Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/cpu/sgx/main.c
50376 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright(c) 2016-20 Intel Corporation. */
3
4
#include <linux/file.h>
5
#include <linux/freezer.h>
6
#include <linux/highmem.h>
7
#include <linux/kthread.h>
8
#include <linux/kvm_types.h>
9
#include <linux/miscdevice.h>
10
#include <linux/node.h>
11
#include <linux/pagemap.h>
12
#include <linux/ratelimit.h>
13
#include <linux/sched/mm.h>
14
#include <linux/sched/signal.h>
15
#include <linux/slab.h>
16
#include <linux/sysfs.h>
17
#include <linux/vmalloc.h>
18
#include <asm/msr.h>
19
#include <asm/sgx.h>
20
#include <asm/archrandom.h>
21
#include "driver.h"
22
#include "encl.h"
23
#include "encls.h"
24
25
struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
26
static int sgx_nr_epc_sections;
27
static struct task_struct *ksgxd_tsk;
28
static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
29
static DEFINE_XARRAY(sgx_epc_address_space);
30
31
/*
32
* These variables are part of the state of the reclaimer, and must be accessed
33
* with sgx_reclaimer_lock acquired.
34
*/
35
static LIST_HEAD(sgx_active_page_list);
36
static DEFINE_SPINLOCK(sgx_reclaimer_lock);
37
38
static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
39
40
/* Nodes with one or more EPC sections. */
41
static nodemask_t sgx_numa_mask;
42
43
/*
44
* Array with one list_head for each possible NUMA node. Each
45
* list contains all the sgx_epc_section's which are on that
46
* node.
47
*/
48
static struct sgx_numa_node *sgx_numa_nodes;
49
50
static LIST_HEAD(sgx_dirty_page_list);
51
52
/*
53
* Reset post-kexec EPC pages to the uninitialized state. The pages are removed
54
* from the input list, and made available for the page allocator. SECS pages
55
* prepending their children in the input list are left intact.
56
*
57
* Return 0 when sanitization was successful or kthread was stopped, and the
58
* number of unsanitized pages otherwise.
59
*/
60
static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list)
61
{
62
unsigned long left_dirty = 0;
63
struct sgx_epc_page *page;
64
LIST_HEAD(dirty);
65
int ret;
66
67
/* dirty_page_list is thread-local, no need for a lock: */
68
while (!list_empty(dirty_page_list)) {
69
if (kthread_should_stop())
70
return 0;
71
72
page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
73
74
/*
75
* Checking page->poison without holding the node->lock
76
* is racy, but losing the race (i.e. poison is set just
77
* after the check) just means __eremove() will be uselessly
78
* called for a page that sgx_free_epc_page() will put onto
79
* the node->sgx_poison_page_list later.
80
*/
81
if (page->poison) {
82
struct sgx_epc_section *section = &sgx_epc_sections[page->section];
83
struct sgx_numa_node *node = section->node;
84
85
spin_lock(&node->lock);
86
list_move(&page->list, &node->sgx_poison_page_list);
87
spin_unlock(&node->lock);
88
89
continue;
90
}
91
92
ret = __eremove(sgx_get_epc_virt_addr(page));
93
if (!ret) {
94
/*
95
* page is now sanitized. Make it available via the SGX
96
* page allocator:
97
*/
98
list_del(&page->list);
99
sgx_free_epc_page(page);
100
} else {
101
/* The page is not yet clean - move to the dirty list. */
102
list_move_tail(&page->list, &dirty);
103
left_dirty++;
104
}
105
106
cond_resched();
107
}
108
109
list_splice(&dirty, dirty_page_list);
110
return left_dirty;
111
}
112
113
static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
114
{
115
struct sgx_encl_page *page = epc_page->owner;
116
struct sgx_encl *encl = page->encl;
117
struct sgx_encl_mm *encl_mm;
118
bool ret = true;
119
int idx;
120
121
idx = srcu_read_lock(&encl->srcu);
122
123
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
124
if (!mmget_not_zero(encl_mm->mm))
125
continue;
126
127
mmap_read_lock(encl_mm->mm);
128
ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
129
mmap_read_unlock(encl_mm->mm);
130
131
mmput_async(encl_mm->mm);
132
133
if (!ret)
134
break;
135
}
136
137
srcu_read_unlock(&encl->srcu, idx);
138
139
if (!ret)
140
return false;
141
142
return true;
143
}
144
145
static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
146
{
147
struct sgx_encl_page *page = epc_page->owner;
148
unsigned long addr = page->desc & PAGE_MASK;
149
struct sgx_encl *encl = page->encl;
150
int ret;
151
152
sgx_zap_enclave_ptes(encl, addr);
153
154
mutex_lock(&encl->lock);
155
156
ret = __eblock(sgx_get_epc_virt_addr(epc_page));
157
if (encls_failed(ret))
158
ENCLS_WARN(ret, "EBLOCK");
159
160
mutex_unlock(&encl->lock);
161
}
162
163
static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
164
struct sgx_backing *backing)
165
{
166
struct sgx_pageinfo pginfo;
167
int ret;
168
169
pginfo.addr = 0;
170
pginfo.secs = 0;
171
172
pginfo.contents = (unsigned long)kmap_local_page(backing->contents);
173
pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) +
174
backing->pcmd_offset;
175
176
ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
177
set_page_dirty(backing->pcmd);
178
set_page_dirty(backing->contents);
179
180
kunmap_local((void *)(unsigned long)(pginfo.metadata -
181
backing->pcmd_offset));
182
kunmap_local((void *)(unsigned long)pginfo.contents);
183
184
return ret;
185
}
186
187
void sgx_ipi_cb(void *info)
188
{
189
}
190
191
/*
192
* Swap page to the regular memory transformed to the blocked state by using
193
* EBLOCK, which means that it can no longer be referenced (no new TLB entries).
194
*
195
* The first trial just tries to write the page assuming that some other thread
196
* has reset the count for threads inside the enclave by using ETRACK, and
197
* previous thread count has been zeroed out. The second trial calls ETRACK
198
* before EWB. If that fails we kick all the HW threads out, and then do EWB,
199
* which should be guaranteed the succeed.
200
*/
201
static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
202
struct sgx_backing *backing)
203
{
204
struct sgx_encl_page *encl_page = epc_page->owner;
205
struct sgx_encl *encl = encl_page->encl;
206
struct sgx_va_page *va_page;
207
unsigned int va_offset;
208
void *va_slot;
209
int ret;
210
211
encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
212
213
va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
214
list);
215
va_offset = sgx_alloc_va_slot(va_page);
216
va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
217
if (sgx_va_page_full(va_page))
218
list_move_tail(&va_page->list, &encl->va_pages);
219
220
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
221
if (ret == SGX_NOT_TRACKED) {
222
ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
223
if (ret) {
224
if (encls_failed(ret))
225
ENCLS_WARN(ret, "ETRACK");
226
}
227
228
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
229
if (ret == SGX_NOT_TRACKED) {
230
/*
231
* Slow path, send IPIs to kick cpus out of the
232
* enclave. Note, it's imperative that the cpu
233
* mask is generated *after* ETRACK, else we'll
234
* miss cpus that entered the enclave between
235
* generating the mask and incrementing epoch.
236
*/
237
on_each_cpu_mask(sgx_encl_cpumask(encl),
238
sgx_ipi_cb, NULL, 1);
239
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
240
}
241
}
242
243
if (ret) {
244
if (encls_failed(ret))
245
ENCLS_WARN(ret, "EWB");
246
247
sgx_free_va_slot(va_page, va_offset);
248
} else {
249
encl_page->desc |= va_offset;
250
encl_page->va_page = va_page;
251
}
252
}
253
254
static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
255
struct sgx_backing *backing)
256
{
257
struct sgx_encl_page *encl_page = epc_page->owner;
258
struct sgx_encl *encl = encl_page->encl;
259
struct sgx_backing secs_backing;
260
int ret;
261
262
mutex_lock(&encl->lock);
263
264
sgx_encl_ewb(epc_page, backing);
265
encl_page->epc_page = NULL;
266
encl->secs_child_cnt--;
267
sgx_encl_put_backing(backing);
268
269
if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
270
ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
271
&secs_backing);
272
if (ret)
273
goto out;
274
275
sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
276
277
sgx_encl_free_epc_page(encl->secs.epc_page);
278
encl->secs.epc_page = NULL;
279
280
sgx_encl_put_backing(&secs_backing);
281
}
282
283
out:
284
mutex_unlock(&encl->lock);
285
}
286
287
/*
288
* Take a fixed number of pages from the head of the active page pool and
289
* reclaim them to the enclave's private shmem files. Skip the pages, which have
290
* been accessed since the last scan. Move those pages to the tail of active
291
* page pool so that the pages get scanned in LRU like fashion.
292
*
293
* Batch process a chunk of pages (at the moment 16) in order to degrade amount
294
* of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
295
* among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
296
* + EWB) but not sufficiently. Reclaiming one page at a time would also be
297
* problematic as it would increase the lock contention too much, which would
298
* halt forward progress.
299
*/
300
static void sgx_reclaim_pages(void)
301
{
302
struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
303
struct sgx_backing backing[SGX_NR_TO_SCAN];
304
struct sgx_encl_page *encl_page;
305
struct sgx_epc_page *epc_page;
306
pgoff_t page_index;
307
int cnt = 0;
308
int ret;
309
int i;
310
311
spin_lock(&sgx_reclaimer_lock);
312
for (i = 0; i < SGX_NR_TO_SCAN; i++) {
313
if (list_empty(&sgx_active_page_list))
314
break;
315
316
epc_page = list_first_entry(&sgx_active_page_list,
317
struct sgx_epc_page, list);
318
list_del_init(&epc_page->list);
319
encl_page = epc_page->owner;
320
321
if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
322
chunk[cnt++] = epc_page;
323
else
324
/* The owner is freeing the page. No need to add the
325
* page back to the list of reclaimable pages.
326
*/
327
epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
328
}
329
spin_unlock(&sgx_reclaimer_lock);
330
331
for (i = 0; i < cnt; i++) {
332
epc_page = chunk[i];
333
encl_page = epc_page->owner;
334
335
if (!sgx_reclaimer_age(epc_page))
336
goto skip;
337
338
page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
339
340
mutex_lock(&encl_page->encl->lock);
341
ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
342
if (ret) {
343
mutex_unlock(&encl_page->encl->lock);
344
goto skip;
345
}
346
347
encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
348
mutex_unlock(&encl_page->encl->lock);
349
continue;
350
351
skip:
352
spin_lock(&sgx_reclaimer_lock);
353
list_add_tail(&epc_page->list, &sgx_active_page_list);
354
spin_unlock(&sgx_reclaimer_lock);
355
356
kref_put(&encl_page->encl->refcount, sgx_encl_release);
357
358
chunk[i] = NULL;
359
}
360
361
for (i = 0; i < cnt; i++) {
362
epc_page = chunk[i];
363
if (epc_page)
364
sgx_reclaimer_block(epc_page);
365
}
366
367
for (i = 0; i < cnt; i++) {
368
epc_page = chunk[i];
369
if (!epc_page)
370
continue;
371
372
encl_page = epc_page->owner;
373
sgx_reclaimer_write(epc_page, &backing[i]);
374
375
kref_put(&encl_page->encl->refcount, sgx_encl_release);
376
epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
377
378
sgx_free_epc_page(epc_page);
379
}
380
}
381
382
static bool sgx_should_reclaim(unsigned long watermark)
383
{
384
return atomic_long_read(&sgx_nr_free_pages) < watermark &&
385
!list_empty(&sgx_active_page_list);
386
}
387
388
/*
389
* sgx_reclaim_direct() should be called (without enclave's mutex held)
390
* in locations where SGX memory resources might be low and might be
391
* needed in order to make forward progress.
392
*/
393
void sgx_reclaim_direct(void)
394
{
395
if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
396
sgx_reclaim_pages();
397
}
398
399
static int ksgxd(void *p)
400
{
401
set_freezable();
402
403
/*
404
* Sanitize pages in order to recover from kexec(). The 2nd pass is
405
* required for SECS pages, whose child pages blocked EREMOVE.
406
*/
407
__sgx_sanitize_pages(&sgx_dirty_page_list);
408
WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list));
409
410
while (!kthread_should_stop()) {
411
if (try_to_freeze())
412
continue;
413
414
wait_event_freezable(ksgxd_waitq,
415
kthread_should_stop() ||
416
sgx_should_reclaim(SGX_NR_HIGH_PAGES));
417
418
if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
419
sgx_reclaim_pages();
420
421
cond_resched();
422
}
423
424
return 0;
425
}
426
427
static bool __init sgx_page_reclaimer_init(void)
428
{
429
struct task_struct *tsk;
430
431
tsk = kthread_run(ksgxd, NULL, "ksgxd");
432
if (IS_ERR(tsk))
433
return false;
434
435
ksgxd_tsk = tsk;
436
437
return true;
438
}
439
440
bool current_is_ksgxd(void)
441
{
442
return current == ksgxd_tsk;
443
}
444
445
static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
446
{
447
struct sgx_numa_node *node = &sgx_numa_nodes[nid];
448
struct sgx_epc_page *page = NULL;
449
450
spin_lock(&node->lock);
451
452
if (list_empty(&node->free_page_list)) {
453
spin_unlock(&node->lock);
454
return NULL;
455
}
456
457
page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
458
list_del_init(&page->list);
459
page->flags = 0;
460
461
spin_unlock(&node->lock);
462
atomic_long_dec(&sgx_nr_free_pages);
463
464
return page;
465
}
466
467
/**
468
* __sgx_alloc_epc_page() - Allocate an EPC page
469
*
470
* Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
471
* from the NUMA node, where the caller is executing.
472
*
473
* Return:
474
* - an EPC page: A borrowed EPC pages were available.
475
* - NULL: Out of EPC pages.
476
*/
477
struct sgx_epc_page *__sgx_alloc_epc_page(void)
478
{
479
struct sgx_epc_page *page;
480
int nid_of_current = numa_node_id();
481
int nid_start, nid;
482
483
/*
484
* Try local node first. If it doesn't have an EPC section,
485
* fall back to the non-local NUMA nodes.
486
*/
487
if (node_isset(nid_of_current, sgx_numa_mask))
488
nid_start = nid_of_current;
489
else
490
nid_start = next_node_in(nid_of_current, sgx_numa_mask);
491
492
nid = nid_start;
493
do {
494
page = __sgx_alloc_epc_page_from_node(nid);
495
if (page)
496
return page;
497
498
nid = next_node_in(nid, sgx_numa_mask);
499
} while (nid != nid_start);
500
501
return ERR_PTR(-ENOMEM);
502
}
503
504
/**
505
* sgx_mark_page_reclaimable() - Mark a page as reclaimable
506
* @page: EPC page
507
*
508
* Mark a page as reclaimable and add it to the active page list. Pages
509
* are automatically removed from the active list when freed.
510
*/
511
void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
512
{
513
spin_lock(&sgx_reclaimer_lock);
514
page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
515
list_add_tail(&page->list, &sgx_active_page_list);
516
spin_unlock(&sgx_reclaimer_lock);
517
}
518
519
/**
520
* sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
521
* @page: EPC page
522
*
523
* Clear the reclaimable flag and remove the page from the active page list.
524
*
525
* Return:
526
* 0 on success,
527
* -EBUSY if the page is in the process of being reclaimed
528
*/
529
int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
530
{
531
spin_lock(&sgx_reclaimer_lock);
532
if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
533
/* The page is being reclaimed. */
534
if (list_empty(&page->list)) {
535
spin_unlock(&sgx_reclaimer_lock);
536
return -EBUSY;
537
}
538
539
list_del(&page->list);
540
page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
541
}
542
spin_unlock(&sgx_reclaimer_lock);
543
544
return 0;
545
}
546
547
/**
548
* sgx_alloc_epc_page() - Allocate an EPC page
549
* @owner: the owner of the EPC page
550
* @reclaim: reclaim pages if necessary
551
*
552
* Iterate through EPC sections and borrow a free EPC page to the caller. When a
553
* page is no longer needed it must be released with sgx_free_epc_page(). If
554
* @reclaim is set to true, directly reclaim pages when we are out of pages. No
555
* mm's can be locked when @reclaim is set to true.
556
*
557
* Finally, wake up ksgxd when the number of pages goes below the watermark
558
* before returning back to the caller.
559
*
560
* Return:
561
* an EPC page,
562
* -errno on error
563
*/
564
struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
565
{
566
struct sgx_epc_page *page;
567
568
for ( ; ; ) {
569
page = __sgx_alloc_epc_page();
570
if (!IS_ERR(page)) {
571
page->owner = owner;
572
break;
573
}
574
575
if (list_empty(&sgx_active_page_list))
576
return ERR_PTR(-ENOMEM);
577
578
if (!reclaim) {
579
page = ERR_PTR(-EBUSY);
580
break;
581
}
582
583
if (signal_pending(current)) {
584
page = ERR_PTR(-ERESTARTSYS);
585
break;
586
}
587
588
sgx_reclaim_pages();
589
cond_resched();
590
}
591
592
if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
593
wake_up(&ksgxd_waitq);
594
595
return page;
596
}
597
598
/**
599
* sgx_free_epc_page() - Free an EPC page
600
* @page: an EPC page
601
*
602
* Put the EPC page back to the list of free pages. It's the caller's
603
* responsibility to make sure that the page is in uninitialized state. In other
604
* words, do EREMOVE, EWB or whatever operation is necessary before calling
605
* this function.
606
*/
607
void sgx_free_epc_page(struct sgx_epc_page *page)
608
{
609
struct sgx_epc_section *section = &sgx_epc_sections[page->section];
610
struct sgx_numa_node *node = section->node;
611
612
spin_lock(&node->lock);
613
614
page->owner = NULL;
615
if (page->poison)
616
list_add(&page->list, &node->sgx_poison_page_list);
617
else
618
list_add_tail(&page->list, &node->free_page_list);
619
page->flags = SGX_EPC_PAGE_IS_FREE;
620
621
spin_unlock(&node->lock);
622
atomic_long_inc(&sgx_nr_free_pages);
623
}
624
625
static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
626
unsigned long index,
627
struct sgx_epc_section *section)
628
{
629
unsigned long nr_pages = size >> PAGE_SHIFT;
630
unsigned long i;
631
632
section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
633
if (!section->virt_addr)
634
return false;
635
636
section->pages = vmalloc_array(nr_pages, sizeof(struct sgx_epc_page));
637
if (!section->pages) {
638
memunmap(section->virt_addr);
639
return false;
640
}
641
642
section->phys_addr = phys_addr;
643
xa_store_range(&sgx_epc_address_space, section->phys_addr,
644
phys_addr + size - 1, section, GFP_KERNEL);
645
646
for (i = 0; i < nr_pages; i++) {
647
section->pages[i].section = index;
648
section->pages[i].flags = 0;
649
section->pages[i].owner = NULL;
650
section->pages[i].poison = 0;
651
list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
652
}
653
654
return true;
655
}
656
657
bool arch_is_platform_page(u64 paddr)
658
{
659
return !!xa_load(&sgx_epc_address_space, paddr);
660
}
661
EXPORT_SYMBOL_GPL(arch_is_platform_page);
662
663
static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
664
{
665
struct sgx_epc_section *section;
666
667
section = xa_load(&sgx_epc_address_space, paddr);
668
if (!section)
669
return NULL;
670
671
return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
672
}
673
674
/*
675
* Called in process context to handle a hardware reported
676
* error in an SGX EPC page.
677
* If the MF_ACTION_REQUIRED bit is set in flags, then the
678
* context is the task that consumed the poison data. Otherwise
679
* this is called from a kernel thread unrelated to the page.
680
*/
681
int arch_memory_failure(unsigned long pfn, int flags)
682
{
683
struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
684
struct sgx_epc_section *section;
685
struct sgx_numa_node *node;
686
687
/*
688
* mm/memory-failure.c calls this routine for all errors
689
* where there isn't a "struct page" for the address. But that
690
* includes other address ranges besides SGX.
691
*/
692
if (!page)
693
return -ENXIO;
694
695
/*
696
* If poison was consumed synchronously. Send a SIGBUS to
697
* the task. Hardware has already exited the SGX enclave and
698
* will not allow re-entry to an enclave that has a memory
699
* error. The signal may help the task understand why the
700
* enclave is broken.
701
*/
702
if (flags & MF_ACTION_REQUIRED)
703
force_sig(SIGBUS);
704
705
section = &sgx_epc_sections[page->section];
706
node = section->node;
707
708
spin_lock(&node->lock);
709
710
/* Already poisoned? Nothing more to do */
711
if (page->poison)
712
goto out;
713
714
page->poison = 1;
715
716
/*
717
* If the page is on a free list, move it to the per-node
718
* poison page list.
719
*/
720
if (page->flags & SGX_EPC_PAGE_IS_FREE) {
721
list_move(&page->list, &node->sgx_poison_page_list);
722
goto out;
723
}
724
725
sgx_unmark_page_reclaimable(page);
726
727
/*
728
* TBD: Add additional plumbing to enable pre-emptive
729
* action for asynchronous poison notification. Until
730
* then just hope that the poison:
731
* a) is not accessed - sgx_free_epc_page() will deal with it
732
* when the user gives it back
733
* b) results in a recoverable machine check rather than
734
* a fatal one
735
*/
736
out:
737
spin_unlock(&node->lock);
738
return 0;
739
}
740
741
/*
742
* A section metric is concatenated in a way that @low bits 12-31 define the
743
* bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
744
* metric.
745
*/
746
static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
747
{
748
return (low & GENMASK_ULL(31, 12)) +
749
((high & GENMASK_ULL(19, 0)) << 32);
750
}
751
752
#ifdef CONFIG_NUMA
753
static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
754
{
755
return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
756
}
757
static DEVICE_ATTR_RO(sgx_total_bytes);
758
759
static umode_t arch_node_attr_is_visible(struct kobject *kobj,
760
struct attribute *attr, int idx)
761
{
762
/* Make all x86/ attributes invisible when SGX is not initialized: */
763
if (nodes_empty(sgx_numa_mask))
764
return 0;
765
766
return attr->mode;
767
}
768
769
static struct attribute *arch_node_dev_attrs[] = {
770
&dev_attr_sgx_total_bytes.attr,
771
NULL,
772
};
773
774
const struct attribute_group arch_node_dev_group = {
775
.name = "x86",
776
.attrs = arch_node_dev_attrs,
777
.is_visible = arch_node_attr_is_visible,
778
};
779
780
static void __init arch_update_sysfs_visibility(int nid)
781
{
782
struct node *node = node_devices[nid];
783
int ret;
784
785
ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
786
787
if (ret)
788
pr_err("sysfs update failed (%d), files may be invisible", ret);
789
}
790
#else /* !CONFIG_NUMA */
791
static void __init arch_update_sysfs_visibility(int nid) {}
792
#endif
793
794
static bool __init sgx_page_cache_init(void)
795
{
796
u32 eax, ebx, ecx, edx, type;
797
u64 pa, size;
798
int nid;
799
int i;
800
801
sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
802
if (!sgx_numa_nodes)
803
return false;
804
805
for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
806
cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
807
808
type = eax & SGX_CPUID_EPC_MASK;
809
if (type == SGX_CPUID_EPC_INVALID)
810
break;
811
812
if (type != SGX_CPUID_EPC_SECTION) {
813
pr_err_once("Unknown EPC section type: %u\n", type);
814
break;
815
}
816
817
pa = sgx_calc_section_metric(eax, ebx);
818
size = sgx_calc_section_metric(ecx, edx);
819
820
pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
821
822
if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
823
pr_err("No free memory for an EPC section\n");
824
break;
825
}
826
827
nid = numa_map_to_online_node(phys_to_target_node(pa));
828
if (nid == NUMA_NO_NODE) {
829
/* The physical address is already printed above. */
830
pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
831
nid = 0;
832
}
833
834
if (!node_isset(nid, sgx_numa_mask)) {
835
spin_lock_init(&sgx_numa_nodes[nid].lock);
836
INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
837
INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
838
node_set(nid, sgx_numa_mask);
839
sgx_numa_nodes[nid].size = 0;
840
841
/* Make SGX-specific node sysfs files visible: */
842
arch_update_sysfs_visibility(nid);
843
}
844
845
sgx_epc_sections[i].node = &sgx_numa_nodes[nid];
846
sgx_numa_nodes[nid].size += size;
847
848
sgx_nr_epc_sections++;
849
}
850
851
if (!sgx_nr_epc_sections) {
852
pr_err("There are zero EPC sections.\n");
853
return false;
854
}
855
856
for_each_online_node(nid) {
857
if (!node_isset(nid, sgx_numa_mask) &&
858
node_state(nid, N_MEMORY) && node_state(nid, N_CPU))
859
pr_info("node%d has both CPUs and memory but doesn't have an EPC section\n",
860
nid);
861
}
862
863
return true;
864
}
865
866
/*
867
* Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
868
* Bare-metal driver requires to update them to hash of enclave's signer
869
* before EINIT. KVM needs to update them to guest's virtual MSR values
870
* before doing EINIT from guest.
871
*/
872
void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
873
{
874
int i;
875
876
WARN_ON_ONCE(preemptible());
877
878
for (i = 0; i < 4; i++)
879
wrmsrq(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
880
}
881
882
const struct file_operations sgx_provision_fops = {
883
.owner = THIS_MODULE,
884
};
885
886
static struct miscdevice sgx_dev_provision = {
887
.minor = MISC_DYNAMIC_MINOR,
888
.name = "sgx_provision",
889
.nodename = "sgx_provision",
890
.fops = &sgx_provision_fops,
891
};
892
893
/**
894
* sgx_set_attribute() - Update allowed attributes given file descriptor
895
* @allowed_attributes: Pointer to allowed enclave attributes
896
* @attribute_fd: File descriptor for specific attribute
897
*
898
* Append enclave attribute indicated by file descriptor to allowed
899
* attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
900
* /dev/sgx_provision is supported.
901
*
902
* Return:
903
* -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
904
* -EINVAL: Invalid, or not supported file descriptor
905
*/
906
int sgx_set_attribute(unsigned long *allowed_attributes,
907
unsigned int attribute_fd)
908
{
909
CLASS(fd, f)(attribute_fd);
910
911
if (fd_empty(f))
912
return -EINVAL;
913
914
if (fd_file(f)->f_op != &sgx_provision_fops)
915
return -EINVAL;
916
917
*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
918
return 0;
919
}
920
EXPORT_SYMBOL_FOR_KVM(sgx_set_attribute);
921
922
/* Counter to count the active SGX users */
923
static int sgx_usage_count;
924
925
/**
926
* sgx_update_svn() - Attempt to call ENCLS[EUPDATESVN].
927
*
928
* This instruction attempts to update CPUSVN to the
929
* currently loaded microcode update SVN and generate new
930
* cryptographic assets.
931
*
932
* Return:
933
* * %0: - Success or not supported
934
* * %-EAGAIN: - Can be safely retried, failure is due to lack of
935
* * entropy in RNG
936
* * %-EIO: - Unexpected error, retries are not advisable
937
*/
938
static int sgx_update_svn(void)
939
{
940
int ret;
941
942
/*
943
* If EUPDATESVN is not available, it is ok to
944
* silently skip it to comply with legacy behavior.
945
*/
946
if (!cpu_feature_enabled(X86_FEATURE_SGX_EUPDATESVN))
947
return 0;
948
949
/*
950
* EPC is guaranteed to be empty when there are no users.
951
* Ensure we are on our first user before proceeding further.
952
*/
953
WARN(sgx_usage_count, "Elevated usage count when calling EUPDATESVN\n");
954
955
for (int i = 0; i < RDRAND_RETRY_LOOPS; i++) {
956
ret = __eupdatesvn();
957
958
/* Stop on success or unexpected errors: */
959
if (ret != SGX_INSUFFICIENT_ENTROPY)
960
break;
961
}
962
963
switch (ret) {
964
case 0:
965
/*
966
* SVN successfully updated.
967
* Let users know when the update was successful.
968
*/
969
pr_info("SVN updated successfully\n");
970
return 0;
971
case SGX_NO_UPDATE:
972
/*
973
* SVN update failed since the current SVN is
974
* not newer than CPUSVN. This is the most
975
* common case and indicates no harm.
976
*/
977
return 0;
978
case SGX_INSUFFICIENT_ENTROPY:
979
/*
980
* SVN update failed due to lack of entropy in DRNG.
981
* Indicate to userspace that it should retry.
982
*/
983
return -EAGAIN;
984
default:
985
break;
986
}
987
988
/*
989
* EUPDATESVN was called when EPC is empty, all other error
990
* codes are unexpected.
991
*/
992
ENCLS_WARN(ret, "EUPDATESVN");
993
return -EIO;
994
}
995
996
/* Mutex to ensure no concurrent EPC accesses during EUPDATESVN */
997
static DEFINE_MUTEX(sgx_svn_lock);
998
999
int sgx_inc_usage_count(void)
1000
{
1001
int ret;
1002
1003
guard(mutex)(&sgx_svn_lock);
1004
1005
if (!sgx_usage_count) {
1006
ret = sgx_update_svn();
1007
if (ret)
1008
return ret;
1009
}
1010
1011
sgx_usage_count++;
1012
1013
return 0;
1014
}
1015
1016
void sgx_dec_usage_count(void)
1017
{
1018
guard(mutex)(&sgx_svn_lock);
1019
sgx_usage_count--;
1020
}
1021
1022
static int __init sgx_init(void)
1023
{
1024
int ret;
1025
int i;
1026
1027
if (!cpu_feature_enabled(X86_FEATURE_SGX))
1028
return -ENODEV;
1029
1030
if (!sgx_page_cache_init())
1031
return -ENOMEM;
1032
1033
if (!sgx_page_reclaimer_init()) {
1034
ret = -ENOMEM;
1035
goto err_page_cache;
1036
}
1037
1038
ret = misc_register(&sgx_dev_provision);
1039
if (ret)
1040
goto err_kthread;
1041
1042
/*
1043
* Always try to initialize the native *and* KVM drivers.
1044
* The KVM driver is less picky than the native one and
1045
* can function if the native one is not supported on the
1046
* current system or fails to initialize.
1047
*
1048
* Error out only if both fail to initialize.
1049
*/
1050
ret = sgx_drv_init();
1051
1052
if (sgx_vepc_init() && ret)
1053
goto err_provision;
1054
1055
return 0;
1056
1057
err_provision:
1058
misc_deregister(&sgx_dev_provision);
1059
1060
err_kthread:
1061
kthread_stop(ksgxd_tsk);
1062
1063
err_page_cache:
1064
for (i = 0; i < sgx_nr_epc_sections; i++) {
1065
vfree(sgx_epc_sections[i].pages);
1066
memunmap(sgx_epc_sections[i].virt_addr);
1067
}
1068
1069
return ret;
1070
}
1071
1072
device_initcall(sgx_init);
1073
1074