Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/cpu/sgx/main.c
26516 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright(c) 2016-20 Intel Corporation. */
3
4
#include <linux/file.h>
5
#include <linux/freezer.h>
6
#include <linux/highmem.h>
7
#include <linux/kthread.h>
8
#include <linux/miscdevice.h>
9
#include <linux/node.h>
10
#include <linux/pagemap.h>
11
#include <linux/ratelimit.h>
12
#include <linux/sched/mm.h>
13
#include <linux/sched/signal.h>
14
#include <linux/slab.h>
15
#include <linux/sysfs.h>
16
#include <linux/vmalloc.h>
17
#include <asm/msr.h>
18
#include <asm/sgx.h>
19
#include "driver.h"
20
#include "encl.h"
21
#include "encls.h"
22
23
struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
24
static int sgx_nr_epc_sections;
25
static struct task_struct *ksgxd_tsk;
26
static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
27
static DEFINE_XARRAY(sgx_epc_address_space);
28
29
/*
30
* These variables are part of the state of the reclaimer, and must be accessed
31
* with sgx_reclaimer_lock acquired.
32
*/
33
static LIST_HEAD(sgx_active_page_list);
34
static DEFINE_SPINLOCK(sgx_reclaimer_lock);
35
36
static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
37
38
/* Nodes with one or more EPC sections. */
39
static nodemask_t sgx_numa_mask;
40
41
/*
42
* Array with one list_head for each possible NUMA node. Each
43
* list contains all the sgx_epc_section's which are on that
44
* node.
45
*/
46
static struct sgx_numa_node *sgx_numa_nodes;
47
48
static LIST_HEAD(sgx_dirty_page_list);
49
50
/*
51
* Reset post-kexec EPC pages to the uninitialized state. The pages are removed
52
* from the input list, and made available for the page allocator. SECS pages
53
* prepending their children in the input list are left intact.
54
*
55
* Return 0 when sanitization was successful or kthread was stopped, and the
56
* number of unsanitized pages otherwise.
57
*/
58
static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list)
59
{
60
unsigned long left_dirty = 0;
61
struct sgx_epc_page *page;
62
LIST_HEAD(dirty);
63
int ret;
64
65
/* dirty_page_list is thread-local, no need for a lock: */
66
while (!list_empty(dirty_page_list)) {
67
if (kthread_should_stop())
68
return 0;
69
70
page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
71
72
/*
73
* Checking page->poison without holding the node->lock
74
* is racy, but losing the race (i.e. poison is set just
75
* after the check) just means __eremove() will be uselessly
76
* called for a page that sgx_free_epc_page() will put onto
77
* the node->sgx_poison_page_list later.
78
*/
79
if (page->poison) {
80
struct sgx_epc_section *section = &sgx_epc_sections[page->section];
81
struct sgx_numa_node *node = section->node;
82
83
spin_lock(&node->lock);
84
list_move(&page->list, &node->sgx_poison_page_list);
85
spin_unlock(&node->lock);
86
87
continue;
88
}
89
90
ret = __eremove(sgx_get_epc_virt_addr(page));
91
if (!ret) {
92
/*
93
* page is now sanitized. Make it available via the SGX
94
* page allocator:
95
*/
96
list_del(&page->list);
97
sgx_free_epc_page(page);
98
} else {
99
/* The page is not yet clean - move to the dirty list. */
100
list_move_tail(&page->list, &dirty);
101
left_dirty++;
102
}
103
104
cond_resched();
105
}
106
107
list_splice(&dirty, dirty_page_list);
108
return left_dirty;
109
}
110
111
static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
112
{
113
struct sgx_encl_page *page = epc_page->owner;
114
struct sgx_encl *encl = page->encl;
115
struct sgx_encl_mm *encl_mm;
116
bool ret = true;
117
int idx;
118
119
idx = srcu_read_lock(&encl->srcu);
120
121
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
122
if (!mmget_not_zero(encl_mm->mm))
123
continue;
124
125
mmap_read_lock(encl_mm->mm);
126
ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
127
mmap_read_unlock(encl_mm->mm);
128
129
mmput_async(encl_mm->mm);
130
131
if (!ret)
132
break;
133
}
134
135
srcu_read_unlock(&encl->srcu, idx);
136
137
if (!ret)
138
return false;
139
140
return true;
141
}
142
143
static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
144
{
145
struct sgx_encl_page *page = epc_page->owner;
146
unsigned long addr = page->desc & PAGE_MASK;
147
struct sgx_encl *encl = page->encl;
148
int ret;
149
150
sgx_zap_enclave_ptes(encl, addr);
151
152
mutex_lock(&encl->lock);
153
154
ret = __eblock(sgx_get_epc_virt_addr(epc_page));
155
if (encls_failed(ret))
156
ENCLS_WARN(ret, "EBLOCK");
157
158
mutex_unlock(&encl->lock);
159
}
160
161
static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
162
struct sgx_backing *backing)
163
{
164
struct sgx_pageinfo pginfo;
165
int ret;
166
167
pginfo.addr = 0;
168
pginfo.secs = 0;
169
170
pginfo.contents = (unsigned long)kmap_local_page(backing->contents);
171
pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) +
172
backing->pcmd_offset;
173
174
ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
175
set_page_dirty(backing->pcmd);
176
set_page_dirty(backing->contents);
177
178
kunmap_local((void *)(unsigned long)(pginfo.metadata -
179
backing->pcmd_offset));
180
kunmap_local((void *)(unsigned long)pginfo.contents);
181
182
return ret;
183
}
184
185
void sgx_ipi_cb(void *info)
186
{
187
}
188
189
/*
190
* Swap page to the regular memory transformed to the blocked state by using
191
* EBLOCK, which means that it can no longer be referenced (no new TLB entries).
192
*
193
* The first trial just tries to write the page assuming that some other thread
194
* has reset the count for threads inside the enclave by using ETRACK, and
195
* previous thread count has been zeroed out. The second trial calls ETRACK
196
* before EWB. If that fails we kick all the HW threads out, and then do EWB,
197
* which should be guaranteed the succeed.
198
*/
199
static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
200
struct sgx_backing *backing)
201
{
202
struct sgx_encl_page *encl_page = epc_page->owner;
203
struct sgx_encl *encl = encl_page->encl;
204
struct sgx_va_page *va_page;
205
unsigned int va_offset;
206
void *va_slot;
207
int ret;
208
209
encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
210
211
va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
212
list);
213
va_offset = sgx_alloc_va_slot(va_page);
214
va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
215
if (sgx_va_page_full(va_page))
216
list_move_tail(&va_page->list, &encl->va_pages);
217
218
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
219
if (ret == SGX_NOT_TRACKED) {
220
ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
221
if (ret) {
222
if (encls_failed(ret))
223
ENCLS_WARN(ret, "ETRACK");
224
}
225
226
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
227
if (ret == SGX_NOT_TRACKED) {
228
/*
229
* Slow path, send IPIs to kick cpus out of the
230
* enclave. Note, it's imperative that the cpu
231
* mask is generated *after* ETRACK, else we'll
232
* miss cpus that entered the enclave between
233
* generating the mask and incrementing epoch.
234
*/
235
on_each_cpu_mask(sgx_encl_cpumask(encl),
236
sgx_ipi_cb, NULL, 1);
237
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
238
}
239
}
240
241
if (ret) {
242
if (encls_failed(ret))
243
ENCLS_WARN(ret, "EWB");
244
245
sgx_free_va_slot(va_page, va_offset);
246
} else {
247
encl_page->desc |= va_offset;
248
encl_page->va_page = va_page;
249
}
250
}
251
252
static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
253
struct sgx_backing *backing)
254
{
255
struct sgx_encl_page *encl_page = epc_page->owner;
256
struct sgx_encl *encl = encl_page->encl;
257
struct sgx_backing secs_backing;
258
int ret;
259
260
mutex_lock(&encl->lock);
261
262
sgx_encl_ewb(epc_page, backing);
263
encl_page->epc_page = NULL;
264
encl->secs_child_cnt--;
265
sgx_encl_put_backing(backing);
266
267
if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
268
ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
269
&secs_backing);
270
if (ret)
271
goto out;
272
273
sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
274
275
sgx_encl_free_epc_page(encl->secs.epc_page);
276
encl->secs.epc_page = NULL;
277
278
sgx_encl_put_backing(&secs_backing);
279
}
280
281
out:
282
mutex_unlock(&encl->lock);
283
}
284
285
/*
286
* Take a fixed number of pages from the head of the active page pool and
287
* reclaim them to the enclave's private shmem files. Skip the pages, which have
288
* been accessed since the last scan. Move those pages to the tail of active
289
* page pool so that the pages get scanned in LRU like fashion.
290
*
291
* Batch process a chunk of pages (at the moment 16) in order to degrade amount
292
* of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
293
* among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
294
* + EWB) but not sufficiently. Reclaiming one page at a time would also be
295
* problematic as it would increase the lock contention too much, which would
296
* halt forward progress.
297
*/
298
static void sgx_reclaim_pages(void)
299
{
300
struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
301
struct sgx_backing backing[SGX_NR_TO_SCAN];
302
struct sgx_encl_page *encl_page;
303
struct sgx_epc_page *epc_page;
304
pgoff_t page_index;
305
int cnt = 0;
306
int ret;
307
int i;
308
309
spin_lock(&sgx_reclaimer_lock);
310
for (i = 0; i < SGX_NR_TO_SCAN; i++) {
311
if (list_empty(&sgx_active_page_list))
312
break;
313
314
epc_page = list_first_entry(&sgx_active_page_list,
315
struct sgx_epc_page, list);
316
list_del_init(&epc_page->list);
317
encl_page = epc_page->owner;
318
319
if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
320
chunk[cnt++] = epc_page;
321
else
322
/* The owner is freeing the page. No need to add the
323
* page back to the list of reclaimable pages.
324
*/
325
epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
326
}
327
spin_unlock(&sgx_reclaimer_lock);
328
329
for (i = 0; i < cnt; i++) {
330
epc_page = chunk[i];
331
encl_page = epc_page->owner;
332
333
if (!sgx_reclaimer_age(epc_page))
334
goto skip;
335
336
page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
337
338
mutex_lock(&encl_page->encl->lock);
339
ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
340
if (ret) {
341
mutex_unlock(&encl_page->encl->lock);
342
goto skip;
343
}
344
345
encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
346
mutex_unlock(&encl_page->encl->lock);
347
continue;
348
349
skip:
350
spin_lock(&sgx_reclaimer_lock);
351
list_add_tail(&epc_page->list, &sgx_active_page_list);
352
spin_unlock(&sgx_reclaimer_lock);
353
354
kref_put(&encl_page->encl->refcount, sgx_encl_release);
355
356
chunk[i] = NULL;
357
}
358
359
for (i = 0; i < cnt; i++) {
360
epc_page = chunk[i];
361
if (epc_page)
362
sgx_reclaimer_block(epc_page);
363
}
364
365
for (i = 0; i < cnt; i++) {
366
epc_page = chunk[i];
367
if (!epc_page)
368
continue;
369
370
encl_page = epc_page->owner;
371
sgx_reclaimer_write(epc_page, &backing[i]);
372
373
kref_put(&encl_page->encl->refcount, sgx_encl_release);
374
epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
375
376
sgx_free_epc_page(epc_page);
377
}
378
}
379
380
static bool sgx_should_reclaim(unsigned long watermark)
381
{
382
return atomic_long_read(&sgx_nr_free_pages) < watermark &&
383
!list_empty(&sgx_active_page_list);
384
}
385
386
/*
387
* sgx_reclaim_direct() should be called (without enclave's mutex held)
388
* in locations where SGX memory resources might be low and might be
389
* needed in order to make forward progress.
390
*/
391
void sgx_reclaim_direct(void)
392
{
393
if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
394
sgx_reclaim_pages();
395
}
396
397
static int ksgxd(void *p)
398
{
399
set_freezable();
400
401
/*
402
* Sanitize pages in order to recover from kexec(). The 2nd pass is
403
* required for SECS pages, whose child pages blocked EREMOVE.
404
*/
405
__sgx_sanitize_pages(&sgx_dirty_page_list);
406
WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list));
407
408
while (!kthread_should_stop()) {
409
if (try_to_freeze())
410
continue;
411
412
wait_event_freezable(ksgxd_waitq,
413
kthread_should_stop() ||
414
sgx_should_reclaim(SGX_NR_HIGH_PAGES));
415
416
if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
417
sgx_reclaim_pages();
418
419
cond_resched();
420
}
421
422
return 0;
423
}
424
425
static bool __init sgx_page_reclaimer_init(void)
426
{
427
struct task_struct *tsk;
428
429
tsk = kthread_run(ksgxd, NULL, "ksgxd");
430
if (IS_ERR(tsk))
431
return false;
432
433
ksgxd_tsk = tsk;
434
435
return true;
436
}
437
438
bool current_is_ksgxd(void)
439
{
440
return current == ksgxd_tsk;
441
}
442
443
static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
444
{
445
struct sgx_numa_node *node = &sgx_numa_nodes[nid];
446
struct sgx_epc_page *page = NULL;
447
448
spin_lock(&node->lock);
449
450
if (list_empty(&node->free_page_list)) {
451
spin_unlock(&node->lock);
452
return NULL;
453
}
454
455
page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
456
list_del_init(&page->list);
457
page->flags = 0;
458
459
spin_unlock(&node->lock);
460
atomic_long_dec(&sgx_nr_free_pages);
461
462
return page;
463
}
464
465
/**
466
* __sgx_alloc_epc_page() - Allocate an EPC page
467
*
468
* Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
469
* from the NUMA node, where the caller is executing.
470
*
471
* Return:
472
* - an EPC page: A borrowed EPC pages were available.
473
* - NULL: Out of EPC pages.
474
*/
475
struct sgx_epc_page *__sgx_alloc_epc_page(void)
476
{
477
struct sgx_epc_page *page;
478
int nid_of_current = numa_node_id();
479
int nid_start, nid;
480
481
/*
482
* Try local node first. If it doesn't have an EPC section,
483
* fall back to the non-local NUMA nodes.
484
*/
485
if (node_isset(nid_of_current, sgx_numa_mask))
486
nid_start = nid_of_current;
487
else
488
nid_start = next_node_in(nid_of_current, sgx_numa_mask);
489
490
nid = nid_start;
491
do {
492
page = __sgx_alloc_epc_page_from_node(nid);
493
if (page)
494
return page;
495
496
nid = next_node_in(nid, sgx_numa_mask);
497
} while (nid != nid_start);
498
499
return ERR_PTR(-ENOMEM);
500
}
501
502
/**
503
* sgx_mark_page_reclaimable() - Mark a page as reclaimable
504
* @page: EPC page
505
*
506
* Mark a page as reclaimable and add it to the active page list. Pages
507
* are automatically removed from the active list when freed.
508
*/
509
void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
510
{
511
spin_lock(&sgx_reclaimer_lock);
512
page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
513
list_add_tail(&page->list, &sgx_active_page_list);
514
spin_unlock(&sgx_reclaimer_lock);
515
}
516
517
/**
518
* sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
519
* @page: EPC page
520
*
521
* Clear the reclaimable flag and remove the page from the active page list.
522
*
523
* Return:
524
* 0 on success,
525
* -EBUSY if the page is in the process of being reclaimed
526
*/
527
int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
528
{
529
spin_lock(&sgx_reclaimer_lock);
530
if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
531
/* The page is being reclaimed. */
532
if (list_empty(&page->list)) {
533
spin_unlock(&sgx_reclaimer_lock);
534
return -EBUSY;
535
}
536
537
list_del(&page->list);
538
page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
539
}
540
spin_unlock(&sgx_reclaimer_lock);
541
542
return 0;
543
}
544
545
/**
546
* sgx_alloc_epc_page() - Allocate an EPC page
547
* @owner: the owner of the EPC page
548
* @reclaim: reclaim pages if necessary
549
*
550
* Iterate through EPC sections and borrow a free EPC page to the caller. When a
551
* page is no longer needed it must be released with sgx_free_epc_page(). If
552
* @reclaim is set to true, directly reclaim pages when we are out of pages. No
553
* mm's can be locked when @reclaim is set to true.
554
*
555
* Finally, wake up ksgxd when the number of pages goes below the watermark
556
* before returning back to the caller.
557
*
558
* Return:
559
* an EPC page,
560
* -errno on error
561
*/
562
struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
563
{
564
struct sgx_epc_page *page;
565
566
for ( ; ; ) {
567
page = __sgx_alloc_epc_page();
568
if (!IS_ERR(page)) {
569
page->owner = owner;
570
break;
571
}
572
573
if (list_empty(&sgx_active_page_list))
574
return ERR_PTR(-ENOMEM);
575
576
if (!reclaim) {
577
page = ERR_PTR(-EBUSY);
578
break;
579
}
580
581
if (signal_pending(current)) {
582
page = ERR_PTR(-ERESTARTSYS);
583
break;
584
}
585
586
sgx_reclaim_pages();
587
cond_resched();
588
}
589
590
if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
591
wake_up(&ksgxd_waitq);
592
593
return page;
594
}
595
596
/**
597
* sgx_free_epc_page() - Free an EPC page
598
* @page: an EPC page
599
*
600
* Put the EPC page back to the list of free pages. It's the caller's
601
* responsibility to make sure that the page is in uninitialized state. In other
602
* words, do EREMOVE, EWB or whatever operation is necessary before calling
603
* this function.
604
*/
605
void sgx_free_epc_page(struct sgx_epc_page *page)
606
{
607
struct sgx_epc_section *section = &sgx_epc_sections[page->section];
608
struct sgx_numa_node *node = section->node;
609
610
spin_lock(&node->lock);
611
612
page->owner = NULL;
613
if (page->poison)
614
list_add(&page->list, &node->sgx_poison_page_list);
615
else
616
list_add_tail(&page->list, &node->free_page_list);
617
page->flags = SGX_EPC_PAGE_IS_FREE;
618
619
spin_unlock(&node->lock);
620
atomic_long_inc(&sgx_nr_free_pages);
621
}
622
623
static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
624
unsigned long index,
625
struct sgx_epc_section *section)
626
{
627
unsigned long nr_pages = size >> PAGE_SHIFT;
628
unsigned long i;
629
630
section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
631
if (!section->virt_addr)
632
return false;
633
634
section->pages = vmalloc_array(nr_pages, sizeof(struct sgx_epc_page));
635
if (!section->pages) {
636
memunmap(section->virt_addr);
637
return false;
638
}
639
640
section->phys_addr = phys_addr;
641
xa_store_range(&sgx_epc_address_space, section->phys_addr,
642
phys_addr + size - 1, section, GFP_KERNEL);
643
644
for (i = 0; i < nr_pages; i++) {
645
section->pages[i].section = index;
646
section->pages[i].flags = 0;
647
section->pages[i].owner = NULL;
648
section->pages[i].poison = 0;
649
list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
650
}
651
652
return true;
653
}
654
655
bool arch_is_platform_page(u64 paddr)
656
{
657
return !!xa_load(&sgx_epc_address_space, paddr);
658
}
659
EXPORT_SYMBOL_GPL(arch_is_platform_page);
660
661
static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
662
{
663
struct sgx_epc_section *section;
664
665
section = xa_load(&sgx_epc_address_space, paddr);
666
if (!section)
667
return NULL;
668
669
return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
670
}
671
672
/*
673
* Called in process context to handle a hardware reported
674
* error in an SGX EPC page.
675
* If the MF_ACTION_REQUIRED bit is set in flags, then the
676
* context is the task that consumed the poison data. Otherwise
677
* this is called from a kernel thread unrelated to the page.
678
*/
679
int arch_memory_failure(unsigned long pfn, int flags)
680
{
681
struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
682
struct sgx_epc_section *section;
683
struct sgx_numa_node *node;
684
685
/*
686
* mm/memory-failure.c calls this routine for all errors
687
* where there isn't a "struct page" for the address. But that
688
* includes other address ranges besides SGX.
689
*/
690
if (!page)
691
return -ENXIO;
692
693
/*
694
* If poison was consumed synchronously. Send a SIGBUS to
695
* the task. Hardware has already exited the SGX enclave and
696
* will not allow re-entry to an enclave that has a memory
697
* error. The signal may help the task understand why the
698
* enclave is broken.
699
*/
700
if (flags & MF_ACTION_REQUIRED)
701
force_sig(SIGBUS);
702
703
section = &sgx_epc_sections[page->section];
704
node = section->node;
705
706
spin_lock(&node->lock);
707
708
/* Already poisoned? Nothing more to do */
709
if (page->poison)
710
goto out;
711
712
page->poison = 1;
713
714
/*
715
* If the page is on a free list, move it to the per-node
716
* poison page list.
717
*/
718
if (page->flags & SGX_EPC_PAGE_IS_FREE) {
719
list_move(&page->list, &node->sgx_poison_page_list);
720
goto out;
721
}
722
723
sgx_unmark_page_reclaimable(page);
724
725
/*
726
* TBD: Add additional plumbing to enable pre-emptive
727
* action for asynchronous poison notification. Until
728
* then just hope that the poison:
729
* a) is not accessed - sgx_free_epc_page() will deal with it
730
* when the user gives it back
731
* b) results in a recoverable machine check rather than
732
* a fatal one
733
*/
734
out:
735
spin_unlock(&node->lock);
736
return 0;
737
}
738
739
/*
740
* A section metric is concatenated in a way that @low bits 12-31 define the
741
* bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
742
* metric.
743
*/
744
static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
745
{
746
return (low & GENMASK_ULL(31, 12)) +
747
((high & GENMASK_ULL(19, 0)) << 32);
748
}
749
750
#ifdef CONFIG_NUMA
751
static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
752
{
753
return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
754
}
755
static DEVICE_ATTR_RO(sgx_total_bytes);
756
757
static umode_t arch_node_attr_is_visible(struct kobject *kobj,
758
struct attribute *attr, int idx)
759
{
760
/* Make all x86/ attributes invisible when SGX is not initialized: */
761
if (nodes_empty(sgx_numa_mask))
762
return 0;
763
764
return attr->mode;
765
}
766
767
static struct attribute *arch_node_dev_attrs[] = {
768
&dev_attr_sgx_total_bytes.attr,
769
NULL,
770
};
771
772
const struct attribute_group arch_node_dev_group = {
773
.name = "x86",
774
.attrs = arch_node_dev_attrs,
775
.is_visible = arch_node_attr_is_visible,
776
};
777
778
static void __init arch_update_sysfs_visibility(int nid)
779
{
780
struct node *node = node_devices[nid];
781
int ret;
782
783
ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
784
785
if (ret)
786
pr_err("sysfs update failed (%d), files may be invisible", ret);
787
}
788
#else /* !CONFIG_NUMA */
789
static void __init arch_update_sysfs_visibility(int nid) {}
790
#endif
791
792
static bool __init sgx_page_cache_init(void)
793
{
794
u32 eax, ebx, ecx, edx, type;
795
u64 pa, size;
796
int nid;
797
int i;
798
799
sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
800
if (!sgx_numa_nodes)
801
return false;
802
803
for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
804
cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
805
806
type = eax & SGX_CPUID_EPC_MASK;
807
if (type == SGX_CPUID_EPC_INVALID)
808
break;
809
810
if (type != SGX_CPUID_EPC_SECTION) {
811
pr_err_once("Unknown EPC section type: %u\n", type);
812
break;
813
}
814
815
pa = sgx_calc_section_metric(eax, ebx);
816
size = sgx_calc_section_metric(ecx, edx);
817
818
pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
819
820
if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
821
pr_err("No free memory for an EPC section\n");
822
break;
823
}
824
825
nid = numa_map_to_online_node(phys_to_target_node(pa));
826
if (nid == NUMA_NO_NODE) {
827
/* The physical address is already printed above. */
828
pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
829
nid = 0;
830
}
831
832
if (!node_isset(nid, sgx_numa_mask)) {
833
spin_lock_init(&sgx_numa_nodes[nid].lock);
834
INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
835
INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
836
node_set(nid, sgx_numa_mask);
837
sgx_numa_nodes[nid].size = 0;
838
839
/* Make SGX-specific node sysfs files visible: */
840
arch_update_sysfs_visibility(nid);
841
}
842
843
sgx_epc_sections[i].node = &sgx_numa_nodes[nid];
844
sgx_numa_nodes[nid].size += size;
845
846
sgx_nr_epc_sections++;
847
}
848
849
if (!sgx_nr_epc_sections) {
850
pr_err("There are zero EPC sections.\n");
851
return false;
852
}
853
854
for_each_online_node(nid) {
855
if (!node_isset(nid, sgx_numa_mask) &&
856
node_state(nid, N_MEMORY) && node_state(nid, N_CPU))
857
pr_info("node%d has both CPUs and memory but doesn't have an EPC section\n",
858
nid);
859
}
860
861
return true;
862
}
863
864
/*
865
* Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
866
* Bare-metal driver requires to update them to hash of enclave's signer
867
* before EINIT. KVM needs to update them to guest's virtual MSR values
868
* before doing EINIT from guest.
869
*/
870
void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
871
{
872
int i;
873
874
WARN_ON_ONCE(preemptible());
875
876
for (i = 0; i < 4; i++)
877
wrmsrq(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
878
}
879
880
const struct file_operations sgx_provision_fops = {
881
.owner = THIS_MODULE,
882
};
883
884
static struct miscdevice sgx_dev_provision = {
885
.minor = MISC_DYNAMIC_MINOR,
886
.name = "sgx_provision",
887
.nodename = "sgx_provision",
888
.fops = &sgx_provision_fops,
889
};
890
891
/**
892
* sgx_set_attribute() - Update allowed attributes given file descriptor
893
* @allowed_attributes: Pointer to allowed enclave attributes
894
* @attribute_fd: File descriptor for specific attribute
895
*
896
* Append enclave attribute indicated by file descriptor to allowed
897
* attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
898
* /dev/sgx_provision is supported.
899
*
900
* Return:
901
* -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
902
* -EINVAL: Invalid, or not supported file descriptor
903
*/
904
int sgx_set_attribute(unsigned long *allowed_attributes,
905
unsigned int attribute_fd)
906
{
907
CLASS(fd, f)(attribute_fd);
908
909
if (fd_empty(f))
910
return -EINVAL;
911
912
if (fd_file(f)->f_op != &sgx_provision_fops)
913
return -EINVAL;
914
915
*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
916
return 0;
917
}
918
EXPORT_SYMBOL_GPL(sgx_set_attribute);
919
920
static int __init sgx_init(void)
921
{
922
int ret;
923
int i;
924
925
if (!cpu_feature_enabled(X86_FEATURE_SGX))
926
return -ENODEV;
927
928
if (!sgx_page_cache_init())
929
return -ENOMEM;
930
931
if (!sgx_page_reclaimer_init()) {
932
ret = -ENOMEM;
933
goto err_page_cache;
934
}
935
936
ret = misc_register(&sgx_dev_provision);
937
if (ret)
938
goto err_kthread;
939
940
/*
941
* Always try to initialize the native *and* KVM drivers.
942
* The KVM driver is less picky than the native one and
943
* can function if the native one is not supported on the
944
* current system or fails to initialize.
945
*
946
* Error out only if both fail to initialize.
947
*/
948
ret = sgx_drv_init();
949
950
if (sgx_vepc_init() && ret)
951
goto err_provision;
952
953
return 0;
954
955
err_provision:
956
misc_deregister(&sgx_dev_provision);
957
958
err_kthread:
959
kthread_stop(ksgxd_tsk);
960
961
err_page_cache:
962
for (i = 0; i < sgx_nr_epc_sections; i++) {
963
vfree(sgx_epc_sections[i].pages);
964
memunmap(sgx_epc_sections[i].virt_addr);
965
}
966
967
return ret;
968
}
969
970
device_initcall(sgx_init);
971
972