Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/apic/vector.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Local APIC related interfaces to support IOAPIC, MSI, etc.
4
*
5
* Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6
* Moved from arch/x86/kernel/apic/io_apic.c.
7
* Jiang Liu <[email protected]>
8
* Enable support of hierarchical irqdomains
9
*/
10
#include <linux/interrupt.h>
11
#include <linux/irq.h>
12
#include <linux/seq_file.h>
13
#include <linux/init.h>
14
#include <linux/compiler.h>
15
#include <linux/slab.h>
16
#include <asm/irqdomain.h>
17
#include <asm/hw_irq.h>
18
#include <asm/traps.h>
19
#include <asm/apic.h>
20
#include <asm/i8259.h>
21
#include <asm/desc.h>
22
#include <asm/irq_remapping.h>
23
24
#include <asm/trace/irq_vectors.h>
25
26
struct apic_chip_data {
27
struct irq_cfg hw_irq_cfg;
28
unsigned int vector;
29
unsigned int prev_vector;
30
unsigned int cpu;
31
unsigned int prev_cpu;
32
unsigned int irq;
33
struct hlist_node clist;
34
unsigned int move_in_progress : 1,
35
is_managed : 1,
36
can_reserve : 1,
37
has_reserved : 1;
38
};
39
40
struct irq_domain *x86_vector_domain;
41
EXPORT_SYMBOL_GPL(x86_vector_domain);
42
static DEFINE_RAW_SPINLOCK(vector_lock);
43
static cpumask_var_t vector_searchmask;
44
static struct irq_chip lapic_controller;
45
static struct irq_matrix *vector_matrix;
46
#ifdef CONFIG_SMP
47
48
static void vector_cleanup_callback(struct timer_list *tmr);
49
50
struct vector_cleanup {
51
struct hlist_head head;
52
struct timer_list timer;
53
};
54
55
static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = {
56
.head = HLIST_HEAD_INIT,
57
.timer = __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED),
58
};
59
#endif
60
61
void lock_vector_lock(void)
62
{
63
/* Used to the online set of cpus does not change
64
* during assign_irq_vector.
65
*/
66
raw_spin_lock(&vector_lock);
67
}
68
69
void unlock_vector_lock(void)
70
{
71
raw_spin_unlock(&vector_lock);
72
}
73
74
void init_irq_alloc_info(struct irq_alloc_info *info,
75
const struct cpumask *mask)
76
{
77
memset(info, 0, sizeof(*info));
78
info->mask = mask;
79
}
80
81
void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
82
{
83
if (src)
84
*dst = *src;
85
else
86
memset(dst, 0, sizeof(*dst));
87
}
88
89
static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
90
{
91
if (!irqd)
92
return NULL;
93
94
while (irqd->parent_data)
95
irqd = irqd->parent_data;
96
97
return irqd->chip_data;
98
}
99
100
struct irq_cfg *irqd_cfg(struct irq_data *irqd)
101
{
102
struct apic_chip_data *apicd = apic_chip_data(irqd);
103
104
return apicd ? &apicd->hw_irq_cfg : NULL;
105
}
106
EXPORT_SYMBOL_GPL(irqd_cfg);
107
108
struct irq_cfg *irq_cfg(unsigned int irq)
109
{
110
return irqd_cfg(irq_get_irq_data(irq));
111
}
112
113
static struct apic_chip_data *alloc_apic_chip_data(int node)
114
{
115
struct apic_chip_data *apicd;
116
117
apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
118
if (apicd)
119
INIT_HLIST_NODE(&apicd->clist);
120
return apicd;
121
}
122
123
static void free_apic_chip_data(struct apic_chip_data *apicd)
124
{
125
kfree(apicd);
126
}
127
128
static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
129
unsigned int cpu)
130
{
131
struct apic_chip_data *apicd = apic_chip_data(irqd);
132
133
lockdep_assert_held(&vector_lock);
134
135
apicd->hw_irq_cfg.vector = vector;
136
apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
137
irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
138
trace_vector_config(irqd->irq, vector, cpu,
139
apicd->hw_irq_cfg.dest_apicid);
140
}
141
142
static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
143
unsigned int newcpu)
144
{
145
struct apic_chip_data *apicd = apic_chip_data(irqd);
146
struct irq_desc *desc = irq_data_to_desc(irqd);
147
bool managed = irqd_affinity_is_managed(irqd);
148
149
lockdep_assert_held(&vector_lock);
150
151
trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
152
apicd->cpu);
153
154
/*
155
* If there is no vector associated or if the associated vector is
156
* the shutdown vector, which is associated to make PCI/MSI
157
* shutdown mode work, then there is nothing to release. Clear out
158
* prev_vector for this and the offlined target case.
159
*/
160
apicd->prev_vector = 0;
161
if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
162
goto setnew;
163
/*
164
* If the target CPU of the previous vector is online, then mark
165
* the vector as move in progress and store it for cleanup when the
166
* first interrupt on the new vector arrives. If the target CPU is
167
* offline then the regular release mechanism via the cleanup
168
* vector is not possible and the vector can be immediately freed
169
* in the underlying matrix allocator.
170
*/
171
if (cpu_online(apicd->cpu)) {
172
apicd->move_in_progress = true;
173
apicd->prev_vector = apicd->vector;
174
apicd->prev_cpu = apicd->cpu;
175
WARN_ON_ONCE(apicd->cpu == newcpu);
176
} else {
177
irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
178
managed);
179
}
180
181
setnew:
182
apicd->vector = newvec;
183
apicd->cpu = newcpu;
184
BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
185
per_cpu(vector_irq, newcpu)[newvec] = desc;
186
apic_update_irq_cfg(irqd, newvec, newcpu);
187
}
188
189
static void vector_assign_managed_shutdown(struct irq_data *irqd)
190
{
191
unsigned int cpu = cpumask_first(cpu_online_mask);
192
193
apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
194
}
195
196
static int reserve_managed_vector(struct irq_data *irqd)
197
{
198
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
199
struct apic_chip_data *apicd = apic_chip_data(irqd);
200
unsigned long flags;
201
int ret;
202
203
raw_spin_lock_irqsave(&vector_lock, flags);
204
apicd->is_managed = true;
205
ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
206
raw_spin_unlock_irqrestore(&vector_lock, flags);
207
trace_vector_reserve_managed(irqd->irq, ret);
208
return ret;
209
}
210
211
static void reserve_irq_vector_locked(struct irq_data *irqd)
212
{
213
struct apic_chip_data *apicd = apic_chip_data(irqd);
214
215
irq_matrix_reserve(vector_matrix);
216
apicd->can_reserve = true;
217
apicd->has_reserved = true;
218
irqd_set_can_reserve(irqd);
219
trace_vector_reserve(irqd->irq, 0);
220
vector_assign_managed_shutdown(irqd);
221
}
222
223
static int reserve_irq_vector(struct irq_data *irqd)
224
{
225
unsigned long flags;
226
227
raw_spin_lock_irqsave(&vector_lock, flags);
228
reserve_irq_vector_locked(irqd);
229
raw_spin_unlock_irqrestore(&vector_lock, flags);
230
return 0;
231
}
232
233
static int
234
assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
235
{
236
struct apic_chip_data *apicd = apic_chip_data(irqd);
237
bool resvd = apicd->has_reserved;
238
unsigned int cpu = apicd->cpu;
239
int vector = apicd->vector;
240
241
lockdep_assert_held(&vector_lock);
242
243
/*
244
* If the current target CPU is online and in the new requested
245
* affinity mask, there is no point in moving the interrupt from
246
* one CPU to another.
247
*/
248
if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
249
return 0;
250
251
/*
252
* Careful here. @apicd might either have move_in_progress set or
253
* be enqueued for cleanup. Assigning a new vector would either
254
* leave a stale vector on some CPU around or in case of a pending
255
* cleanup corrupt the hlist.
256
*/
257
if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
258
return -EBUSY;
259
260
vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
261
trace_vector_alloc(irqd->irq, vector, resvd, vector);
262
if (vector < 0)
263
return vector;
264
apic_update_vector(irqd, vector, cpu);
265
266
return 0;
267
}
268
269
static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
270
{
271
unsigned long flags;
272
int ret;
273
274
raw_spin_lock_irqsave(&vector_lock, flags);
275
cpumask_and(vector_searchmask, dest, cpu_online_mask);
276
ret = assign_vector_locked(irqd, vector_searchmask);
277
raw_spin_unlock_irqrestore(&vector_lock, flags);
278
return ret;
279
}
280
281
static int assign_irq_vector_any_locked(struct irq_data *irqd)
282
{
283
/* Get the affinity mask - either irq_default_affinity or (user) set */
284
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
285
int node = irq_data_get_node(irqd);
286
287
if (node != NUMA_NO_NODE) {
288
/* Try the intersection of @affmsk and node mask */
289
cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
290
if (!assign_vector_locked(irqd, vector_searchmask))
291
return 0;
292
}
293
294
/* Try the full affinity mask */
295
cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
296
if (!assign_vector_locked(irqd, vector_searchmask))
297
return 0;
298
299
if (node != NUMA_NO_NODE) {
300
/* Try the node mask */
301
if (!assign_vector_locked(irqd, cpumask_of_node(node)))
302
return 0;
303
}
304
305
/* Try the full online mask */
306
return assign_vector_locked(irqd, cpu_online_mask);
307
}
308
309
static int
310
assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
311
{
312
if (irqd_affinity_is_managed(irqd))
313
return reserve_managed_vector(irqd);
314
if (info->mask)
315
return assign_irq_vector(irqd, info->mask);
316
/*
317
* Make only a global reservation with no guarantee. A real vector
318
* is associated at activation time.
319
*/
320
return reserve_irq_vector(irqd);
321
}
322
323
static int
324
assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
325
{
326
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
327
struct apic_chip_data *apicd = apic_chip_data(irqd);
328
int vector, cpu;
329
330
cpumask_and(vector_searchmask, dest, affmsk);
331
332
/* set_affinity might call here for nothing */
333
if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
334
return 0;
335
vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
336
&cpu);
337
trace_vector_alloc_managed(irqd->irq, vector, vector);
338
if (vector < 0)
339
return vector;
340
apic_update_vector(irqd, vector, cpu);
341
342
return 0;
343
}
344
345
static void clear_irq_vector(struct irq_data *irqd)
346
{
347
struct apic_chip_data *apicd = apic_chip_data(irqd);
348
bool managed = irqd_affinity_is_managed(irqd);
349
unsigned int vector = apicd->vector;
350
351
lockdep_assert_held(&vector_lock);
352
353
if (!vector)
354
return;
355
356
trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
357
apicd->prev_cpu);
358
359
per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
360
irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
361
apicd->vector = 0;
362
363
/* Clean up move in progress */
364
vector = apicd->prev_vector;
365
if (!vector)
366
return;
367
368
per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
369
irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
370
apicd->prev_vector = 0;
371
apicd->move_in_progress = 0;
372
hlist_del_init(&apicd->clist);
373
}
374
375
static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
376
{
377
struct apic_chip_data *apicd = apic_chip_data(irqd);
378
unsigned long flags;
379
380
trace_vector_deactivate(irqd->irq, apicd->is_managed,
381
apicd->can_reserve, false);
382
383
/* Regular fixed assigned interrupt */
384
if (!apicd->is_managed && !apicd->can_reserve)
385
return;
386
/* If the interrupt has a global reservation, nothing to do */
387
if (apicd->has_reserved)
388
return;
389
390
raw_spin_lock_irqsave(&vector_lock, flags);
391
clear_irq_vector(irqd);
392
if (apicd->can_reserve)
393
reserve_irq_vector_locked(irqd);
394
else
395
vector_assign_managed_shutdown(irqd);
396
raw_spin_unlock_irqrestore(&vector_lock, flags);
397
}
398
399
static int activate_reserved(struct irq_data *irqd)
400
{
401
struct apic_chip_data *apicd = apic_chip_data(irqd);
402
int ret;
403
404
ret = assign_irq_vector_any_locked(irqd);
405
if (!ret) {
406
apicd->has_reserved = false;
407
/*
408
* Core might have disabled reservation mode after
409
* allocating the irq descriptor. Ideally this should
410
* happen before allocation time, but that would require
411
* completely convoluted ways of transporting that
412
* information.
413
*/
414
if (!irqd_can_reserve(irqd))
415
apicd->can_reserve = false;
416
}
417
418
/*
419
* Check to ensure that the effective affinity mask is a subset
420
* the user supplied affinity mask, and warn the user if it is not
421
*/
422
if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
423
irq_data_get_affinity_mask(irqd))) {
424
pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
425
irqd->irq);
426
}
427
428
return ret;
429
}
430
431
static int activate_managed(struct irq_data *irqd)
432
{
433
const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
434
int ret;
435
436
cpumask_and(vector_searchmask, dest, cpu_online_mask);
437
if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
438
/* Something in the core code broke! Survive gracefully */
439
pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
440
return -EINVAL;
441
}
442
443
ret = assign_managed_vector(irqd, vector_searchmask);
444
/*
445
* This should not happen. The vector reservation got buggered. Handle
446
* it gracefully.
447
*/
448
if (WARN_ON_ONCE(ret < 0)) {
449
pr_err("Managed startup irq %u, no vector available\n",
450
irqd->irq);
451
}
452
return ret;
453
}
454
455
static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
456
bool reserve)
457
{
458
struct apic_chip_data *apicd = apic_chip_data(irqd);
459
unsigned long flags;
460
int ret = 0;
461
462
trace_vector_activate(irqd->irq, apicd->is_managed,
463
apicd->can_reserve, reserve);
464
465
raw_spin_lock_irqsave(&vector_lock, flags);
466
if (!apicd->can_reserve && !apicd->is_managed)
467
assign_irq_vector_any_locked(irqd);
468
else if (reserve || irqd_is_managed_and_shutdown(irqd))
469
vector_assign_managed_shutdown(irqd);
470
else if (apicd->is_managed)
471
ret = activate_managed(irqd);
472
else if (apicd->has_reserved)
473
ret = activate_reserved(irqd);
474
raw_spin_unlock_irqrestore(&vector_lock, flags);
475
return ret;
476
}
477
478
static void vector_free_reserved_and_managed(struct irq_data *irqd)
479
{
480
const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
481
struct apic_chip_data *apicd = apic_chip_data(irqd);
482
483
trace_vector_teardown(irqd->irq, apicd->is_managed,
484
apicd->has_reserved);
485
486
if (apicd->has_reserved)
487
irq_matrix_remove_reserved(vector_matrix);
488
if (apicd->is_managed)
489
irq_matrix_remove_managed(vector_matrix, dest);
490
}
491
492
static void x86_vector_free_irqs(struct irq_domain *domain,
493
unsigned int virq, unsigned int nr_irqs)
494
{
495
struct apic_chip_data *apicd;
496
struct irq_data *irqd;
497
unsigned long flags;
498
int i;
499
500
for (i = 0; i < nr_irqs; i++) {
501
irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
502
if (irqd && irqd->chip_data) {
503
raw_spin_lock_irqsave(&vector_lock, flags);
504
clear_irq_vector(irqd);
505
vector_free_reserved_and_managed(irqd);
506
apicd = irqd->chip_data;
507
irq_domain_reset_irq_data(irqd);
508
raw_spin_unlock_irqrestore(&vector_lock, flags);
509
free_apic_chip_data(apicd);
510
}
511
}
512
}
513
514
static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
515
struct apic_chip_data *apicd)
516
{
517
unsigned long flags;
518
bool realloc = false;
519
520
apicd->vector = ISA_IRQ_VECTOR(virq);
521
apicd->cpu = 0;
522
523
raw_spin_lock_irqsave(&vector_lock, flags);
524
/*
525
* If the interrupt is activated, then it must stay at this vector
526
* position. That's usually the timer interrupt (0).
527
*/
528
if (irqd_is_activated(irqd)) {
529
trace_vector_setup(virq, true, 0);
530
apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
531
} else {
532
/* Release the vector */
533
apicd->can_reserve = true;
534
irqd_set_can_reserve(irqd);
535
clear_irq_vector(irqd);
536
realloc = true;
537
}
538
raw_spin_unlock_irqrestore(&vector_lock, flags);
539
return realloc;
540
}
541
542
static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
543
unsigned int nr_irqs, void *arg)
544
{
545
struct irq_alloc_info *info = arg;
546
struct apic_chip_data *apicd;
547
struct irq_data *irqd;
548
int i, err, node;
549
550
if (apic_is_disabled)
551
return -ENXIO;
552
553
/*
554
* Catch any attempt to touch the cascade interrupt on a PIC
555
* equipped system.
556
*/
557
if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY &&
558
virq == PIC_CASCADE_IR))
559
return -EINVAL;
560
561
for (i = 0; i < nr_irqs; i++) {
562
irqd = irq_domain_get_irq_data(domain, virq + i);
563
BUG_ON(!irqd);
564
node = irq_data_get_node(irqd);
565
WARN_ON_ONCE(irqd->chip_data);
566
apicd = alloc_apic_chip_data(node);
567
if (!apicd) {
568
err = -ENOMEM;
569
goto error;
570
}
571
572
apicd->irq = virq + i;
573
irqd->chip = &lapic_controller;
574
irqd->chip_data = apicd;
575
irqd->hwirq = virq + i;
576
irqd_set_single_target(irqd);
577
/*
578
* Prevent that any of these interrupts is invoked in
579
* non interrupt context via e.g. generic_handle_irq()
580
* as that can corrupt the affinity move state.
581
*/
582
irqd_set_handle_enforce_irqctx(irqd);
583
584
/* Don't invoke affinity setter on deactivated interrupts */
585
irqd_set_affinity_on_activate(irqd);
586
587
/*
588
* Legacy vectors are already assigned when the IOAPIC
589
* takes them over. They stay on the same vector. This is
590
* required for check_timer() to work correctly as it might
591
* switch back to legacy mode. Only update the hardware
592
* config.
593
*/
594
if (info->flags & X86_IRQ_ALLOC_LEGACY) {
595
if (!vector_configure_legacy(virq + i, irqd, apicd))
596
continue;
597
}
598
599
err = assign_irq_vector_policy(irqd, info);
600
trace_vector_setup(virq + i, false, err);
601
if (err) {
602
irqd->chip_data = NULL;
603
free_apic_chip_data(apicd);
604
goto error;
605
}
606
}
607
608
return 0;
609
610
error:
611
x86_vector_free_irqs(domain, virq, i);
612
return err;
613
}
614
615
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
616
static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
617
struct irq_data *irqd, int ind)
618
{
619
struct apic_chip_data apicd;
620
unsigned long flags;
621
int irq;
622
623
if (!irqd) {
624
irq_matrix_debug_show(m, vector_matrix, ind);
625
return;
626
}
627
628
irq = irqd->irq;
629
if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
630
seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
631
seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
632
return;
633
}
634
635
if (!irqd->chip_data) {
636
seq_printf(m, "%*sVector: Not assigned\n", ind, "");
637
return;
638
}
639
640
raw_spin_lock_irqsave(&vector_lock, flags);
641
memcpy(&apicd, irqd->chip_data, sizeof(apicd));
642
raw_spin_unlock_irqrestore(&vector_lock, flags);
643
644
seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
645
seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
646
if (apicd.prev_vector) {
647
seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
648
seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
649
}
650
seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
651
seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0);
652
seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0);
653
seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0);
654
seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist));
655
}
656
#endif
657
658
int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec)
659
{
660
if (fwspec->param_count != 1)
661
return 0;
662
663
if (is_fwnode_irqchip(fwspec->fwnode)) {
664
const char *fwname = fwnode_get_name(fwspec->fwnode);
665
return fwname && !strncmp(fwname, "IO-APIC-", 8) &&
666
simple_strtol(fwname+8, NULL, 10) == fwspec->param[0];
667
}
668
return to_of_node(fwspec->fwnode) &&
669
of_device_is_compatible(to_of_node(fwspec->fwnode),
670
"intel,ce4100-ioapic");
671
}
672
673
int x86_fwspec_is_hpet(struct irq_fwspec *fwspec)
674
{
675
if (fwspec->param_count != 1)
676
return 0;
677
678
if (is_fwnode_irqchip(fwspec->fwnode)) {
679
const char *fwname = fwnode_get_name(fwspec->fwnode);
680
return fwname && !strncmp(fwname, "HPET-MSI-", 9) &&
681
simple_strtol(fwname+9, NULL, 10) == fwspec->param[0];
682
}
683
return 0;
684
}
685
686
static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec,
687
enum irq_domain_bus_token bus_token)
688
{
689
/*
690
* HPET and I/OAPIC cannot be parented in the vector domain
691
* if IRQ remapping is enabled. APIC IDs above 15 bits are
692
* only permitted if IRQ remapping is enabled, so check that.
693
*/
694
if (apic_id_valid(32768))
695
return 0;
696
697
return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec);
698
}
699
700
static const struct irq_domain_ops x86_vector_domain_ops = {
701
.select = x86_vector_select,
702
.alloc = x86_vector_alloc_irqs,
703
.free = x86_vector_free_irqs,
704
.activate = x86_vector_activate,
705
.deactivate = x86_vector_deactivate,
706
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
707
.debug_show = x86_vector_debug_show,
708
#endif
709
};
710
711
int __init arch_probe_nr_irqs(void)
712
{
713
int nr;
714
715
if (irq_get_nr_irqs() > NR_VECTORS * nr_cpu_ids)
716
irq_set_nr_irqs(NR_VECTORS * nr_cpu_ids);
717
718
nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
719
#if defined(CONFIG_PCI_MSI)
720
/*
721
* for MSI and HT dyn irq
722
*/
723
if (gsi_top <= NR_IRQS_LEGACY)
724
nr += 8 * nr_cpu_ids;
725
else
726
nr += gsi_top * 16;
727
#endif
728
if (nr < irq_get_nr_irqs())
729
irq_set_nr_irqs(nr);
730
731
/*
732
* We don't know if PIC is present at this point so we need to do
733
* probe() to get the right number of legacy IRQs.
734
*/
735
return legacy_pic->probe();
736
}
737
738
void lapic_assign_legacy_vector(unsigned int irq, bool replace)
739
{
740
/*
741
* Use assign system here so it won't get accounted as allocated
742
* and movable in the cpu hotplug check and it prevents managed
743
* irq reservation from touching it.
744
*/
745
irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
746
}
747
748
void __init lapic_update_legacy_vectors(void)
749
{
750
unsigned int i;
751
752
if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0)
753
return;
754
755
/*
756
* If the IO/APIC is disabled via config, kernel command line or
757
* lack of enumeration then all legacy interrupts are routed
758
* through the PIC. Make sure that they are marked as legacy
759
* vectors. PIC_CASCADE_IRQ has already been marked in
760
* lapic_assign_system_vectors().
761
*/
762
for (i = 0; i < nr_legacy_irqs(); i++) {
763
if (i != PIC_CASCADE_IR)
764
lapic_assign_legacy_vector(i, true);
765
}
766
}
767
768
void __init lapic_assign_system_vectors(void)
769
{
770
unsigned int i, vector;
771
772
for_each_set_bit(vector, system_vectors, NR_VECTORS)
773
irq_matrix_assign_system(vector_matrix, vector, false);
774
775
if (nr_legacy_irqs() > 1)
776
lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
777
778
/* System vectors are reserved, online it */
779
irq_matrix_online(vector_matrix);
780
781
/* Mark the preallocated legacy interrupts */
782
for (i = 0; i < nr_legacy_irqs(); i++) {
783
/*
784
* Don't touch the cascade interrupt. It's unusable
785
* on PIC equipped machines. See the large comment
786
* in the IO/APIC code.
787
*/
788
if (i != PIC_CASCADE_IR)
789
irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
790
}
791
}
792
793
int __init arch_early_irq_init(void)
794
{
795
struct fwnode_handle *fn;
796
797
fn = irq_domain_alloc_named_fwnode("VECTOR");
798
BUG_ON(!fn);
799
x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
800
NULL);
801
BUG_ON(x86_vector_domain == NULL);
802
irq_set_default_domain(x86_vector_domain);
803
804
BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
805
806
/*
807
* Allocate the vector matrix allocator data structure and limit the
808
* search area.
809
*/
810
vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
811
FIRST_SYSTEM_VECTOR);
812
BUG_ON(!vector_matrix);
813
814
return arch_early_ioapic_init();
815
}
816
817
#ifdef CONFIG_SMP
818
819
static struct irq_desc *__setup_vector_irq(int vector)
820
{
821
int isairq = vector - ISA_IRQ_VECTOR(0);
822
823
/* Check whether the irq is in the legacy space */
824
if (isairq < 0 || isairq >= nr_legacy_irqs())
825
return VECTOR_UNUSED;
826
/* Check whether the irq is handled by the IOAPIC */
827
if (test_bit(isairq, &io_apic_irqs))
828
return VECTOR_UNUSED;
829
return irq_to_desc(isairq);
830
}
831
832
/* Online the local APIC infrastructure and initialize the vectors */
833
void lapic_online(void)
834
{
835
unsigned int vector;
836
837
lockdep_assert_held(&vector_lock);
838
839
/* Online the vector matrix array for this CPU */
840
irq_matrix_online(vector_matrix);
841
842
/*
843
* The interrupt affinity logic never targets interrupts to offline
844
* CPUs. The exception are the legacy PIC interrupts. In general
845
* they are only targeted to CPU0, but depending on the platform
846
* they can be distributed to any online CPU in hardware. The
847
* kernel has no influence on that. So all active legacy vectors
848
* must be installed on all CPUs. All non legacy interrupts can be
849
* cleared.
850
*/
851
for (vector = 0; vector < NR_VECTORS; vector++)
852
this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
853
}
854
855
static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr);
856
857
void lapic_offline(void)
858
{
859
struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup);
860
861
lock_vector_lock();
862
863
/* In case the vector cleanup timer has not expired */
864
__vector_cleanup(cl, false);
865
866
irq_matrix_offline(vector_matrix);
867
WARN_ON_ONCE(timer_delete_sync_try(&cl->timer) < 0);
868
WARN_ON_ONCE(!hlist_empty(&cl->head));
869
870
unlock_vector_lock();
871
}
872
873
static int apic_set_affinity(struct irq_data *irqd,
874
const struct cpumask *dest, bool force)
875
{
876
int err;
877
878
if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
879
return -EIO;
880
881
raw_spin_lock(&vector_lock);
882
cpumask_and(vector_searchmask, dest, cpu_online_mask);
883
if (irqd_affinity_is_managed(irqd))
884
err = assign_managed_vector(irqd, vector_searchmask);
885
else
886
err = assign_vector_locked(irqd, vector_searchmask);
887
raw_spin_unlock(&vector_lock);
888
return err ? err : IRQ_SET_MASK_OK;
889
}
890
891
static void free_moved_vector(struct apic_chip_data *apicd)
892
{
893
unsigned int vector = apicd->prev_vector;
894
unsigned int cpu = apicd->prev_cpu;
895
bool managed = apicd->is_managed;
896
897
/*
898
* Managed interrupts are usually not migrated away
899
* from an online CPU, but CPU isolation 'managed_irq'
900
* can make that happen.
901
* 1) Activation does not take the isolation into account
902
* to keep the code simple
903
* 2) Migration away from an isolated CPU can happen when
904
* a non-isolated CPU which is in the calculated
905
* affinity mask comes online.
906
*/
907
trace_vector_free_moved(apicd->irq, cpu, vector, managed);
908
irq_matrix_free(vector_matrix, cpu, vector, managed);
909
per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
910
hlist_del_init(&apicd->clist);
911
apicd->prev_vector = 0;
912
apicd->move_in_progress = 0;
913
}
914
915
/*
916
* Called from fixup_irqs() with @desc->lock held and interrupts disabled.
917
*/
918
static void apic_force_complete_move(struct irq_data *irqd)
919
{
920
unsigned int cpu = smp_processor_id();
921
struct apic_chip_data *apicd;
922
unsigned int vector;
923
924
guard(raw_spinlock)(&vector_lock);
925
apicd = apic_chip_data(irqd);
926
if (!apicd)
927
return;
928
929
/*
930
* If prev_vector is empty or the descriptor is neither currently
931
* nor previously on the outgoing CPU no action required.
932
*/
933
vector = apicd->prev_vector;
934
if (!vector || (apicd->cpu != cpu && apicd->prev_cpu != cpu))
935
return;
936
937
/*
938
* This is tricky. If the cleanup of the old vector has not been
939
* done yet, then the following setaffinity call will fail with
940
* -EBUSY. This can leave the interrupt in a stale state.
941
*
942
* All CPUs are stuck in stop machine with interrupts disabled so
943
* calling __irq_complete_move() would be completely pointless.
944
*
945
* 1) The interrupt is in move_in_progress state. That means that we
946
* have not seen an interrupt since the io_apic was reprogrammed to
947
* the new vector.
948
*
949
* 2) The interrupt has fired on the new vector, but the cleanup IPIs
950
* have not been processed yet.
951
*/
952
if (apicd->move_in_progress) {
953
/*
954
* In theory there is a race:
955
*
956
* set_ioapic(new_vector) <-- Interrupt is raised before update
957
* is effective, i.e. it's raised on
958
* the old vector.
959
*
960
* So if the target cpu cannot handle that interrupt before
961
* the old vector is cleaned up, we get a spurious interrupt
962
* and in the worst case the ioapic irq line becomes stale.
963
*
964
* But in case of cpu hotplug this should be a non issue
965
* because if the affinity update happens right before all
966
* cpus rendezvous in stop machine, there is no way that the
967
* interrupt can be blocked on the target cpu because all cpus
968
* loops first with interrupts enabled in stop machine, so the
969
* old vector is not yet cleaned up when the interrupt fires.
970
*
971
* So the only way to run into this issue is if the delivery
972
* of the interrupt on the apic/system bus would be delayed
973
* beyond the point where the target cpu disables interrupts
974
* in stop machine. I doubt that it can happen, but at least
975
* there is a theoretical chance. Virtualization might be
976
* able to expose this, but AFAICT the IOAPIC emulation is not
977
* as stupid as the real hardware.
978
*
979
* Anyway, there is nothing we can do about that at this point
980
* w/o refactoring the whole fixup_irq() business completely.
981
* We print at least the irq number and the old vector number,
982
* so we have the necessary information when a problem in that
983
* area arises.
984
*/
985
pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
986
irqd->irq, vector);
987
}
988
free_moved_vector(apicd);
989
}
990
991
#else
992
# define apic_set_affinity NULL
993
# define apic_force_complete_move NULL
994
#endif
995
996
static int apic_retrigger_irq(struct irq_data *irqd)
997
{
998
struct apic_chip_data *apicd = apic_chip_data(irqd);
999
unsigned long flags;
1000
1001
raw_spin_lock_irqsave(&vector_lock, flags);
1002
__apic_send_IPI(apicd->cpu, apicd->vector);
1003
raw_spin_unlock_irqrestore(&vector_lock, flags);
1004
1005
return 1;
1006
}
1007
1008
void apic_ack_irq(struct irq_data *irqd)
1009
{
1010
irq_move_irq(irqd);
1011
apic_eoi();
1012
}
1013
1014
void apic_ack_edge(struct irq_data *irqd)
1015
{
1016
irq_complete_move(irqd_cfg(irqd));
1017
apic_ack_irq(irqd);
1018
}
1019
1020
static void x86_vector_msi_compose_msg(struct irq_data *data,
1021
struct msi_msg *msg)
1022
{
1023
__irq_msi_compose_msg(irqd_cfg(data), msg, false);
1024
}
1025
1026
static struct irq_chip lapic_controller = {
1027
.name = "APIC",
1028
.irq_ack = apic_ack_edge,
1029
.irq_set_affinity = apic_set_affinity,
1030
.irq_compose_msi_msg = x86_vector_msi_compose_msg,
1031
.irq_force_complete_move = apic_force_complete_move,
1032
.irq_retrigger = apic_retrigger_irq,
1033
};
1034
1035
#ifdef CONFIG_SMP
1036
1037
static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr)
1038
{
1039
struct apic_chip_data *apicd;
1040
struct hlist_node *tmp;
1041
bool rearm = false;
1042
1043
lockdep_assert_held(&vector_lock);
1044
1045
hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) {
1046
unsigned int vector = apicd->prev_vector;
1047
1048
/*
1049
* Paranoia: Check if the vector that needs to be cleaned
1050
* up is registered at the APICs IRR. That's clearly a
1051
* hardware issue if the vector arrived on the old target
1052
* _after_ interrupts were disabled above. Keep @apicd
1053
* on the list and schedule the timer again to give the CPU
1054
* a chance to handle the pending interrupt.
1055
*
1056
* Do not check IRR when called from lapic_offline(), because
1057
* fixup_irqs() was just called to scan IRR for set bits and
1058
* forward them to new destination CPUs via IPIs.
1059
*/
1060
if (check_irr && is_vector_pending(vector)) {
1061
pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq);
1062
rearm = true;
1063
continue;
1064
}
1065
free_moved_vector(apicd);
1066
}
1067
1068
/*
1069
* Must happen under vector_lock to make the timer_pending() check
1070
* in __vector_schedule_cleanup() race free against the rearm here.
1071
*/
1072
if (rearm)
1073
mod_timer(&cl->timer, jiffies + 1);
1074
}
1075
1076
static void vector_cleanup_callback(struct timer_list *tmr)
1077
{
1078
struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer);
1079
1080
/* Prevent vectors vanishing under us */
1081
raw_spin_lock_irq(&vector_lock);
1082
__vector_cleanup(cl, true);
1083
raw_spin_unlock_irq(&vector_lock);
1084
}
1085
1086
static void __vector_schedule_cleanup(struct apic_chip_data *apicd)
1087
{
1088
unsigned int cpu = apicd->prev_cpu;
1089
1090
raw_spin_lock(&vector_lock);
1091
apicd->move_in_progress = 0;
1092
if (cpu_online(cpu)) {
1093
struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu);
1094
1095
hlist_add_head(&apicd->clist, &cl->head);
1096
1097
/*
1098
* The lockless timer_pending() check is safe here. If it
1099
* returns true, then the callback will observe this new
1100
* apic data in the hlist as everything is serialized by
1101
* vector lock.
1102
*
1103
* If it returns false then the timer is either not armed
1104
* or the other CPU executes the callback, which again
1105
* would be blocked on vector lock. Rearming it in the
1106
* latter case makes it fire for nothing.
1107
*
1108
* This is also safe against the callback rearming the timer
1109
* because that's serialized via vector lock too.
1110
*/
1111
if (!timer_pending(&cl->timer)) {
1112
cl->timer.expires = jiffies + 1;
1113
add_timer_on(&cl->timer, cpu);
1114
}
1115
} else {
1116
pr_warn("IRQ %u schedule cleanup for offline CPU %u\n", apicd->irq, cpu);
1117
free_moved_vector(apicd);
1118
}
1119
raw_spin_unlock(&vector_lock);
1120
}
1121
1122
void vector_schedule_cleanup(struct irq_cfg *cfg)
1123
{
1124
struct apic_chip_data *apicd;
1125
1126
apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1127
if (apicd->move_in_progress)
1128
__vector_schedule_cleanup(apicd);
1129
}
1130
1131
void irq_complete_move(struct irq_cfg *cfg)
1132
{
1133
struct apic_chip_data *apicd;
1134
1135
apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1136
if (likely(!apicd->move_in_progress))
1137
return;
1138
1139
/*
1140
* If the interrupt arrived on the new target CPU, cleanup the
1141
* vector on the old target CPU. A vector check is not required
1142
* because an interrupt can never move from one vector to another
1143
* on the same CPU.
1144
*/
1145
if (apicd->cpu == smp_processor_id())
1146
__vector_schedule_cleanup(apicd);
1147
}
1148
1149
#ifdef CONFIG_HOTPLUG_CPU
1150
/*
1151
* Note, this is not accurate accounting, but at least good enough to
1152
* prevent that the actual interrupt move will run out of vectors.
1153
*/
1154
int lapic_can_unplug_cpu(void)
1155
{
1156
unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1157
int ret = 0;
1158
1159
raw_spin_lock(&vector_lock);
1160
tomove = irq_matrix_allocated(vector_matrix);
1161
avl = irq_matrix_available(vector_matrix, true);
1162
if (avl < tomove) {
1163
pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1164
cpu, tomove, avl);
1165
ret = -ENOSPC;
1166
goto out;
1167
}
1168
rsvd = irq_matrix_reserved(vector_matrix);
1169
if (avl < rsvd) {
1170
pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1171
rsvd, avl);
1172
}
1173
out:
1174
raw_spin_unlock(&vector_lock);
1175
return ret;
1176
}
1177
#endif /* HOTPLUG_CPU */
1178
#endif /* SMP */
1179
1180
static void __init print_APIC_field(int base)
1181
{
1182
int i;
1183
1184
printk(KERN_DEBUG);
1185
1186
for (i = 0; i < 8; i++)
1187
pr_cont("%08x", apic_read(base + i*0x10));
1188
1189
pr_cont("\n");
1190
}
1191
1192
static void __init print_local_APIC(void *dummy)
1193
{
1194
unsigned int i, v, ver, maxlvt;
1195
u64 icr;
1196
1197
pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1198
smp_processor_id(), read_apic_id());
1199
v = apic_read(APIC_ID);
1200
pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
1201
v = apic_read(APIC_LVR);
1202
pr_info("... APIC VERSION: %08x\n", v);
1203
ver = GET_APIC_VERSION(v);
1204
maxlvt = lapic_get_maxlvt();
1205
1206
v = apic_read(APIC_TASKPRI);
1207
pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1208
1209
/* !82489DX */
1210
if (APIC_INTEGRATED(ver)) {
1211
if (!APIC_XAPIC(ver)) {
1212
v = apic_read(APIC_ARBPRI);
1213
pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1214
v, v & APIC_ARBPRI_MASK);
1215
}
1216
v = apic_read(APIC_PROCPRI);
1217
pr_debug("... APIC PROCPRI: %08x\n", v);
1218
}
1219
1220
/*
1221
* Remote read supported only in the 82489DX and local APIC for
1222
* Pentium processors.
1223
*/
1224
if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1225
v = apic_read(APIC_RRR);
1226
pr_debug("... APIC RRR: %08x\n", v);
1227
}
1228
1229
v = apic_read(APIC_LDR);
1230
pr_debug("... APIC LDR: %08x\n", v);
1231
if (!x2apic_enabled()) {
1232
v = apic_read(APIC_DFR);
1233
pr_debug("... APIC DFR: %08x\n", v);
1234
}
1235
v = apic_read(APIC_SPIV);
1236
pr_debug("... APIC SPIV: %08x\n", v);
1237
1238
pr_debug("... APIC ISR field:\n");
1239
print_APIC_field(APIC_ISR);
1240
pr_debug("... APIC TMR field:\n");
1241
print_APIC_field(APIC_TMR);
1242
pr_debug("... APIC IRR field:\n");
1243
print_APIC_field(APIC_IRR);
1244
1245
/* !82489DX */
1246
if (APIC_INTEGRATED(ver)) {
1247
/* Due to the Pentium erratum 3AP. */
1248
if (maxlvt > 3)
1249
apic_write(APIC_ESR, 0);
1250
1251
v = apic_read(APIC_ESR);
1252
pr_debug("... APIC ESR: %08x\n", v);
1253
}
1254
1255
icr = apic_icr_read();
1256
pr_debug("... APIC ICR: %08x\n", (u32)icr);
1257
pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1258
1259
v = apic_read(APIC_LVTT);
1260
pr_debug("... APIC LVTT: %08x\n", v);
1261
1262
if (maxlvt > 3) {
1263
/* PC is LVT#4. */
1264
v = apic_read(APIC_LVTPC);
1265
pr_debug("... APIC LVTPC: %08x\n", v);
1266
}
1267
v = apic_read(APIC_LVT0);
1268
pr_debug("... APIC LVT0: %08x\n", v);
1269
v = apic_read(APIC_LVT1);
1270
pr_debug("... APIC LVT1: %08x\n", v);
1271
1272
if (maxlvt > 2) {
1273
/* ERR is LVT#3. */
1274
v = apic_read(APIC_LVTERR);
1275
pr_debug("... APIC LVTERR: %08x\n", v);
1276
}
1277
1278
v = apic_read(APIC_TMICT);
1279
pr_debug("... APIC TMICT: %08x\n", v);
1280
v = apic_read(APIC_TMCCT);
1281
pr_debug("... APIC TMCCT: %08x\n", v);
1282
v = apic_read(APIC_TDCR);
1283
pr_debug("... APIC TDCR: %08x\n", v);
1284
1285
if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1286
v = apic_read(APIC_EFEAT);
1287
maxlvt = (v >> 16) & 0xff;
1288
pr_debug("... APIC EFEAT: %08x\n", v);
1289
v = apic_read(APIC_ECTRL);
1290
pr_debug("... APIC ECTRL: %08x\n", v);
1291
for (i = 0; i < maxlvt; i++) {
1292
v = apic_read(APIC_EILVTn(i));
1293
pr_debug("... APIC EILVT%d: %08x\n", i, v);
1294
}
1295
}
1296
pr_cont("\n");
1297
}
1298
1299
static void __init print_local_APICs(int maxcpu)
1300
{
1301
int cpu;
1302
1303
if (!maxcpu)
1304
return;
1305
1306
preempt_disable();
1307
for_each_online_cpu(cpu) {
1308
if (cpu >= maxcpu)
1309
break;
1310
smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1311
}
1312
preempt_enable();
1313
}
1314
1315
static void __init print_PIC(void)
1316
{
1317
unsigned int v;
1318
unsigned long flags;
1319
1320
if (!nr_legacy_irqs())
1321
return;
1322
1323
pr_debug("\nprinting PIC contents\n");
1324
1325
raw_spin_lock_irqsave(&i8259A_lock, flags);
1326
1327
v = inb(0xa1) << 8 | inb(0x21);
1328
pr_debug("... PIC IMR: %04x\n", v);
1329
1330
v = inb(0xa0) << 8 | inb(0x20);
1331
pr_debug("... PIC IRR: %04x\n", v);
1332
1333
outb(0x0b, 0xa0);
1334
outb(0x0b, 0x20);
1335
v = inb(0xa0) << 8 | inb(0x20);
1336
outb(0x0a, 0xa0);
1337
outb(0x0a, 0x20);
1338
1339
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1340
1341
pr_debug("... PIC ISR: %04x\n", v);
1342
1343
v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1);
1344
pr_debug("... PIC ELCR: %04x\n", v);
1345
}
1346
1347
static int show_lapic __initdata = 1;
1348
static __init int setup_show_lapic(char *arg)
1349
{
1350
int num = -1;
1351
1352
if (strcmp(arg, "all") == 0) {
1353
show_lapic = CONFIG_NR_CPUS;
1354
} else {
1355
get_option(&arg, &num);
1356
if (num >= 0)
1357
show_lapic = num;
1358
}
1359
1360
return 1;
1361
}
1362
__setup("show_lapic=", setup_show_lapic);
1363
1364
static int __init print_ICs(void)
1365
{
1366
if (apic_verbosity == APIC_QUIET)
1367
return 0;
1368
1369
print_PIC();
1370
1371
/* don't print out if apic is not there */
1372
if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1373
return 0;
1374
1375
print_local_APICs(show_lapic);
1376
print_IO_APICs();
1377
1378
return 0;
1379
}
1380
1381
late_initcall(print_ICs);
1382
1383