Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/espfix_64.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/* ----------------------------------------------------------------------- *
3
*
4
* Copyright 2014 Intel Corporation; author: H. Peter Anvin
5
*
6
* ----------------------------------------------------------------------- */
7
8
/*
9
* The IRET instruction, when returning to a 16-bit segment, only
10
* restores the bottom 16 bits of the user space stack pointer. This
11
* causes some 16-bit software to break, but it also leaks kernel state
12
* to user space.
13
*
14
* This works around this by creating percpu "ministacks", each of which
15
* is mapped 2^16 times 64K apart. When we detect that the return SS is
16
* on the LDT, we copy the IRET frame to the ministack and use the
17
* relevant alias to return to userspace. The ministacks are mapped
18
* readonly, so if the IRET fault we promote #GP to #DF which is an IST
19
* vector and thus has its own stack; we then do the fixup in the #DF
20
* handler.
21
*
22
* This file sets up the ministacks and the related page tables. The
23
* actual ministack invocation is in entry_64.S.
24
*/
25
26
#include <linux/init.h>
27
#include <linux/init_task.h>
28
#include <linux/kernel.h>
29
#include <linux/percpu.h>
30
#include <linux/gfp.h>
31
#include <linux/random.h>
32
#include <linux/pgtable.h>
33
#include <asm/pgalloc.h>
34
#include <asm/setup.h>
35
#include <asm/espfix.h>
36
37
/*
38
* Note: we only need 6*8 = 48 bytes for the espfix stack, but round
39
* it up to a cache line to avoid unnecessary sharing.
40
*/
41
#define ESPFIX_STACK_SIZE (8*8UL)
42
#define ESPFIX_STACKS_PER_PAGE (PAGE_SIZE/ESPFIX_STACK_SIZE)
43
44
/* There is address space for how many espfix pages? */
45
#define ESPFIX_PAGE_SPACE (1UL << (P4D_SHIFT-PAGE_SHIFT-16))
46
47
#define ESPFIX_MAX_CPUS (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
48
#if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
49
# error "Need more virtual address space for the ESPFIX hack"
50
#endif
51
52
#define PGALLOC_GFP (GFP_KERNEL | __GFP_ZERO)
53
54
/* This contains the *bottom* address of the espfix stack */
55
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
56
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr);
57
58
/* Initialization mutex - should this be a spinlock? */
59
static DEFINE_MUTEX(espfix_init_mutex);
60
61
/* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */
62
#define ESPFIX_MAX_PAGES DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)
63
static void *espfix_pages[ESPFIX_MAX_PAGES];
64
65
static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD]
66
__aligned(PAGE_SIZE);
67
68
static unsigned int page_random, slot_random;
69
70
/*
71
* This returns the bottom address of the espfix stack for a specific CPU.
72
* The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
73
* we have to account for some amount of padding at the end of each page.
74
*/
75
static inline unsigned long espfix_base_addr(unsigned int cpu)
76
{
77
unsigned long page, slot;
78
unsigned long addr;
79
80
page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random;
81
slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE;
82
addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE);
83
addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16);
84
addr += ESPFIX_BASE_ADDR;
85
return addr;
86
}
87
88
#define PTE_STRIDE (65536/PAGE_SIZE)
89
#define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE)
90
#define ESPFIX_PMD_CLONES PTRS_PER_PMD
91
#define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES))
92
93
#define PGTABLE_PROT ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
94
95
static void init_espfix_random(void)
96
{
97
unsigned long rand = get_random_long();
98
99
slot_random = rand % ESPFIX_STACKS_PER_PAGE;
100
page_random = (rand / ESPFIX_STACKS_PER_PAGE)
101
& (ESPFIX_PAGE_SPACE - 1);
102
}
103
104
void __init init_espfix_bsp(void)
105
{
106
pgd_t *pgd;
107
p4d_t *p4d;
108
109
/* FRED systems always restore the full value of %rsp */
110
if (cpu_feature_enabled(X86_FEATURE_FRED))
111
return;
112
113
/* Install the espfix pud into the kernel page directory */
114
pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)];
115
p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR);
116
p4d_populate(&init_mm, p4d, espfix_pud_page);
117
118
/* Randomize the locations */
119
init_espfix_random();
120
121
/* The rest is the same as for any other processor */
122
init_espfix_ap(0);
123
}
124
125
void init_espfix_ap(int cpu)
126
{
127
unsigned int page;
128
unsigned long addr;
129
pud_t pud, *pud_p;
130
pmd_t pmd, *pmd_p;
131
pte_t pte, *pte_p;
132
int n, node;
133
void *stack_page;
134
pteval_t ptemask;
135
136
/* FRED systems always restore the full value of %rsp */
137
if (cpu_feature_enabled(X86_FEATURE_FRED))
138
return;
139
140
/* We only have to do this once... */
141
if (likely(per_cpu(espfix_stack, cpu)))
142
return; /* Already initialized */
143
144
addr = espfix_base_addr(cpu);
145
page = cpu/ESPFIX_STACKS_PER_PAGE;
146
147
/* Did another CPU already set this up? */
148
stack_page = READ_ONCE(espfix_pages[page]);
149
if (likely(stack_page))
150
goto done;
151
152
mutex_lock(&espfix_init_mutex);
153
154
/* Did we race on the lock? */
155
stack_page = READ_ONCE(espfix_pages[page]);
156
if (stack_page)
157
goto unlock_done;
158
159
node = cpu_to_node(cpu);
160
ptemask = __supported_pte_mask;
161
162
pud_p = &espfix_pud_page[pud_index(addr)];
163
pud = *pud_p;
164
if (!pud_present(pud)) {
165
struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
166
167
pmd_p = (pmd_t *)page_address(page);
168
pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask));
169
paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT);
170
for (n = 0; n < ESPFIX_PUD_CLONES; n++)
171
set_pud(&pud_p[n], pud);
172
}
173
174
pmd_p = pmd_offset(&pud, addr);
175
pmd = *pmd_p;
176
if (!pmd_present(pmd)) {
177
struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
178
179
pte_p = (pte_t *)page_address(page);
180
pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask));
181
paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT);
182
for (n = 0; n < ESPFIX_PMD_CLONES; n++)
183
set_pmd(&pmd_p[n], pmd);
184
}
185
186
pte_p = pte_offset_kernel(&pmd, addr);
187
stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0));
188
/*
189
* __PAGE_KERNEL_* includes _PAGE_GLOBAL, which we want since
190
* this is mapped to userspace.
191
*/
192
pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask));
193
for (n = 0; n < ESPFIX_PTE_CLONES; n++)
194
set_pte(&pte_p[n*PTE_STRIDE], pte);
195
196
/* Job is done for this CPU and any CPU which shares this page */
197
WRITE_ONCE(espfix_pages[page], stack_page);
198
199
unlock_done:
200
mutex_unlock(&espfix_init_mutex);
201
done:
202
per_cpu(espfix_stack, cpu) = addr;
203
per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page
204
+ (addr & ~PAGE_MASK);
205
}
206
207