#include <linux/export.h>
#include <linux/bitops.h>
#include <linux/elf.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/random.h>
#include <linux/topology.h>
#include <linux/platform_data/x86/amd-fch.h>
#include <asm/processor.h>
#include <asm/apic.h>
#include <asm/cacheinfo.h>
#include <asm/cpu.h>
#include <asm/cpu_device_id.h>
#include <asm/spec-ctrl.h>
#include <asm/smp.h>
#include <asm/numa.h>
#include <asm/pci-direct.h>
#include <asm/delay.h>
#include <asm/debugreg.h>
#include <asm/resctrl.h>
#include <asm/msr.h>
#include <asm/sev.h>
#ifdef CONFIG_X86_64
# include <asm/mmconfig.h>
#endif
#include "cpu.h"
u16 invlpgb_count_max __ro_after_init = 1;
static inline int rdmsrq_amd_safe(unsigned msr, u64 *p)
{
u32 gprs[8] = { 0 };
int err;
WARN_ONCE((boot_cpu_data.x86 != 0xf),
"%s should only be used on K8!\n", __func__);
gprs[1] = msr;
gprs[7] = 0x9c5a203a;
err = rdmsr_safe_regs(gprs);
*p = gprs[0] | ((u64)gprs[2] << 32);
return err;
}
static inline int wrmsrq_amd_safe(unsigned msr, u64 val)
{
u32 gprs[8] = { 0 };
WARN_ONCE((boot_cpu_data.x86 != 0xf),
"%s should only be used on K8!\n", __func__);
gprs[0] = (u32)val;
gprs[1] = msr;
gprs[2] = val >> 32;
gprs[7] = 0x9c5a203a;
return wrmsr_safe_regs(gprs);
}
#ifdef CONFIG_X86_32
extern __visible void vide(void);
__asm__(".text\n"
".globl vide\n"
".type vide, @function\n"
".align 4\n"
"vide: ret\n");
#endif
static void init_amd_k5(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
#define CBAR (0xfffc)
#define CBAR_ENB (0x80000000)
#define CBAR_KEY (0X000000CB)
if (c->x86_model == 9 || c->x86_model == 10) {
if (inl(CBAR) & CBAR_ENB)
outl(0 | CBAR_KEY, CBAR);
}
#endif
}
static void init_amd_k6(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
u32 l, h;
int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
if (c->x86_model < 6) {
if (c->x86_model == 0) {
clear_cpu_cap(c, X86_FEATURE_APIC);
set_cpu_cap(c, X86_FEATURE_PGE);
}
return;
}
if (c->x86_model == 6 && c->x86_stepping == 1) {
const int K6_BUG_LOOP = 1000000;
int n;
void (*f_vide)(void);
u64 d, d2;
pr_info("AMD K6 stepping B detected - ");
n = K6_BUG_LOOP;
f_vide = vide;
OPTIMIZER_HIDE_VAR(f_vide);
d = rdtsc();
while (n--)
f_vide();
d2 = rdtsc();
d = d2-d;
if (d > 20*K6_BUG_LOOP)
pr_cont("system stability may be impaired when more than 32 MB are used.\n");
else
pr_cont("probably OK (after B9730xxxx).\n");
}
if (c->x86_model < 8 ||
(c->x86_model == 8 && c->x86_stepping < 8)) {
if (mbytes > 508)
mbytes = 508;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0x0000FFFF) == 0) {
unsigned long flags;
l = (1<<0)|((mbytes/4)<<1);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
pr_info("Enabling old style K6 write allocation for %d Mb\n",
mbytes);
}
return;
}
if ((c->x86_model == 8 && c->x86_stepping > 7) ||
c->x86_model == 9 || c->x86_model == 13) {
if (mbytes > 4092)
mbytes = 4092;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0xFFFF0000) == 0) {
unsigned long flags;
l = ((mbytes>>2)<<22)|(1<<16);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
pr_info("Enabling new style K6 write allocation for %d Mb\n",
mbytes);
}
return;
}
if (c->x86_model == 10) {
return;
}
#endif
}
static void init_amd_k7(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
u32 l, h;
if (c->x86_model >= 6 && c->x86_model <= 10) {
if (!cpu_has(c, X86_FEATURE_XMM)) {
pr_info("Enabling disabled K7/SSE Support.\n");
msr_clear_bit(MSR_K7_HWCR, 15);
set_cpu_cap(c, X86_FEATURE_XMM);
}
}
if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
rdmsr(MSR_K7_CLK_CTL, l, h);
if ((l & 0xfff00000) != 0x20000000) {
pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
l, ((l & 0x000fffff)|0x20000000));
wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
}
}
if (!c->cpu_index)
return;
if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
(c->x86_stepping == 1)))
return;
if ((c->x86_model == 7) && (c->x86_stepping == 0))
return;
if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
(c->x86_model > 7))
if (cpu_has(c, X86_FEATURE_MP))
return;
WARN_ONCE(1, "WARNING: This combination of AMD"
" processors is not suitable for SMP.\n");
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
#endif
}
#ifdef CONFIG_NUMA
static int nearby_node(int apicid)
{
int i, node;
for (i = apicid - 1; i >= 0; i--) {
node = __apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
node = __apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
return first_node(node_online_map);
}
#endif
static void srat_detect_node(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_NUMA
int cpu = smp_processor_id();
int node;
unsigned apicid = c->topo.apicid;
node = numa_cpu_node(cpu);
if (node == NUMA_NO_NODE)
node = per_cpu_llc_id(cpu);
if (x86_cpuinit.fixup_cpu_id)
x86_cpuinit.fixup_cpu_id(c, node);
if (!node_online(node)) {
int ht_nodeid = c->topo.initial_apicid;
if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
node = __apicid_to_node[ht_nodeid];
if (!node_online(node))
node = nearby_node(apicid);
}
numa_set_node(cpu, node);
#endif
}
static void bsp_determine_snp(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_ARCH_HAS_CC_PLATFORM
cc_vendor = CC_VENDOR_AMD;
if (cpu_has(c, X86_FEATURE_SEV_SNP)) {
if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
(cpu_feature_enabled(X86_FEATURE_ZEN3) ||
cpu_feature_enabled(X86_FEATURE_ZEN4) ||
cpu_feature_enabled(X86_FEATURE_RMPREAD)) &&
snp_probe_rmptable_info()) {
cc_platform_set(CC_ATTR_HOST_SEV_SNP);
} else {
setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
cc_platform_clear(CC_ATTR_HOST_SEV_SNP);
}
}
#endif
}
#define ZEN_MODEL_STEP_UCODE(fam, model, step, ucode) \
X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, fam, model), \
step, step, ucode)
static const struct x86_cpu_id amd_tsa_microcode[] = {
ZEN_MODEL_STEP_UCODE(0x19, 0x01, 0x1, 0x0a0011d7),
ZEN_MODEL_STEP_UCODE(0x19, 0x01, 0x2, 0x0a00123b),
ZEN_MODEL_STEP_UCODE(0x19, 0x08, 0x2, 0x0a00820d),
ZEN_MODEL_STEP_UCODE(0x19, 0x11, 0x1, 0x0a10114c),
ZEN_MODEL_STEP_UCODE(0x19, 0x11, 0x2, 0x0a10124c),
ZEN_MODEL_STEP_UCODE(0x19, 0x18, 0x1, 0x0a108109),
ZEN_MODEL_STEP_UCODE(0x19, 0x21, 0x0, 0x0a20102e),
ZEN_MODEL_STEP_UCODE(0x19, 0x21, 0x2, 0x0a201211),
ZEN_MODEL_STEP_UCODE(0x19, 0x44, 0x1, 0x0a404108),
ZEN_MODEL_STEP_UCODE(0x19, 0x50, 0x0, 0x0a500012),
ZEN_MODEL_STEP_UCODE(0x19, 0x61, 0x2, 0x0a60120a),
ZEN_MODEL_STEP_UCODE(0x19, 0x74, 0x1, 0x0a704108),
ZEN_MODEL_STEP_UCODE(0x19, 0x75, 0x2, 0x0a705208),
ZEN_MODEL_STEP_UCODE(0x19, 0x78, 0x0, 0x0a708008),
ZEN_MODEL_STEP_UCODE(0x19, 0x7c, 0x0, 0x0a70c008),
ZEN_MODEL_STEP_UCODE(0x19, 0xa0, 0x2, 0x0aa00216),
{},
};
static void tsa_init(struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_HYPERVISOR))
return;
if (cpu_has(c, X86_FEATURE_ZEN3) ||
cpu_has(c, X86_FEATURE_ZEN4)) {
if (x86_match_min_microcode_rev(amd_tsa_microcode))
setup_force_cpu_cap(X86_FEATURE_VERW_CLEAR);
else
pr_debug("%s: current revision: 0x%x\n", __func__, c->microcode);
} else {
setup_force_cpu_cap(X86_FEATURE_TSA_SQ_NO);
setup_force_cpu_cap(X86_FEATURE_TSA_L1_NO);
}
}
static void bsp_init_amd(struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
if (c->x86 > 0x10 ||
(c->x86 == 0x10 && c->x86_model >= 0x2)) {
u64 val;
rdmsrq(MSR_K7_HWCR, val);
if (!(val & BIT(24)))
pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
}
}
if (c->x86 == 0x15) {
unsigned long upperbit;
u32 cpuid, assoc;
cpuid = cpuid_edx(0x80000005);
assoc = cpuid >> 16 & 0xff;
upperbit = ((cpuid >> 24) << 10) / assoc;
va_align.mask = (upperbit - 1) & PAGE_MASK;
va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
va_align.bits = get_random_u32() & va_align.mask;
}
if (cpu_has(c, X86_FEATURE_MWAITX))
use_mwaitx_delay();
if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
!boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
c->x86 >= 0x15 && c->x86 <= 0x17) {
unsigned int bit;
switch (c->x86) {
case 0x15: bit = 54; break;
case 0x16: bit = 33; break;
case 0x17: bit = 10; break;
default: return;
}
if (!rdmsrq_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
setup_force_cpu_cap(X86_FEATURE_SSBD);
x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
}
}
resctrl_cpu_detect(c);
switch (c->x86) {
case 0x17:
switch (c->x86_model) {
case 0x00 ... 0x2f:
case 0x50 ... 0x5f:
setup_force_cpu_cap(X86_FEATURE_ZEN1);
break;
case 0x30 ... 0x4f:
case 0x60 ... 0x7f:
case 0x90 ... 0x91:
case 0xa0 ... 0xaf:
setup_force_cpu_cap(X86_FEATURE_ZEN2);
break;
default:
goto warn;
}
break;
case 0x19:
switch (c->x86_model) {
case 0x00 ... 0x0f:
case 0x20 ... 0x5f:
setup_force_cpu_cap(X86_FEATURE_ZEN3);
break;
case 0x10 ... 0x1f:
case 0x60 ... 0xaf:
setup_force_cpu_cap(X86_FEATURE_ZEN4);
break;
default:
goto warn;
}
break;
case 0x1a:
switch (c->x86_model) {
case 0x00 ... 0x2f:
case 0x40 ... 0x4f:
case 0x60 ... 0x7f:
setup_force_cpu_cap(X86_FEATURE_ZEN5);
break;
case 0x50 ... 0x5f:
case 0x90 ... 0xaf:
case 0xc0 ... 0xcf:
setup_force_cpu_cap(X86_FEATURE_ZEN6);
break;
default:
goto warn;
}
break;
default:
break;
}
bsp_determine_snp(c);
tsa_init(c);
if (cpu_has(c, X86_FEATURE_GP_ON_USER_CPUID))
setup_force_cpu_cap(X86_FEATURE_CPUID_FAULT);
return;
warn:
WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model);
}
static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
{
u64 msr;
if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
rdmsrq(MSR_AMD64_SYSCFG, msr);
if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
goto clear_all;
c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
if (IS_ENABLED(CONFIG_X86_32))
goto clear_all;
if (!sme_me_mask)
setup_clear_cpu_cap(X86_FEATURE_SME);
rdmsrq(MSR_K7_HWCR, msr);
if (!(msr & MSR_K7_HWCR_SMMLOCK))
goto clear_sev;
return;
clear_all:
setup_clear_cpu_cap(X86_FEATURE_SME);
clear_sev:
setup_clear_cpu_cap(X86_FEATURE_SEV);
setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
}
}
static void early_init_amd(struct cpuinfo_x86 *c)
{
u32 dummy;
if (c->x86 >= 0xf)
set_cpu_cap(c, X86_FEATURE_K8);
rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
if (c->x86_power & (1 << 8)) {
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
}
if (c->x86_power & BIT(12))
set_cpu_cap(c, X86_FEATURE_ACC_POWER);
if (c->x86_power & BIT(14))
set_cpu_cap(c, X86_FEATURE_RAPL);
#ifdef CONFIG_X86_64
set_cpu_cap(c, X86_FEATURE_SYSCALL32);
#else
if (c->x86 == 5)
if (c->x86_model == 13 || c->x86_model == 9 ||
(c->x86_model == 8 && c->x86_stepping >= 8))
set_cpu_cap(c, X86_FEATURE_K6_MTRR);
#endif
#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
if (boot_cpu_has(X86_FEATURE_APIC)) {
if (c->x86 > 0x16)
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
else if (c->x86 >= 0xf) {
unsigned int val;
val = read_pci_config(0, 24, 0, 0x68);
if ((val >> 17 & 0x3) == 0x3)
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
}
}
#endif
set_cpu_cap(c, X86_FEATURE_VMMCALL);
if (c->x86 == 0x16 && c->x86_model <= 0xf)
msr_set_bit(MSR_AMD64_LS_CFG, 15);
early_detect_mem_encrypt(c);
if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) {
if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB))
setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
else if (c->x86 >= 0x19 && !wrmsrq_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
setup_force_cpu_cap(X86_FEATURE_SBPB);
}
}
}
static void init_amd_k8(struct cpuinfo_x86 *c)
{
u32 level;
u64 value;
level = cpuid_eax(1);
if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM) && !cpu_has(c, X86_FEATURE_HYPERVISOR)) {
clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
if (!rdmsrq_amd_safe(0xc001100d, &value)) {
value &= ~BIT_64(32);
wrmsrq_amd_safe(0xc001100d, value);
}
}
if (!c->x86_model_id[0])
strscpy(c->x86_model_id, "Hammer");
#ifdef CONFIG_SMP
msr_set_bit(MSR_K7_HWCR, 6);
#endif
set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
if (c->x86_model > 0x41 ||
(c->x86_model == 0x41 && c->x86_stepping >= 0x2))
setup_force_cpu_bug(X86_BUG_AMD_E400);
}
static void init_amd_gh(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_MMCONF_FAM10H
if (c == &boot_cpu_data)
check_enable_amd_mmconf_dmi();
fam10h_check_enable_mmcfg();
#endif
msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
if (c->x86_model > 0x2 ||
(c->x86_model == 0x2 && c->x86_stepping >= 0x1))
setup_force_cpu_bug(X86_BUG_AMD_E400);
}
static void init_amd_ln(struct cpuinfo_x86 *c)
{
msr_set_bit(MSR_AMD64_DE_CFG, 31);
}
static bool rdrand_force;
static int __init rdrand_cmdline(char *str)
{
if (!str)
return -EINVAL;
if (!strcmp(str, "force"))
rdrand_force = true;
else
return -EINVAL;
return 0;
}
early_param("rdrand", rdrand_cmdline);
static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
{
if (!IS_ENABLED(CONFIG_PM_SLEEP))
return;
if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
return;
msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
if (cpuid_ecx(1) & BIT(30)) {
pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
return;
}
clear_cpu_cap(c, X86_FEATURE_RDRAND);
pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
}
static void init_amd_jg(struct cpuinfo_x86 *c)
{
clear_rdrand_cpuid_bit(c);
}
static void init_amd_bd(struct cpuinfo_x86 *c)
{
u64 value;
if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
if (!rdmsrq_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
value |= 0x1E;
wrmsrq_safe(MSR_F15H_IC_CFG, value);
}
}
clear_rdrand_cpuid_bit(c);
}
static const struct x86_cpu_id erratum_1386_microcode[] = {
X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x01), 0x2, 0x2, 0x0800126e),
X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x31), 0x0, 0x0, 0x08301052),
{}
};
static void fix_erratum_1386(struct cpuinfo_x86 *c)
{
if (x86_match_min_microcode_rev(erratum_1386_microcode))
return;
clear_cpu_cap(c, X86_FEATURE_XSAVES);
}
void init_spectral_chicken(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_MITIGATION_UNRET_ENTRY
u64 value;
if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
if (!rdmsrq_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
wrmsrq_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
}
}
#endif
}
static void init_amd_zen_common(void)
{
setup_force_cpu_cap(X86_FEATURE_ZEN);
#ifdef CONFIG_NUMA
node_reclaim_distance = 32;
#endif
}
static void init_amd_zen1(struct cpuinfo_x86 *c)
{
fix_erratum_1386(c);
if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
if (!cpu_has(c, X86_FEATURE_CPB))
set_cpu_cap(c, X86_FEATURE_CPB);
}
pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
setup_force_cpu_bug(X86_BUG_DIV0);
if (c->x86_model < 0x30) {
msr_clear_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
clear_cpu_cap(c, X86_FEATURE_IRPERF);
}
}
static bool cpu_has_zenbleed_microcode(void)
{
u32 good_rev = 0;
switch (boot_cpu_data.x86_model) {
case 0x30 ... 0x3f: good_rev = 0x0830107b; break;
case 0x60 ... 0x67: good_rev = 0x0860010c; break;
case 0x68 ... 0x6f: good_rev = 0x08608107; break;
case 0x70 ... 0x7f: good_rev = 0x08701033; break;
case 0xa0 ... 0xaf: good_rev = 0x08a00009; break;
default:
return false;
}
if (boot_cpu_data.microcode < good_rev)
return false;
return true;
}
static void zen2_zenbleed_check(struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_HYPERVISOR))
return;
if (!cpu_has(c, X86_FEATURE_AVX))
return;
if (!cpu_has_zenbleed_microcode()) {
pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
} else {
msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
}
}
static void init_amd_zen2(struct cpuinfo_x86 *c)
{
init_spectral_chicken(c);
fix_erratum_1386(c);
zen2_zenbleed_check(c);
if (c->x86_model == 0x47 && c->x86_stepping == 0x0) {
clear_cpu_cap(c, X86_FEATURE_RDSEED);
msr_clear_bit(MSR_AMD64_CPUID_FN_7, 18);
pr_emerg("RDSEED is not reliable on this platform; disabling.\n");
}
clear_cpu_cap(c, X86_FEATURE_INVLPGB);
}
static void init_amd_zen3(struct cpuinfo_x86 *c)
{
if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
if (!cpu_has(c, X86_FEATURE_BTC_NO))
set_cpu_cap(c, X86_FEATURE_BTC_NO);
}
}
static void init_amd_zen4(struct cpuinfo_x86 *c)
{
if (!cpu_has(c, X86_FEATURE_HYPERVISOR))
msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
switch (c->x86_model) {
case 0x18 ... 0x1f:
case 0x60 ... 0x7f:
clear_cpu_cap(c, X86_FEATURE_V_VMSAVE_VMLOAD);
break;
}
}
static void init_amd_zen5(struct cpuinfo_x86 *c)
{
}
static void init_amd(struct cpuinfo_x86 *c)
{
u64 vm_cr;
early_init_amd(c);
clear_cpu_cap(c, 0*32+31);
if (c->x86 >= 0x10)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
if (cpu_has(c, X86_FEATURE_FSRM))
set_cpu_cap(c, X86_FEATURE_FSRS);
if (c->x86 < 6)
clear_cpu_cap(c, X86_FEATURE_MCE);
switch (c->x86) {
case 4: init_amd_k5(c); break;
case 5: init_amd_k6(c); break;
case 6: init_amd_k7(c); break;
case 0xf: init_amd_k8(c); break;
case 0x10: init_amd_gh(c); break;
case 0x12: init_amd_ln(c); break;
case 0x15: init_amd_bd(c); break;
case 0x16: init_amd_jg(c); break;
}
if (c->x86 >= 0x17)
init_amd_zen_common();
if (boot_cpu_has(X86_FEATURE_ZEN1))
init_amd_zen1(c);
else if (boot_cpu_has(X86_FEATURE_ZEN2))
init_amd_zen2(c);
else if (boot_cpu_has(X86_FEATURE_ZEN3))
init_amd_zen3(c);
else if (boot_cpu_has(X86_FEATURE_ZEN4))
init_amd_zen4(c);
else if (boot_cpu_has(X86_FEATURE_ZEN5))
init_amd_zen5(c);
if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
cpu_detect_cache_sizes(c);
srat_detect_node(c);
init_amd_cacheinfo(c);
if (cpu_has(c, X86_FEATURE_SVM)) {
rdmsrq(MSR_VM_CR, vm_cr);
if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) {
pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n");
clear_cpu_cap(c, X86_FEATURE_SVM);
}
}
if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) {
msr_set_bit(MSR_AMD64_DE_CFG,
MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
}
if (c->x86 > 0x11)
set_cpu_cap(c, X86_FEATURE_ARAT);
if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
if (!cpu_feature_enabled(X86_FEATURE_XENPV))
set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
if (cpu_has(c, X86_FEATURE_IRPERF))
msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
check_null_seg_clears_base(c);
if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
cpu_has(c, X86_FEATURE_AUTOIBRS))
WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS) < 0);
clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
if (cpu_has(c, X86_FEATURE_TCE))
msr_set_bit(MSR_EFER, _EFER_TCE);
}
#ifdef CONFIG_X86_32
static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
{
if (c->x86 == 6) {
if (c->x86_model == 3 && c->x86_stepping == 0)
size = 64;
if (c->x86_model == 4 &&
(c->x86_stepping == 0 || c->x86_stepping == 1))
size = 256;
}
return size;
}
#endif
static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
{
u32 ebx, eax, ecx, edx;
u16 mask = 0xfff;
if (c->x86 < 0xf)
return;
if (c->extended_cpuid_level < 0x80000006)
return;
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
tlb_lld_4k = (ebx >> 16) & mask;
tlb_lli_4k = ebx & mask;
if (c->x86 == 0xf) {
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
mask = 0xff;
}
if (!((eax >> 16) & mask))
tlb_lld_2m = (cpuid_eax(0x80000005) >> 16) & 0xff;
else
tlb_lld_2m = (eax >> 16) & mask;
tlb_lld_4m = tlb_lld_2m >> 1;
if (!(eax & mask)) {
if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
tlb_lli_2m = 1024;
} else {
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
tlb_lli_2m = eax & 0xff;
}
} else
tlb_lli_2m = eax & mask;
tlb_lli_4m = tlb_lli_2m >> 1;
if (cpu_has(c, X86_FEATURE_INVLPGB))
invlpgb_count_max = (cpuid_edx(0x80000008) & 0xffff) + 1;
}
static const struct cpu_dev amd_cpu_dev = {
.c_vendor = "AMD",
.c_ident = { "AuthenticAMD" },
#ifdef CONFIG_X86_32
.legacy_models = {
{ .family = 4, .model_names =
{
[3] = "486 DX/2",
[7] = "486 DX/2-WB",
[8] = "486 DX/4",
[9] = "486 DX/4-WB",
[14] = "Am5x86-WT",
[15] = "Am5x86-WB"
}
},
},
.legacy_cache_size = amd_size_cache,
#endif
.c_early_init = early_init_amd,
.c_detect_tlb = cpu_detect_tlb_amd,
.c_bsp_init = bsp_init_amd,
.c_init = init_amd,
.c_x86_vendor = X86_VENDOR_AMD,
};
cpu_dev_register(amd_cpu_dev);
static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask);
static unsigned int amd_msr_dr_addr_masks[] = {
MSR_F16H_DR0_ADDR_MASK,
MSR_F16H_DR1_ADDR_MASK,
MSR_F16H_DR1_ADDR_MASK + 1,
MSR_F16H_DR1_ADDR_MASK + 2
};
void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr)
{
int cpu = smp_processor_id();
if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
return;
if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
return;
if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask)
return;
wrmsrq(amd_msr_dr_addr_masks[dr], mask);
per_cpu(amd_dr_addr_mask, cpu)[dr] = mask;
}
unsigned long amd_get_dr_addr_mask(unsigned int dr)
{
if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
return 0;
if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
return 0;
return per_cpu(amd_dr_addr_mask[dr], smp_processor_id());
}
EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask);
static void zenbleed_check_cpu(void *unused)
{
struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
zen2_zenbleed_check(c);
}
void amd_check_microcode(void)
{
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
return;
if (cpu_feature_enabled(X86_FEATURE_ZEN2))
on_each_cpu(zenbleed_check_cpu, NULL, 1);
}
static const char * const s5_reset_reason_txt[] = {
[0] = "thermal pin BP_THERMTRIP_L was tripped",
[1] = "power button was pressed for 4 seconds",
[2] = "shutdown pin was tripped",
[4] = "remote ASF power off command was received",
[9] = "internal CPU thermal limit was tripped",
[16] = "system reset pin BP_SYS_RST_L was tripped",
[17] = "software issued PCI reset",
[18] = "software wrote 0x4 to reset control register 0xCF9",
[19] = "software wrote 0x6 to reset control register 0xCF9",
[20] = "software wrote 0xE to reset control register 0xCF9",
[21] = "ACPI power state transition occurred",
[22] = "keyboard reset pin KB_RST_L was tripped",
[23] = "internal CPU shutdown event occurred",
[24] = "system failed to boot before failed boot timer expired",
[25] = "hardware watchdog timer expired",
[26] = "remote ASF reset command was received",
[27] = "an uncorrected error caused a data fabric sync flood event",
[29] = "FCH and MP1 failed warm reset handshake",
[30] = "a parity error occurred",
[31] = "a software sync flood event occurred",
};
static __init int print_s5_reset_status_mmio(void)
{
void __iomem *addr;
u32 value;
int i;
if (!cpu_feature_enabled(X86_FEATURE_ZEN))
return 0;
addr = ioremap(FCH_PM_BASE + FCH_PM_S5_RESET_STATUS, sizeof(value));
if (!addr)
return 0;
value = ioread32(addr);
iounmap(addr);
if (value == U32_MAX)
return 0;
for (i = 0; i < ARRAY_SIZE(s5_reset_reason_txt); i++) {
if (!(value & BIT(i)))
continue;
if (s5_reset_reason_txt[i]) {
pr_info("x86/amd: Previous system reset reason [0x%08x]: %s\n",
value, s5_reset_reason_txt[i]);
}
}
return 0;
}
late_initcall(print_s5_reset_status_mmio);