Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/apic/apic.c
50374 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Local APIC handling, local APIC timers
4
*
5
* (c) 1999, 2000, 2009 Ingo Molnar <[email protected]>
6
*
7
* Fixes
8
* Maciej W. Rozycki : Bits for genuine 82489DX APICs;
9
* thanks to Eric Gilmore
10
* and Rolf G. Tews
11
* for testing these extensively.
12
* Maciej W. Rozycki : Various updates and fixes.
13
* Mikael Pettersson : Power Management for UP-APIC.
14
* Pavel Machek and
15
* Mikael Pettersson : PM converted to driver model.
16
*/
17
18
#include <linux/perf_event.h>
19
#include <linux/kernel_stat.h>
20
#include <linux/mc146818rtc.h>
21
#include <linux/acpi_pmtmr.h>
22
#include <linux/bitmap.h>
23
#include <linux/clockchips.h>
24
#include <linux/interrupt.h>
25
#include <linux/memblock.h>
26
#include <linux/ftrace.h>
27
#include <linux/ioport.h>
28
#include <linux/export.h>
29
#include <linux/syscore_ops.h>
30
#include <linux/delay.h>
31
#include <linux/timex.h>
32
#include <linux/i8253.h>
33
#include <linux/dmar.h>
34
#include <linux/init.h>
35
#include <linux/cpu.h>
36
#include <linux/dmi.h>
37
#include <linux/smp.h>
38
#include <linux/mm.h>
39
#include <linux/kvm_types.h>
40
41
#include <xen/xen.h>
42
43
#include <asm/trace/irq_vectors.h>
44
#include <asm/irq_remapping.h>
45
#include <asm/pc-conf-reg.h>
46
#include <asm/perf_event.h>
47
#include <asm/x86_init.h>
48
#include <linux/atomic.h>
49
#include <asm/barrier.h>
50
#include <asm/mpspec.h>
51
#include <asm/i8259.h>
52
#include <asm/proto.h>
53
#include <asm/traps.h>
54
#include <asm/apic.h>
55
#include <asm/acpi.h>
56
#include <asm/io_apic.h>
57
#include <asm/desc.h>
58
#include <asm/hpet.h>
59
#include <asm/mtrr.h>
60
#include <asm/time.h>
61
#include <asm/smp.h>
62
#include <asm/mce.h>
63
#include <asm/msr.h>
64
#include <asm/tsc.h>
65
#include <asm/hypervisor.h>
66
#include <asm/cpu_device_id.h>
67
#include <asm/intel-family.h>
68
#include <asm/irq_regs.h>
69
#include <asm/cpu.h>
70
71
#include "local.h"
72
73
/* Processor that is doing the boot up */
74
u32 boot_cpu_physical_apicid __ro_after_init = BAD_APICID;
75
EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
76
77
u8 boot_cpu_apic_version __ro_after_init;
78
79
/*
80
* This variable controls which CPUs receive external NMIs. By default,
81
* external NMIs are delivered only to the BSP.
82
*/
83
static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP;
84
85
/*
86
* Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID
87
*/
88
static bool virt_ext_dest_id __ro_after_init;
89
90
/* For parallel bootup. */
91
unsigned long apic_mmio_base __ro_after_init;
92
93
static inline bool apic_accessible(void)
94
{
95
return x2apic_mode || apic_mmio_base;
96
}
97
98
#ifdef CONFIG_X86_32
99
/* Local APIC was disabled by the BIOS and enabled by the kernel */
100
static int enabled_via_apicbase __ro_after_init;
101
102
/*
103
* Handle interrupt mode configuration register (IMCR).
104
* This register controls whether the interrupt signals
105
* that reach the BSP come from the master PIC or from the
106
* local APIC. Before entering Symmetric I/O Mode, either
107
* the BIOS or the operating system must switch out of
108
* PIC Mode by changing the IMCR.
109
*/
110
static inline void imcr_pic_to_apic(void)
111
{
112
/* NMI and 8259 INTR go through APIC */
113
pc_conf_set(PC_CONF_MPS_IMCR, 0x01);
114
}
115
116
static inline void imcr_apic_to_pic(void)
117
{
118
/* NMI and 8259 INTR go directly to BSP */
119
pc_conf_set(PC_CONF_MPS_IMCR, 0x00);
120
}
121
#endif
122
123
/*
124
* Knob to control our willingness to enable the local APIC.
125
*
126
* +1=force-enable
127
*/
128
static int force_enable_local_apic __initdata;
129
130
/*
131
* APIC command line parameters
132
*/
133
static int __init parse_lapic(char *arg)
134
{
135
if (IS_ENABLED(CONFIG_X86_32) && !arg)
136
force_enable_local_apic = 1;
137
else if (arg && !strncmp(arg, "notscdeadline", 13))
138
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
139
return 0;
140
}
141
early_param("lapic", parse_lapic);
142
143
#ifdef CONFIG_X86_64
144
static int apic_calibrate_pmtmr __initdata;
145
static __init int setup_apicpmtimer(char *s)
146
{
147
apic_calibrate_pmtmr = 1;
148
notsc_setup(NULL);
149
return 1;
150
}
151
__setup("apicpmtimer", setup_apicpmtimer);
152
#endif
153
154
static unsigned long mp_lapic_addr __ro_after_init;
155
bool apic_is_disabled __ro_after_init;
156
/* Disable local APIC timer from the kernel commandline or via dmi quirk */
157
static int disable_apic_timer __initdata;
158
/* Local APIC timer works in C2 */
159
int local_apic_timer_c2_ok __ro_after_init;
160
EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
161
162
/*
163
* Debug level, exported for io_apic.c
164
*/
165
int apic_verbosity __ro_after_init;
166
167
int pic_mode __ro_after_init;
168
169
/* Have we found an MP table */
170
int smp_found_config __ro_after_init;
171
172
static struct resource lapic_resource = {
173
.name = "Local APIC",
174
.flags = IORESOURCE_MEM | IORESOURCE_BUSY,
175
};
176
177
/* Measured in ticks per HZ. */
178
unsigned int lapic_timer_period = 0;
179
180
static void apic_pm_activate(void);
181
182
/*
183
* Get the LAPIC version
184
*/
185
static inline int lapic_get_version(void)
186
{
187
return GET_APIC_VERSION(apic_read(APIC_LVR));
188
}
189
190
/*
191
* Check, if the APIC is integrated or a separate chip
192
*/
193
static inline int lapic_is_integrated(void)
194
{
195
return APIC_INTEGRATED(lapic_get_version());
196
}
197
198
/*
199
* Check, whether this is a modern or a first generation APIC
200
*/
201
static int modern_apic(void)
202
{
203
/* AMD systems use old APIC versions, so check the CPU */
204
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
205
boot_cpu_data.x86 >= 0xf)
206
return 1;
207
208
/* Hygon systems use modern APIC */
209
if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
210
return 1;
211
212
return lapic_get_version() >= 0x14;
213
}
214
215
/*
216
* right after this call apic become NOOP driven
217
* so apic->write/read doesn't do anything
218
*/
219
static void __init apic_disable(void)
220
{
221
apic_install_driver(&apic_noop);
222
}
223
224
void native_apic_icr_write(u32 low, u32 id)
225
{
226
unsigned long flags;
227
228
local_irq_save(flags);
229
apic_write(APIC_ICR2, SET_XAPIC_DEST_FIELD(id));
230
apic_write(APIC_ICR, low);
231
local_irq_restore(flags);
232
}
233
234
u64 native_apic_icr_read(void)
235
{
236
u32 icr1, icr2;
237
238
icr2 = apic_read(APIC_ICR2);
239
icr1 = apic_read(APIC_ICR);
240
241
return icr1 | ((u64)icr2 << 32);
242
}
243
244
/**
245
* lapic_get_maxlvt - get the maximum number of local vector table entries
246
*/
247
int lapic_get_maxlvt(void)
248
{
249
/*
250
* - we always have APIC integrated on 64bit mode
251
* - 82489DXs do not report # of LVT entries
252
*/
253
return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
254
}
255
256
/*
257
* Local APIC timer
258
*/
259
260
/* Clock divisor */
261
#define APIC_DIVISOR 16
262
#define TSC_DIVISOR 8
263
264
/* i82489DX specific */
265
#define I82489DX_BASE_DIVIDER (((0x2) << 18))
266
267
/*
268
* This function sets up the local APIC timer, with a timeout of
269
* 'clocks' APIC bus clock. During calibration we actually call
270
* this function twice on the boot CPU, once with a bogus timeout
271
* value, second time for real. The other (noncalibrating) CPUs
272
* call this function only once, with the real, calibrated value.
273
*
274
* We do reads before writes even if unnecessary, to get around the
275
* P5 APIC double write bug.
276
*/
277
static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
278
{
279
unsigned int lvtt_value, tmp_value;
280
281
lvtt_value = LOCAL_TIMER_VECTOR;
282
if (!oneshot)
283
lvtt_value |= APIC_LVT_TIMER_PERIODIC;
284
else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
285
lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
286
287
/*
288
* The i82489DX APIC uses bit 18 and 19 for the base divider. This
289
* overlaps with bit 18 on integrated APICs, but is not documented
290
* in the SDM. No problem though. i82489DX equipped systems do not
291
* have TSC deadline timer.
292
*/
293
if (!lapic_is_integrated())
294
lvtt_value |= I82489DX_BASE_DIVIDER;
295
296
if (!irqen)
297
lvtt_value |= APIC_LVT_MASKED;
298
299
apic_write(APIC_LVTT, lvtt_value);
300
301
if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
302
/*
303
* See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
304
* writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
305
* According to Intel, MFENCE can do the serialization here.
306
*/
307
asm volatile("mfence" : : : "memory");
308
return;
309
}
310
311
/*
312
* Divide PICLK by 16
313
*/
314
tmp_value = apic_read(APIC_TDCR);
315
apic_write(APIC_TDCR,
316
(tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
317
APIC_TDR_DIV_16);
318
319
if (!oneshot)
320
apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
321
}
322
323
/*
324
* Setup extended LVT, AMD specific
325
*
326
* Software should use the LVT offsets the BIOS provides. The offsets
327
* are determined by the subsystems using it like those for MCE
328
* threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts
329
* are supported. Beginning with family 10h at least 4 offsets are
330
* available.
331
*
332
* Since the offsets must be consistent for all cores, we keep track
333
* of the LVT offsets in software and reserve the offset for the same
334
* vector also to be used on other cores. An offset is freed by
335
* setting the entry to APIC_EILVT_MASKED.
336
*
337
* If the BIOS is right, there should be no conflicts. Otherwise a
338
* "[Firmware Bug]: ..." error message is generated. However, if
339
* software does not properly determines the offsets, it is not
340
* necessarily a BIOS bug.
341
*/
342
343
static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
344
345
static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
346
{
347
return (old & APIC_EILVT_MASKED)
348
|| (new == APIC_EILVT_MASKED)
349
|| ((new & ~APIC_EILVT_MASKED) == old);
350
}
351
352
static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
353
{
354
unsigned int rsvd, vector;
355
356
if (offset >= APIC_EILVT_NR_MAX)
357
return ~0;
358
359
rsvd = atomic_read(&eilvt_offsets[offset]);
360
do {
361
vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */
362
if (vector && !eilvt_entry_is_changeable(vector, new))
363
/* may not change if vectors are different */
364
return rsvd;
365
} while (!atomic_try_cmpxchg(&eilvt_offsets[offset], &rsvd, new));
366
367
rsvd = new & ~APIC_EILVT_MASKED;
368
if (rsvd && rsvd != vector)
369
pr_info("LVT offset %d assigned for vector 0x%02x\n",
370
offset, rsvd);
371
372
return new;
373
}
374
375
/*
376
* If mask=1, the LVT entry does not generate interrupts while mask=0
377
* enables the vector. See also the BKDGs. Must be called with
378
* preemption disabled.
379
*/
380
381
int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
382
{
383
unsigned long reg = APIC_EILVTn(offset);
384
unsigned int new, old, reserved;
385
386
new = (mask << 16) | (msg_type << 8) | vector;
387
old = apic_read(reg);
388
reserved = reserve_eilvt_offset(offset, new);
389
390
if (reserved != new) {
391
pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
392
"vector 0x%x, but the register is already in use for "
393
"vector 0x%x on another cpu\n",
394
smp_processor_id(), reg, offset, new, reserved);
395
return -EINVAL;
396
}
397
398
if (!eilvt_entry_is_changeable(old, new)) {
399
pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
400
"vector 0x%x, but the register is already in use for "
401
"vector 0x%x on this cpu\n",
402
smp_processor_id(), reg, offset, new, old);
403
return -EBUSY;
404
}
405
406
apic_write(reg, new);
407
408
return 0;
409
}
410
EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
411
412
/*
413
* Program the next event, relative to now
414
*/
415
static int lapic_next_event(unsigned long delta,
416
struct clock_event_device *evt)
417
{
418
apic_write(APIC_TMICT, delta);
419
return 0;
420
}
421
422
static int lapic_next_deadline(unsigned long delta,
423
struct clock_event_device *evt)
424
{
425
u64 tsc;
426
427
/* This MSR is special and need a special fence: */
428
weak_wrmsr_fence();
429
430
tsc = rdtsc();
431
wrmsrq(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
432
return 0;
433
}
434
435
static int lapic_timer_shutdown(struct clock_event_device *evt)
436
{
437
unsigned int v;
438
439
/* Lapic used as dummy for broadcast ? */
440
if (evt->features & CLOCK_EVT_FEAT_DUMMY)
441
return 0;
442
443
v = apic_read(APIC_LVTT);
444
v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
445
apic_write(APIC_LVTT, v);
446
447
/*
448
* Setting APIC_LVT_MASKED (above) should be enough to tell
449
* the hardware that this timer will never fire. But AMD
450
* erratum 411 and some Intel CPU behavior circa 2024 say
451
* otherwise. Time for belt and suspenders programming: mask
452
* the timer _and_ zero the counter registers:
453
*/
454
if (v & APIC_LVT_TIMER_TSCDEADLINE)
455
wrmsrq(MSR_IA32_TSC_DEADLINE, 0);
456
else
457
apic_write(APIC_TMICT, 0);
458
459
return 0;
460
}
461
462
static inline int
463
lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
464
{
465
/* Lapic used as dummy for broadcast ? */
466
if (evt->features & CLOCK_EVT_FEAT_DUMMY)
467
return 0;
468
469
__setup_APIC_LVTT(lapic_timer_period, oneshot, 1);
470
return 0;
471
}
472
473
static int lapic_timer_set_periodic(struct clock_event_device *evt)
474
{
475
return lapic_timer_set_periodic_oneshot(evt, false);
476
}
477
478
static int lapic_timer_set_oneshot(struct clock_event_device *evt)
479
{
480
return lapic_timer_set_periodic_oneshot(evt, true);
481
}
482
483
/*
484
* Local APIC timer broadcast function
485
*/
486
static void lapic_timer_broadcast(const struct cpumask *mask)
487
{
488
#ifdef CONFIG_SMP
489
__apic_send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
490
#endif
491
}
492
493
494
/*
495
* The local apic timer can be used for any function which is CPU local.
496
*/
497
static struct clock_event_device lapic_clockevent = {
498
.name = "lapic",
499
.features = CLOCK_EVT_FEAT_PERIODIC |
500
CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
501
| CLOCK_EVT_FEAT_DUMMY,
502
.shift = 32,
503
.set_state_shutdown = lapic_timer_shutdown,
504
.set_state_periodic = lapic_timer_set_periodic,
505
.set_state_oneshot = lapic_timer_set_oneshot,
506
.set_state_oneshot_stopped = lapic_timer_shutdown,
507
.set_next_event = lapic_next_event,
508
.broadcast = lapic_timer_broadcast,
509
.rating = 100,
510
.irq = -1,
511
};
512
static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
513
514
static const struct x86_cpu_id deadline_match[] __initconst = {
515
X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 0x2, 0x2, 0x3a), /* EP */
516
X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 0x4, 0x4, 0x0f), /* EX */
517
518
X86_MATCH_VFM(INTEL_BROADWELL_X, 0x0b000020),
519
520
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 0x2, 0x2, 0x00000011),
521
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 0x3, 0x3, 0x0700000e),
522
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 0x4, 0x4, 0x0f00000c),
523
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 0x5, 0x5, 0x0e000003),
524
525
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 0x3, 0x3, 0x01000136),
526
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 0x4, 0x4, 0x02000014),
527
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 0x5, 0xf, 0),
528
529
X86_MATCH_VFM(INTEL_HASWELL, 0x22),
530
X86_MATCH_VFM(INTEL_HASWELL_L, 0x20),
531
X86_MATCH_VFM(INTEL_HASWELL_G, 0x17),
532
533
X86_MATCH_VFM(INTEL_BROADWELL, 0x25),
534
X86_MATCH_VFM(INTEL_BROADWELL_G, 0x17),
535
536
X86_MATCH_VFM(INTEL_SKYLAKE_L, 0xb2),
537
X86_MATCH_VFM(INTEL_SKYLAKE, 0xb2),
538
539
X86_MATCH_VFM(INTEL_KABYLAKE_L, 0x52),
540
X86_MATCH_VFM(INTEL_KABYLAKE, 0x52),
541
542
{},
543
};
544
545
static __init bool apic_validate_deadline_timer(void)
546
{
547
const struct x86_cpu_id *m;
548
u32 rev;
549
550
if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
551
return false;
552
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
553
return true;
554
555
m = x86_match_cpu(deadline_match);
556
if (!m)
557
return true;
558
559
rev = (u32)m->driver_data;
560
561
if (boot_cpu_data.microcode >= rev)
562
return true;
563
564
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
565
pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
566
"please update microcode to version: 0x%x (or later)\n", rev);
567
return false;
568
}
569
570
/*
571
* Setup the local APIC timer for this CPU. Copy the initialized values
572
* of the boot CPU and register the clock event in the framework.
573
*/
574
static void setup_APIC_timer(void)
575
{
576
struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
577
578
if (this_cpu_has(X86_FEATURE_ARAT)) {
579
lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
580
/* Make LAPIC timer preferable over percpu HPET */
581
lapic_clockevent.rating = 150;
582
}
583
584
memcpy(levt, &lapic_clockevent, sizeof(*levt));
585
levt->cpumask = cpumask_of(smp_processor_id());
586
587
if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
588
levt->name = "lapic-deadline";
589
levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
590
CLOCK_EVT_FEAT_DUMMY);
591
levt->set_next_event = lapic_next_deadline;
592
clockevents_config_and_register(levt,
593
tsc_khz * (1000 / TSC_DIVISOR),
594
0xF, ~0UL);
595
} else
596
clockevents_register_device(levt);
597
598
apic_update_vector(smp_processor_id(), LOCAL_TIMER_VECTOR, true);
599
}
600
601
/*
602
* Install the updated TSC frequency from recalibration at the TSC
603
* deadline clockevent devices.
604
*/
605
static void __lapic_update_tsc_freq(void *info)
606
{
607
struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
608
609
if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
610
return;
611
612
clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
613
}
614
615
void lapic_update_tsc_freq(void)
616
{
617
/*
618
* The clockevent device's ->mult and ->shift can both be
619
* changed. In order to avoid races, schedule the frequency
620
* update code on each CPU.
621
*/
622
on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
623
}
624
625
/*
626
* In this functions we calibrate APIC bus clocks to the external timer.
627
*
628
* We want to do the calibration only once since we want to have local timer
629
* irqs synchronous. CPUs connected by the same APIC bus have the very same bus
630
* frequency.
631
*
632
* This was previously done by reading the PIT/HPET and waiting for a wrap
633
* around to find out, that a tick has elapsed. I have a box, where the PIT
634
* readout is broken, so it never gets out of the wait loop again. This was
635
* also reported by others.
636
*
637
* Monitoring the jiffies value is inaccurate and the clockevents
638
* infrastructure allows us to do a simple substitution of the interrupt
639
* handler.
640
*
641
* The calibration routine also uses the pm_timer when possible, as the PIT
642
* happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
643
* back to normal later in the boot process).
644
*/
645
646
#define LAPIC_CAL_LOOPS (HZ/10)
647
648
static __initdata int lapic_cal_loops = -1;
649
static __initdata long lapic_cal_t1, lapic_cal_t2;
650
static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
651
static __initdata u32 lapic_cal_pm1, lapic_cal_pm2;
652
static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
653
654
/*
655
* Temporary interrupt handler and polled calibration function.
656
*/
657
static void __init lapic_cal_handler(struct clock_event_device *dev)
658
{
659
unsigned long long tsc = 0;
660
long tapic = apic_read(APIC_TMCCT);
661
u32 pm = acpi_pm_read_early();
662
663
if (boot_cpu_has(X86_FEATURE_TSC))
664
tsc = rdtsc();
665
666
switch (lapic_cal_loops++) {
667
case 0:
668
lapic_cal_t1 = tapic;
669
lapic_cal_tsc1 = tsc;
670
lapic_cal_pm1 = pm;
671
lapic_cal_j1 = jiffies;
672
break;
673
674
case LAPIC_CAL_LOOPS:
675
lapic_cal_t2 = tapic;
676
lapic_cal_tsc2 = tsc;
677
if (pm < lapic_cal_pm1)
678
pm += ACPI_PM_OVRRUN;
679
lapic_cal_pm2 = pm;
680
lapic_cal_j2 = jiffies;
681
break;
682
}
683
}
684
685
static int __init
686
calibrate_by_pmtimer(u32 deltapm, long *delta, long *deltatsc)
687
{
688
const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
689
const long pm_thresh = pm_100ms / 100;
690
unsigned long mult;
691
u64 res;
692
693
#ifndef CONFIG_X86_PM_TIMER
694
return -1;
695
#endif
696
697
apic_pr_verbose("... PM-Timer delta = %u\n", deltapm);
698
699
/* Check, if the PM timer is available */
700
if (!deltapm)
701
return -1;
702
703
mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
704
705
if (deltapm > (pm_100ms - pm_thresh) &&
706
deltapm < (pm_100ms + pm_thresh)) {
707
apic_pr_verbose("... PM-Timer result ok\n");
708
return 0;
709
}
710
711
res = (((u64)deltapm) * mult) >> 22;
712
do_div(res, 1000000);
713
pr_warn("APIC calibration not consistent with PM-Timer: %ldms instead of 100ms\n",
714
(long)res);
715
716
/* Correct the lapic counter value */
717
res = (((u64)(*delta)) * pm_100ms);
718
do_div(res, deltapm);
719
pr_info("APIC delta adjusted to PM-Timer: "
720
"%lu (%ld)\n", (unsigned long)res, *delta);
721
*delta = (long)res;
722
723
/* Correct the tsc counter value */
724
if (boot_cpu_has(X86_FEATURE_TSC)) {
725
res = (((u64)(*deltatsc)) * pm_100ms);
726
do_div(res, deltapm);
727
apic_pr_verbose("TSC delta adjusted to PM-Timer: %lu (%ld)\n",
728
(unsigned long)res, *deltatsc);
729
*deltatsc = (long)res;
730
}
731
732
return 0;
733
}
734
735
static int __init lapic_init_clockevent(void)
736
{
737
if (!lapic_timer_period)
738
return -1;
739
740
/* Calculate the scaled math multiplication factor */
741
lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR,
742
TICK_NSEC, lapic_clockevent.shift);
743
lapic_clockevent.max_delta_ns =
744
clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
745
lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
746
lapic_clockevent.min_delta_ns =
747
clockevent_delta2ns(0xF, &lapic_clockevent);
748
lapic_clockevent.min_delta_ticks = 0xF;
749
750
return 0;
751
}
752
753
bool __init apic_needs_pit(void)
754
{
755
/*
756
* If the frequencies are not known, PIT is required for both TSC
757
* and apic timer calibration.
758
*/
759
if (!tsc_khz || !cpu_khz)
760
return true;
761
762
/* Is there an APIC at all or is it disabled? */
763
if (!boot_cpu_has(X86_FEATURE_APIC) || apic_is_disabled)
764
return true;
765
766
/*
767
* If interrupt delivery mode is legacy PIC or virtual wire without
768
* configuration, the local APIC timer won't be set up. Make sure
769
* that the PIT is initialized.
770
*/
771
if (apic_intr_mode == APIC_PIC ||
772
apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG)
773
return true;
774
775
/* Virt guests may lack ARAT, but still have DEADLINE */
776
if (!boot_cpu_has(X86_FEATURE_ARAT))
777
return true;
778
779
/* Deadline timer is based on TSC so no further PIT action required */
780
if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
781
return false;
782
783
/* APIC timer disabled? */
784
if (disable_apic_timer)
785
return true;
786
/*
787
* The APIC timer frequency is known already, no PIT calibration
788
* required. If unknown, let the PIT be initialized.
789
*/
790
return lapic_timer_period == 0;
791
}
792
793
static int __init calibrate_APIC_clock(void)
794
{
795
struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
796
u64 tsc_perj = 0, tsc_start = 0;
797
long delta_tsc_khz, bus_khz;
798
unsigned long jif_start;
799
unsigned long deltaj;
800
long delta, deltatsc;
801
int pm_referenced = 0;
802
803
if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
804
return 0;
805
806
/*
807
* Check if lapic timer has already been calibrated by platform
808
* specific routine, such as tsc calibration code. If so just fill
809
* in the clockevent structure and return.
810
*/
811
if (!lapic_init_clockevent()) {
812
apic_pr_verbose("lapic timer already calibrated %d\n", lapic_timer_period);
813
/*
814
* Direct calibration methods must have an always running
815
* local APIC timer, no need for broadcast timer.
816
*/
817
lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
818
return 0;
819
}
820
821
apic_pr_verbose("Using local APIC timer interrupts. Calibrating APIC timer ...\n");
822
823
/*
824
* There are platforms w/o global clockevent devices. Instead of
825
* making the calibration conditional on that, use a polling based
826
* approach everywhere.
827
*/
828
local_irq_disable();
829
830
/*
831
* Setup the APIC counter to maximum. There is no way the lapic
832
* can underflow in the 100ms detection time frame
833
*/
834
__setup_APIC_LVTT(0xffffffff, 0, 0);
835
836
/*
837
* Methods to terminate the calibration loop:
838
* 1) Global clockevent if available (jiffies)
839
* 2) TSC if available and frequency is known
840
*/
841
jif_start = READ_ONCE(jiffies);
842
843
if (tsc_khz) {
844
tsc_start = rdtsc();
845
tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
846
}
847
848
/*
849
* Enable interrupts so the tick can fire, if a global
850
* clockevent device is available
851
*/
852
local_irq_enable();
853
854
while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
855
/* Wait for a tick to elapse */
856
while (1) {
857
if (tsc_khz) {
858
u64 tsc_now = rdtsc();
859
if ((tsc_now - tsc_start) >= tsc_perj) {
860
tsc_start += tsc_perj;
861
break;
862
}
863
} else {
864
unsigned long jif_now = READ_ONCE(jiffies);
865
866
if (time_after(jif_now, jif_start)) {
867
jif_start = jif_now;
868
break;
869
}
870
}
871
cpu_relax();
872
}
873
874
/* Invoke the calibration routine */
875
local_irq_disable();
876
lapic_cal_handler(NULL);
877
local_irq_enable();
878
}
879
880
local_irq_disable();
881
882
/* Build delta t1-t2 as apic timer counts down */
883
delta = lapic_cal_t1 - lapic_cal_t2;
884
apic_pr_verbose("... lapic delta = %ld\n", delta);
885
886
deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
887
888
/* we trust the PM based calibration if possible */
889
pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
890
&delta, &deltatsc);
891
892
lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
893
lapic_init_clockevent();
894
895
apic_pr_verbose("..... delta %ld\n", delta);
896
apic_pr_verbose("..... mult: %u\n", lapic_clockevent.mult);
897
apic_pr_verbose("..... calibration result: %u\n", lapic_timer_period);
898
899
if (boot_cpu_has(X86_FEATURE_TSC)) {
900
delta_tsc_khz = (deltatsc * HZ) / (1000 * LAPIC_CAL_LOOPS);
901
902
apic_pr_verbose("..... CPU clock speed is %ld.%03ld MHz.\n",
903
delta_tsc_khz / 1000, delta_tsc_khz % 1000);
904
}
905
906
bus_khz = (long)lapic_timer_period * HZ / 1000;
907
apic_pr_verbose("..... host bus clock speed is %ld.%03ld MHz.\n",
908
bus_khz / 1000, bus_khz % 1000);
909
910
/*
911
* Do a sanity check on the APIC calibration result
912
*/
913
if (lapic_timer_period < (1000000 / HZ)) {
914
local_irq_enable();
915
pr_warn("APIC frequency too slow, disabling apic timer\n");
916
return -1;
917
}
918
919
levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
920
921
/*
922
* PM timer calibration failed or not turned on so lets try APIC
923
* timer based calibration, if a global clockevent device is
924
* available.
925
*/
926
if (!pm_referenced && global_clock_event) {
927
apic_pr_verbose("... verify APIC timer\n");
928
929
/*
930
* Setup the apic timer manually
931
*/
932
levt->event_handler = lapic_cal_handler;
933
lapic_timer_set_periodic(levt);
934
lapic_cal_loops = -1;
935
936
/* Let the interrupts run */
937
local_irq_enable();
938
939
while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
940
cpu_relax();
941
942
/* Stop the lapic timer */
943
local_irq_disable();
944
lapic_timer_shutdown(levt);
945
946
/* Jiffies delta */
947
deltaj = lapic_cal_j2 - lapic_cal_j1;
948
apic_pr_verbose("... jiffies delta = %lu\n", deltaj);
949
950
/* Check, if the jiffies result is consistent */
951
if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
952
apic_pr_verbose("... jiffies result ok\n");
953
else
954
levt->features |= CLOCK_EVT_FEAT_DUMMY;
955
}
956
local_irq_enable();
957
958
if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
959
pr_warn("APIC timer disabled due to verification failure\n");
960
return -1;
961
}
962
963
return 0;
964
}
965
966
/*
967
* Setup the boot APIC
968
*
969
* Calibrate and verify the result.
970
*/
971
void __init setup_boot_APIC_clock(void)
972
{
973
/*
974
* The local apic timer can be disabled via the kernel
975
* commandline or from the CPU detection code. Register the lapic
976
* timer as a dummy clock event source on SMP systems, so the
977
* broadcast mechanism is used. On UP systems simply ignore it.
978
*/
979
if (disable_apic_timer) {
980
pr_info("Disabling APIC timer\n");
981
/* No broadcast on UP ! */
982
if (num_possible_cpus() > 1) {
983
lapic_clockevent.mult = 1;
984
setup_APIC_timer();
985
}
986
return;
987
}
988
989
if (calibrate_APIC_clock()) {
990
/* No broadcast on UP ! */
991
if (num_possible_cpus() > 1)
992
setup_APIC_timer();
993
return;
994
}
995
996
/*
997
* If nmi_watchdog is set to IO_APIC, we need the
998
* PIT/HPET going. Otherwise register lapic as a dummy
999
* device.
1000
*/
1001
lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
1002
1003
/* Setup the lapic or request the broadcast */
1004
setup_APIC_timer();
1005
amd_e400_c1e_apic_setup();
1006
}
1007
1008
void setup_secondary_APIC_clock(void)
1009
{
1010
setup_APIC_timer();
1011
amd_e400_c1e_apic_setup();
1012
}
1013
1014
/*
1015
* The guts of the apic timer interrupt
1016
*/
1017
static void local_apic_timer_interrupt(void)
1018
{
1019
struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1020
1021
/*
1022
* Normally we should not be here till LAPIC has been initialized but
1023
* in some cases like kdump, its possible that there is a pending LAPIC
1024
* timer interrupt from previous kernel's context and is delivered in
1025
* new kernel the moment interrupts are enabled.
1026
*
1027
* Interrupts are enabled early and LAPIC is setup much later, hence
1028
* its possible that when we get here evt->event_handler is NULL.
1029
* Check for event_handler being NULL and discard the interrupt as
1030
* spurious.
1031
*/
1032
if (!evt->event_handler) {
1033
pr_warn("Spurious LAPIC timer interrupt on cpu %d\n",
1034
smp_processor_id());
1035
/* Switch it off */
1036
lapic_timer_shutdown(evt);
1037
return;
1038
}
1039
1040
/*
1041
* the NMI deadlock-detector uses this.
1042
*/
1043
inc_irq_stat(apic_timer_irqs);
1044
1045
evt->event_handler(evt);
1046
}
1047
1048
/*
1049
* Local APIC timer interrupt. This is the most natural way for doing
1050
* local interrupts, but local timer interrupts can be emulated by
1051
* broadcast interrupts too. [in case the hw doesn't support APIC timers]
1052
*
1053
* [ if a single-CPU system runs an SMP kernel then we call the local
1054
* interrupt as well. Thus we cannot inline the local irq ... ]
1055
*/
1056
DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt)
1057
{
1058
struct pt_regs *old_regs = set_irq_regs(regs);
1059
1060
apic_eoi();
1061
trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1062
local_apic_timer_interrupt();
1063
trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1064
1065
set_irq_regs(old_regs);
1066
}
1067
1068
/*
1069
* Local APIC start and shutdown
1070
*/
1071
1072
/**
1073
* clear_local_APIC - shutdown the local APIC
1074
*
1075
* This is called, when a CPU is disabled and before rebooting, so the state of
1076
* the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1077
* leftovers during boot.
1078
*/
1079
void clear_local_APIC(void)
1080
{
1081
int maxlvt;
1082
u32 v;
1083
1084
if (!apic_accessible())
1085
return;
1086
1087
maxlvt = lapic_get_maxlvt();
1088
/*
1089
* Masking an LVT entry can trigger a local APIC error
1090
* if the vector is zero. Mask LVTERR first to prevent this.
1091
*/
1092
if (maxlvt >= 3) {
1093
v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1094
apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1095
}
1096
/*
1097
* Careful: we have to set masks only first to deassert
1098
* any level-triggered sources.
1099
*/
1100
v = apic_read(APIC_LVTT);
1101
apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1102
v = apic_read(APIC_LVT0);
1103
apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1104
v = apic_read(APIC_LVT1);
1105
apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1106
if (maxlvt >= 4) {
1107
v = apic_read(APIC_LVTPC);
1108
apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1109
}
1110
1111
/* lets not touch this if we didn't frob it */
1112
#ifdef CONFIG_X86_THERMAL_VECTOR
1113
if (maxlvt >= 5) {
1114
v = apic_read(APIC_LVTTHMR);
1115
apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1116
}
1117
#endif
1118
#ifdef CONFIG_X86_MCE_INTEL
1119
if (maxlvt >= 6) {
1120
v = apic_read(APIC_LVTCMCI);
1121
if (!(v & APIC_LVT_MASKED))
1122
apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1123
}
1124
#endif
1125
1126
/*
1127
* Clean APIC state for other OSs:
1128
*/
1129
apic_write(APIC_LVTT, APIC_LVT_MASKED);
1130
apic_write(APIC_LVT0, APIC_LVT_MASKED);
1131
apic_write(APIC_LVT1, APIC_LVT_MASKED);
1132
if (maxlvt >= 3)
1133
apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1134
if (maxlvt >= 4)
1135
apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1136
1137
/* Integrated APIC (!82489DX) ? */
1138
if (lapic_is_integrated()) {
1139
if (maxlvt > 3)
1140
/* Clear ESR due to Pentium errata 3AP and 11AP */
1141
apic_write(APIC_ESR, 0);
1142
apic_read(APIC_ESR);
1143
}
1144
}
1145
1146
/**
1147
* apic_soft_disable - Clears and software disables the local APIC on hotplug
1148
*
1149
* Contrary to disable_local_APIC() this does not touch the enable bit in
1150
* MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC
1151
* bus would require a hardware reset as the APIC would lose track of bus
1152
* arbitration. On systems with FSB delivery APICBASE could be disabled,
1153
* but it has to be guaranteed that no interrupt is sent to the APIC while
1154
* in that state and it's not clear from the SDM whether it still responds
1155
* to INIT/SIPI messages. Stay on the safe side and use software disable.
1156
*/
1157
void apic_soft_disable(void)
1158
{
1159
u32 value;
1160
1161
clear_local_APIC();
1162
1163
/* Soft disable APIC (implies clearing of registers for 82489DX!). */
1164
value = apic_read(APIC_SPIV);
1165
value &= ~APIC_SPIV_APIC_ENABLED;
1166
apic_write(APIC_SPIV, value);
1167
}
1168
1169
/**
1170
* disable_local_APIC - clear and disable the local APIC
1171
*/
1172
void disable_local_APIC(void)
1173
{
1174
if (!apic_accessible())
1175
return;
1176
1177
if (apic->teardown)
1178
apic->teardown();
1179
1180
apic_soft_disable();
1181
1182
#ifdef CONFIG_X86_32
1183
/*
1184
* When LAPIC was disabled by the BIOS and enabled by the kernel,
1185
* restore the disabled state.
1186
*/
1187
if (enabled_via_apicbase) {
1188
unsigned int l, h;
1189
1190
rdmsr(MSR_IA32_APICBASE, l, h);
1191
l &= ~MSR_IA32_APICBASE_ENABLE;
1192
wrmsr(MSR_IA32_APICBASE, l, h);
1193
}
1194
#endif
1195
}
1196
1197
/*
1198
* If Linux enabled the LAPIC against the BIOS default disable it down before
1199
* re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and
1200
* not power-off. Additionally clear all LVT entries before disable_local_APIC
1201
* for the case where Linux didn't enable the LAPIC.
1202
*/
1203
void lapic_shutdown(void)
1204
{
1205
unsigned long flags;
1206
1207
if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1208
return;
1209
1210
local_irq_save(flags);
1211
1212
#ifdef CONFIG_X86_32
1213
if (!enabled_via_apicbase)
1214
clear_local_APIC();
1215
else
1216
#endif
1217
disable_local_APIC();
1218
1219
1220
local_irq_restore(flags);
1221
}
1222
1223
/**
1224
* sync_Arb_IDs - synchronize APIC bus arbitration IDs
1225
*/
1226
void __init sync_Arb_IDs(void)
1227
{
1228
/*
1229
* Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1230
* needed on AMD.
1231
*/
1232
if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1233
return;
1234
1235
/*
1236
* Wait for idle.
1237
*/
1238
apic_wait_icr_idle();
1239
1240
apic_pr_debug("Synchronizing Arb IDs.\n");
1241
apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG | APIC_DM_INIT);
1242
}
1243
1244
enum apic_intr_mode_id apic_intr_mode __ro_after_init;
1245
1246
static int __init __apic_intr_mode_select(void)
1247
{
1248
/* Check kernel option */
1249
if (apic_is_disabled) {
1250
pr_info("APIC disabled via kernel command line\n");
1251
return APIC_PIC;
1252
}
1253
1254
/* Check BIOS */
1255
#ifdef CONFIG_X86_64
1256
/* On 64-bit, the APIC must be integrated, Check local APIC only */
1257
if (!boot_cpu_has(X86_FEATURE_APIC)) {
1258
apic_is_disabled = true;
1259
pr_info("APIC disabled by BIOS\n");
1260
return APIC_PIC;
1261
}
1262
#else
1263
/* On 32-bit, the APIC may be integrated APIC or 82489DX */
1264
1265
/* Neither 82489DX nor integrated APIC ? */
1266
if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1267
apic_is_disabled = true;
1268
return APIC_PIC;
1269
}
1270
1271
/* If the BIOS pretends there is an integrated APIC ? */
1272
if (!boot_cpu_has(X86_FEATURE_APIC) &&
1273
APIC_INTEGRATED(boot_cpu_apic_version)) {
1274
apic_is_disabled = true;
1275
pr_err(FW_BUG "Local APIC not detected, force emulation\n");
1276
return APIC_PIC;
1277
}
1278
#endif
1279
1280
/* Check MP table or ACPI MADT configuration */
1281
if (!smp_found_config) {
1282
disable_ioapic_support();
1283
if (!acpi_lapic) {
1284
pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1285
return APIC_VIRTUAL_WIRE_NO_CONFIG;
1286
}
1287
return APIC_VIRTUAL_WIRE;
1288
}
1289
1290
#ifdef CONFIG_SMP
1291
/* If SMP should be disabled, then really disable it! */
1292
if (!setup_max_cpus) {
1293
pr_info("APIC: SMP mode deactivated\n");
1294
return APIC_SYMMETRIC_IO_NO_ROUTING;
1295
}
1296
#endif
1297
1298
return APIC_SYMMETRIC_IO;
1299
}
1300
1301
/* Select the interrupt delivery mode for the BSP */
1302
void __init apic_intr_mode_select(void)
1303
{
1304
apic_intr_mode = __apic_intr_mode_select();
1305
}
1306
1307
/*
1308
* An initial setup of the virtual wire mode.
1309
*/
1310
void __init init_bsp_APIC(void)
1311
{
1312
unsigned int value;
1313
1314
/*
1315
* Don't do the setup now if we have a SMP BIOS as the
1316
* through-I/O-APIC virtual wire mode might be active.
1317
*/
1318
if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1319
return;
1320
1321
/*
1322
* Do not trust the local APIC being empty at bootup.
1323
*/
1324
clear_local_APIC();
1325
1326
/*
1327
* Enable APIC.
1328
*/
1329
value = apic_read(APIC_SPIV);
1330
value &= ~APIC_VECTOR_MASK;
1331
value |= APIC_SPIV_APIC_ENABLED;
1332
1333
#ifdef CONFIG_X86_32
1334
/* This bit is reserved on P4/Xeon and should be cleared */
1335
if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1336
(boot_cpu_data.x86 == 15))
1337
value &= ~APIC_SPIV_FOCUS_DISABLED;
1338
else
1339
#endif
1340
value |= APIC_SPIV_FOCUS_DISABLED;
1341
value |= SPURIOUS_APIC_VECTOR;
1342
apic_write(APIC_SPIV, value);
1343
1344
/*
1345
* Set up the virtual wire mode.
1346
*/
1347
apic_write(APIC_LVT0, APIC_DM_EXTINT);
1348
value = APIC_DM_NMI;
1349
if (!lapic_is_integrated()) /* 82489DX */
1350
value |= APIC_LVT_LEVEL_TRIGGER;
1351
if (apic_extnmi == APIC_EXTNMI_NONE)
1352
value |= APIC_LVT_MASKED;
1353
apic_write(APIC_LVT1, value);
1354
}
1355
1356
static void __init apic_bsp_setup(bool upmode);
1357
1358
/* Init the interrupt delivery mode for the BSP */
1359
void __init apic_intr_mode_init(void)
1360
{
1361
bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1362
1363
switch (apic_intr_mode) {
1364
case APIC_PIC:
1365
pr_info("APIC: Keep in PIC mode(8259)\n");
1366
return;
1367
case APIC_VIRTUAL_WIRE:
1368
pr_info("APIC: Switch to virtual wire mode setup\n");
1369
break;
1370
case APIC_VIRTUAL_WIRE_NO_CONFIG:
1371
pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1372
upmode = true;
1373
break;
1374
case APIC_SYMMETRIC_IO:
1375
pr_info("APIC: Switch to symmetric I/O mode setup\n");
1376
break;
1377
case APIC_SYMMETRIC_IO_NO_ROUTING:
1378
pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1379
break;
1380
}
1381
1382
x86_64_probe_apic();
1383
1384
if (x86_platform.apic_post_init)
1385
x86_platform.apic_post_init();
1386
1387
apic_bsp_setup(upmode);
1388
}
1389
1390
static void lapic_setup_esr(void)
1391
{
1392
unsigned int oldvalue, value, maxlvt;
1393
1394
if (!lapic_is_integrated()) {
1395
pr_info("No ESR for 82489DX.\n");
1396
return;
1397
}
1398
1399
if (apic->disable_esr) {
1400
/*
1401
* Something untraceable is creating bad interrupts on
1402
* secondary quads ... for the moment, just leave the
1403
* ESR disabled - we can't do anything useful with the
1404
* errors anyway - mbligh
1405
*/
1406
pr_info("Leaving ESR disabled.\n");
1407
return;
1408
}
1409
1410
maxlvt = lapic_get_maxlvt();
1411
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1412
apic_write(APIC_ESR, 0);
1413
oldvalue = apic_read(APIC_ESR);
1414
1415
/* enables sending errors */
1416
value = ERROR_APIC_VECTOR;
1417
apic_write(APIC_LVTERR, value);
1418
1419
/*
1420
* spec says clear errors after enabling vector.
1421
*/
1422
if (maxlvt > 3)
1423
apic_write(APIC_ESR, 0);
1424
value = apic_read(APIC_ESR);
1425
if (value != oldvalue) {
1426
apic_pr_verbose("ESR value before enabling vector: 0x%08x after: 0x%08x\n",
1427
oldvalue, value);
1428
}
1429
}
1430
1431
#define APIC_IR_REGS APIC_ISR_NR
1432
#define APIC_IR_BITS (APIC_IR_REGS * 32)
1433
#define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG)
1434
1435
union apic_ir {
1436
unsigned long map[APIC_IR_MAPSIZE];
1437
u32 regs[APIC_IR_REGS];
1438
};
1439
1440
static bool apic_check_and_eoi_isr(union apic_ir *isr)
1441
{
1442
int i, bit;
1443
1444
/* Read the ISRs */
1445
for (i = 0; i < APIC_IR_REGS; i++)
1446
isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
1447
1448
/* If the ISR map empty, nothing to do here. */
1449
if (bitmap_empty(isr->map, APIC_IR_BITS))
1450
return true;
1451
1452
/*
1453
* There can be multiple ISR bits set when a high priority
1454
* interrupt preempted a lower priority one. Issue an EOI for each
1455
* set bit. The priority traversal order does not matter as there
1456
* can't be new ISR bits raised at this point. What matters is that
1457
* an EOI is issued for each ISR bit.
1458
*/
1459
for_each_set_bit(bit, isr->map, APIC_IR_BITS)
1460
apic_eoi();
1461
1462
/* Reread the ISRs, they should be empty now */
1463
for (i = 0; i < APIC_IR_REGS; i++)
1464
isr->regs[i] = apic_read(APIC_ISR + i * 0x10);
1465
1466
return bitmap_empty(isr->map, APIC_IR_BITS);
1467
}
1468
1469
/*
1470
* If a CPU services an interrupt and crashes before issuing EOI to the
1471
* local APIC, the corresponding ISR bit is still set when the crashing CPU
1472
* jumps into a crash kernel. Read the ISR and issue an EOI for each set
1473
* bit to acknowledge it as otherwise these slots would be locked forever
1474
* waiting for an EOI.
1475
*
1476
* If there are pending bits in the IRR, then they won't be converted into
1477
* ISR bits as the CPU has interrupts disabled. They will be delivered once
1478
* the CPU enables interrupts and there is nothing which can prevent that.
1479
*
1480
* In the worst case this results in spurious interrupt warnings.
1481
*/
1482
static void apic_clear_isr(void)
1483
{
1484
union apic_ir ir;
1485
unsigned int i;
1486
1487
if (!apic_check_and_eoi_isr(&ir))
1488
pr_warn("APIC: Stale ISR: %256pb\n", ir.map);
1489
1490
for (i = 0; i < APIC_IR_REGS; i++)
1491
ir.regs[i] = apic_read(APIC_IRR + i * 0x10);
1492
1493
if (!bitmap_empty(ir.map, APIC_IR_BITS))
1494
pr_warn("APIC: Stale IRR: %256pb\n", ir.map);
1495
}
1496
1497
/**
1498
* setup_local_APIC - setup the local APIC
1499
*
1500
* Used to setup local APIC while initializing BSP or bringing up APs.
1501
* Always called with preemption disabled.
1502
*/
1503
static void setup_local_APIC(void)
1504
{
1505
int cpu = smp_processor_id();
1506
unsigned int value;
1507
1508
if (apic_is_disabled) {
1509
disable_ioapic_support();
1510
return;
1511
}
1512
1513
if (apic->setup)
1514
apic->setup();
1515
1516
/*
1517
* If this comes from kexec/kcrash the APIC might be enabled in
1518
* SPIV. Soft disable it before doing further initialization.
1519
*/
1520
value = apic_read(APIC_SPIV);
1521
value &= ~APIC_SPIV_APIC_ENABLED;
1522
apic_write(APIC_SPIV, value);
1523
1524
#ifdef CONFIG_X86_32
1525
/* Pound the ESR really hard over the head with a big hammer - mbligh */
1526
if (lapic_is_integrated() && apic->disable_esr) {
1527
apic_write(APIC_ESR, 0);
1528
apic_write(APIC_ESR, 0);
1529
apic_write(APIC_ESR, 0);
1530
apic_write(APIC_ESR, 0);
1531
}
1532
#endif
1533
/*
1534
* Intel recommends to set DFR, LDR and TPR before enabling
1535
* an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
1536
* document number 292116).
1537
*
1538
* Except for APICs which operate in physical destination mode.
1539
*/
1540
if (apic->init_apic_ldr)
1541
apic->init_apic_ldr();
1542
1543
/*
1544
* Set Task Priority to 'accept all except vectors 0-31'. An APIC
1545
* vector in the 16-31 range could be delivered if TPR == 0, but we
1546
* would think it's an exception and terrible things will happen. We
1547
* never change this later on.
1548
*/
1549
value = apic_read(APIC_TASKPRI);
1550
value &= ~APIC_TPRI_MASK;
1551
value |= 0x10;
1552
apic_write(APIC_TASKPRI, value);
1553
1554
apic_clear_isr();
1555
1556
/*
1557
* Now that we are all set up, enable the APIC
1558
*/
1559
value = apic_read(APIC_SPIV);
1560
value &= ~APIC_VECTOR_MASK;
1561
/*
1562
* Enable APIC
1563
*/
1564
value |= APIC_SPIV_APIC_ENABLED;
1565
1566
#ifdef CONFIG_X86_32
1567
/*
1568
* Some unknown Intel IO/APIC (or APIC) errata is biting us with
1569
* certain networking cards. If high frequency interrupts are
1570
* happening on a particular IOAPIC pin, plus the IOAPIC routing
1571
* entry is masked/unmasked at a high rate as well then sooner or
1572
* later IOAPIC line gets 'stuck', no more interrupts are received
1573
* from the device. If focus CPU is disabled then the hang goes
1574
* away, oh well :-(
1575
*
1576
* [ This bug can be reproduced easily with a level-triggered
1577
* PCI Ne2000 networking cards and PII/PIII processors, dual
1578
* BX chipset. ]
1579
*/
1580
/*
1581
* Actually disabling the focus CPU check just makes the hang less
1582
* frequent as it makes the interrupt distribution model be more
1583
* like LRU than MRU (the short-term load is more even across CPUs).
1584
*/
1585
1586
/*
1587
* - enable focus processor (bit==0)
1588
* - 64bit mode always use processor focus
1589
* so no need to set it
1590
*/
1591
value &= ~APIC_SPIV_FOCUS_DISABLED;
1592
#endif
1593
1594
/*
1595
* Set spurious IRQ vector
1596
*/
1597
value |= SPURIOUS_APIC_VECTOR;
1598
apic_write(APIC_SPIV, value);
1599
1600
perf_events_lapic_init();
1601
1602
/*
1603
* Set up LVT0, LVT1:
1604
*
1605
* set up through-local-APIC on the boot CPU's LINT0. This is not
1606
* strictly necessary in pure symmetric-IO mode, but sometimes
1607
* we delegate interrupts to the 8259A.
1608
*/
1609
/*
1610
* TODO: set up through-local-APIC from through-I/O-APIC? --macro
1611
*/
1612
value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1613
if (!cpu && (pic_mode || !value || ioapic_is_disabled)) {
1614
value = APIC_DM_EXTINT;
1615
apic_pr_verbose("Enabled ExtINT on CPU#%d\n", cpu);
1616
} else {
1617
value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1618
apic_pr_verbose("Masked ExtINT on CPU#%d\n", cpu);
1619
}
1620
apic_write(APIC_LVT0, value);
1621
1622
/*
1623
* Only the BSP sees the LINT1 NMI signal by default. This can be
1624
* modified by apic_extnmi= boot option.
1625
*/
1626
if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1627
apic_extnmi == APIC_EXTNMI_ALL)
1628
value = APIC_DM_NMI;
1629
else
1630
value = APIC_DM_NMI | APIC_LVT_MASKED;
1631
1632
/* Is 82489DX ? */
1633
if (!lapic_is_integrated())
1634
value |= APIC_LVT_LEVEL_TRIGGER;
1635
apic_write(APIC_LVT1, value);
1636
1637
#ifdef CONFIG_X86_MCE_INTEL
1638
/* Recheck CMCI information after local APIC is up on CPU #0 */
1639
if (!cpu)
1640
cmci_recheck();
1641
#endif
1642
}
1643
1644
static void end_local_APIC_setup(void)
1645
{
1646
lapic_setup_esr();
1647
1648
#ifdef CONFIG_X86_32
1649
{
1650
unsigned int value;
1651
/* Disable the local apic timer */
1652
value = apic_read(APIC_LVTT);
1653
value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1654
apic_write(APIC_LVTT, value);
1655
}
1656
#endif
1657
1658
apic_pm_activate();
1659
}
1660
1661
/*
1662
* APIC setup function for application processors. Called from smpboot.c
1663
*/
1664
void apic_ap_setup(void)
1665
{
1666
setup_local_APIC();
1667
end_local_APIC_setup();
1668
}
1669
1670
static __init void apic_read_boot_cpu_id(bool x2apic)
1671
{
1672
/*
1673
* This can be invoked from check_x2apic() before the APIC has been
1674
* selected. But that code knows for sure that the BIOS enabled
1675
* X2APIC.
1676
*/
1677
if (x2apic) {
1678
boot_cpu_physical_apicid = native_apic_msr_read(APIC_ID);
1679
boot_cpu_apic_version = GET_APIC_VERSION(native_apic_msr_read(APIC_LVR));
1680
} else {
1681
boot_cpu_physical_apicid = read_apic_id();
1682
boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
1683
}
1684
topology_register_boot_apic(boot_cpu_physical_apicid);
1685
}
1686
1687
#ifdef CONFIG_X86_X2APIC
1688
int x2apic_mode;
1689
EXPORT_SYMBOL_GPL(x2apic_mode);
1690
1691
enum {
1692
X2APIC_OFF,
1693
X2APIC_DISABLED,
1694
/* All states below here have X2APIC enabled */
1695
X2APIC_ON,
1696
X2APIC_ON_LOCKED
1697
};
1698
static int x2apic_state;
1699
1700
static bool x2apic_hw_locked(void)
1701
{
1702
u64 x86_arch_cap_msr;
1703
u64 msr;
1704
1705
x86_arch_cap_msr = x86_read_arch_cap_msr();
1706
if (x86_arch_cap_msr & ARCH_CAP_XAPIC_DISABLE) {
1707
rdmsrq(MSR_IA32_XAPIC_DISABLE_STATUS, msr);
1708
return (msr & LEGACY_XAPIC_DISABLED);
1709
}
1710
return false;
1711
}
1712
1713
static void __x2apic_disable(void)
1714
{
1715
u64 msr;
1716
1717
if (!boot_cpu_has(X86_FEATURE_APIC))
1718
return;
1719
1720
rdmsrq(MSR_IA32_APICBASE, msr);
1721
if (!(msr & X2APIC_ENABLE))
1722
return;
1723
/* Disable xapic and x2apic first and then reenable xapic mode */
1724
wrmsrq(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1725
wrmsrq(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1726
printk_once(KERN_INFO "x2apic disabled\n");
1727
}
1728
1729
static void __x2apic_enable(void)
1730
{
1731
u64 msr;
1732
1733
rdmsrq(MSR_IA32_APICBASE, msr);
1734
if (msr & X2APIC_ENABLE)
1735
return;
1736
wrmsrq(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1737
printk_once(KERN_INFO "x2apic enabled\n");
1738
}
1739
1740
static int __init setup_nox2apic(char *str)
1741
{
1742
if (x2apic_enabled()) {
1743
u32 apicid = native_apic_msr_read(APIC_ID);
1744
1745
if (apicid >= 255) {
1746
pr_warn("Apicid: %08x, cannot enforce nox2apic\n",
1747
apicid);
1748
return 0;
1749
}
1750
if (x2apic_hw_locked()) {
1751
pr_warn("APIC locked in x2apic mode, can't disable\n");
1752
return 0;
1753
}
1754
pr_warn("x2apic already enabled.\n");
1755
__x2apic_disable();
1756
}
1757
setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1758
x2apic_state = X2APIC_DISABLED;
1759
x2apic_mode = 0;
1760
return 0;
1761
}
1762
early_param("nox2apic", setup_nox2apic);
1763
1764
/* Called from cpu_init() to enable x2apic on (secondary) cpus */
1765
void x2apic_setup(void)
1766
{
1767
/*
1768
* Try to make the AP's APIC state match that of the BSP, but if the
1769
* BSP is unlocked and the AP is locked then there is a state mismatch.
1770
* Warn about the mismatch in case a GP fault occurs due to a locked AP
1771
* trying to be turned off.
1772
*/
1773
if (x2apic_state != X2APIC_ON_LOCKED && x2apic_hw_locked())
1774
pr_warn("x2apic lock mismatch between BSP and AP.\n");
1775
/*
1776
* If x2apic is not in ON or LOCKED state, disable it if already enabled
1777
* from BIOS.
1778
*/
1779
if (x2apic_state < X2APIC_ON) {
1780
__x2apic_disable();
1781
return;
1782
}
1783
__x2apic_enable();
1784
}
1785
1786
static __init void apic_set_fixmap(bool read_apic);
1787
1788
static __init void x2apic_disable(void)
1789
{
1790
u32 x2apic_id;
1791
1792
if (x2apic_state < X2APIC_ON)
1793
return;
1794
1795
x2apic_id = read_apic_id();
1796
if (x2apic_id >= 255)
1797
panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1798
1799
if (x2apic_hw_locked()) {
1800
pr_warn("Cannot disable locked x2apic, id: %08x\n", x2apic_id);
1801
return;
1802
}
1803
1804
__x2apic_disable();
1805
1806
x2apic_mode = 0;
1807
x2apic_state = X2APIC_DISABLED;
1808
1809
/*
1810
* Don't reread the APIC ID as it was already done from
1811
* check_x2apic() and the APIC driver still is a x2APIC variant,
1812
* which fails to do the read after x2APIC was disabled.
1813
*/
1814
apic_set_fixmap(false);
1815
}
1816
1817
static __init void x2apic_enable(void)
1818
{
1819
if (x2apic_state != X2APIC_OFF)
1820
return;
1821
1822
x2apic_mode = 1;
1823
x2apic_state = X2APIC_ON;
1824
__x2apic_enable();
1825
}
1826
1827
static __init void try_to_enable_x2apic(int remap_mode)
1828
{
1829
if (x2apic_state == X2APIC_DISABLED)
1830
return;
1831
1832
if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1833
u32 apic_limit = 255;
1834
1835
/*
1836
* Using X2APIC without IR is not architecturally supported
1837
* on bare metal but may be supported in guests.
1838
*/
1839
if (!x86_init.hyper.x2apic_available()) {
1840
pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1841
x2apic_disable();
1842
return;
1843
}
1844
1845
/*
1846
* If the hypervisor supports extended destination ID in
1847
* MSI, that increases the maximum APIC ID that can be
1848
* used for non-remapped IRQ domains.
1849
*/
1850
if (x86_init.hyper.msi_ext_dest_id()) {
1851
virt_ext_dest_id = 1;
1852
apic_limit = 32767;
1853
}
1854
1855
/*
1856
* Without IR, all CPUs can be addressed by IOAPIC/MSI only
1857
* in physical mode, and CPUs with an APIC ID that cannot
1858
* be addressed must not be brought online.
1859
*/
1860
x2apic_set_max_apicid(apic_limit);
1861
x2apic_phys = 1;
1862
}
1863
x2apic_enable();
1864
}
1865
1866
void __init check_x2apic(void)
1867
{
1868
if (x2apic_enabled()) {
1869
pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1870
x2apic_mode = 1;
1871
if (x2apic_hw_locked())
1872
x2apic_state = X2APIC_ON_LOCKED;
1873
else
1874
x2apic_state = X2APIC_ON;
1875
apic_read_boot_cpu_id(true);
1876
} else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1877
x2apic_state = X2APIC_DISABLED;
1878
}
1879
}
1880
#else /* CONFIG_X86_X2APIC */
1881
void __init check_x2apic(void)
1882
{
1883
if (!apic_is_x2apic_enabled())
1884
return;
1885
/*
1886
* Checkme: Can we simply turn off x2APIC here instead of disabling the APIC?
1887
*/
1888
pr_err("Kernel does not support x2APIC, please recompile with CONFIG_X86_X2APIC.\n");
1889
pr_err("Disabling APIC, expect reduced performance and functionality.\n");
1890
1891
apic_is_disabled = true;
1892
setup_clear_cpu_cap(X86_FEATURE_APIC);
1893
}
1894
1895
static inline void try_to_enable_x2apic(int remap_mode) { }
1896
static inline void __x2apic_enable(void) { }
1897
#endif /* !CONFIG_X86_X2APIC */
1898
1899
void __init enable_IR_x2apic(void)
1900
{
1901
unsigned long flags;
1902
int ret, ir_stat;
1903
1904
if (ioapic_is_disabled) {
1905
pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1906
return;
1907
}
1908
1909
ir_stat = irq_remapping_prepare();
1910
if (ir_stat < 0 && !x2apic_supported())
1911
return;
1912
1913
ret = save_ioapic_entries();
1914
if (ret) {
1915
pr_info("Saving IO-APIC state failed: %d\n", ret);
1916
return;
1917
}
1918
1919
local_irq_save(flags);
1920
legacy_pic->mask_all();
1921
mask_ioapic_entries();
1922
1923
/* If irq_remapping_prepare() succeeded, try to enable it */
1924
if (ir_stat >= 0)
1925
ir_stat = irq_remapping_enable();
1926
/* ir_stat contains the remap mode or an error code */
1927
try_to_enable_x2apic(ir_stat);
1928
1929
if (ir_stat < 0)
1930
restore_ioapic_entries();
1931
legacy_pic->restore_mask();
1932
local_irq_restore(flags);
1933
}
1934
1935
#ifdef CONFIG_X86_64
1936
/*
1937
* Detect and enable local APICs on non-SMP boards.
1938
* Original code written by Keir Fraser.
1939
* On AMD64 we trust the BIOS - if it says no APIC it is likely
1940
* not correctly set up (usually the APIC timer won't work etc.)
1941
*/
1942
static bool __init detect_init_APIC(void)
1943
{
1944
if (!boot_cpu_has(X86_FEATURE_APIC)) {
1945
pr_info("No local APIC present\n");
1946
return false;
1947
}
1948
1949
register_lapic_address(APIC_DEFAULT_PHYS_BASE);
1950
return true;
1951
}
1952
#else
1953
1954
static bool __init apic_verify(unsigned long addr)
1955
{
1956
u32 features, h, l;
1957
1958
/*
1959
* The APIC feature bit should now be enabled
1960
* in `cpuid'
1961
*/
1962
features = cpuid_edx(1);
1963
if (!(features & (1 << X86_FEATURE_APIC))) {
1964
pr_warn("Could not enable APIC!\n");
1965
return false;
1966
}
1967
set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1968
1969
/* The BIOS may have set up the APIC at some other address */
1970
if (boot_cpu_data.x86 >= 6) {
1971
rdmsr(MSR_IA32_APICBASE, l, h);
1972
if (l & MSR_IA32_APICBASE_ENABLE)
1973
addr = l & MSR_IA32_APICBASE_BASE;
1974
}
1975
1976
register_lapic_address(addr);
1977
pr_info("Found and enabled local APIC!\n");
1978
return true;
1979
}
1980
1981
bool __init apic_force_enable(unsigned long addr)
1982
{
1983
u32 h, l;
1984
1985
if (apic_is_disabled)
1986
return false;
1987
1988
/*
1989
* Some BIOSes disable the local APIC in the APIC_BASE
1990
* MSR. This can only be done in software for Intel P6 or later
1991
* and AMD K7 (Model > 1) or later.
1992
*/
1993
if (boot_cpu_data.x86 >= 6) {
1994
rdmsr(MSR_IA32_APICBASE, l, h);
1995
if (!(l & MSR_IA32_APICBASE_ENABLE)) {
1996
pr_info("Local APIC disabled by BIOS -- reenabling.\n");
1997
l &= ~MSR_IA32_APICBASE_BASE;
1998
l |= MSR_IA32_APICBASE_ENABLE | addr;
1999
wrmsr(MSR_IA32_APICBASE, l, h);
2000
enabled_via_apicbase = 1;
2001
}
2002
}
2003
return apic_verify(addr);
2004
}
2005
2006
/*
2007
* Detect and initialize APIC
2008
*/
2009
static bool __init detect_init_APIC(void)
2010
{
2011
/* Disabled by kernel option? */
2012
if (apic_is_disabled)
2013
return false;
2014
2015
switch (boot_cpu_data.x86_vendor) {
2016
case X86_VENDOR_AMD:
2017
if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
2018
(boot_cpu_data.x86 >= 15))
2019
break;
2020
goto no_apic;
2021
case X86_VENDOR_HYGON:
2022
break;
2023
case X86_VENDOR_INTEL:
2024
if ((boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)) ||
2025
boot_cpu_data.x86_vfm >= INTEL_PENTIUM_PRO)
2026
break;
2027
goto no_apic;
2028
default:
2029
goto no_apic;
2030
}
2031
2032
if (!boot_cpu_has(X86_FEATURE_APIC)) {
2033
/*
2034
* Over-ride BIOS and try to enable the local APIC only if
2035
* "lapic" specified.
2036
*/
2037
if (!force_enable_local_apic) {
2038
pr_info("Local APIC disabled by BIOS -- "
2039
"you can enable it with \"lapic\"\n");
2040
return false;
2041
}
2042
if (!apic_force_enable(APIC_DEFAULT_PHYS_BASE))
2043
return false;
2044
} else {
2045
if (!apic_verify(APIC_DEFAULT_PHYS_BASE))
2046
return false;
2047
}
2048
2049
apic_pm_activate();
2050
2051
return true;
2052
2053
no_apic:
2054
pr_info("No local APIC present or hardware disabled\n");
2055
return false;
2056
}
2057
#endif
2058
2059
/**
2060
* init_apic_mappings - initialize APIC mappings
2061
*/
2062
void __init init_apic_mappings(void)
2063
{
2064
if (apic_validate_deadline_timer())
2065
pr_info("TSC deadline timer available\n");
2066
2067
if (x2apic_mode)
2068
return;
2069
2070
if (!smp_found_config) {
2071
if (!detect_init_APIC()) {
2072
pr_info("APIC: disable apic facility\n");
2073
apic_disable();
2074
}
2075
}
2076
}
2077
2078
static __init void apic_set_fixmap(bool read_apic)
2079
{
2080
set_fixmap_nocache(FIX_APIC_BASE, mp_lapic_addr);
2081
apic_mmio_base = APIC_BASE;
2082
apic_pr_verbose("Mapped APIC to %16lx (%16lx)\n", apic_mmio_base, mp_lapic_addr);
2083
if (read_apic)
2084
apic_read_boot_cpu_id(false);
2085
}
2086
2087
void __init register_lapic_address(unsigned long address)
2088
{
2089
/* This should only happen once */
2090
WARN_ON_ONCE(mp_lapic_addr);
2091
mp_lapic_addr = address;
2092
2093
if (!x2apic_mode)
2094
apic_set_fixmap(true);
2095
}
2096
2097
/*
2098
* Local APIC interrupts
2099
*/
2100
2101
/*
2102
* Common handling code for spurious_interrupt and spurious_vector entry
2103
* points below. No point in allowing the compiler to inline it twice.
2104
*/
2105
static noinline void handle_spurious_interrupt(u8 vector)
2106
{
2107
u32 v;
2108
2109
trace_spurious_apic_entry(vector);
2110
2111
inc_irq_stat(irq_spurious_count);
2112
2113
/*
2114
* If this is a spurious interrupt then do not acknowledge
2115
*/
2116
if (vector == SPURIOUS_APIC_VECTOR) {
2117
/* See SDM vol 3 */
2118
pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n",
2119
smp_processor_id());
2120
goto out;
2121
}
2122
2123
/*
2124
* If it is a vectored one, verify it's set in the ISR. If set,
2125
* acknowledge it.
2126
*/
2127
v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2128
if (v & (1 << (vector & 0x1f))) {
2129
pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n",
2130
vector, smp_processor_id());
2131
apic_eoi();
2132
} else {
2133
pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n",
2134
vector, smp_processor_id());
2135
}
2136
out:
2137
trace_spurious_apic_exit(vector);
2138
}
2139
2140
/**
2141
* spurious_interrupt - Catch all for interrupts raised on unused vectors
2142
* @regs: Pointer to pt_regs on stack
2143
* @vector: The vector number
2144
*
2145
* This is invoked from ASM entry code to catch all interrupts which
2146
* trigger on an entry which is routed to the common_spurious idtentry
2147
* point.
2148
*/
2149
DEFINE_IDTENTRY_IRQ(spurious_interrupt)
2150
{
2151
handle_spurious_interrupt(vector);
2152
}
2153
2154
DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt)
2155
{
2156
handle_spurious_interrupt(SPURIOUS_APIC_VECTOR);
2157
}
2158
2159
/*
2160
* This interrupt should never happen with our APIC/SMP architecture
2161
*/
2162
DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt)
2163
{
2164
static const char * const error_interrupt_reason[] = {
2165
"Send CS error", /* APIC Error Bit 0 */
2166
"Receive CS error", /* APIC Error Bit 1 */
2167
"Send accept error", /* APIC Error Bit 2 */
2168
"Receive accept error", /* APIC Error Bit 3 */
2169
"Redirectable IPI", /* APIC Error Bit 4 */
2170
"Send illegal vector", /* APIC Error Bit 5 */
2171
"Received illegal vector", /* APIC Error Bit 6 */
2172
"Illegal register address", /* APIC Error Bit 7 */
2173
};
2174
u32 v, i = 0;
2175
2176
trace_error_apic_entry(ERROR_APIC_VECTOR);
2177
2178
/* First tickle the hardware, only then report what went on. -- REW */
2179
if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */
2180
apic_write(APIC_ESR, 0);
2181
v = apic_read(APIC_ESR);
2182
apic_eoi();
2183
atomic_inc(&irq_err_count);
2184
2185
apic_pr_debug("APIC error on CPU%d: %02x", smp_processor_id(), v);
2186
2187
v &= 0xff;
2188
while (v) {
2189
if (v & 0x1)
2190
apic_pr_debug_cont(" : %s", error_interrupt_reason[i]);
2191
i++;
2192
v >>= 1;
2193
}
2194
2195
apic_pr_debug_cont("\n");
2196
2197
trace_error_apic_exit(ERROR_APIC_VECTOR);
2198
}
2199
2200
/**
2201
* connect_bsp_APIC - attach the APIC to the interrupt system
2202
*/
2203
static void __init connect_bsp_APIC(void)
2204
{
2205
#ifdef CONFIG_X86_32
2206
if (pic_mode) {
2207
/*
2208
* Do not trust the local APIC being empty at bootup.
2209
*/
2210
clear_local_APIC();
2211
/*
2212
* PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's
2213
* local APIC to INT and NMI lines.
2214
*/
2215
apic_pr_verbose("Leaving PIC mode, enabling APIC mode.\n");
2216
imcr_pic_to_apic();
2217
}
2218
#endif
2219
}
2220
2221
/**
2222
* disconnect_bsp_APIC - detach the APIC from the interrupt system
2223
* @virt_wire_setup: indicates, whether virtual wire mode is selected
2224
*
2225
* Virtual wire mode is necessary to deliver legacy interrupts even when the
2226
* APIC is disabled.
2227
*/
2228
void disconnect_bsp_APIC(int virt_wire_setup)
2229
{
2230
unsigned int value;
2231
2232
#ifdef CONFIG_X86_32
2233
if (pic_mode) {
2234
/*
2235
* Put the board back into PIC mode (has an effect only on
2236
* certain older boards). Note that APIC interrupts, including
2237
* IPIs, won't work beyond this point! The only exception are
2238
* INIT IPIs.
2239
*/
2240
apic_pr_verbose("Disabling APIC mode, entering PIC mode.\n");
2241
imcr_apic_to_pic();
2242
return;
2243
}
2244
#endif
2245
2246
/* Go back to Virtual Wire compatibility mode */
2247
2248
/* For the spurious interrupt use vector F, and enable it */
2249
value = apic_read(APIC_SPIV);
2250
value &= ~APIC_VECTOR_MASK;
2251
value |= APIC_SPIV_APIC_ENABLED;
2252
value |= 0xf;
2253
apic_write(APIC_SPIV, value);
2254
2255
if (!virt_wire_setup) {
2256
/*
2257
* For LVT0 make it edge triggered, active high,
2258
* external and enabled
2259
*/
2260
value = apic_read(APIC_LVT0);
2261
value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2262
APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2263
APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2264
value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2265
value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2266
apic_write(APIC_LVT0, value);
2267
} else {
2268
/* Disable LVT0 */
2269
apic_write(APIC_LVT0, APIC_LVT_MASKED);
2270
}
2271
2272
/*
2273
* For LVT1 make it edge triggered, active high,
2274
* nmi and enabled
2275
*/
2276
value = apic_read(APIC_LVT1);
2277
value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2278
APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2279
APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2280
value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2281
value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2282
apic_write(APIC_LVT1, value);
2283
}
2284
2285
void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg,
2286
bool dmar)
2287
{
2288
memset(msg, 0, sizeof(*msg));
2289
2290
msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
2291
msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical;
2292
msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF;
2293
2294
msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED;
2295
msg->arch_data.vector = cfg->vector;
2296
2297
msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
2298
/*
2299
* Only the IOMMU itself can use the trick of putting destination
2300
* APIC ID into the high bits of the address. Anything else would
2301
* just be writing to memory if it tried that, and needs IR to
2302
* address APICs which can't be addressed in the normal 32-bit
2303
* address range at 0xFFExxxxx. That is typically just 8 bits, but
2304
* some hypervisors allow the extended destination ID field in bits
2305
* 5-11 to be used, giving support for 15 bits of APIC IDs in total.
2306
*/
2307
if (dmar)
2308
msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8;
2309
else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000)
2310
msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8;
2311
else
2312
WARN_ON_ONCE(cfg->dest_apicid > 0xFF);
2313
}
2314
2315
u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid)
2316
{
2317
u32 dest = msg->arch_addr_lo.destid_0_7;
2318
2319
if (extid)
2320
dest |= msg->arch_addr_hi.destid_8_31 << 8;
2321
return dest;
2322
}
2323
EXPORT_SYMBOL_FOR_KVM(x86_msi_msg_get_destid);
2324
2325
static void __init apic_bsp_up_setup(void)
2326
{
2327
reset_phys_cpu_present_map(boot_cpu_physical_apicid);
2328
}
2329
2330
/**
2331
* apic_bsp_setup - Setup function for local apic and io-apic
2332
* @upmode: Force UP mode (for APIC_init_uniprocessor)
2333
*/
2334
static void __init apic_bsp_setup(bool upmode)
2335
{
2336
connect_bsp_APIC();
2337
if (upmode)
2338
apic_bsp_up_setup();
2339
setup_local_APIC();
2340
2341
enable_IO_APIC();
2342
end_local_APIC_setup();
2343
irq_remap_enable_fault_handling();
2344
setup_IO_APIC();
2345
lapic_update_legacy_vectors();
2346
}
2347
2348
#ifdef CONFIG_UP_LATE_INIT
2349
void __init up_late_init(void)
2350
{
2351
if (apic_intr_mode == APIC_PIC)
2352
return;
2353
2354
/* Setup local timer */
2355
x86_init.timers.setup_percpu_clockev();
2356
}
2357
#endif
2358
2359
/*
2360
* Power management
2361
*/
2362
#ifdef CONFIG_PM
2363
2364
static struct {
2365
/*
2366
* 'active' is true if the local APIC was enabled by us and
2367
* not the BIOS; this signifies that we are also responsible
2368
* for disabling it before entering apm/acpi suspend
2369
*/
2370
int active;
2371
/* r/w apic fields */
2372
u32 apic_id;
2373
unsigned int apic_taskpri;
2374
unsigned int apic_ldr;
2375
unsigned int apic_dfr;
2376
unsigned int apic_spiv;
2377
unsigned int apic_lvtt;
2378
unsigned int apic_lvtpc;
2379
unsigned int apic_lvt0;
2380
unsigned int apic_lvt1;
2381
unsigned int apic_lvterr;
2382
unsigned int apic_tmict;
2383
unsigned int apic_tdcr;
2384
unsigned int apic_thmr;
2385
unsigned int apic_cmci;
2386
} apic_pm_state;
2387
2388
static int lapic_suspend(void *data)
2389
{
2390
unsigned long flags;
2391
int maxlvt;
2392
2393
if (!apic_pm_state.active)
2394
return 0;
2395
2396
maxlvt = lapic_get_maxlvt();
2397
2398
apic_pm_state.apic_id = apic_read(APIC_ID);
2399
apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2400
apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2401
apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2402
apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2403
apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2404
if (maxlvt >= 4)
2405
apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2406
apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2407
apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2408
apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2409
apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2410
apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2411
#ifdef CONFIG_X86_THERMAL_VECTOR
2412
if (maxlvt >= 5)
2413
apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2414
#endif
2415
#ifdef CONFIG_X86_MCE_INTEL
2416
if (maxlvt >= 6)
2417
apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2418
#endif
2419
2420
local_irq_save(flags);
2421
2422
/*
2423
* Mask IOAPIC before disabling the local APIC to prevent stale IRR
2424
* entries on some implementations.
2425
*/
2426
mask_ioapic_entries();
2427
2428
disable_local_APIC();
2429
2430
irq_remapping_disable();
2431
2432
local_irq_restore(flags);
2433
return 0;
2434
}
2435
2436
static void lapic_resume(void *data)
2437
{
2438
unsigned int l, h;
2439
unsigned long flags;
2440
int maxlvt;
2441
2442
if (!apic_pm_state.active)
2443
return;
2444
2445
local_irq_save(flags);
2446
2447
/*
2448
* IO-APIC and PIC have their own resume routines.
2449
* We just mask them here to make sure the interrupt
2450
* subsystem is completely quiet while we enable x2apic
2451
* and interrupt-remapping.
2452
*/
2453
mask_ioapic_entries();
2454
legacy_pic->mask_all();
2455
2456
if (x2apic_mode) {
2457
__x2apic_enable();
2458
} else {
2459
/*
2460
* Make sure the APICBASE points to the right address
2461
*
2462
* FIXME! This will be wrong if we ever support suspend on
2463
* SMP! We'll need to do this as part of the CPU restore!
2464
*/
2465
if (boot_cpu_data.x86 >= 6) {
2466
rdmsr(MSR_IA32_APICBASE, l, h);
2467
l &= ~MSR_IA32_APICBASE_BASE;
2468
l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2469
wrmsr(MSR_IA32_APICBASE, l, h);
2470
}
2471
}
2472
2473
maxlvt = lapic_get_maxlvt();
2474
apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2475
apic_write(APIC_ID, apic_pm_state.apic_id);
2476
apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2477
apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2478
apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2479
apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2480
apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2481
apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2482
#ifdef CONFIG_X86_THERMAL_VECTOR
2483
if (maxlvt >= 5)
2484
apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2485
#endif
2486
#ifdef CONFIG_X86_MCE_INTEL
2487
if (maxlvt >= 6)
2488
apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2489
#endif
2490
if (maxlvt >= 4)
2491
apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2492
apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2493
apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2494
apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2495
apic_write(APIC_ESR, 0);
2496
apic_read(APIC_ESR);
2497
apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2498
apic_write(APIC_ESR, 0);
2499
apic_read(APIC_ESR);
2500
2501
irq_remapping_reenable(x2apic_mode);
2502
2503
local_irq_restore(flags);
2504
}
2505
2506
/*
2507
* This device has no shutdown method - fully functioning local APICs
2508
* are needed on every CPU up until machine_halt/restart/poweroff.
2509
*/
2510
2511
static const struct syscore_ops lapic_syscore_ops = {
2512
.resume = lapic_resume,
2513
.suspend = lapic_suspend,
2514
};
2515
2516
static struct syscore lapic_syscore = {
2517
.ops = &lapic_syscore_ops,
2518
};
2519
2520
static void apic_pm_activate(void)
2521
{
2522
apic_pm_state.active = 1;
2523
}
2524
2525
static int __init init_lapic_sysfs(void)
2526
{
2527
/* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2528
if (boot_cpu_has(X86_FEATURE_APIC))
2529
register_syscore(&lapic_syscore);
2530
2531
return 0;
2532
}
2533
2534
/* local apic needs to resume before other devices access its registers. */
2535
core_initcall(init_lapic_sysfs);
2536
2537
#else /* CONFIG_PM */
2538
2539
static void apic_pm_activate(void) { }
2540
2541
#endif /* CONFIG_PM */
2542
2543
#ifdef CONFIG_X86_64
2544
2545
static int multi_checked;
2546
static int multi;
2547
2548
static int set_multi(const struct dmi_system_id *d)
2549
{
2550
if (multi)
2551
return 0;
2552
pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2553
multi = 1;
2554
return 0;
2555
}
2556
2557
static const struct dmi_system_id multi_dmi_table[] = {
2558
{
2559
.callback = set_multi,
2560
.ident = "IBM System Summit2",
2561
.matches = {
2562
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2563
DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2564
},
2565
},
2566
{}
2567
};
2568
2569
static void dmi_check_multi(void)
2570
{
2571
if (multi_checked)
2572
return;
2573
2574
dmi_check_system(multi_dmi_table);
2575
multi_checked = 1;
2576
}
2577
2578
/*
2579
* apic_is_clustered_box() -- Check if we can expect good TSC
2580
*
2581
* Thus far, the major user of this is IBM's Summit2 series:
2582
* Clustered boxes may have unsynced TSC problems if they are
2583
* multi-chassis.
2584
* Use DMI to check them
2585
*/
2586
int apic_is_clustered_box(void)
2587
{
2588
dmi_check_multi();
2589
return multi;
2590
}
2591
#endif
2592
2593
/*
2594
* APIC command line parameters
2595
*/
2596
static int __init setup_nolapic(char *arg)
2597
{
2598
apic_is_disabled = true;
2599
setup_clear_cpu_cap(X86_FEATURE_APIC);
2600
return 0;
2601
}
2602
early_param("nolapic", setup_nolapic);
2603
2604
static int __init parse_lapic_timer_c2_ok(char *arg)
2605
{
2606
local_apic_timer_c2_ok = 1;
2607
return 0;
2608
}
2609
early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2610
2611
static int __init parse_disable_apic_timer(char *arg)
2612
{
2613
disable_apic_timer = 1;
2614
return 0;
2615
}
2616
early_param("noapictimer", parse_disable_apic_timer);
2617
2618
static int __init parse_nolapic_timer(char *arg)
2619
{
2620
disable_apic_timer = 1;
2621
return 0;
2622
}
2623
early_param("nolapic_timer", parse_nolapic_timer);
2624
2625
static int __init apic_set_verbosity(char *arg)
2626
{
2627
if (!arg) {
2628
if (IS_ENABLED(CONFIG_X86_32))
2629
return -EINVAL;
2630
2631
ioapic_is_disabled = false;
2632
return 0;
2633
}
2634
2635
if (strcmp("debug", arg) == 0)
2636
apic_verbosity = APIC_DEBUG;
2637
else if (strcmp("verbose", arg) == 0)
2638
apic_verbosity = APIC_VERBOSE;
2639
#ifdef CONFIG_X86_64
2640
else {
2641
pr_warn("APIC Verbosity level %s not recognised"
2642
" use apic=verbose or apic=debug\n", arg);
2643
return -EINVAL;
2644
}
2645
#endif
2646
2647
return 0;
2648
}
2649
early_param("apic", apic_set_verbosity);
2650
2651
static int __init lapic_insert_resource(void)
2652
{
2653
if (!apic_mmio_base)
2654
return -1;
2655
2656
/* Put local APIC into the resource map. */
2657
lapic_resource.start = apic_mmio_base;
2658
lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2659
insert_resource(&iomem_resource, &lapic_resource);
2660
2661
return 0;
2662
}
2663
2664
/*
2665
* need call insert after e820__reserve_resources()
2666
* that is using request_resource
2667
*/
2668
late_initcall(lapic_insert_resource);
2669
2670
static int __init apic_set_extnmi(char *arg)
2671
{
2672
if (!arg)
2673
return -EINVAL;
2674
2675
if (!strncmp("all", arg, 3))
2676
apic_extnmi = APIC_EXTNMI_ALL;
2677
else if (!strncmp("none", arg, 4))
2678
apic_extnmi = APIC_EXTNMI_NONE;
2679
else if (!strncmp("bsp", arg, 3))
2680
apic_extnmi = APIC_EXTNMI_BSP;
2681
else {
2682
pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2683
return -EINVAL;
2684
}
2685
2686
return 0;
2687
}
2688
early_param("apic_extnmi", apic_set_extnmi);
2689
2690