_cfi_debug("CFI: rehashing disabled\n");
1785
}
1786
1787
switch (cfi_mode) {
1788
case CFI_OFF:
1789
if (builtin)
1790
pr_info("CFI: disabled\n");
1791
return;
1792
1793
case CFI_KCFI:
1794
pr_cfi_debug("CFI: re-enabling all indirect call checking\n");
1795
ret = cfi_enable_callers(start_retpoline, end_retpoline);
1796
if (ret)
1797
goto err;
1798
1799
if (builtin)
1800
pr_info("CFI: Using %sretpoline kCFI\n",
1801
cfi_rand ? "rehashed " : "");
1802
return;
1803
1804
case CFI_FINEIBT:
1805
pr_cfi_debug("CFI: adding FineIBT to all preambles\n");
1806
/* place the FineIBT preamble at func()-16 */
1807
ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1808
if (ret)
1809
goto err;
1810
1811
/* rewrite the callers to target func()-16 */
1812
pr_cfi_debug("CFI: rewriting indirect call sites to use FineIBT\n");
1813
ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1814
if (ret)
1815
goto err;
1816
1817
/* now that nobody targets func()+0, remove ENDBR there */
1818
pr_cfi_debug("CFI: removing old endbr insns\n");
1819
cfi_rewrite_endbr(start_cfi, end_cfi);
1820
1821
if (builtin) {
1822
pr_info("Using %sFineIBT%s CFI\n",
1823
cfi_paranoid ? "paranoid " : "",
1824
cfi_bhi ? "+BHI" : "");
1825
}
1826
return;
1827
1828
default:
1829
break;
1830
}
1831
1832
err:
1833
pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1834
}
1835
1836
static inline void poison_hash(void *addr)
1837
{
1838
*(u32 *)addr = 0;
1839
}
1840
1841
static void poison_cfi(void *addr)
1842
{
1843
/*
1844
* Compilers manage to be inconsistent with ENDBR vs __cfi prefixes,
1845
* some (static) functions for which they can determine the address
1846
* is never taken do not get a __cfi prefix, but *DO* get an ENDBR.
1847
*
1848
* As such, these functions will get sealed, but we need to be careful
1849
* to not unconditionally scribble the previous function.
1850
*/
1851
switch (cfi_mode) {
1852
case CFI_FINEIBT:
1853
/*
1854
* FineIBT prefix should start with an ENDBR.
1855
*/
1856
if (!is_endbr(addr))
1857
break;
1858
1859
/*
1860
* __cfi_\func:
1861
* nopl -42(%rax)
1862
* sub $0, %eax
1863
* jne \func+3
1864
* \func:
1865
* nopl -42(%rax)
1866
*/
1867
poison_endbr(addr);
1868
poison_hash(addr + fineibt_preamble_hash);
1869
break;
1870
1871
case CFI_KCFI:
1872
/*
1873
* kCFI prefix should start with a valid hash.
1874
*/
1875
if (!decode_preamble_hash(addr, NULL))
1876
break;
1877
1878
/*
1879
* __cfi_\func:
1880
* movl $0, %eax
1881
* .skip 11, 0x90
1882
*/
1883
poison_hash(addr + 1);
1884
break;
1885
1886
default:
1887
break;
1888
}
1889
}
1890
1891
#define fineibt_prefix_size (fineibt_preamble_size - ENDBR_INSN_SIZE)
1892
1893
/*
1894
* When regs->ip points to a 0xD6 byte in the FineIBT preamble,
1895
* return true and fill out target and type.
1896
*
1897
* We check the preamble by checking for the ENDBR instruction relative to the
1898
* UDB instruction.
1899
*/
1900
static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type)
1901
{
1902
unsigned long addr = regs->ip - fineibt_preamble_ud;
1903
u32 hash;
1904
1905
if (!exact_endbr((void *)addr))
1906
return false;
1907
1908
*target = addr + fineibt_prefix_size;
1909
1910
__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1911
*type = (u32)regs->ax + hash;
1912
1913
/*
1914
* Since regs->ip points to the middle of an instruction; it cannot
1915
* continue with the normal fixup.
1916
*/
1917
regs->ip = *target;
1918
1919
return true;
1920
1921
Efault:
1922
return false;
1923
}
1924
1925
/*
1926
* regs->ip points to one of the UD2 in __bhi_args[].
1927
*/
1928
static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type)
1929
{
1930
unsigned long addr;
1931
u32 hash;
1932
1933
if (!cfi_bhi)
1934
return false;
1935
1936
if (regs->ip < (unsigned long)__bhi_args ||
1937
regs->ip >= (unsigned long)__bhi_args_end)
1938
return false;
1939
1940
/*
1941
* Fetch the return address from the stack, this points to the
1942
* FineIBT preamble. Since the CALL instruction is in the 5 last
1943
* bytes of the preamble, the return address is in fact the target
1944
* address.
1945
*/
1946
__get_kernel_nofault(&addr, regs->sp, unsigned long, Efault);
1947
*target = addr;
1948
1949
addr -= fineibt_prefix_size;
1950
if (!exact_endbr((void *)addr))
1951
return false;
1952
1953
__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1954
*type = (u32)regs->ax + hash;
1955
1956
/*
1957
* The UD2 sites are constructed with a RET immediately following,
1958
* as such the non-fatal case can use the regular fixup.
1959
*/
1960
return true;
1961
1962
Efault:
1963
return false;
1964
}
1965
1966
static bool is_paranoid_thunk(unsigned long addr)
1967
{
1968
u32 thunk;
1969
1970
__get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault);
1971
return (thunk & 0x00FFFFFF) == 0xfd75d6;
1972
1973
Efault:
1974
return false;
1975
}
1976
1977
/*
1978
* regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[]
1979
* sequence, or to UDB + Jcc.d8 for cfi_paranoid + ITS thunk.
1980
*/
1981
static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type)
1982
{
1983
unsigned long addr = regs->ip - fineibt_paranoid_ud;
1984
1985
if (!cfi_paranoid)
1986
return false;
1987
1988
if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) {
1989
*target = regs->r11 + fineibt_prefix_size;
1990
*type = regs->ax;
1991
1992
/*
1993
* Since the trapping instruction is the exact, but LOCK prefixed,
1994
* Jcc.d8 that got us here, the normal fixup will work.
1995
*/
1996
return true;
1997
}
1998
1999
/*
2000
* The cfi_paranoid + ITS thunk combination results in:
2001
*
2002
* 0: b8 78 56 34 12 mov $0x12345678, %eax
2003
* 5: 41 3b 43 f7 cmp -11(%r11), %eax
2004
* a: 2e 3d 8d 5b f0 cs lea -0x10(%r11), %r11
2005
* e: 2e e8 XX XX XX XX cs call __x86_indirect_paranoid_thunk_r11
2006
*
2007
* Where the paranoid_thunk looks like:
2008
*
2009
* 1d: <d6> udb
2010
* __x86_indirect_paranoid_thunk_r11:
2011
* 1e: 75 fd jne 1d
2012
* __x86_indirect_its_thunk_r11:
2013
* 20: 41 ff eb jmp *%r11
2014
* 23: cc int3
2015
*
2016
*/
2017
if (is_paranoid_thunk(regs->ip)) {
2018
*target = regs->r11 + fineibt_prefix_size;
2019
*type = regs->ax;
2020
2021
regs->ip = *target;
2022
return true;
2023
}
2024
2025
return false;
2026
}
2027
2028
bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
2029
{
2030
if (decode_fineibt_paranoid(regs, target, type))
2031
return true;
2032
2033
if (decode_fineibt_bhi(regs, target, type))
2034
return true;
2035
2036
return decode_fineibt_preamble(regs, target, type);
2037
}
2038
2039
#else /* !CONFIG_FINEIBT: */
2040
2041
static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2042
s32 *start_cfi, s32 *end_cfi, bool builtin)
2043
{
2044
if (IS_ENABLED(CONFIG_CFI) && builtin)
2045
pr_info("CFI: Using standard kCFI\n");
2046
}
2047
2048
#ifdef CONFIG_X86_KERNEL_IBT
2049
static void poison_cfi(void *addr) { }
2050
#endif
2051
2052
#endif /* !CONFIG_FINEIBT */
2053
2054
void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2055
s32 *start_cfi, s32 *end_cfi)
2056
{
2057
return __apply_fineibt(start_retpoline, end_retpoline,
2058
start_cfi, end_cfi,
2059
/* .builtin = */ false);
2060
}
2061
2062
#ifdef CONFIG_SMP
2063
static void alternatives_smp_lock(const s32 *start, const s32 *end,
2064
u8 *text, u8 *text_end)
2065
{
2066
const s32 *poff;
2067
2068
for (poff = start; poff < end; poff++) {
2069
u8 *ptr = (u8 *)poff + *poff;
2070
2071
if (!*poff || ptr < text || ptr >= text_end)
2072
continue;
2073
/* turn DS segment override prefix into lock prefix */
2074
if (*ptr == 0x3e)
2075
text_poke(ptr, ((unsigned char []){0xf0}), 1);
2076
}
2077
}
2078
2079
static void alternatives_smp_unlock(const s32 *start, const s32 *end,
2080
u8 *text, u8 *text_end)
2081
{
2082
const s32 *poff;
2083
2084
for (poff = start; poff < end; poff++) {
2085
u8 *ptr = (u8 *)poff + *poff;
2086
2087
if (!*poff || ptr < text || ptr >= text_end)
2088
continue;
2089
/* turn lock prefix into DS segment override prefix */
2090
if (*ptr == 0xf0)
2091
text_poke(ptr, ((unsigned char []){0x3E}), 1);
2092
}
2093
}
2094
2095
struct smp_alt_module {
2096
/* what is this ??? */
2097
struct module *mod;
2098
char *name;
2099
2100
/* ptrs to lock prefixes */
2101
const s32 *locks;
2102
const s32 *locks_end;
2103
2104
/* .text segment, needed to avoid patching init code ;) */
2105
u8 *text;
2106
u8 *text_end;
2107
2108
struct list_head next;
2109
};
2110
static LIST_HEAD(smp_alt_modules);
2111
static bool uniproc_patched = false; /* protected by text_mutex */
2112
2113
void __init_or_module alternatives_smp_module_add(struct module *mod,
2114
char *name,
2115
void *locks, void *locks_end,
2116
void *text, void *text_end)
2117
{
2118
struct smp_alt_module *smp;
2119
2120
mutex_lock(&text_mutex);
2121
if (!uniproc_patched)
2122
goto unlock;
2123
2124
if (num_possible_cpus() == 1)
2125
/* Don't bother remembering, we'll never have to undo it. */
2126
goto smp_unlock;
2127
2128
smp = kzalloc(sizeof(*smp), GFP_KERNEL);
2129
if (NULL == smp)
2130
/* we'll run the (safe but slow) SMP code then ... */
2131
goto unlock;
2132
2133
smp->mod = mod;
2134
smp->name = name;
2135
smp->locks = locks;
2136
smp->locks_end = locks_end;
2137
smp->text = text;
2138
smp->text_end = text_end;
2139
DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
2140
smp->locks, smp->locks_end,
2141
smp->text, smp->text_end, smp->name);
2142
2143
list_add_tail(&smp->next, &smp_alt_modules);
2144
smp_unlock:
2145
alternatives_smp_unlock(locks, locks_end, text, text_end);
2146
unlock:
2147
mutex_unlock(&text_mutex);
2148
}
2149
2150
void __init_or_module alternatives_smp_module_del(struct module *mod)
2151
{
2152
struct smp_alt_module *item;
2153
2154
mutex_lock(&text_mutex);
2155
list_for_each_entry(item, &smp_alt_modules, next) {
2156
if (mod != item->mod)
2157
continue;
2158
list_del(&item->next);
2159
kfree(item);
2160
break;
2161
}
2162
mutex_unlock(&text_mutex);
2163
}
2164
2165
void alternatives_enable_smp(void)
2166
{
2167
struct smp_alt_module *mod;
2168
2169
/* Why bother if there are no other CPUs? */
2170
BUG_ON(num_possible_cpus() == 1);
2171
2172
mutex_lock(&text_mutex);
2173
2174
if (uniproc_patched) {
2175
pr_info("switching to SMP code\n");
2176
BUG_ON(num_online_cpus() != 1);
2177
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
2178
clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
2179
list_for_each_entry(mod, &smp_alt_modules, next)
2180
alternatives_smp_lock(mod->locks, mod->locks_end,
2181
mod->text, mod->text_end);
2182
uniproc_patched = false;
2183
}
2184
mutex_unlock(&text_mutex);
2185
}
2186
2187
/*
2188
* Return 1 if the address range is reserved for SMP-alternatives.
2189
* Must hold text_mutex.
2190
*/
2191
int alternatives_text_reserved(void *start, void *end)
2192
{
2193
struct smp_alt_module *mod;
2194
const s32 *poff;
2195
u8 *text_start = start;
2196
u8 *text_end = end;
2197
2198
lockdep_assert_held(&text_mutex);
2199
2200
list_for_each_entry(mod, &smp_alt_modules, next) {
2201
if (mod->text > text_end || mod->text_end < text_start)
2202
continue;
2203
for (poff = mod->locks; poff < mod->locks_end; poff++) {
2204
const u8 *ptr = (const u8 *)poff + *poff;
2205
2206
if (text_start <= ptr && text_end > ptr)
2207
return 1;
2208
}
2209
}
2210
2211
return 0;
2212
}
2213
#endif /* CONFIG_SMP */
2214
2215
/*
2216
* Self-test for the INT3 based CALL emulation code.
2217
*
2218
* This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
2219
* properly and that there is a stack gap between the INT3 frame and the
2220
* previous context. Without this gap doing a virtual PUSH on the interrupted
2221
* stack would corrupt the INT3 IRET frame.
2222
*
2223
* See entry_{32,64}.S for more details.
2224
*/
2225
2226
extern void int3_selftest_asm(unsigned int *ptr);
2227
2228
asm (
2229
" .pushsection .init.text, \"ax\", @progbits\n"
2230
" .type int3_selftest_asm, @function\n"
2231
"int3_selftest_asm:\n"
2232
ANNOTATE_NOENDBR "\n"
2233
/*
2234
* INT3 padded with NOP to CALL_INSN_SIZE. The INT3 triggers an
2235
* exception, then the int3_exception_nb notifier emulates a call to
2236
* int3_selftest_callee().
2237
*/
2238
" int3; nop; nop; nop; nop\n"
2239
ASM_RET
2240
" .size int3_selftest_asm, . - int3_selftest_asm\n"
2241
" .popsection\n"
2242
);
2243
2244
extern void int3_selftest_callee(unsigned int *ptr);
2245
2246
asm (
2247
" .pushsection .init.text, \"ax\", @progbits\n"
2248
" .type int3_selftest_callee, @function\n"
2249
"int3_selftest_callee:\n"
2250
ANNOTATE_NOENDBR "\n"
2251
" movl $0x1234, (%" _ASM_ARG1 ")\n"
2252
ASM_RET
2253
" .size int3_selftest_callee, . - int3_selftest_callee\n"
2254
" .popsection\n"
2255
);
2256
2257
extern void int3_selftest_ip(void); /* defined in asm below */
2258
2259
static int __init
2260
int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
2261
{
2262
unsigned long selftest = (unsigned long)&int3_selftest_asm;
2263
struct die_args *args = data;
2264
struct pt_regs *regs = args->regs;
2265
2266
OPTIMIZER_HIDE_VAR(selftest);
2267
2268
if (!regs || user_mode(regs))
2269
return NOTIFY_DONE;
2270
2271
if (val != DIE_INT3)
2272
return NOTIFY_DONE;
2273
2274
if (regs->ip - INT3_INSN_SIZE != selftest)
2275
return NOTIFY_DONE;
2276
2277
int3_emulate_call(regs, (unsigned long)&int3_selftest_callee);
2278
return NOTIFY_STOP;
2279
}
2280
2281
/* Must be noinline to ensure uniqueness of int3_selftest_ip. */
2282
static noinline void __init int3_selftest(void)
2283
{
2284
static __initdata struct notifier_block int3_exception_nb = {
2285
.notifier_call = int3_exception_notify,
2286
.priority = INT_MAX-1, /* last */
2287
};
2288
unsigned int val = 0;
2289
2290
BUG_ON(register_die_notifier(&int3_exception_nb));
2291
2292
/*
2293
* Basically: int3_selftest_callee(&val); but really complicated :-)
2294
*/
2295
int3_selftest_asm(&val);
2296
2297
BUG_ON(val != 0x1234);
2298
2299
unregister_die_notifier(&int3_exception_nb);
2300
}
2301
2302
static __initdata int __alt_reloc_selftest_addr;
2303
2304
extern void __init __alt_reloc_selftest(void *arg);
2305
__visible noinline void __init __alt_reloc_selftest(void *arg)
2306
{
2307
WARN_ON(arg != &__alt_reloc_selftest_addr);
2308
}
2309
2310
static noinline void __init alt_reloc_selftest(void)
2311
{
2312
/*
2313
* Tests text_poke_apply_relocation().
2314
*
2315
* This has a relative immediate (CALL) in a place other than the first
2316
* instruction and additionally on x86_64 we get a RIP-relative LEA:
2317
*
2318
* lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
2319
* call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
2320
*
2321
* Getting this wrong will either crash and burn or tickle the WARN
2322
* above.
2323
*/
2324
asm_inline volatile (
2325
ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
2326
: ASM_CALL_CONSTRAINT
2327
: [mem] "m" (__alt_reloc_selftest_addr)
2328
: _ASM_ARG1
2329
);
2330
}
2331
2332
void __init alternative_instructions(void)
2333
{
2334
u64 ibt;
2335
2336
int3_selftest();
2337
2338
/*
2339
* The patching is not fully atomic, so try to avoid local
2340
* interruptions that might execute the to be patched code.
2341
* Other CPUs are not running.
2342
*/
2343
stop_nmi();
2344
2345
/*
2346
* Don't stop machine check exceptions while patching.
2347
* MCEs only happen when something got corrupted and in this
2348
* case we must do something about the corruption.
2349
* Ignoring it is worse than an unlikely patching race.
2350
* Also machine checks tend to be broadcast and if one CPU
2351
* goes into machine check the others follow quickly, so we don't
2352
* expect a machine check to cause undue problems during to code
2353
* patching.
2354
*/
2355
2356
/*
2357
* Make sure to set (artificial) features depending on used paravirt
2358
* functions which can later influence alternative patching.
2359
*/
2360
paravirt_set_cap();
2361
2362
/* Keep CET-IBT disabled until caller/callee are patched */
2363
ibt = ibt_save(/*disable*/ true);
2364
2365
__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
2366
__cfi_sites, __cfi_sites_end, true);
2367
cfi_debug = false;
2368
2369
/*
2370
* Rewrite the retpolines, must be done before alternatives since
2371
* those can rewrite the retpoline thunks.
2372
*/
2373
apply_retpolines(__retpoline_sites, __retpoline_sites_end);
2374
apply_returns(__return_sites, __return_sites_end);
2375
2376
its_fini_core();
2377
2378
/*
2379
* Adjust all CALL instructions to point to func()-10, including
2380
* those in .altinstr_replacement.
2381
*/
2382
callthunks_patch_builtin_calls();
2383
2384
apply_alternatives(__alt_instructions, __alt_instructions_end);
2385
2386
/*
2387
* Seal all functions that do not have their address taken.
2388
*/
2389
apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
2390
2391
ibt_restore(ibt);
2392
2393
#ifdef CONFIG_SMP
2394
/* Patch to UP if other cpus not imminent. */
2395
if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
2396
uniproc_patched = true;
2397
alternatives_smp_module_add(NULL, "core kernel",
2398
__smp_locks, __smp_locks_end,
2399
_text, _etext);
2400
}
2401
2402
if (!uniproc_patched || num_possible_cpus() == 1) {
2403
free_init_pages("SMP alternatives",
2404
(unsigned long)__smp_locks,
2405
(unsigned long)__smp_locks_end);
2406
}
2407
#endif
2408
2409
restart_nmi();
2410
alternatives_patched = 1;
2411
2412
alt_reloc_selftest();
2413
}
2414
2415
/**
2416
* text_poke_early - Update instructions on a live kernel at boot time
2417
* @addr: address to modify
2418
* @opcode: source of the copy
2419
* @len: length to copy
2420
*
2421
* When you use this code to patch more than one byte of an instruction
2422
* you need to make sure that other CPUs cannot execute this code in parallel.
2423
* Also no thread must be currently preempted in the middle of these
2424
* instructions. And on the local CPU you need to be protected against NMI or
2425
* MCE handlers seeing an inconsistent instruction while you patch.
2426
*/
2427
void __init_or_module text_poke_early(void *addr, const void *opcode,
2428
size_t len)
2429
{
2430
unsigned long flags;
2431
2432
if (boot_cpu_has(X86_FEATURE_NX) &&
2433
is_module_text_address((unsigned long)addr)) {
2434
/*
2435
* Modules text is marked initially as non-executable, so the
2436
* code cannot be running and speculative code-fetches are
2437
* prevented. Just change the code.
2438
*/
2439
memcpy(addr, opcode, len);
2440
} else {
2441
local_irq_save(flags);
2442
memcpy(addr, opcode, len);
2443
sync_core();
2444
local_irq_restore(flags);
2445
2446
/*
2447
* Could also do a CLFLUSH here to speed up CPU recovery; but
2448
* that causes hangs on some VIA CPUs.
2449
*/
2450
}
2451
}
2452
2453
__ro_after_init struct mm_struct *text_poke_mm;
2454
__ro_after_init unsigned long text_poke_mm_addr;
2455
2456
/*
2457
* Text poking creates and uses a mapping in the lower half of the
2458
* address space. Relax LASS enforcement when accessing the poking
2459
* address.
2460
*
2461
* objtool enforces a strict policy of "no function calls within AC=1
2462
* regions". Adhere to the policy by using inline versions of
2463
* memcpy()/memset() that will never result in a function call.
2464
*/
2465
2466
static void text_poke_memcpy(void *dst, const void *src, size_t len)
2467
{
2468
lass_stac();
2469
__inline_memcpy(dst, src, len);
2470
lass_clac();
2471
}
2472
2473
static void text_poke_memset(void *dst, const void *src, size_t len)
2474
{
2475
int c = *(const int *)src;
2476
2477
lass_stac();
2478
__inline_memset(dst, c, len);
2479
lass_clac();
2480
}
2481
2482
typedef void text_poke_f(void *dst, const void *src, size_t len);
2483
2484
static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2485
{
2486
bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2487
struct page *pages[2] = {NULL};
2488
struct mm_struct *prev_mm;
2489
unsigned long flags;
2490
pte_t pte, *ptep;
2491
spinlock_t *ptl;
2492
pgprot_t pgprot;
2493
2494
/*
2495
* While boot memory allocator is running we cannot use struct pages as
2496
* they are not yet initialized. There is no way to recover.
2497
*/
2498
BUG_ON(!after_bootmem);
2499
2500
if (!core_kernel_text((unsigned long)addr)) {
2501
pages[0] = vmalloc_to_page(addr);
2502
if (cross_page_boundary)
2503
pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2504
} else {
2505
pages[0] = virt_to_page(addr);
2506
WARN_ON(!PageReserved(pages[0]));
2507
if (cross_page_boundary)
2508
pages[1] = virt_to_page(addr + PAGE_SIZE);
2509
}
2510
/*
2511
* If something went wrong, crash and burn since recovery paths are not
2512
* implemented.
2513
*/
2514
BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2515
2516
/*
2517
* Map the page without the global bit, as TLB flushing is done with
2518
* flush_tlb_mm_range(), which is intended for non-global PTEs.
2519
*/
2520
pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2521
2522
/*
2523
* The lock is not really needed, but this allows to avoid open-coding.
2524
*/
2525
ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
2526
2527
/*
2528
* This must not fail; preallocated in poking_init().
2529
*/
2530
VM_BUG_ON(!ptep);
2531
2532
local_irq_save(flags);
2533
2534
pte = mk_pte(pages[0], pgprot);
2535
set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte);
2536
2537
if (cross_page_boundary) {
2538
pte = mk_pte(pages[1], pgprot);
2539
set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte);
2540
}
2541
2542
/*
2543
* Loading the temporary mm behaves as a compiler barrier, which
2544
* guarantees that the PTE will be set at the time memcpy() is done.
2545
*/
2546
prev_mm = use_temporary_mm(text_poke_mm);
2547
2548
kasan_disable_current();
2549
func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len);
2550
kasan_enable_current();
2551
2552
/*
2553
* Ensure that the PTE is only cleared after the instructions of memcpy
2554
* were issued by using a compiler barrier.
2555
*/
2556
barrier();
2557
2558
pte_clear(text_poke_mm, text_poke_mm_addr, ptep);
2559
if (cross_page_boundary)
2560
pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1);
2561
2562
/*
2563
* Loading the previous page-table hierarchy requires a serializing
2564
* instruction that already allows the core to see the updated version.
2565
* Xen-PV is assumed to serialize execution in a similar manner.
2566
*/
2567
unuse_temporary_mm(prev_mm);
2568
2569
/*
2570
* Flushing the TLB might involve IPIs, which would require enabled
2571
* IRQs, but not if the mm is not used, as it is in this point.
2572
*/
2573
flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr +
2574
(cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2575
PAGE_SHIFT, false);
2576
2577
if (func == text_poke_memcpy) {
2578
/*
2579
* If the text does not match what we just wrote then something is
2580
* fundamentally screwy; there's nothing we can really do about that.
2581
*/
2582
BUG_ON(memcmp(addr, src, len));
2583
}
2584
2585
local_irq_restore(flags);
2586
pte_unmap_unlock(ptep, ptl);
2587
return addr;
2588
}
2589
2590
/**
2591
* text_poke - Update instructions on a live kernel
2592
* @addr: address to modify
2593
* @opcode: source of the copy
2594
* @len: length to copy
2595
*
2596
* Only atomic text poke/set should be allowed when not doing early patching.
2597
* It means the size must be writable atomically and the address must be aligned
2598
* in a way that permits an atomic write. It also makes sure we fit on a single
2599
* page.
2600
*
2601
* Note that the caller must ensure that if the modified code is part of a
2602
* module, the module would not be removed during poking. This can be achieved
2603
* by registering a module notifier, and ordering module removal and patching
2604
* through a mutex.
2605
*/
2606
void *text_poke(void *addr, const void *opcode, size_t len)
2607
{
2608
lockdep_assert_held(&text_mutex);
2609
2610
return __text_poke(text_poke_memcpy, addr, opcode, len);
2611
}
2612
2613
/**
2614
* text_poke_kgdb - Update instructions on a live kernel by kgdb
2615
* @addr: address to modify
2616
* @opcode: source of the copy
2617
* @len: length to copy
2618
*
2619
* Only atomic text poke/set should be allowed when not doing early patching.
2620
* It means the size must be writable atomically and the address must be aligned
2621
* in a way that permits an atomic write. It also makes sure we fit on a single
2622
* page.
2623
*
2624
* Context: should only be used by kgdb, which ensures no other core is running,
2625
* despite the fact it does not hold the text_mutex.
2626
*/
2627
void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2628
{
2629
return __text_poke(text_poke_memcpy, addr, opcode, len);
2630
}
2631
2632
void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2633
bool core_ok)
2634
{
2635
unsigned long start = (unsigned long)addr;
2636
size_t patched = 0;
2637
2638
if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2639
return NULL;
2640
2641
while (patched < len) {
2642
unsigned long ptr = start + patched;
2643
size_t s;
2644
2645
s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2646
2647
__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2648
patched += s;
2649
}
2650
return addr;
2651
}
2652
2653
/**
2654
* text_poke_copy - Copy instructions into (an unused part of) RX memory
2655
* @addr: address to modify
2656
* @opcode: source of the copy
2657
* @len: length to copy, could be more than 2x PAGE_SIZE
2658
*
2659
* Not safe against concurrent execution; useful for JITs to dump
2660
* new code blocks into unused regions of RX memory. Can be used in
2661
* conjunction with synchronize_rcu_tasks() to wait for existing
2662
* execution to quiesce after having made sure no existing functions
2663
* pointers are live.
2664
*/
2665
void *text_poke_copy(void *addr, const void *opcode, size_t len)
2666
{
2667
mutex_lock(&text_mutex);
2668
addr = text_poke_copy_locked(addr, opcode, len, false);
2669
mutex_unlock(&text_mutex);
2670
return addr;
2671
}
2672
2673
/**
2674
* text_poke_set - memset into (an unused part of) RX memory
2675
* @addr: address to modify
2676
* @c: the byte to fill the area with
2677
* @len: length to copy, could be more than 2x PAGE_SIZE
2678
*
2679
* This is useful to overwrite unused regions of RX memory with illegal
2680
* instructions.
2681
*/
2682
void *text_poke_set(void *addr, int c, size_t len)
2683
{
2684
unsigned long start = (unsigned long)addr;
2685
size_t patched = 0;
2686
2687
if (WARN_ON_ONCE(core_kernel_text(start)))
2688
return NULL;
2689
2690
mutex_lock(&text_mutex);
2691
while (patched < len) {
2692
unsigned long ptr = start + patched;
2693
size_t s;
2694
2695
s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2696
2697
__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2698
patched += s;
2699
}
2700
mutex_unlock(&text_mutex);
2701
return addr;
2702
}
2703
2704
static void do_sync_core(void *info)
2705
{
2706
sync_core();
2707
}
2708
2709
void smp_text_poke_sync_each_cpu(void)
2710
{
2711
on_each_cpu(do_sync_core, NULL, 1);
2712
}
2713
2714
/*
2715
* NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2716
* this thing. When len == 6 everything is prefixed with 0x0f and we map
2717
* opcode to Jcc.d8, using len to distinguish.
2718
*/
2719
struct smp_text_poke_loc {
2720
/* addr := _stext + rel_addr */
2721
s32 rel_addr;
2722
s32 disp;
2723
u8 len;
2724
u8 opcode;
2725
const u8 text[TEXT_POKE_MAX_OPCODE_SIZE];
2726
/* see smp_text_poke_batch_finish() */
2727
u8 old;
2728
};
2729
2730
#define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc))
2731
2732
static struct smp_text_poke_array {
2733
struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX];
2734
int nr_entries;
2735
} text_poke_array;
2736
2737
static DEFINE_PER_CPU(atomic_t, text_poke_array_refs);
2738
2739
/*
2740
* These four __always_inline annotations imply noinstr, necessary
2741
* due to smp_text_poke_int3_handler() being noinstr:
2742
*/
2743
2744
static __always_inline bool try_get_text_poke_array(void)
2745
{
2746
atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2747
2748
if (!raw_atomic_inc_not_zero(refs))
2749
return false;
2750
2751
return true;
2752
}
2753
2754
static __always_inline void put_text_poke_array(void)
2755
{
2756
atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2757
2758
smp_mb__before_atomic();
2759
raw_atomic_dec(refs);
2760
}
2761
2762
static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl)
2763
{
2764
return _stext + tpl->rel_addr;
2765
}
2766
2767
static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b)
2768
{
2769
if (tpl_a < text_poke_addr(tpl_b))
2770
return -1;
2771
if (tpl_a > text_poke_addr(tpl_b))
2772
return 1;
2773
return 0;
2774
}
2775
2776
noinstr int smp_text_poke_int3_handler(struct pt_regs *regs)
2777
{
2778
struct smp_text_poke_loc *tpl;
2779
int ret = 0;
2780
void *ip;
2781
2782
if (user_mode(regs))
2783
return 0;
2784
2785
/*
2786
* Having observed our INT3 instruction, we now must observe
2787
* text_poke_array with non-zero refcount:
2788
*
2789
* text_poke_array_refs = 1 INT3
2790
* WMB RMB
2791
* write INT3 if (text_poke_array_refs != 0)
2792
*/
2793
smp_rmb();
2794
2795
if (!try_get_text_poke_array())
2796
return 0;
2797
2798
/*
2799
* Discount the INT3. See smp_text_poke_batch_finish().
2800
*/
2801
ip = (void *) regs->ip - INT3_INSN_SIZE;
2802
2803
/*
2804
* Skip the binary search if there is a single member in the vector.
2805
*/
2806
if (unlikely(text_poke_array.nr_entries > 1)) {
2807
tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries,
2808
sizeof(struct smp_text_poke_loc),
2809
patch_cmp);
2810
if (!tpl)
2811
goto out_put;
2812
} else {
2813
tpl = text_poke_array.vec;
2814
if (text_poke_addr(tpl) != ip)
2815
goto out_put;
2816
}
2817
2818
ip += tpl->len;
2819
2820
switch (tpl->opcode) {
2821
case INT3_INSN_OPCODE:
2822
/*
2823
* Someone poked an explicit INT3, they'll want to handle it,
2824
* do not consume.
2825
*/
2826
goto out_put;
2827
2828
case RET_INSN_OPCODE:
2829
int3_emulate_ret(regs);
2830
break;
2831
2832
case CALL_INSN_OPCODE:
2833
int3_emulate_call(regs, (long)ip + tpl->disp);
2834
break;
2835
2836
case JMP32_INSN_OPCODE:
2837
case JMP8_INSN_OPCODE:
2838
int3_emulate_jmp(regs, (long)ip + tpl->disp);
2839
break;
2840
2841
case 0x70 ... 0x7f: /* Jcc */
2842
int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp);
2843
break;
2844
2845
default:
2846
BUG();
2847
}
2848
2849
ret = 1;
2850
2851
out_put:
2852
put_text_poke_array();
2853
return ret;
2854
}
2855
2856
/**
2857
* smp_text_poke_batch_finish() -- update instructions on live kernel on SMP
2858
*
2859
* Input state:
2860
* text_poke_array.vec: vector of instructions to patch
2861
* text_poke_array.nr_entries: number of entries in the vector
2862
*
2863
* Modify multi-byte instructions by using INT3 breakpoints on SMP.
2864
* We completely avoid using stop_machine() here, and achieve the
2865
* synchronization using INT3 breakpoints and SMP cross-calls.
2866
*
2867
* The way it is done:
2868
* - For each entry in the vector:
2869
* - add an INT3 trap to the address that will be patched
2870
* - SMP sync all CPUs
2871
* - For each entry in the vector:
2872
* - update all but the first byte of the patched range
2873
* - SMP sync all CPUs
2874
* - For each entry in the vector:
2875
* - replace the first byte (INT3) by the first byte of the
2876
* replacing opcode
2877
* - SMP sync all CPUs
2878
*/
2879
void smp_text_poke_batch_finish(void)
2880
{
2881
unsigned char int3 = INT3_INSN_OPCODE;
2882
unsigned int i;
2883
int do_sync;
2884
2885
if (!text_poke_array.nr_entries)
2886
return;
2887
2888
lockdep_assert_held(&text_mutex);
2889
2890
/*
2891
* Corresponds to the implicit memory barrier in try_get_text_poke_array() to
2892
* ensure reading a non-zero refcount provides up to date text_poke_array data.
2893
*/
2894
for_each_possible_cpu(i)
2895
atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1);
2896
2897
/*
2898
* Function tracing can enable thousands of places that need to be
2899
* updated. This can take quite some time, and with full kernel debugging
2900
* enabled, this could cause the softlockup watchdog to trigger.
2901
* This function gets called every 256 entries added to be patched.
2902
* Call cond_resched() here to make sure that other tasks can get scheduled
2903
* while processing all the functions being patched.
2904
*/
2905
cond_resched();
2906
2907
/*
2908
* Corresponding read barrier in INT3 notifier for making sure the
2909
* text_poke_array.nr_entries and handler are correctly ordered wrt. patching.
2910
*/
2911
smp_wmb();
2912
2913
/*
2914
* First step: add a INT3 trap to the address that will be patched.
2915
*/
2916
for (i = 0; i < text_poke_array.nr_entries; i++) {
2917
text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]);
2918
text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE);
2919
}
2920
2921
smp_text_poke_sync_each_cpu();
2922
2923
/*
2924
* Second step: update all but the first byte of the patched range.
2925
*/
2926
for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2927
u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, };
2928
u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1];
2929
const u8 *new = text_poke_array.vec[i].text;
2930
int len = text_poke_array.vec[i].len;
2931
2932
if (len - INT3_INSN_SIZE > 0) {
2933
memcpy(old + INT3_INSN_SIZE,
2934
text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2935
len - INT3_INSN_SIZE);
2936
2937
if (len == 6) {
2938
_new[0] = 0x0f;
2939
memcpy(_new + 1, new, 5);
2940
new = _new;
2941
}
2942
2943
text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2944
new + INT3_INSN_SIZE,
2945
len - INT3_INSN_SIZE);
2946
2947
do_sync++;
2948
}
2949
2950
/*
2951
* Emit a perf event to record the text poke, primarily to
2952
* support Intel PT decoding which must walk the executable code
2953
* to reconstruct the trace. The flow up to here is:
2954
* - write INT3 byte
2955
* - IPI-SYNC
2956
* - write instruction tail
2957
* At this point the actual control flow will be through the
2958
* INT3 and handler and not hit the old or new instruction.
2959
* Intel PT outputs FUP/TIP packets for the INT3, so the flow
2960
* can still be decoded. Subsequently:
2961
* - emit RECORD_TEXT_POKE with the new instruction
2962
* - IPI-SYNC
2963
* - write first byte
2964
* - IPI-SYNC
2965
* So before the text poke event timestamp, the decoder will see
2966
* either the old instruction flow or FUP/TIP of INT3. After the
2967
* text poke event timestamp, the decoder will see either the
2968
* new instruction flow or FUP/TIP of INT3. Thus decoders can
2969
* use the timestamp as the point at which to modify the
2970
* executable code.
2971
* The old instruction is recorded so that the event can be
2972
* processed forwards or backwards.
2973
*/
2974
perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len);
2975
}
2976
2977
if (do_sync) {
2978
/*
2979
* According to Intel, this core syncing is very likely
2980
* not necessary and we'd be safe even without it. But
2981
* better safe than sorry (plus there's not only Intel).
2982
*/
2983
smp_text_poke_sync_each_cpu();
2984
}
2985
2986
/*
2987
* Third step: replace the first byte (INT3) by the first byte of the
2988
* replacing opcode.
2989
*/
2990
for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2991
u8 byte = text_poke_array.vec[i].text[0];
2992
2993
if (text_poke_array.vec[i].len == 6)
2994
byte = 0x0f;
2995
2996
if (byte == INT3_INSN_OPCODE)
2997
continue;
2998
2999
text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE);
3000
do_sync++;
3001
}
3002
3003
if (do_sync)
3004
smp_text_poke_sync_each_cpu();
3005
3006
/*
3007
* Remove and wait for refs to be zero.
3008
*
3009
* Notably, if after step-3 above the INT3 got removed, then the
3010
* smp_text_poke_sync_each_cpu() will have serialized against any running INT3
3011
* handlers and the below spin-wait will not happen.
3012
*
3013
* IOW. unless the replacement instruction is INT3, this case goes
3014
* unused.
3015
*/
3016
for_each_possible_cpu(i) {
3017
atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i);
3018
3019
if (unlikely(!atomic_dec_and_test(refs)))
3020
atomic_cond_read_acquire(refs, !VAL);
3021
}
3022
3023
/* They are all completed: */
3024
text_poke_array.nr_entries = 0;
3025
}
3026
3027
static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3028
{
3029
struct smp_text_poke_loc *tpl;
3030
struct insn insn;
3031
int ret, i = 0;
3032
3033
tpl = &text_poke_array.vec[text_poke_array.nr_entries++];
3034
3035
if (len == 6)
3036
i = 1;
3037
memcpy((void *)tpl->text, opcode+i, len-i);
3038
if (!emulate)
3039
emulate = opcode;
3040
3041
ret = insn_decode_kernel(&insn, emulate);
3042
BUG_ON(ret < 0);
3043
3044
tpl->rel_addr = addr - (void *)_stext;
3045
tpl->len = len;
3046
tpl->opcode = insn.opcode.bytes[0];
3047
3048
if (is_jcc32(&insn)) {
3049
/*
3050
* Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
3051
*/
3052
tpl->opcode = insn.opcode.bytes[1] - 0x10;
3053
}
3054
3055
switch (tpl->opcode) {
3056
case RET_INSN_OPCODE:
3057
case JMP32_INSN_OPCODE:
3058
case JMP8_INSN_OPCODE:
3059
/*
3060
* Control flow instructions without implied execution of the
3061
* next instruction can be padded with INT3.
3062
*/
3063
for (i = insn.length; i < len; i++)
3064
BUG_ON(tpl->text[i] != INT3_INSN_OPCODE);
3065
break;
3066
3067
default:
3068
BUG_ON(len != insn.length);
3069
}
3070
3071
switch (tpl->opcode) {
3072
case INT3_INSN_OPCODE:
3073
case RET_INSN_OPCODE:
3074
break;
3075
3076
case CALL_INSN_OPCODE:
3077
case JMP32_INSN_OPCODE:
3078
case JMP8_INSN_OPCODE:
3079
case 0x70 ... 0x7f: /* Jcc */
3080
tpl->disp = insn.immediate.value;
3081
break;
3082
3083
default: /* assume NOP */
3084
switch (len) {
3085
case 2: /* NOP2 -- emulate as JMP8+0 */
3086
BUG_ON(memcmp(emulate, x86_nops[len], len));
3087
tpl->opcode = JMP8_INSN_OPCODE;
3088
tpl->disp = 0;
3089
break;
3090
3091
case 5: /* NOP5 -- emulate as JMP32+0 */
3092
BUG_ON(memcmp(emulate, x86_nops[len], len));
3093
tpl->opcode = JMP32_INSN_OPCODE;
3094
tpl->disp = 0;
3095
break;
3096
3097
default: /* unknown instruction */
3098
BUG();
3099
}
3100
break;
3101
}
3102
}
3103
3104
/*
3105
* We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing
3106
* early if needed.
3107
*/
3108
static bool text_poke_addr_ordered(void *addr)
3109
{
3110
WARN_ON_ONCE(!addr);
3111
3112
if (!text_poke_array.nr_entries)
3113
return true;
3114
3115
/*
3116
* If the last current entry's address is higher than the
3117
* new entry's address we'd like to add, then ordering
3118
* is violated and we must first flush all pending patching
3119
* requests:
3120
*/
3121
if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr)
3122
return false;
3123
3124
return true;
3125
}
3126
3127
/**
3128
* smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched
3129
* @addr: address to patch
3130
* @opcode: opcode of new instruction
3131
* @len: length to copy
3132
* @emulate: instruction to be emulated
3133
*
3134
* Add a new instruction to the current queue of to-be-patched instructions
3135
* the kernel maintains. The patching request will not be executed immediately,
3136
* but becomes part of an array of patching requests, optimized for batched
3137
* execution. All pending patching requests will be executed on the next
3138
* smp_text_poke_batch_finish() call.
3139
*/
3140
void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3141
{
3142
if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr))
3143
smp_text_poke_batch_finish();
3144
__smp_text_poke_batch_add(addr, opcode, len, emulate);
3145
}
3146
3147
/**
3148
* smp_text_poke_single() -- update instruction on live kernel on SMP immediately
3149
* @addr: address to patch
3150
* @opcode: opcode of new instruction
3151
* @len: length to copy
3152
* @emulate: instruction to be emulated
3153
*
3154
* Update a single instruction with the vector in the stack, avoiding
3155
* dynamically allocated memory. This function should be used when it is
3156
* not possible to allocate memory for a vector. The single instruction
3157
* is patched in immediately.
3158
*/
3159
void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate)
3160
{
3161
smp_text_poke_batch_add(addr, opcode, len, emulate);
3162
smp_text_poke_batch_finish();
3163
}
3164
3165