Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/dumpstack.c
26489 views
1
/*
2
* Copyright (C) 1991, 1992 Linus Torvalds
3
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4
*/
5
#include <linux/kallsyms.h>
6
#include <linux/kprobes.h>
7
#include <linux/uaccess.h>
8
#include <linux/utsname.h>
9
#include <linux/hardirq.h>
10
#include <linux/kdebug.h>
11
#include <linux/module.h>
12
#include <linux/ptrace.h>
13
#include <linux/sched/debug.h>
14
#include <linux/sched/task_stack.h>
15
#include <linux/ftrace.h>
16
#include <linux/kexec.h>
17
#include <linux/bug.h>
18
#include <linux/nmi.h>
19
#include <linux/sysfs.h>
20
#include <linux/kasan.h>
21
22
#include <asm/cpu_entry_area.h>
23
#include <asm/stacktrace.h>
24
#include <asm/unwind.h>
25
26
static int die_counter;
27
28
static struct pt_regs exec_summary_regs;
29
30
bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
31
struct stack_info *info)
32
{
33
unsigned long *begin = task_stack_page(task);
34
unsigned long *end = task_stack_page(task) + THREAD_SIZE;
35
36
if (stack < begin || stack >= end)
37
return false;
38
39
info->type = STACK_TYPE_TASK;
40
info->begin = begin;
41
info->end = end;
42
info->next_sp = NULL;
43
44
return true;
45
}
46
47
/* Called from get_stack_info_noinstr - so must be noinstr too */
48
bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
49
{
50
struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
51
52
void *begin = ss;
53
void *end = ss + 1;
54
55
if ((void *)stack < begin || (void *)stack >= end)
56
return false;
57
58
info->type = STACK_TYPE_ENTRY;
59
info->begin = begin;
60
info->end = end;
61
info->next_sp = NULL;
62
63
return true;
64
}
65
66
static void printk_stack_address(unsigned long address, int reliable,
67
const char *log_lvl)
68
{
69
touch_nmi_watchdog();
70
printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address);
71
}
72
73
static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
74
unsigned int nbytes)
75
{
76
if (!user_mode(regs))
77
return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
78
79
/* The user space code from other tasks cannot be accessed. */
80
if (regs != task_pt_regs(current))
81
return -EPERM;
82
83
/*
84
* Even if named copy_from_user_nmi() this can be invoked from
85
* other contexts and will not try to resolve a pagefault, which is
86
* the correct thing to do here as this code can be called from any
87
* context.
88
*/
89
return copy_from_user_nmi(buf, (void __user *)src, nbytes);
90
}
91
92
/*
93
* There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
94
*
95
* In case where we don't have the exact kernel image (which, if we did, we can
96
* simply disassemble and navigate to the RIP), the purpose of the bigger
97
* prologue is to have more context and to be able to correlate the code from
98
* the different toolchains better.
99
*
100
* In addition, it helps in recreating the register allocation of the failing
101
* kernel and thus make sense of the register dump.
102
*
103
* What is more, the additional complication of a variable length insn arch like
104
* x86 warrants having longer byte sequence before rIP so that the disassembler
105
* can "sync" up properly and find instruction boundaries when decoding the
106
* opcode bytes.
107
*
108
* Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
109
* guesstimate in attempt to achieve all of the above.
110
*/
111
void show_opcodes(struct pt_regs *regs, const char *loglvl)
112
{
113
#define PROLOGUE_SIZE 42
114
#define EPILOGUE_SIZE 21
115
#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
116
u8 opcodes[OPCODE_BUFSIZE];
117
unsigned long prologue = regs->ip - PROLOGUE_SIZE;
118
119
switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
120
case 0:
121
printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
122
__stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
123
opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
124
break;
125
case -EPERM:
126
/* No access to the user space stack of other tasks. Ignore. */
127
break;
128
default:
129
printk("%sCode: Unable to access opcode bytes at 0x%lx.\n",
130
loglvl, prologue);
131
break;
132
}
133
}
134
135
void show_ip(struct pt_regs *regs, const char *loglvl)
136
{
137
#ifdef CONFIG_X86_32
138
printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
139
#else
140
printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
141
#endif
142
show_opcodes(regs, loglvl);
143
}
144
145
void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
146
{
147
show_ip(regs, log_lvl);
148
printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
149
regs->sp, regs->flags);
150
}
151
152
static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
153
bool partial, const char *log_lvl)
154
{
155
/*
156
* These on_stack() checks aren't strictly necessary: the unwind code
157
* has already validated the 'regs' pointer. The checks are done for
158
* ordering reasons: if the registers are on the next stack, we don't
159
* want to print them out yet. Otherwise they'll be shown as part of
160
* the wrong stack. Later, when show_trace_log_lvl() switches to the
161
* next stack, this function will be called again with the same regs so
162
* they can be printed in the right context.
163
*/
164
if (!partial && on_stack(info, regs, sizeof(*regs))) {
165
__show_regs(regs, SHOW_REGS_SHORT, log_lvl);
166
167
} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
168
IRET_FRAME_SIZE)) {
169
/*
170
* When an interrupt or exception occurs in entry code, the
171
* full pt_regs might not have been saved yet. In that case
172
* just print the iret frame.
173
*/
174
show_iret_regs(regs, log_lvl);
175
}
176
}
177
178
/*
179
* This function reads pointers from the stack and dereferences them. The
180
* pointers may not have their KMSAN shadow set up properly, which may result
181
* in false positive reports. Disable instrumentation to avoid those.
182
*/
183
__no_kmsan_checks
184
static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
185
unsigned long *stack, const char *log_lvl)
186
{
187
struct unwind_state state;
188
struct stack_info stack_info = {0};
189
unsigned long visit_mask = 0;
190
int graph_idx = 0;
191
bool partial = false;
192
193
printk("%sCall Trace:\n", log_lvl);
194
195
unwind_start(&state, task, regs, stack);
196
stack = stack ?: get_stack_pointer(task, regs);
197
regs = unwind_get_entry_regs(&state, &partial);
198
199
/*
200
* Iterate through the stacks, starting with the current stack pointer.
201
* Each stack has a pointer to the next one.
202
*
203
* x86-64 can have several stacks:
204
* - task stack
205
* - interrupt stack
206
* - HW exception stacks (double fault, nmi, debug, mce)
207
* - entry stack
208
*
209
* x86-32 can have up to four stacks:
210
* - task stack
211
* - softirq stack
212
* - hardirq stack
213
* - entry stack
214
*/
215
for (; stack; stack = stack_info.next_sp) {
216
const char *stack_name;
217
218
stack = PTR_ALIGN(stack, sizeof(long));
219
220
if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
221
/*
222
* We weren't on a valid stack. It's possible that
223
* we overflowed a valid stack into a guard page.
224
* See if the next page up is valid so that we can
225
* generate some kind of backtrace if this happens.
226
*/
227
stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
228
if (get_stack_info(stack, task, &stack_info, &visit_mask))
229
break;
230
}
231
232
stack_name = stack_type_name(stack_info.type);
233
if (stack_name)
234
printk("%s <%s>\n", log_lvl, stack_name);
235
236
if (regs)
237
show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
238
239
/*
240
* Scan the stack, printing any text addresses we find. At the
241
* same time, follow proper stack frames with the unwinder.
242
*
243
* Addresses found during the scan which are not reported by
244
* the unwinder are considered to be additional clues which are
245
* sometimes useful for debugging and are prefixed with '?'.
246
* This also serves as a failsafe option in case the unwinder
247
* goes off in the weeds.
248
*/
249
for (; stack < stack_info.end; stack++) {
250
unsigned long real_addr;
251
int reliable = 0;
252
unsigned long addr = READ_ONCE_NOCHECK(*stack);
253
unsigned long *ret_addr_p =
254
unwind_get_return_address_ptr(&state);
255
256
if (!__kernel_text_address(addr))
257
continue;
258
259
/*
260
* Don't print regs->ip again if it was already printed
261
* by show_regs_if_on_stack().
262
*/
263
if (regs && stack == &regs->ip)
264
goto next;
265
266
if (stack == ret_addr_p)
267
reliable = 1;
268
269
/*
270
* When function graph tracing is enabled for a
271
* function, its return address on the stack is
272
* replaced with the address of an ftrace handler
273
* (return_to_handler). In that case, before printing
274
* the "real" address, we want to print the handler
275
* address as an "unreliable" hint that function graph
276
* tracing was involved.
277
*/
278
real_addr = ftrace_graph_ret_addr(task, &graph_idx,
279
addr, stack);
280
if (real_addr != addr)
281
printk_stack_address(addr, 0, log_lvl);
282
printk_stack_address(real_addr, reliable, log_lvl);
283
284
if (!reliable)
285
continue;
286
287
next:
288
/*
289
* Get the next frame from the unwinder. No need to
290
* check for an error: if anything goes wrong, the rest
291
* of the addresses will just be printed as unreliable.
292
*/
293
unwind_next_frame(&state);
294
295
/* if the frame has entry regs, print them */
296
regs = unwind_get_entry_regs(&state, &partial);
297
if (regs)
298
show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
299
}
300
301
if (stack_name)
302
printk("%s </%s>\n", log_lvl, stack_name);
303
}
304
}
305
306
void show_stack(struct task_struct *task, unsigned long *sp,
307
const char *loglvl)
308
{
309
task = task ? : current;
310
311
/*
312
* Stack frames below this one aren't interesting. Don't show them
313
* if we're printing for %current.
314
*/
315
if (!sp && task == current)
316
sp = get_stack_pointer(current, NULL);
317
318
show_trace_log_lvl(task, NULL, sp, loglvl);
319
}
320
321
void show_stack_regs(struct pt_regs *regs)
322
{
323
show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
324
}
325
326
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
327
static int die_owner = -1;
328
static unsigned int die_nest_count;
329
330
unsigned long oops_begin(void)
331
{
332
int cpu;
333
unsigned long flags;
334
335
oops_enter();
336
337
/* racy, but better than risking deadlock. */
338
raw_local_irq_save(flags);
339
cpu = smp_processor_id();
340
if (!arch_spin_trylock(&die_lock)) {
341
if (cpu == die_owner)
342
/* nested oops. should stop eventually */;
343
else
344
arch_spin_lock(&die_lock);
345
}
346
die_nest_count++;
347
die_owner = cpu;
348
console_verbose();
349
bust_spinlocks(1);
350
return flags;
351
}
352
NOKPROBE_SYMBOL(oops_begin);
353
354
void __noreturn rewind_stack_and_make_dead(int signr);
355
356
void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
357
{
358
if (regs && kexec_should_crash(current))
359
crash_kexec(regs);
360
361
bust_spinlocks(0);
362
die_owner = -1;
363
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
364
die_nest_count--;
365
if (!die_nest_count)
366
/* Nest count reaches zero, release the lock. */
367
arch_spin_unlock(&die_lock);
368
raw_local_irq_restore(flags);
369
oops_exit();
370
371
/* Executive summary in case the oops scrolled away */
372
__show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
373
374
if (!signr)
375
return;
376
if (in_interrupt())
377
panic("Fatal exception in interrupt");
378
if (panic_on_oops)
379
panic("Fatal exception");
380
381
/*
382
* We're not going to return, but we might be on an IST stack or
383
* have very little stack space left. Rewind the stack and kill
384
* the task.
385
* Before we rewind the stack, we have to tell KASAN that we're going to
386
* reuse the task stack and that existing poisons are invalid.
387
*/
388
kasan_unpoison_task_stack(current);
389
rewind_stack_and_make_dead(signr);
390
}
391
NOKPROBE_SYMBOL(oops_end);
392
393
static void __die_header(const char *str, struct pt_regs *regs, long err)
394
{
395
/* Save the regs of the first oops for the executive summary later. */
396
if (!die_counter)
397
exec_summary_regs = *regs;
398
399
printk(KERN_DEFAULT
400
"Oops: %s: %04lx [#%d]%s%s%s%s\n", str, err & 0xffff,
401
++die_counter,
402
IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
403
debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
404
IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "",
405
IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) ?
406
(boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
407
}
408
NOKPROBE_SYMBOL(__die_header);
409
410
static int __die_body(const char *str, struct pt_regs *regs, long err)
411
{
412
show_regs(regs);
413
print_modules();
414
415
if (notify_die(DIE_OOPS, str, regs, err,
416
current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
417
return 1;
418
419
return 0;
420
}
421
NOKPROBE_SYMBOL(__die_body);
422
423
int __die(const char *str, struct pt_regs *regs, long err)
424
{
425
__die_header(str, regs, err);
426
return __die_body(str, regs, err);
427
}
428
NOKPROBE_SYMBOL(__die);
429
430
/*
431
* This is gone through when something in the kernel has done something bad
432
* and is about to be terminated:
433
*/
434
void die(const char *str, struct pt_regs *regs, long err)
435
{
436
unsigned long flags = oops_begin();
437
int sig = SIGSEGV;
438
439
if (__die(str, regs, err))
440
sig = 0;
441
oops_end(flags, regs, sig);
442
}
443
444
void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
445
{
446
unsigned long flags = oops_begin();
447
int sig = SIGSEGV;
448
449
__die_header(str, regs, err);
450
if (gp_addr)
451
kasan_non_canonical_hook(gp_addr);
452
if (__die_body(str, regs, err))
453
sig = 0;
454
oops_end(flags, regs, sig);
455
}
456
457
void show_regs(struct pt_regs *regs)
458
{
459
enum show_regs_mode print_kernel_regs;
460
461
show_regs_print_info(KERN_DEFAULT);
462
463
print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
464
__show_regs(regs, print_kernel_regs, KERN_DEFAULT);
465
466
/*
467
* When in-kernel, we also print out the stack at the time of the fault..
468
*/
469
if (!user_mode(regs))
470
show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
471
}
472
473