Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/e820.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Low level x86 E820 memory map handling functions.
4
*
5
* The firmware and bootloader passes us the "E820 table", which is the primary
6
* physical memory layout description available about x86 systems.
7
*
8
* The kernel takes the E820 memory layout and optionally modifies it with
9
* quirks and other tweaks, and feeds that into the generic Linux memory
10
* allocation code routines via a platform independent interface (memblock, etc.).
11
*/
12
#include <linux/crash_dump.h>
13
#include <linux/memblock.h>
14
#include <linux/suspend.h>
15
#include <linux/acpi.h>
16
#include <linux/firmware-map.h>
17
#include <linux/sort.h>
18
#include <linux/memory_hotplug.h>
19
20
#include <asm/e820/api.h>
21
#include <asm/setup.h>
22
23
/*
24
* We organize the E820 table into three main data structures:
25
*
26
* - 'e820_table_firmware': the original firmware version passed to us by the
27
* bootloader - not modified by the kernel. It is composed of two parts:
28
* the first 128 E820 memory entries in boot_params.e820_table and the remaining
29
* (if any) entries of the SETUP_E820_EXT nodes. We use this to:
30
*
31
* - the hibernation code uses it to generate a kernel-independent CRC32
32
* checksum of the physical memory layout of a system.
33
*
34
* - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
35
* passed to us by the bootloader - the major difference between
36
* e820_table_firmware[] and this one is that e820_table_kexec[]
37
* might be modified by the kexec itself to fake an mptable.
38
* We use this to:
39
*
40
* - kexec, which is a bootloader in disguise, uses the original E820
41
* layout to pass to the kexec-ed kernel. This way the original kernel
42
* can have a restricted E820 map while the kexec()-ed kexec-kernel
43
* can have access to full memory - etc.
44
*
45
* Export the memory layout via /sys/firmware/memmap. kexec-tools uses
46
* the entries to create an E820 table for the kexec kernel.
47
*
48
* kexec_file_load in-kernel code uses the table for the kexec kernel.
49
*
50
* - 'e820_table': this is the main E820 table that is massaged by the
51
* low level x86 platform code, or modified by boot parameters, before
52
* passed on to higher level MM layers.
53
*
54
* Once the E820 map has been converted to the standard Linux memory layout
55
* information its role stops - modifying it has no effect and does not get
56
* re-propagated. So its main role is a temporary bootstrap storage of firmware
57
* specific memory layout data during early bootup.
58
*/
59
static struct e820_table e820_table_init __initdata;
60
static struct e820_table e820_table_kexec_init __initdata;
61
static struct e820_table e820_table_firmware_init __initdata;
62
63
struct e820_table *e820_table __refdata = &e820_table_init;
64
struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init;
65
struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init;
66
67
/* For PCI or other memory-mapped resources */
68
unsigned long pci_mem_start = 0xaeedbabe;
69
#ifdef CONFIG_PCI
70
EXPORT_SYMBOL(pci_mem_start);
71
#endif
72
73
/*
74
* This function checks if any part of the range <start,end> is mapped
75
* with type.
76
*/
77
static bool _e820__mapped_any(struct e820_table *table,
78
u64 start, u64 end, enum e820_type type)
79
{
80
int i;
81
82
for (i = 0; i < table->nr_entries; i++) {
83
struct e820_entry *entry = &table->entries[i];
84
85
if (type && entry->type != type)
86
continue;
87
if (entry->addr >= end || entry->addr + entry->size <= start)
88
continue;
89
return true;
90
}
91
return false;
92
}
93
94
bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
95
{
96
return _e820__mapped_any(e820_table_firmware, start, end, type);
97
}
98
EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
99
100
bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
101
{
102
return _e820__mapped_any(e820_table, start, end, type);
103
}
104
EXPORT_SYMBOL_GPL(e820__mapped_any);
105
106
/*
107
* This function checks if the entire <start,end> range is mapped with 'type'.
108
*
109
* Note: this function only works correctly once the E820 table is sorted and
110
* not-overlapping (at least for the range specified), which is the case normally.
111
*/
112
static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
113
enum e820_type type)
114
{
115
int i;
116
117
for (i = 0; i < e820_table->nr_entries; i++) {
118
struct e820_entry *entry = &e820_table->entries[i];
119
120
if (type && entry->type != type)
121
continue;
122
123
/* Is the region (part) in overlap with the current region? */
124
if (entry->addr >= end || entry->addr + entry->size <= start)
125
continue;
126
127
/*
128
* If the region is at the beginning of <start,end> we move
129
* 'start' to the end of the region since it's ok until there
130
*/
131
if (entry->addr <= start)
132
start = entry->addr + entry->size;
133
134
/*
135
* If 'start' is now at or beyond 'end', we're done, full
136
* coverage of the desired range exists:
137
*/
138
if (start >= end)
139
return entry;
140
}
141
142
return NULL;
143
}
144
145
/*
146
* This function checks if the entire range <start,end> is mapped with type.
147
*/
148
bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
149
{
150
return __e820__mapped_all(start, end, type);
151
}
152
153
/*
154
* This function returns the type associated with the range <start,end>.
155
*/
156
int e820__get_entry_type(u64 start, u64 end)
157
{
158
struct e820_entry *entry = __e820__mapped_all(start, end, 0);
159
160
return entry ? entry->type : -EINVAL;
161
}
162
163
/*
164
* Add a memory region to the kernel E820 map.
165
*/
166
static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
167
{
168
int x = table->nr_entries;
169
170
if (x >= ARRAY_SIZE(table->entries)) {
171
pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
172
start, start + size - 1);
173
return;
174
}
175
176
table->entries[x].addr = start;
177
table->entries[x].size = size;
178
table->entries[x].type = type;
179
table->nr_entries++;
180
}
181
182
void __init e820__range_add(u64 start, u64 size, enum e820_type type)
183
{
184
__e820__range_add(e820_table, start, size, type);
185
}
186
187
static void __init e820_print_type(enum e820_type type)
188
{
189
switch (type) {
190
case E820_TYPE_RAM: pr_cont("usable"); break;
191
case E820_TYPE_RESERVED: pr_cont("reserved"); break;
192
case E820_TYPE_SOFT_RESERVED: pr_cont("soft reserved"); break;
193
case E820_TYPE_ACPI: pr_cont("ACPI data"); break;
194
case E820_TYPE_NVS: pr_cont("ACPI NVS"); break;
195
case E820_TYPE_UNUSABLE: pr_cont("unusable"); break;
196
case E820_TYPE_PMEM: /* Fall through: */
197
case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break;
198
default: pr_cont("type %u", type); break;
199
}
200
}
201
202
void __init e820__print_table(char *who)
203
{
204
int i;
205
206
for (i = 0; i < e820_table->nr_entries; i++) {
207
pr_info("%s: [mem %#018Lx-%#018Lx] ",
208
who,
209
e820_table->entries[i].addr,
210
e820_table->entries[i].addr + e820_table->entries[i].size - 1);
211
212
e820_print_type(e820_table->entries[i].type);
213
pr_cont("\n");
214
}
215
}
216
217
/*
218
* Sanitize an E820 map.
219
*
220
* Some E820 layouts include overlapping entries. The following
221
* replaces the original E820 map with a new one, removing overlaps,
222
* and resolving conflicting memory types in favor of highest
223
* numbered type.
224
*
225
* The input parameter 'entries' points to an array of 'struct
226
* e820_entry' which on entry has elements in the range [0, *nr_entries)
227
* valid, and which has space for up to max_nr_entries entries.
228
* On return, the resulting sanitized E820 map entries will be in
229
* overwritten in the same location, starting at 'entries'.
230
*
231
* The integer pointed to by nr_entries must be valid on entry (the
232
* current number of valid entries located at 'entries'). If the
233
* sanitizing succeeds the *nr_entries will be updated with the new
234
* number of valid entries (something no more than max_nr_entries).
235
*
236
* The return value from e820__update_table() is zero if it
237
* successfully 'sanitized' the map entries passed in, and is -1
238
* if it did nothing, which can happen if either of (1) it was
239
* only passed one map entry, or (2) any of the input map entries
240
* were invalid (start + size < start, meaning that the size was
241
* so big the described memory range wrapped around through zero.)
242
*
243
* Visually we're performing the following
244
* (1,2,3,4 = memory types)...
245
*
246
* Sample memory map (w/overlaps):
247
* ____22__________________
248
* ______________________4_
249
* ____1111________________
250
* _44_____________________
251
* 11111111________________
252
* ____________________33__
253
* ___________44___________
254
* __________33333_________
255
* ______________22________
256
* ___________________2222_
257
* _________111111111______
258
* _____________________11_
259
* _________________4______
260
*
261
* Sanitized equivalent (no overlap):
262
* 1_______________________
263
* _44_____________________
264
* ___1____________________
265
* ____22__________________
266
* ______11________________
267
* _________1______________
268
* __________3_____________
269
* ___________44___________
270
* _____________33_________
271
* _______________2________
272
* ________________1_______
273
* _________________4______
274
* ___________________2____
275
* ____________________33__
276
* ______________________4_
277
*/
278
struct change_member {
279
/* Pointer to the original entry: */
280
struct e820_entry *entry;
281
/* Address for this change point: */
282
unsigned long long addr;
283
};
284
285
static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata;
286
static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata;
287
static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata;
288
static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata;
289
290
static int __init cpcompare(const void *a, const void *b)
291
{
292
struct change_member * const *app = a, * const *bpp = b;
293
const struct change_member *ap = *app, *bp = *bpp;
294
295
/*
296
* Inputs are pointers to two elements of change_point[]. If their
297
* addresses are not equal, their difference dominates. If the addresses
298
* are equal, then consider one that represents the end of its region
299
* to be greater than one that does not.
300
*/
301
if (ap->addr != bp->addr)
302
return ap->addr > bp->addr ? 1 : -1;
303
304
return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
305
}
306
307
static bool e820_nomerge(enum e820_type type)
308
{
309
/*
310
* These types may indicate distinct platform ranges aligned to
311
* numa node, protection domain, performance domain, or other
312
* boundaries. Do not merge them.
313
*/
314
if (type == E820_TYPE_PRAM)
315
return true;
316
if (type == E820_TYPE_SOFT_RESERVED)
317
return true;
318
return false;
319
}
320
321
int __init e820__update_table(struct e820_table *table)
322
{
323
struct e820_entry *entries = table->entries;
324
u32 max_nr_entries = ARRAY_SIZE(table->entries);
325
enum e820_type current_type, last_type;
326
unsigned long long last_addr;
327
u32 new_nr_entries, overlap_entries;
328
u32 i, chg_idx, chg_nr;
329
330
/* If there's only one memory region, don't bother: */
331
if (table->nr_entries < 2)
332
return -1;
333
334
BUG_ON(table->nr_entries > max_nr_entries);
335
336
/* Bail out if we find any unreasonable addresses in the map: */
337
for (i = 0; i < table->nr_entries; i++) {
338
if (entries[i].addr + entries[i].size < entries[i].addr)
339
return -1;
340
}
341
342
/* Create pointers for initial change-point information (for sorting): */
343
for (i = 0; i < 2 * table->nr_entries; i++)
344
change_point[i] = &change_point_list[i];
345
346
/*
347
* Record all known change-points (starting and ending addresses),
348
* omitting empty memory regions:
349
*/
350
chg_idx = 0;
351
for (i = 0; i < table->nr_entries; i++) {
352
if (entries[i].size != 0) {
353
change_point[chg_idx]->addr = entries[i].addr;
354
change_point[chg_idx++]->entry = &entries[i];
355
change_point[chg_idx]->addr = entries[i].addr + entries[i].size;
356
change_point[chg_idx++]->entry = &entries[i];
357
}
358
}
359
chg_nr = chg_idx;
360
361
/* Sort change-point list by memory addresses (low -> high): */
362
sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
363
364
/* Create a new memory map, removing overlaps: */
365
overlap_entries = 0; /* Number of entries in the overlap table */
366
new_nr_entries = 0; /* Index for creating new map entries */
367
last_type = 0; /* Start with undefined memory type */
368
last_addr = 0; /* Start with 0 as last starting address */
369
370
/* Loop through change-points, determining effect on the new map: */
371
for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
372
/* Keep track of all overlapping entries */
373
if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
374
/* Add map entry to overlap list (> 1 entry implies an overlap) */
375
overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
376
} else {
377
/* Remove entry from list (order independent, so swap with last): */
378
for (i = 0; i < overlap_entries; i++) {
379
if (overlap_list[i] == change_point[chg_idx]->entry)
380
overlap_list[i] = overlap_list[overlap_entries-1];
381
}
382
overlap_entries--;
383
}
384
/*
385
* If there are overlapping entries, decide which
386
* "type" to use (larger value takes precedence --
387
* 1=usable, 2,3,4,4+=unusable)
388
*/
389
current_type = 0;
390
for (i = 0; i < overlap_entries; i++) {
391
if (overlap_list[i]->type > current_type)
392
current_type = overlap_list[i]->type;
393
}
394
395
/* Continue building up new map based on this information: */
396
if (current_type != last_type || e820_nomerge(current_type)) {
397
if (last_type) {
398
new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
399
/* Move forward only if the new size was non-zero: */
400
if (new_entries[new_nr_entries].size != 0)
401
/* No more space left for new entries? */
402
if (++new_nr_entries >= max_nr_entries)
403
break;
404
}
405
if (current_type) {
406
new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
407
new_entries[new_nr_entries].type = current_type;
408
last_addr = change_point[chg_idx]->addr;
409
}
410
last_type = current_type;
411
}
412
}
413
414
/* Copy the new entries into the original location: */
415
memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
416
table->nr_entries = new_nr_entries;
417
418
return 0;
419
}
420
421
static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
422
{
423
struct boot_e820_entry *entry = entries;
424
425
while (nr_entries) {
426
u64 start = entry->addr;
427
u64 size = entry->size;
428
u64 end = start + size - 1;
429
u32 type = entry->type;
430
431
/* Ignore the entry on 64-bit overflow: */
432
if (start > end && likely(size))
433
return -1;
434
435
e820__range_add(start, size, type);
436
437
entry++;
438
nr_entries--;
439
}
440
return 0;
441
}
442
443
/*
444
* Copy the BIOS E820 map into a safe place.
445
*
446
* Sanity-check it while we're at it..
447
*
448
* If we're lucky and live on a modern system, the setup code
449
* will have given us a memory map that we can use to properly
450
* set up memory. If we aren't, we'll fake a memory map.
451
*/
452
static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
453
{
454
/* Only one memory region (or negative)? Ignore it */
455
if (nr_entries < 2)
456
return -1;
457
458
return __append_e820_table(entries, nr_entries);
459
}
460
461
static u64 __init
462
__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
463
{
464
u64 end;
465
unsigned int i;
466
u64 real_updated_size = 0;
467
468
BUG_ON(old_type == new_type);
469
470
if (size > (ULLONG_MAX - start))
471
size = ULLONG_MAX - start;
472
473
end = start + size;
474
printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
475
e820_print_type(old_type);
476
pr_cont(" ==> ");
477
e820_print_type(new_type);
478
pr_cont("\n");
479
480
for (i = 0; i < table->nr_entries; i++) {
481
struct e820_entry *entry = &table->entries[i];
482
u64 final_start, final_end;
483
u64 entry_end;
484
485
if (entry->type != old_type)
486
continue;
487
488
entry_end = entry->addr + entry->size;
489
490
/* Completely covered by new range? */
491
if (entry->addr >= start && entry_end <= end) {
492
entry->type = new_type;
493
real_updated_size += entry->size;
494
continue;
495
}
496
497
/* New range is completely covered? */
498
if (entry->addr < start && entry_end > end) {
499
__e820__range_add(table, start, size, new_type);
500
__e820__range_add(table, end, entry_end - end, entry->type);
501
entry->size = start - entry->addr;
502
real_updated_size += size;
503
continue;
504
}
505
506
/* Partially covered: */
507
final_start = max(start, entry->addr);
508
final_end = min(end, entry_end);
509
if (final_start >= final_end)
510
continue;
511
512
__e820__range_add(table, final_start, final_end - final_start, new_type);
513
514
real_updated_size += final_end - final_start;
515
516
/*
517
* Left range could be head or tail, so need to update
518
* its size first:
519
*/
520
entry->size -= final_end - final_start;
521
if (entry->addr < final_start)
522
continue;
523
524
entry->addr = final_end;
525
}
526
return real_updated_size;
527
}
528
529
u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
530
{
531
return __e820__range_update(e820_table, start, size, old_type, new_type);
532
}
533
534
u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size,
535
enum e820_type old_type, enum e820_type new_type)
536
{
537
return __e820__range_update(t, start, size, old_type, new_type);
538
}
539
540
/* Remove a range of memory from the E820 table: */
541
u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
542
{
543
int i;
544
u64 end;
545
u64 real_removed_size = 0;
546
547
if (size > (ULLONG_MAX - start))
548
size = ULLONG_MAX - start;
549
550
end = start + size;
551
printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
552
if (check_type)
553
e820_print_type(old_type);
554
pr_cont("\n");
555
556
for (i = 0; i < e820_table->nr_entries; i++) {
557
struct e820_entry *entry = &e820_table->entries[i];
558
u64 final_start, final_end;
559
u64 entry_end;
560
561
if (check_type && entry->type != old_type)
562
continue;
563
564
entry_end = entry->addr + entry->size;
565
566
/* Completely covered? */
567
if (entry->addr >= start && entry_end <= end) {
568
real_removed_size += entry->size;
569
memset(entry, 0, sizeof(*entry));
570
continue;
571
}
572
573
/* Is the new range completely covered? */
574
if (entry->addr < start && entry_end > end) {
575
e820__range_add(end, entry_end - end, entry->type);
576
entry->size = start - entry->addr;
577
real_removed_size += size;
578
continue;
579
}
580
581
/* Partially covered: */
582
final_start = max(start, entry->addr);
583
final_end = min(end, entry_end);
584
if (final_start >= final_end)
585
continue;
586
587
real_removed_size += final_end - final_start;
588
589
/*
590
* Left range could be head or tail, so need to update
591
* the size first:
592
*/
593
entry->size -= final_end - final_start;
594
if (entry->addr < final_start)
595
continue;
596
597
entry->addr = final_end;
598
}
599
return real_removed_size;
600
}
601
602
void __init e820__update_table_print(void)
603
{
604
if (e820__update_table(e820_table))
605
return;
606
607
pr_info("modified physical RAM map:\n");
608
e820__print_table("modified");
609
}
610
611
static void __init e820__update_table_kexec(void)
612
{
613
e820__update_table(e820_table_kexec);
614
}
615
616
#define MAX_GAP_END 0x100000000ull
617
618
/*
619
* Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
620
*/
621
static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
622
{
623
unsigned long long last = MAX_GAP_END;
624
int i = e820_table->nr_entries;
625
int found = 0;
626
627
while (--i >= 0) {
628
unsigned long long start = e820_table->entries[i].addr;
629
unsigned long long end = start + e820_table->entries[i].size;
630
631
/*
632
* Since "last" is at most 4GB, we know we'll
633
* fit in 32 bits if this condition is true:
634
*/
635
if (last > end) {
636
unsigned long gap = last - end;
637
638
if (gap >= *gapsize) {
639
*gapsize = gap;
640
*gapstart = end;
641
found = 1;
642
}
643
}
644
if (start < last)
645
last = start;
646
}
647
return found;
648
}
649
650
/*
651
* Search for the biggest gap in the low 32 bits of the E820
652
* memory space. We pass this space to the PCI subsystem, so
653
* that it can assign MMIO resources for hotplug or
654
* unconfigured devices in.
655
*
656
* Hopefully the BIOS let enough space left.
657
*/
658
__init void e820__setup_pci_gap(void)
659
{
660
unsigned long gapstart, gapsize;
661
int found;
662
663
gapsize = 0x400000;
664
found = e820_search_gap(&gapstart, &gapsize);
665
666
if (!found) {
667
#ifdef CONFIG_X86_64
668
gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
669
pr_err("Cannot find an available gap in the 32-bit address range\n");
670
pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
671
#else
672
gapstart = 0x10000000;
673
#endif
674
}
675
676
/*
677
* e820__reserve_resources_late() protects stolen RAM already:
678
*/
679
pci_mem_start = gapstart;
680
681
pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
682
gapstart, gapstart + gapsize - 1);
683
}
684
685
/*
686
* Called late during init, in free_initmem().
687
*
688
* Initial e820_table and e820_table_kexec are largish __initdata arrays.
689
*
690
* Copy them to a (usually much smaller) dynamically allocated area that is
691
* sized precisely after the number of e820 entries.
692
*
693
* This is done after we've performed all the fixes and tweaks to the tables.
694
* All functions which modify them are __init functions, which won't exist
695
* after free_initmem().
696
*/
697
__init void e820__reallocate_tables(void)
698
{
699
struct e820_table *n;
700
int size;
701
702
size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
703
n = kmemdup(e820_table, size, GFP_KERNEL);
704
BUG_ON(!n);
705
e820_table = n;
706
707
size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
708
n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
709
BUG_ON(!n);
710
e820_table_kexec = n;
711
712
size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
713
n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
714
BUG_ON(!n);
715
e820_table_firmware = n;
716
}
717
718
/*
719
* Because of the small fixed size of struct boot_params, only the first
720
* 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
721
* the remaining (if any) entries are passed via the SETUP_E820_EXT node of
722
* struct setup_data, which is parsed here.
723
*/
724
void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
725
{
726
int entries;
727
struct boot_e820_entry *extmap;
728
struct setup_data *sdata;
729
730
sdata = early_memremap(phys_addr, data_len);
731
entries = sdata->len / sizeof(*extmap);
732
extmap = (struct boot_e820_entry *)(sdata->data);
733
734
__append_e820_table(extmap, entries);
735
e820__update_table(e820_table);
736
737
memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
738
memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
739
740
early_memunmap(sdata, data_len);
741
pr_info("extended physical RAM map:\n");
742
e820__print_table("extended");
743
}
744
745
/*
746
* Find the ranges of physical addresses that do not correspond to
747
* E820 RAM areas and register the corresponding pages as 'nosave' for
748
* hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
749
*
750
* This function requires the E820 map to be sorted and without any
751
* overlapping entries.
752
*/
753
void __init e820__register_nosave_regions(unsigned long limit_pfn)
754
{
755
int i;
756
u64 last_addr = 0;
757
758
for (i = 0; i < e820_table->nr_entries; i++) {
759
struct e820_entry *entry = &e820_table->entries[i];
760
761
if (entry->type != E820_TYPE_RAM)
762
continue;
763
764
if (last_addr < entry->addr)
765
register_nosave_region(PFN_DOWN(last_addr), PFN_UP(entry->addr));
766
767
last_addr = entry->addr + entry->size;
768
}
769
770
register_nosave_region(PFN_DOWN(last_addr), limit_pfn);
771
}
772
773
#ifdef CONFIG_ACPI
774
/*
775
* Register ACPI NVS memory regions, so that we can save/restore them during
776
* hibernation and the subsequent resume:
777
*/
778
static int __init e820__register_nvs_regions(void)
779
{
780
int i;
781
782
for (i = 0; i < e820_table->nr_entries; i++) {
783
struct e820_entry *entry = &e820_table->entries[i];
784
785
if (entry->type == E820_TYPE_NVS)
786
acpi_nvs_register(entry->addr, entry->size);
787
}
788
789
return 0;
790
}
791
core_initcall(e820__register_nvs_regions);
792
#endif
793
794
/*
795
* Allocate the requested number of bytes with the requested alignment
796
* and return (the physical address) to the caller. Also register this
797
* range in the 'kexec' E820 table as a reserved range.
798
*
799
* This allows kexec to fake a new mptable, as if it came from the real
800
* system.
801
*/
802
u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
803
{
804
u64 addr;
805
806
addr = memblock_phys_alloc(size, align);
807
if (addr) {
808
e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
809
pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
810
e820__update_table_kexec();
811
}
812
813
return addr;
814
}
815
816
#ifdef CONFIG_X86_32
817
# ifdef CONFIG_X86_PAE
818
# define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT))
819
# else
820
# define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT))
821
# endif
822
#else /* CONFIG_X86_32 */
823
# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
824
#endif
825
826
/*
827
* Find the highest page frame number we have available
828
*/
829
static unsigned long __init e820__end_ram_pfn(unsigned long limit_pfn)
830
{
831
int i;
832
unsigned long last_pfn = 0;
833
unsigned long max_arch_pfn = MAX_ARCH_PFN;
834
835
for (i = 0; i < e820_table->nr_entries; i++) {
836
struct e820_entry *entry = &e820_table->entries[i];
837
unsigned long start_pfn;
838
unsigned long end_pfn;
839
840
if (entry->type != E820_TYPE_RAM &&
841
entry->type != E820_TYPE_ACPI)
842
continue;
843
844
start_pfn = entry->addr >> PAGE_SHIFT;
845
end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
846
847
if (start_pfn >= limit_pfn)
848
continue;
849
if (end_pfn > limit_pfn) {
850
last_pfn = limit_pfn;
851
break;
852
}
853
if (end_pfn > last_pfn)
854
last_pfn = end_pfn;
855
}
856
857
if (last_pfn > max_arch_pfn)
858
last_pfn = max_arch_pfn;
859
860
pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
861
last_pfn, max_arch_pfn);
862
return last_pfn;
863
}
864
865
unsigned long __init e820__end_of_ram_pfn(void)
866
{
867
return e820__end_ram_pfn(MAX_ARCH_PFN);
868
}
869
870
unsigned long __init e820__end_of_low_ram_pfn(void)
871
{
872
return e820__end_ram_pfn(1UL << (32 - PAGE_SHIFT));
873
}
874
875
static void __init early_panic(char *msg)
876
{
877
early_printk(msg);
878
panic(msg);
879
}
880
881
static int userdef __initdata;
882
883
/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
884
static int __init parse_memopt(char *p)
885
{
886
u64 mem_size;
887
888
if (!p)
889
return -EINVAL;
890
891
if (!strcmp(p, "nopentium")) {
892
#ifdef CONFIG_X86_32
893
setup_clear_cpu_cap(X86_FEATURE_PSE);
894
return 0;
895
#else
896
pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
897
return -EINVAL;
898
#endif
899
}
900
901
userdef = 1;
902
mem_size = memparse(p, &p);
903
904
/* Don't remove all memory when getting "mem={invalid}" parameter: */
905
if (mem_size == 0)
906
return -EINVAL;
907
908
e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
909
910
#ifdef CONFIG_MEMORY_HOTPLUG
911
max_mem_size = mem_size;
912
#endif
913
914
return 0;
915
}
916
early_param("mem", parse_memopt);
917
918
static int __init parse_memmap_one(char *p)
919
{
920
char *oldp;
921
u64 start_at, mem_size;
922
923
if (!p)
924
return -EINVAL;
925
926
if (!strncmp(p, "exactmap", 8)) {
927
e820_table->nr_entries = 0;
928
userdef = 1;
929
return 0;
930
}
931
932
oldp = p;
933
mem_size = memparse(p, &p);
934
if (p == oldp)
935
return -EINVAL;
936
937
userdef = 1;
938
if (*p == '@') {
939
start_at = memparse(p+1, &p);
940
e820__range_add(start_at, mem_size, E820_TYPE_RAM);
941
} else if (*p == '#') {
942
start_at = memparse(p+1, &p);
943
e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
944
} else if (*p == '$') {
945
start_at = memparse(p+1, &p);
946
e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
947
} else if (*p == '!') {
948
start_at = memparse(p+1, &p);
949
e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
950
} else if (*p == '%') {
951
enum e820_type from = 0, to = 0;
952
953
start_at = memparse(p + 1, &p);
954
if (*p == '-')
955
from = simple_strtoull(p + 1, &p, 0);
956
if (*p == '+')
957
to = simple_strtoull(p + 1, &p, 0);
958
if (*p != '\0')
959
return -EINVAL;
960
if (from && to)
961
e820__range_update(start_at, mem_size, from, to);
962
else if (to)
963
e820__range_add(start_at, mem_size, to);
964
else if (from)
965
e820__range_remove(start_at, mem_size, from, 1);
966
else
967
e820__range_remove(start_at, mem_size, 0, 0);
968
} else {
969
e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
970
}
971
972
return *p == '\0' ? 0 : -EINVAL;
973
}
974
975
static int __init parse_memmap_opt(char *str)
976
{
977
while (str) {
978
char *k = strchr(str, ',');
979
980
if (k)
981
*k++ = 0;
982
983
parse_memmap_one(str);
984
str = k;
985
}
986
987
return 0;
988
}
989
early_param("memmap", parse_memmap_opt);
990
991
/*
992
* Called after parse_early_param(), after early parameters (such as mem=)
993
* have been processed, in which case we already have an E820 table filled in
994
* via the parameter callback function(s), but it's not sorted and printed yet:
995
*/
996
void __init e820__finish_early_params(void)
997
{
998
if (userdef) {
999
if (e820__update_table(e820_table) < 0)
1000
early_panic("Invalid user supplied memory map");
1001
1002
pr_info("user-defined physical RAM map:\n");
1003
e820__print_table("user");
1004
}
1005
}
1006
1007
static const char *__init e820_type_to_string(struct e820_entry *entry)
1008
{
1009
switch (entry->type) {
1010
case E820_TYPE_RAM: return "System RAM";
1011
case E820_TYPE_ACPI: return "ACPI Tables";
1012
case E820_TYPE_NVS: return "ACPI Non-volatile Storage";
1013
case E820_TYPE_UNUSABLE: return "Unusable memory";
1014
case E820_TYPE_PRAM: return "Persistent Memory (legacy)";
1015
case E820_TYPE_PMEM: return "Persistent Memory";
1016
case E820_TYPE_RESERVED: return "Reserved";
1017
case E820_TYPE_SOFT_RESERVED: return "Soft Reserved";
1018
default: return "Unknown E820 type";
1019
}
1020
}
1021
1022
static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1023
{
1024
switch (entry->type) {
1025
case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM;
1026
case E820_TYPE_ACPI: /* Fall-through: */
1027
case E820_TYPE_NVS: /* Fall-through: */
1028
case E820_TYPE_UNUSABLE: /* Fall-through: */
1029
case E820_TYPE_PRAM: /* Fall-through: */
1030
case E820_TYPE_PMEM: /* Fall-through: */
1031
case E820_TYPE_RESERVED: /* Fall-through: */
1032
case E820_TYPE_SOFT_RESERVED: /* Fall-through: */
1033
default: return IORESOURCE_MEM;
1034
}
1035
}
1036
1037
static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1038
{
1039
switch (entry->type) {
1040
case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES;
1041
case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE;
1042
case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY;
1043
case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1044
case E820_TYPE_RESERVED: return IORES_DESC_RESERVED;
1045
case E820_TYPE_SOFT_RESERVED: return IORES_DESC_SOFT_RESERVED;
1046
case E820_TYPE_RAM: /* Fall-through: */
1047
case E820_TYPE_UNUSABLE: /* Fall-through: */
1048
default: return IORES_DESC_NONE;
1049
}
1050
}
1051
1052
static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1053
{
1054
/* this is the legacy bios/dos rom-shadow + mmio region */
1055
if (res->start < (1ULL<<20))
1056
return true;
1057
1058
/*
1059
* Treat persistent memory and other special memory ranges like
1060
* device memory, i.e. reserve it for exclusive use of a driver
1061
*/
1062
switch (type) {
1063
case E820_TYPE_RESERVED:
1064
case E820_TYPE_SOFT_RESERVED:
1065
case E820_TYPE_PRAM:
1066
case E820_TYPE_PMEM:
1067
return false;
1068
case E820_TYPE_RAM:
1069
case E820_TYPE_ACPI:
1070
case E820_TYPE_NVS:
1071
case E820_TYPE_UNUSABLE:
1072
default:
1073
return true;
1074
}
1075
}
1076
1077
/*
1078
* Mark E820 reserved areas as busy for the resource manager:
1079
*/
1080
1081
static struct resource __initdata *e820_res;
1082
1083
void __init e820__reserve_resources(void)
1084
{
1085
int i;
1086
struct resource *res;
1087
u64 end;
1088
1089
res = memblock_alloc_or_panic(sizeof(*res) * e820_table->nr_entries,
1090
SMP_CACHE_BYTES);
1091
e820_res = res;
1092
1093
for (i = 0; i < e820_table->nr_entries; i++) {
1094
struct e820_entry *entry = e820_table->entries + i;
1095
1096
end = entry->addr + entry->size - 1;
1097
if (end != (resource_size_t)end) {
1098
res++;
1099
continue;
1100
}
1101
res->start = entry->addr;
1102
res->end = end;
1103
res->name = e820_type_to_string(entry);
1104
res->flags = e820_type_to_iomem_type(entry);
1105
res->desc = e820_type_to_iores_desc(entry);
1106
1107
/*
1108
* Don't register the region that could be conflicted with
1109
* PCI device BAR resources and insert them later in
1110
* pcibios_resource_survey():
1111
*/
1112
if (do_mark_busy(entry->type, res)) {
1113
res->flags |= IORESOURCE_BUSY;
1114
insert_resource(&iomem_resource, res);
1115
}
1116
res++;
1117
}
1118
1119
/* Expose the kexec e820 table to the sysfs. */
1120
for (i = 0; i < e820_table_kexec->nr_entries; i++) {
1121
struct e820_entry *entry = e820_table_kexec->entries + i;
1122
1123
firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1124
}
1125
}
1126
1127
/*
1128
* How much should we pad the end of RAM, depending on where it is?
1129
*/
1130
static unsigned long __init ram_alignment(resource_size_t pos)
1131
{
1132
unsigned long mb = pos >> 20;
1133
1134
/* To 64kB in the first megabyte */
1135
if (!mb)
1136
return 64*1024;
1137
1138
/* To 1MB in the first 16MB */
1139
if (mb < 16)
1140
return 1024*1024;
1141
1142
/* To 64MB for anything above that */
1143
return 64*1024*1024;
1144
}
1145
1146
#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1147
1148
void __init e820__reserve_resources_late(void)
1149
{
1150
int i;
1151
struct resource *res;
1152
1153
res = e820_res;
1154
for (i = 0; i < e820_table->nr_entries; i++) {
1155
if (!res->parent && res->end)
1156
insert_resource_expand_to_fit(&iomem_resource, res);
1157
res++;
1158
}
1159
1160
/*
1161
* Try to bump up RAM regions to reasonable boundaries, to
1162
* avoid stolen RAM:
1163
*/
1164
for (i = 0; i < e820_table->nr_entries; i++) {
1165
struct e820_entry *entry = &e820_table->entries[i];
1166
u64 start, end;
1167
1168
if (entry->type != E820_TYPE_RAM)
1169
continue;
1170
1171
start = entry->addr + entry->size;
1172
end = round_up(start, ram_alignment(start)) - 1;
1173
if (end > MAX_RESOURCE_SIZE)
1174
end = MAX_RESOURCE_SIZE;
1175
if (start >= end)
1176
continue;
1177
1178
printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1179
reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1180
}
1181
}
1182
1183
/*
1184
* Pass the firmware (bootloader) E820 map to the kernel and process it:
1185
*/
1186
char *__init e820__memory_setup_default(void)
1187
{
1188
char *who = "BIOS-e820";
1189
1190
/*
1191
* Try to copy the BIOS-supplied E820-map.
1192
*
1193
* Otherwise fake a memory map; one section from 0k->640k,
1194
* the next section from 1mb->appropriate_mem_k
1195
*/
1196
if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1197
u64 mem_size;
1198
1199
/* Compare results from other methods and take the one that gives more RAM: */
1200
if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1201
mem_size = boot_params.screen_info.ext_mem_k;
1202
who = "BIOS-88";
1203
} else {
1204
mem_size = boot_params.alt_mem_k;
1205
who = "BIOS-e801";
1206
}
1207
1208
e820_table->nr_entries = 0;
1209
e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1210
e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1211
}
1212
1213
/* We just appended a lot of ranges, sanitize the table: */
1214
e820__update_table(e820_table);
1215
1216
return who;
1217
}
1218
1219
/*
1220
* Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1221
* E820 map - with an optional platform quirk available for virtual platforms
1222
* to override this method of boot environment processing:
1223
*/
1224
void __init e820__memory_setup(void)
1225
{
1226
char *who;
1227
1228
/* This is a firmware interface ABI - make sure we don't break it: */
1229
BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1230
1231
who = x86_init.resources.memory_setup();
1232
1233
memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1234
memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1235
1236
pr_info("BIOS-provided physical RAM map:\n");
1237
e820__print_table(who);
1238
}
1239
1240
void __init e820__memblock_setup(void)
1241
{
1242
int i;
1243
u64 end;
1244
1245
#ifdef CONFIG_MEMORY_HOTPLUG
1246
/*
1247
* Memory used by the kernel cannot be hot-removed because Linux
1248
* cannot migrate the kernel pages. When memory hotplug is
1249
* enabled, we should prevent memblock from allocating memory
1250
* for the kernel.
1251
*
1252
* ACPI SRAT records all hotpluggable memory ranges. But before
1253
* SRAT is parsed, we don't know about it.
1254
*
1255
* The kernel image is loaded into memory at very early time. We
1256
* cannot prevent this anyway. So on NUMA system, we set any
1257
* node the kernel resides in as un-hotpluggable.
1258
*
1259
* Since on modern servers, one node could have double-digit
1260
* gigabytes memory, we can assume the memory around the kernel
1261
* image is also un-hotpluggable. So before SRAT is parsed, just
1262
* allocate memory near the kernel image to try the best to keep
1263
* the kernel away from hotpluggable memory.
1264
*/
1265
if (movable_node_is_enabled())
1266
memblock_set_bottom_up(true);
1267
#endif
1268
1269
/*
1270
* At this point only the first megabyte is mapped for sure, the
1271
* rest of the memory cannot be used for memblock resizing
1272
*/
1273
memblock_set_current_limit(ISA_END_ADDRESS);
1274
1275
/*
1276
* The bootstrap memblock region count maximum is 128 entries
1277
* (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1278
* than that - so allow memblock resizing.
1279
*
1280
* This is safe, because this call happens pretty late during x86 setup,
1281
* so we know about reserved memory regions already. (This is important
1282
* so that memblock resizing does no stomp over reserved areas.)
1283
*/
1284
memblock_allow_resize();
1285
1286
for (i = 0; i < e820_table->nr_entries; i++) {
1287
struct e820_entry *entry = &e820_table->entries[i];
1288
1289
end = entry->addr + entry->size;
1290
if (end != (resource_size_t)end)
1291
continue;
1292
1293
if (entry->type == E820_TYPE_SOFT_RESERVED)
1294
memblock_reserve(entry->addr, entry->size);
1295
1296
if (entry->type != E820_TYPE_RAM)
1297
continue;
1298
1299
memblock_add(entry->addr, entry->size);
1300
}
1301
1302
/*
1303
* At this point memblock is only allowed to allocate from memory
1304
* below 1M (aka ISA_END_ADDRESS) up until direct map is completely set
1305
* up in init_mem_mapping().
1306
*
1307
* KHO kernels are special and use only scratch memory for memblock
1308
* allocations, but memory below 1M is ignored by kernel after early
1309
* boot and cannot be naturally marked as scratch.
1310
*
1311
* To allow allocation of the real-mode trampoline and a few (if any)
1312
* other very early allocations from below 1M forcibly mark the memory
1313
* below 1M as scratch.
1314
*
1315
* After real mode trampoline is allocated, we clear that scratch
1316
* marking.
1317
*/
1318
memblock_mark_kho_scratch(0, SZ_1M);
1319
1320
/*
1321
* 32-bit systems are limited to 4BG of memory even with HIGHMEM and
1322
* to even less without it.
1323
* Discard memory after max_pfn - the actual limit detected at runtime.
1324
*/
1325
if (IS_ENABLED(CONFIG_X86_32))
1326
memblock_remove(PFN_PHYS(max_pfn), -1);
1327
1328
/* Throw away partial pages: */
1329
memblock_trim_memory(PAGE_SIZE);
1330
1331
memblock_dump_all();
1332
}
1333
1334